WO2017095206A1 - 반사 방지 필름 - Google Patents

반사 방지 필름 Download PDF

Info

Publication number
WO2017095206A1
WO2017095206A1 PCT/KR2016/014182 KR2016014182W WO2017095206A1 WO 2017095206 A1 WO2017095206 A1 WO 2017095206A1 KR 2016014182 W KR2016014182 W KR 2016014182W WO 2017095206 A1 WO2017095206 A1 WO 2017095206A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
compound
functional group
substituted
meth
Prior art date
Application number
PCT/KR2016/014182
Other languages
English (en)
French (fr)
Inventor
장석훈
김헌
김부경
변진석
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160163711A external-priority patent/KR102017789B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/741,465 priority Critical patent/US10809419B2/en
Priority to EP16871102.6A priority patent/EP3316008B1/en
Priority to CN201680044423.0A priority patent/CN107850693B/zh
Priority to JP2018525335A priority patent/JP6704624B2/ja
Publication of WO2017095206A1 publication Critical patent/WO2017095206A1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to an anti-reflection film, and more particularly, to realize high scratch resistance and antifouling property at the same time having a low reflectance and a high light transmittance, and to reduce the reflection of external light through a low reflectance to improve the visibility of the display device. It is related with the antireflection film which can be heightened. [Technique to become background of invention]
  • a flat panel display device such as a PDP or LCD is equipped with an antireflection film for minimizing reflection of light incident from the outside.
  • a method for minimizing the reflection of light a method of dispersing a filler such as inorganic fine particles in a resin is coated on a base film and imparts irregularities (ant i-glare: AG coating);
  • a method which uses the interference of light by forming many layers from which refractive index differs on a base film, or the method of using these all together.
  • the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using light scattering through unevenness.
  • the AG coating has poor screen clarity due to surface irregularities, many studies on AR coatings have recently been made.
  • the film using the AR coating As the film using the AR coating . It is commercially available that it is a multilayered structure in which a hard coating layer (high refractive index layer), a low reflection coating layer and the like are laminated on a base film.
  • the method of forming a plurality of layers as described above is As the process of forming the layer is performed separately, the adhesion between the layers (interface adhesion) is weak, and thus scratch resistance is inferior.
  • the present invention is to provide an anti-reflection film which can realize high scratch resistance and antifouling property at the same time having a low reflectance and a high light transmittance, and can improve the visibility of the display device by reducing the reflection of external light through the implementation of low reflectance. .
  • the surface centerline average roughness (Ra) is 1.2 nm or less
  • An anti-reflection film including a hard coating layer having a surface energy of 34 mN / m or less; and a low refractive layer formed on the hard coating layer.
  • the photopolymerizable compound is collectively referred to as a compound that causes polymerization reaction when light is irradiated, for example, visible light or ultraviolet light.
  • a fluorine-containing compound means the compound containing at least 1 or more fluorine elements among the compounds.
  • (meth) acryl is acryl (acryl) and Methacrylate (methacryl) is meant to include both.
  • a (co) polymer is meant to include both copolymers and homopolymers.
  • the hollow silica particles is a silica particle derived from a silicon compound or an organosilicon compound, means a particle having a void space on the surface and / or inside of the silica particle.
  • the centerline average roughness (Ra) of the surface is 1.2 nm or less and a hard coating layer having a surface energy of 34 mN / m or less; And a low refractive layer formed on the hard coating layer.
  • the antireflection film may be provided.
  • the present inventors have conducted research on the antireflection film, and in the case where the hard coating layer of the antireflection film has a previously unknown surface property, antifouling properties together with mechanical properties such as optical properties and scratch resistance of the antireflection film Experiments confirmed that can also be improved to complete the invention.
  • the antireflection film of the embodiment when a hard coating layer having a centerline average roughness Ra of 1.2 nm or less and a surface energy of 34 mN / m or less is applied to the antireflection film The surface characteristics of the entire antireflection film can be adjusted. Such an antireflection film can realize high scratch resistance and antifouling property at the same time with low reflectance and high light transmittance. The visibility of the device can be improved.
  • the surface of the hard coating layer may have a centerline average roughness (Ra) of 1.2 nm or less, or 0.4 ran to 1.0 nm, or 0.5 nm to 0.8 ran.
  • the core line average roughness may be a measurement showing the surface roughness of the J IS standard (J IS B 0601-1982), for example, 0.5 to 0.8 Hz using a Bruker's Mul t imode AFM (Mul t imode 8) equipment. Measurements can be made using an aluminum coated Bruker silicon tip at a scan rate of. Specifically, each sample (width * length: 1 cm * 1 cm) is fixed to the AFM sampl e di sk with a carbon tape and measured while looking for a flat portion with an optical microscope, measured 3 points in the area of 5 * 5
  • the average line roughness (Ra) can be calculated by averaging.
  • the hard coating layer may have a surface energy of 34 mN / m or less, or 28 mN / m to 34 mN / m or 30 mN / m to 33.5 mN / m.
  • the surface energy was averaged by measuring the contact angle of di-water (Gebhardt) and di-iodomethane (Owens) at 10 point s using a commonly known measuring device, for example, the DSA-100 contact angle measuring device of Kruss. The average contact angle can then be measured in terms of surface energy.
  • the contact angle may be converted into the surface energy by using the Dropshape Analys i s software and applying the following general formula 1 of the 0WRK (0wen Wendt, Rable, Kaelble) method on the program.
  • the anti-reflection film including the hard coating layer may realize high scratch resistance and antifouling resistance while having low reflectance and high light transmittance.
  • the surface roughness and the surface energy of the heart coating layer are limited to the above-mentioned range, anti-reflection including the heart coating layer and the low refractive layer
  • the surface roughness of the film can also be relatively low, whereby the surface slipperiness of the antireflective film can be improved and friction can be reduced.
  • the surface roughness and surface energy of the anti-reflection film may be reduced, thereby making surface adsorption difficult due to capillary phenomenon of contaminants, thereby facilitating surface cleaning, thereby ensuring improved antifouling properties.
  • the centerline average roughness and surface energy of the hard coat layer may be obtained by adjusting the surface properties of the hard coat worm.
  • the surface of the hard coating layer may have a centerline average roughness (Ra) of 1.2 nm or less, or 0.5 ran to 1.0 nm, and the hard coating layer 34 mN / m or less, or 28 mN / m to 34 mN / m, or 30 mN / m to 33.5 mN / m.
  • the degree of curing of the hard coating layer can be adjusted, about 30% to 48% A surface hardened hard coat layer can be obtained. It may be difficult to have sufficient scratch resistance in the case of a substantially completely cured hard coating layer, but as described above, the hard coating layer surface cured to about 30% to 48% may have high scratch resistance and antifouling resistance at the same time.
  • the hard coat layer surface cured by about 30% to 48% may have a centerline average roughness (Ra) of about 1.2 nm or less, or 0.5 kPa to 1.0 nm or less on the surface, and about 34 mN / m or less, or 28 It may have a surface energy of mN / m to 34 mN / m, or 30 mN / m to 33.5 mN / m.
  • Ra centerline average roughness
  • the hard coating layer is in a state in which a nitrogen purge in order to apply a nitrogen atmospheric condition, a resin composition for forming the hard coat layer 5 to 2, 000 mJ / cin 2, or 10 to 200 rnJ / cin 2 It can be obtained by irradiating the ultraviolet light with a nominal amount of, and the ultraviolet irradiation can be carried out while moving at a speed of 10 m / min to 100 m / min while the resin composition forming the hard coating layer is applied to the substrate have.
  • the hard coating layer is commonly known as a hard coating layer Can be used without limitation.
  • the hard coating film may include a hard coating layer including a binder resin containing a polymer of a photocurable compound.
  • the photocurable resin included in the hard coat layer is a polymer of a photocurable compound that may cause a polymerization reaction when light such as ultraviolet rays is irradiated, and may be conventional in the art.
  • the hard coating layer may include a (meth) acrylate monomer having one or more ethylenically unsaturated bonds; Urethane-based (meth) acrylates having one or more ethylenically unsaturated bonds, one or more epoxy-based (meth) acrylates and two or more ethylenically unsaturated bonds or ethylenically unsaturated bonds, or Monomers or oligomers of two or more ester-based (meth) acrylates; And a (meth) acrylate compound having at least one or two or more ethylenically unsaturated bonds and having a heterocyclic skeleton or a (meth) acrylate having at least one or two or more ethylenically unsaturated bonds and having an alicyclic ring; It may include a binder resin containing a polymer of at least one photocurable compound selected from the group consisting of.
  • the photocurable compound may be a polyfunctional (meth) acrylate-based monomer or oligomer, wherein the number of (meth) acrylate-based functional groups is 2 to 10, preferably 2 to 8, more preferably 2 to 7 is advantageous in terms of securing physical properties of the hard coating layer.
  • Such a polyfunctional (meth) acrylate monomer is a (meth) acrylate monomer having at least one or two or more functional groups having an ethylenically unsaturated bond such as a vinyl group or a (meth) acrylate group in a molecule, and more specific examples.
  • Tetrafunctional or higher (meth) acrylates The ethylene oxide modified product, the caprolactone modified product, the propionic acid modified product, etc. of the said polyfunctional (meth) acrylate monomer are mentioned.
  • the photocurable compound may include one or more monomers or oligomers, such as urethane-based (meth) acrylate, epoxy-based (meth) acrylate, or ester-based (meth) acrylate.
  • monomers or oligomers such as urethane-based (meth) acrylate, epoxy-based (meth) acrylate, or ester-based (meth) acrylate.
  • the photocurable compound may be a (meth) acrylate compound having a heterocyclic skeleton or a (meth) acrylate having an alicyclic ring.
  • the (meth) acryloyl group may be connected to the heterocyclic skeleton, and specifically, the (meth) acryloyl group is preferably directly or via a hydrocarbon group connected to the heterocyclic skeleton.
  • a hydrocarbon group of a C1-C10 alkylene group or a C1-C10 alkylene group which has an ether bond is mentioned.
  • (meth) acrylate which has the said alicyclic ring
  • (meth) acrylate which has the said alicyclic ring
  • a monofunctional (meth) acrylate compound isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) Acrylate, dicyclopentenyloxyethyl (meth) acrylate, cyclonuclear (meth) acrylate,
  • the hard coating film a photocurable resin and And a hard coat film containing a binder resin containing a high molecular weight (co) polymer having an increased average molecular weight of 10,000 or more and organic or inorganic fine particles dispersed in the binder resin.
  • the high molecular weight (co) polymer may be one or more selected from the group consisting of cellulose-based polymers, acrylic polymers, styrene-based polymers, epoxide-based polymers, nylon-based polymers, urethane-based polymers, and polyolefin-based polymers.
  • the photocurable resin included in the hard coat layer is a polymer of a photocurable compound that may cause a polymerization reaction when light such as ultraviolet rays is irradiated, and may be conventional in the art. Specific examples of the photocurable compound are as described above.
  • the organic or inorganic fine particles may have a particle size of 1 to 10.
  • the organic or inorganic fine particles may be organic fine particles made of acrylic resin, styrene resin, epoxide resin and nylon resin or inorganic fine particles made of silicon oxide, titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
  • the hard coat film may be formed from an anti-glare coating composition comprising organic or inorganic fine particles, a photocurable resin, a photoinitiator, and a high molecular weight (co) polymer having a weight average molecular weight of 10, 000 or more.
  • the hard coating film a binder resin of a photocurable resin; And the hard coat film containing the antistatic agent disperse
  • the photocurable resin included in the hard coat layer is a polymer of a photocurable compound that can cause polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art. Specific examples of the photocurable compound are as described above.
  • the antistatic agent is a quaternary ammonium salt compound; Pyridinium salts; Cationic compounds having from 1 to 3 amino groups; Anionic compounds such as sulfonic acid base, sulfuric acid ester base, phosphate ester base and phosphonic acid base; Positive compounds, such as an amino acid type or amino sulfate ester type compound; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds compound; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelate compounds such as acetylacetonate salts of the organometallic compounds; Two or more reactants or polymerized compounds of these compounds; It may be a combination of two or more of these compounds.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in a molecule, and may use a low molecular type or a polymer type without limitation.
  • a conductive polymer and metal oxide fine particles may also be used as the antistatic agent.
  • the conductive polymer include aromatic conjugated poly (paraphenylene), polycyclic heterocyclic conjugated polypyridine, polythiophene, aliphatic conjugated polyacetylene, heteroatom containing polyaniline, and a mixed conjugated conjugated system.
  • the metal oxide fine particles are zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminium oxide, antimony doped. Tin oxide, aluminum doped zinc oxide, and the like.
  • Binder resin of the photocurable resin; And an antistatic agent dispersed in the binder resin may further include one or more compounds selected from the group consisting of alkoxy silane oligomers and metal alkoxide-based oligomers.
  • the alkoxy silane compound may be conventional in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxy It may be at least one compound selected from the group consisting of propyltrimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl trioxysilane:
  • the metal alkoxide-based oligomer may be prepared through a sol-gel reaction of a composition containing a metal alkoxide-based compound and water.
  • the sol-gel reaction can be carried out by a method similar to the method for producing an alkoxy silane oligomer described above.
  • the metal alkoxide compound may react rapidly with water, so that the sol-gel reaction may be performed by dipping the metal alkoxide compound in an organic solvent and slowly dropping water.
  • the molar ratio of the metal alkoxide compound to water (based on metal ions) is preferably adjusted within the range of 3 to 170.
  • the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
  • the hard coating film is the photocurable resin or photocurable compound; Antistatic agents; And a photocurable coating composition comprising a photopolymerization initiator.
  • the photopolymerization initiator may be used without limitation as long as it is a compound known to be used in the photocurable water composition, and specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound or Two or more kinds thereof can be used.
  • the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
  • the photocurable coating composition may further comprise an organic solvent.
  • the organic solvents may include ketones, alcohols, acetates and ethers, or a combination of two or more thereof. Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i_butane or t-butanol; Ethyl acetate, i-propyl acetate, or polyethylene glycol Acetates such as monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
  • the organic solvent may be included in the photocurable coating composition while being added at the time of mixing each component included in the photocurable coating composition or in the state in which each component is dispersed or mixed in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the resulting film due to the flowability of the photocurable coating composition is reduced. In addition, when the excessive amount of the organic solvent is added, the solid content is lowered, coating and film formation are not divided, the physical properties and surface properties of the film may be lowered, and defects may occur in the drying and curing process. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1 wt% to 55 wt%, or 30 to 45 wt%.
  • the photocurable coating composition may further comprise an additive.
  • additives include a wetting agent (wet ting agent) that helps to wett ing well on the substrate by lowering the surface tension of the coating liquid of the photocurable coating composition, and improving surface leveling to ensure uniform thickness and coating property. Leveling and the like.
  • an antireflection film including a low refractive index layer prepared using a photopolymerizable compound, a photocurable compound containing a photobanung functional group two or more, a photocurable coating composition containing inorganic fine particles and a photoinitiator is Lower reflectance and higher light transmittance can improve abrasion resistance or scratch resistance and at the same time ensure excellent antifouling against external contaminants.
  • the final low refractive index layer may have lower reflectance and improved transmittance and have mechanical properties such as scratch resistance. While improving, it is possible to secure high antifouling property against pollution to the outside.
  • the low refractive index layer prepared from the photocurable coating composition may lower the interaction energy with respect to liquids or organic materials, accordingly Not only can greatly reduce the amount of contaminants transferred to the low refractive index layer, it is possible to prevent the transferred contaminants from remaining on the surface, and to easily remove the contaminants themselves.
  • the semi-aromatic functional group included in the ambleso compound including the photoreactive functional group has a crosslinking action, thereby improving physical durability, scratch resistance, and thermal stability of the low refractive layer. Can be.
  • the low refractive index layer may realize surface characteristics such as improved antifouling and slip resistance while securing higher physical durability and scratch resistance.
  • the low refractive layer is a binder resin comprising a cross-linking (co) polymer between two or more kinds of fluorine-containing compounds including a photopolymerizable compound and a photo-banung functional group; And inorganic fine particles dispersed in the binder resin.
  • the two or more kinds of fluorine-containing compounds including the photoreactive functional groups may be classified according to the fluorine-containing ranges included. Specifically, the two or more kinds of fluorine-containing compounds including the photoreactive functional groups may have different fluorine-containing ranges depending on the type.
  • the low refractive index layer and the anti-reflection film prepared from the photocurable coating composition have a lower reflectance due to the properties resulting from the fluorine-containing compound having a higher fluorine content among two or more kinds of fluorine-containing compounds including the photoreactive functional group. It can have improved antifouling property.
  • more than two types of fluorine-containing compounds containing the said photo-banung functional group The fluorine-containing compound exhibiting a low fluorine content can be more compatible with other components included in the photocurable coating composition, and the lower refractive index layer and the antireflection film prepared in the final stage have higher physical durability and scratch resistance. It can have homogeneous surface properties and high surface slip properties with improved antifouling properties.
  • two or more kinds of fluorine-containing compounds including the photoreactive functional group may be classified based on the content of 25% by weight of fluorine included.
  • the content of fluorine contained in each of the fluorine-containing compounds including the photoreactive functional group can be confirmed through a conventionally known analysis method, for example, an IC [Ion Chromatograph] analysis method.
  • the two or more kinds of fluorine-containing compounds including the photoreactive functional group may include a first fluorine-containing compound including a photoreactive functional group and containing 25 to 60% by weight of fluorine.
  • the two or more kinds of fluorine-containing compounds including the photo-reflective functional group may include a second fluorine-containing compound including the photo-reflective functional group and containing fluorine in an amount of not less than 1 wt% 3 ⁇ 4> and less than 25 wt%.
  • the photocurable coating composition comprises 1) a first fluorine-containing compound comprising a photoreactive functional group and a fluorine content of from 25 to 60 wt.% »And 2) a photoreactive functional group and from 1% by weight to 25% by weight.
  • a fluorine-containing compound containing fluorine By including the second fluorine-containing compound containing fluorine, compared to the case of using a fluorine-containing compound containing one type of photo-banung functional group, while maintaining a higher physical durability and scratch resistance, improved antifouling and slip resistance, etc. Surface characteristics of can be implemented.
  • the low refractive index layer and the antireflection film which are finally prepared due to the first fluorine-containing compound having a higher fluorine content, may have improved antifouling properties while ensuring a lower reflectance, and a second having a lower fluorine content. Due to the fluorine-containing compound, it is possible to increase compatibility with other components included in the photocurable coating composition, and the low refractive index layer and the anti-reflective film to be produced have higher physical durability and scratch resistance and have improved antifouling properties. Have homogeneous surface properties and high surface slipperiness together Can be.
  • the difference in fluorine content between the first and second fluorine-containing compounds may be 5% by weight or more.
  • the difference in fluorine content between the first fluorine-containing compound and the second fluorine-containing compound is 5% by weight or more, or 10% by weight or more, the above-described effects of the first fluorine-containing compound and the second fluorine-containing compound are more effective. It may be maximized, and accordingly, a synergistic effect of using the first fluorine-containing compound and the second fluorine-containing compound may also be increased.
  • the first and second terms are for specifying the components to be referred to, and are not limited to the order or importance.
  • the weight ratio between the first fluorine-containing compound and the second fluorine-containing compound is large
  • the weight ratio of the second fluorine-containing compound to the first fluorine-containing compound is 0.01 to 0.5 so that the low refractive layer to be produced has a homogeneous surface property with improved scratch and antifouling properties. It may be preferably 0.01 to 0.4.
  • Each of the two or more kinds of fluorine-containing compounds including the photoreactive functional group may include or be substituted with one or more photoreactive functional groups, and the photoreactive functional group is polymerized by irradiation of light, for example, irradiation with visible light or ultraviolet light. It means a functional group that can participate in reaction.
  • the photo-reflective functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light, specific examples thereof
  • It may be an oligomer or a (co) polymer having a weight average molecular weight (weight average molecular weight in terms of polystyrene measured by the GPC method) of 2, 000 to 200, 000, preferably 5, 000 to 100, 000.
  • each of the two or more kinds of fluorine-containing compounds including the photo-banung functional group, or any one or more may be a fluorine-containing monomer having two or more semi-ungular functional groups in the molecule.
  • the fluorine-containing monomer which has two or more functional groups can be included.
  • the coating film strength of the low refractive index layer can be increased, and the fluorine-containing monomer can control optical properties such as refractive index of the low refractive layer.
  • fluorine-containing monomer having two or more semi-active functional groups in the above one molecule examples include fluorine-containing monomers having a backbone of pentaerythres, fluorine-containing monomers having a backbone of dipentaerythr, fluorine-containing monomers having a trimethylolpropane skeleton, Fluorine-containing monomers having a cyclonuclear chamber skeleton, fluorine-containing monomers having a linear skeleton, and the like.
  • the fluorine-containing compounds in the photocurable coating composition may not be uniformly and effectively arranged on the surface of the low refractive layer to be manufactured, thereby Accordingly, the antifouling property of the surface of the low refractive index layer is lowered, and the crosslinking density of the low refractive index layer is lowered, so that mechanical properties such as overall strength and scratch resistance may be reduced.
  • the weight average molecular weight of the fluorine-containing compound containing the photo-reflective functional group is too high, the compatibility with other components in the photocurable coating composition may be lowered, thereby increasing the haze of the low refractive layer to be produced and the light transmittance can be lowered, the strength of the low refractive index layer "may also be decreased.
  • the fluorine-containing compound including the photoreactive functional group is i) an aliphatic compound or aliphatic ring compound in which one or more photobanung functional groups are substituted, and at least one fluorine is substituted in at least one carbon; ii) heteroaliphatic compounds or heteroaliphatic ring compounds substituted with one or more photoreactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbons substituted with silicon; iii) polydialkylsiloxane polymers (eg polydimethylsiloxane polymers) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicone; iv) a polyether compound substituted with at least one photoreactive functional group and at least one hydrogen substituted with fluorine, or a mixture of two or more of i) to iv) or a combination thereof And copolymers.
  • polydialkylsiloxane polymers eg polydimethyls
  • the photocurable coating composition may include 20 to 300 parts by weight of two or more kinds of fluorine-containing compounds including the photobanung functional group based on 100 parts by weight of the photopolymerizable compound.
  • the content of the at least two kinds of fluorine-containing compounds including the photoreactive functional groups relative to the photopolymerizable compounds is based on the total content of at least two kinds of the fluorine-containing compounds including the photoreactive functional groups.
  • the coating property of the photocurable coating composition of the embodiment is reduced or the low refractive layer obtained from the photocurable coating composition of the embodiment is more durable. It may not have scratch resistance.
  • the amount of the fluorine-containing compound containing the photo-banung functional group relative to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition of the embodiment does not have mechanical properties such as layered antifouling or scratch resistance You may not be able to.
  • the fluorine-containing compound including the photobanung functional group may further include silicon or a silicon compound. That is, the fluorine-containing compound including the photo-ungung functional group may optionally contain a silicon or silicon compound, specifically, the content of silicon in the fluorine-containing compound containing the photo-banung functional group is 0.01% by weight to 20% by weight May be%.
  • the content of the silicon or silicon compound included in each of the fluorine-containing compounds including the photo-banung functional group can also be confirmed through a commonly known analytical method, for example, an ICP [Inductively Coupled Pl asma] method.
  • Silicon contained in the fluorine-containing compound including the photo-banung functional group can increase the compatibility with other components included in the photocurable coating composition of the embodiment, and thus it is observed that haze is generated in the final refractive layer. It can prevent the role to increase the transparency, and also improve the scratch resistance of the surface of the low refractive index layer or the anti-reflection film to be manufactured to improve the scratch resistance.
  • the silicon of the fluorine-containing compound containing the photoreactive functional group If the content is too large, the compatibility between the other components included in the photocurable coating composition of the embodiment and the fluorinated fluoride may be rather deteriorated, and thus the light transmittance of the low refractive layer or the antireflection film to be produced Not having anti-reflection performance, the antifouling property of the surface may also be degraded.
  • the photocurable coating composition may further include a polysilsesquioxane substituted with one or more reactive functional groups.
  • the polysilsesquioxane substituted with at least one reactive functional group has a semi-ung functional group on its surface to increase mechanical properties, for example, scratch resistance, of the coating film or binder resin formed during photocuring of the photocurable coating composition. have.
  • the photocurable coating composition for forming the low refractive index layer is the photocurable coating composition for forming the low refractive index layer.
  • the binder resin included in the low refractive index layer is a photopolymerizable compound, two or more kinds of habso compound including a photo-banung functional group and a poly substituted with at least one semi-ung functional group It may further comprise a crosslinked (co) polymer between silsesquioxanes.
  • the final low refractive index In addition to increasing the strength of the layer or the antireflection film, crosslinking can be formed over the entire region of the film, thereby improving the surface strength and scratch resistance.
  • the photocurable coating composition may include 0.5 to 60 parts by weight of polysilsesquioxane, or 1.5 to 45 parts by weight, in which at least one semi-aromatic functional group is substituted with respect to 100 parts by weight of the photopolymerizable compound.
  • the semi-functional group substituted in the polysilsesquioxane is alcohol, amine, carboxylic acid, epoxide, imide, (meth) acrylate, nitrile, norbornene, olefin [al ly), cycloalkenyl ( cyc loalkenyl) or vinyldimethylsilyl, etc.], polyethyleneglycol, thiol and vinyl groups, and may include one or more functional groups, preferably epoxide or
  • the semi-functional group include (meth) acrylate, alkyl (meth) acrylate having 1 to 20 carbon atoms, cycloalkyl epoxide having 3 to 20 carbon atoms, and alkyl cycloalkane having 1 to 10 carbon atoms. (cycloalkane) epoxide.
  • the alkyl (meth) acrylate means that the other part of the 'alkyl' which is not bonded with the (meth) acrylate is a bonding position
  • the cycloalkyl epoxide is the other part of the 'cycloalkyl' which is not bonded with the epoxide
  • Alkyl cycloalkane epoxide means that the other site of the alkyl that is not bonded to the cycloalkane epoxide.
  • the polysilsesquioxane substituted with one or more of the semi-active functional group is a linear or branched alkyl group of 1 to 20 carbon atoms, a cyclonuclear group of 6 to 20 carbon atoms and 6 to 20 carbon atoms in addition to the above-mentioned semi-functional functional groups
  • At least one unreactive functional group selected from the group consisting of aryl groups may further include at least one.
  • the semi-functional male group and the un- semi-functional male group are substituted on the surface of the polysilsesquioxane, so that the siloxane bond (-Si-0-) is in the molecule in the polysilsesquioxane in which the semi-male functional group is substituted at least one. It can be located at and not exposed to the outside, so that it can be more compatible with other organic materials, and as the siloxane bond is firmly bonded between the semi-functional group or other organic materials, it is not separated by external pressure. It may serve as a solid support in the coating film or binder resin formed during photocuring of the photocurable coating composition, thereby greatly increasing the strength or scratch resistance of the low refractive layer or the antireflection film to be produced. It can increase.
  • the polysilsesquioxane may be represented as (RSiO (second n 4 to 30 or 8 to 20), and may have a variety of structures, such as random, ladder, cage and partial cage.
  • the semi-functional functional group is substituted with at least one semi-functional functional group and the cage (
  • Polyhedral oligomer oligomer silsesquioxanes having a structure can be used-more preferably, polyhedral oligomer silses having at least one functional group substituted and having a cage structure.
  • Quioxane may comprise from 8 to 20 silicon in the molecule.
  • At least one or more of the silicones of the polyhedral oligomeric silsesquioxane having a cage structure may be substituted with a reactive functional group, and the above-described non-acyclic functional groups may be substituted with silicones which do not have a semi-acyclic functional group substituted therein.
  • a reactive functional group such as a methyl methacrylate, a methyl methacrylate, a methyl methacrylate, and the above-described non-acyclic functional groups may be substituted with silicones which do not have a semi-acyclic functional group substituted therein.
  • silicones of the polyhedral oligomeric silsesquioxane having a cage structure may be substituted with a reactive functional group, and the above-described non-acyclic functional groups may be substituted with silicones which do not have a semi-acyclic functional group substituted therein.
  • the mechanical properties of the coating film or the binder resin formed during photocuring of the photocurable coating composition may be improved.
  • the three-dimensional molecular structural failure appears siloxane bond (-si-o-) significantly lowering the frequency or probability of being exposed to the outside of other organic materials
  • the siloxane bond is firmly bonded between the reactive functional group or other organic materials, so as not to fall off by external pressure, which is formed during photocuring of the photocurable coating composition It can serve as a solid support inside the membrane or binder resin, The ultimate strength of the low refractive index layer or anti-reflection film to be produced or the scratch resistance may be increased significantly depending on.
  • Polyhedral oligomeric silsesquioxane (Polyhedral 01 igomer ic Si l sesquioxane) having one or more such semi-functional functional groups and having a cage structure
  • POSS include one or more alcohols substituted with one or more alcohols such as TMP Diollsobutyl POSS, Cyclohexanediol Isobutyl POSS, 1,2-PropanediolIsobutyl POSS, and 0cta (3—hydroxy-3 methylbutyldimet ylsi loxy) POSS; Aminopropyl Isobutyl POSS, Aminopropyl Isooctyl POSS, Am i noe t hy 1 am i nopr opy 1 Isobutyl POSS,. N ⁇ Phenyl aminopropyl POSS, N ⁇ Methyl aminopropyl Isobutyl POSS,
  • POSS in which at least one amine is substituted, such as Am i nopheny 1 Cy c 1 ohexy 1 POSS and Am inophenyl Isobutyl POSS; POSS in which at least one carboxylic acid is substituted, such as Maleamic Ac-Cycl ohexy 1 POSS, Maleamic Acid-Isobutyl POSS, Octa Maleamic Acid POSS; POSS substituted with at least one epoxide such as EpoxyCyc 1 ohexy 1 Isobutyl POSS, Epoxycycl ohexy 1 POSS, Glycidyl POSS, GlycidylEthyl POSS, Glycidyl Isobutyl POSS, Glycidyl Isooctyl POSS; POSS Maleimide Cy c 1 ohexy 1, POSS Maleimide Isobutyl, etc.
  • POSS in which one or more (meth) acrylates are substituted, such as (Meth) acryl Isooctyl POSS, (Meth) acrylPhenyl POSS, (Meth) acryl POSS, and Acrylo POSS; POSS in which at least one nitrile group such as Cyanopropyl Isobutyl POSS is substituted; POSS in which at least one norbornene group is substituted, such as NorbornenylEthyl POSS, Norbornenyl ethyl Isobutyl POSS, Norbornenyl ethyl DiSi lanolsobutyl POSS, and Tr isnorbornenyl Isobutyl POSS; POSS substituted with at least one vinyl group such as Allyllsobutyl POSS, MonoVinyllsobutyl POSS, OctaCyclohexenyldimethylsilyl POSS, OctaVinyldimethyl
  • One or more urepins such as OctaVinyldimethylsilyl POSS and OctaVinyl POSS are substituted
  • POSS POSS substituted with PEG of 5 to 30 carbon atoms
  • photopolymerizable contained in the photocurable coating composition of the embodiment can form the binder resin of the low refractive layer to be produced.
  • the photopolymerizable compound may include a monomer or oligomer including a (meth) acrylate or a vinyl group.
  • the photopolymerizable compound may include a monomer or oligomer containing (meth) acrylate or vinyl group of one or more, two or more, or three or more.
  • a pentaerythri is tri (meth) acrylate, a pentaerythri tetra (meth) acrylate, a dipentaerythrene penta (meth) acrylic acid Latent, dipentaerythrione nucleated (meth) acrylate, tripentaerythrione, hepta (meth) acrylate, triylene diisocyanate, xylene diisocyanate, nucleamethylene diisocyanate, trimethyl propane tri (meth) acrylate , Trimethylolpropane polyethoxy tri (meth) acrylate, trimethyl propane trimethacrylate, ethylene glycol dimethacrylate, butanedi gamma methacrylate, nuxaethyl methacrylate, butyl methacrylate or two kinds thereof.
  • the monomer or oligomer containing the vinyl group include divinylbenzene, styrene or paramethyl styrene.
  • the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the low refractive index layer or the anti-reflection film to be produced finally May be 10 weight percent to 80 weight percent.
  • Solid content of the photocurable coating composition means only the components of the solid except the components of the liquid, for example, an organic solvent that may be optionally included as described below in the photocurable coating composition.
  • the photopolymerizable compound may further include a fluorine-based (meth) acrylate compound in addition to the monomer or oligomer described above.
  • the fluorine-based When further containing a (meth) acrylate type compound, the said
  • the weight ratio of the fluorine-based (meth) acrylate compound to the monomer or oligomer containing (meth) acrylate or vinyl group may be 0.1% to 1.
  • bloso-based (meth) acrylate-based compound may include at least one compound selected from the group consisting of the following Chemical Formulas 11 to 15.
  • R 1 is a hydrogen group or an alkyl group having 1 to 6 carbon atoms, a is an integer of 0 to 7, b is an integer of 1 to 3.
  • c is an integer of 1 to 10.
  • d is an integer of 1 to 11.
  • e is an integer of 1 to 5.
  • f is an integer of 4 to 10.
  • the low refractive index layer may include inorganic fine particles dispersed in a binder resin.
  • the inorganic fine particles may refer to inorganic particles having a diameter in nanometer or micrometer units.
  • the inorganic fine particles may be hollow silica particles having a number average particle diameter of 10 to 100 nm, nano silica particles having a number average particle diameter of 1 to 50 nm, or a mixture thereof.
  • the hollow silica particles are attractive to silica particles having an empty space on the surface and / or inside of the particles.
  • the hollow silica particles may have a low refractive index compared to the hollow particles, thereby exhibiting excellent antireflection properties.
  • the hollow silica particles may have a number average particle diameter of 10 to 100 nm, preferably 20 to 70 nm, more preferably 30 to 70 nra. And; The shape of the particles is preferably spherical, but may be irregular. Further, the hollow silica particles include hollow silica particles having photoreactive functional groups substituted on their surface, hollow silica particles coated with a fluorine-containing compound on their surface, hollow silica particles not substituted or coated on their surface, or their Two or more combinations or reactants may be used.
  • photoreactive functional group examples include (meth) acrylate groups, vinyl groups, hydroxyl groups, amine groups, allyl groups (al lyl), epoxide groups, hydroxy groups, isocyanate groups, amine groups, and thiol groups.
  • the hollow silica particles may be included in the composition in the form of a colloid dispersed in a predetermined dispersion medium.
  • the colloidal phase including the hollow silica particles may include an organic solvent as a dispersion medium.
  • the solid content of the hollow silica particles in the colloidal phase of the hollow silica particles may be determined in consideration of the content range of the hollow silica or the viscosity of the photocurable coating composition in the photocurable coating composition of the embodiment, for example the colloidal phase Solid content of the hollow silica particles may be from 5% by weight to 60% by weight.
  • examples of the organic solvent in the dispersion medium include alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene; Amides such as dimethylformamide / dimethylacetamide and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate and gamma butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or combinations thereof.
  • alcohols such as methanol, isopropyl alcohol, ethylene glycol and butanol
  • Ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • Aromatic hydrocarbons such as toluene and xylene
  • Amides such as dimethylformamide / dimethylacet
  • nano silica particles having a number average particle diameter of 1 to 50 nm or 3 to 30 nm may be used.
  • the nano silica particles refer to silica particles that are filled inside, unlike the hollow silica particles.
  • the low refractive index layer prepared from the photocurable coating composition of the embodiment can ensure higher mechanical strength and scratch resistance.
  • the nano-silica particles having a number average particle diameter of 1 to 50 nm, or 3 to 30 ⁇ in a predetermined amount Therefore, phase separation such as inorganic fine particles may appear in the process of forming the low refractive layer, and thus the reflectance of the low refractive layer may be lowered.
  • the low refractive layer may include 10 to 400 parts by weight of the inorganic fine particles, or 20 to 200 parts by weight based on 100 parts by weight of the photopolymerizable compound.
  • the inorganic fine particles When the inorganic fine particles are added in an excessive amount, the inorganic fine particles may be arranged on the surface of the low refractive layer to be finally produced, and excessive surface irregularities may occur, thereby reducing the antifouling properties.
  • the photopolymerization initiator can be used without limitation as long as it is a compound known to be used in the photocurable resin composition, specifically, a benzophenone compound, acetophenone compound, biimidazole compound, triazine compound, oxime compound Or two or more kinds thereof.
  • the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the non-aqueous initiator may remain as an impurity or have a low crosslinking density, thereby lowering mechanical properties or reflectance of the film.
  • the photocurable coating composition may further comprise an organic solvent.
  • organic solvents include ketones, alcohols, acetates and ethers, or a combination of two or more thereof. Specific examples of such organic solvents include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methane, ethanol, n-propanol, i-propanol, n-butanol, i-butane, or t-butane; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or two or more kinds thereof.
  • the organic solvent is added at the time of mixing the respective components included in the photocurable coating composition, or each component is dispersed or It may be included in the photocurable coating composition while being added in a mixed state. If the content of the organic solvent in the photocurable coating composition is too small, defects may occur, such as streaks in the resulting film due to the flowability of the photocurable coating composition is reduced. In addition, when the excessive amount of the organic solvent is added, the solid content is lowered, coating and film formation are not layered, the physical properties and surface properties of the film may be lowered, and defects may occur in the drying and curing process. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1 wt% to 50 wt%, or 2 to 20 wt%.
  • the low refractive index layer may be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied resultant.
  • the specific kind or thickness of the substrate is not particularly limited, and a substrate known to be used in the manufacture of a low refractive index layer or an antireflection film can be used without great limitation.
  • Methods and apparatuses conventionally used to apply the photocurable coating composition may be used without particular limitation, for example, bar coating such as Meyer bar, gravure coating, 2 roll l reverse coating, vacuum s lot die coating, 2 roll coating, etc. may be used. ,
  • the low refractive layer may have a thickness of l nm to 300 ran, or 50 nm to 200 nm. Accordingly, the thickness of the photocurable coating composition applied on the predetermined substrate is about 1 ran to 300 ran, or 50 nm to . 200 ran.
  • the photocurable coating composition may be irradiated with ultraviolet light or visible light of a wavelength of 200 ⁇ 400nm, the exposure dose is preferably from 5 to 2,000 mJ / cin 2 .
  • Exposure time is not specifically limited, either, It can change suitably according to the exposure apparatus used, the wavelength of irradiation light, or an exposure amount.
  • the photocurable coating composition may be nitrogen purging to apply nitrogen atmospheric conditions.
  • the low refractive index layer is less than 2.0%, or less than 1.0%, or less than 0.7% It can have an average reflectance.
  • the present invention it is possible to realize high scratch resistance and antifouling property at the same time having a low reflectance and a high light transmittance, and to provide an antireflection film which can reduce the reflection of external light through the low reflectance to increase the visibility of the display device. Can be.
  • a salt type antistatic hard coating solution (50 wt% solids, product name: LJD-1000) of Toyo Ink Co., Ltd. was diluted with methyl isobutyl ketone to prepare a hard coating liquid having a solid weight of 40 wt%.
  • the diluted hard coating solution was coated on a triacetyl cellulose film with # 10 mayer bar and dried at 90 ° C. for 2 minutes, and then photocured under the conditions of Table 2 to prepare a hard coating film having a thickness of 10 mm 3.
  • MIBK-ST 10 10 15 13 pentaacrylate to 18 18 15 16 13 pentaacrylate
  • THRULYA 4320 catalyzed product: hollow silica dispersion (20 wt 3 ⁇ 4 of solid in MIBK solvent)
  • Fluorine-containing compound containing photoreactive functional group (diluted to 40% by weight of solid in MIBK solvent, about 17% by weight of fluorine in solid)
  • MIBK-ST manufactured by Nissan Chemical: Nanosilica dispersion diluted with solids 3OT in MIBK solvent
  • the photocurable coating composition obtained in Table 1 was coated with # 3 mayer bar and dried at 60 ° C. for 1 minute. Then, an antireflection film was prepared by irradiating 100 mJ / cirf of ultraviolet light to the dried material under nitrogen purge to form a low refractive layer having a thickness of 100 nm.
  • Example 1 0 47 20 LR1 Example 2 0 47 20 LR2 Example 3 0 47 20 LR3 Example 4 0 47. 20 LR4 Example 5 0 47 20 LR5 Example 6 0 15 60 LR4 Comparative Example 1 X 4 445 LR4 Comparative Example 2 X 8 220 LR4 Comparative Example 3 X 4 445 LR5 Comparative Example 4 X 8. 220. LR5
  • each hard coating layer was averaged by measuring the contact angle between di—water (Gebhardt) and di-iodomethane (Owens) at 10 point s using Kruss and DSA-100 contact angle measuring equipment. The average contact angle was then measured in terms of surface energy. In the measurement of the surface energy, the contact angle was converted to the surface energy by using the Dropshape Analys i s software and applying the following general formula 1 of the 0WRK (0wen, Wendt, Rable, Kaelble) method on the program.
  • the antifouling property was evaluated by the number of times that three straight lines were drawn with a red oil pen on the surface of each antireflective film obtained in Examples and Comparative Examples and then wiped off with a dust-free cloth.
  • the surface of the antireflection film obtained in Examples and Comparative Examples was rubbed with a load of steel wool (# 0000) having an area of 20 mV * 20 mV and reciprocating 10 times at a speed of 10 cm / s.
  • the maximum load at which 1 scratch or less of 1 cm or less observed with the naked eye was observed was measured.
  • Example 4 33 n 0-7 0 450
  • Example 5 33. 0.7 0 500
  • Example 6 32. 11 0.7 0 500 Comparative Example 1 35. 16 0.7 ⁇ 450 Comparative Example 2 41.44 1.4 X 450 Comparative Example 3 35. 16 0.7 ⁇ 500 Comparative Example 4 41.44 1.4 X 500
  • Table 2 As shown in Table 2 above.
  • the antireflection film of the example was confirmed to have relatively good scratch resistance and at the same time excellent antifouling resistance, the antireflection film of the comparative example exhibited relatively heat resistant scratch resistance compared to the embodiment. It was confirmed that it could not secure antifouling properties.
  • the antireflection film of the embodiment using the hard coating layer having a centerline average roughness (Ra) of the surface of 1.2 ran Ah and a surface energy of 34 mN / m or less can simultaneously realize high scratch resistance and antifouling resistance.
  • Relatively low reflectivity for example an average reflectance of less than 0.7%, can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 표면의 중심선 평균거칠기(Ra)가 1.2 nm 이하이고 34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층; 및 상기 하드 코팅층 상에 형성된 저굴절층;을 포함하는, 반사 방지 필름에 관한 것이다.

Description

【명세서】
[발명의 명칭]
반사 방지 필름
【기술분야】
(관련 출원 (들)과의 상호 인용)
본 출원은 2015년 12월 03일자 한국특허출원 제 10-2015-0171773 호 및 2016 년 12 월 02 일자 한국특허출원 제 10-2016-0163711 호에 기초한 우선권꾀 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 반사 방지 필름에 관한 것으로서, 보다 상세하게는 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율 구현을 통해 외부광의 반사를 저감시켜 디스플레이 장치의 시인성을 높일 수 있는 반사 방지 필름에 관한 것이다. 【발명의 배경이 되는 기술】
일반적으로 PDP , LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.
빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법 (ant i- glare : AG 코팅) ; 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (ant i-ref lect ion : AR 코팅) 또는 이들올 흔용하는 방법 등이 있다.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.
상기 AR 코팅을 이용한 필름으로는. 기재 필름 상에 하드 코팅층 (고굴절율층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력 (계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다.
또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자 (예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다 . 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 바인더 수지 대비 나노미터 사이즈의 입자의 햠랑이 크게 증가하여 내스크래치성을 높이기 어려운 한계가 있었으며, 저굴절층 표면이 갖는 방오성이 크게 저하되었다.
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있다.
: 【발명의 내용】
【해결하고자 하는 과제】
본 발명은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율 구현을 통해 외부광의 반사를 저감시켜 디스플레이 장치의 시인성올 높일 수 있는 반사 방지 필름을 제공하기 위한 것이다.
【과제의 해결 수단】
본 명세서에서는, 표면의 중심선 평균거칠기 (Ra)가 1.2 nm 이하이고
34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층; 및 상기 하드 코팅층 상에 형성된 저굴절층;을 포함하는, 반사 방지 필름이 제공된다.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름에 관하여 보다 상세하게 설명하기로 한다. 본 명세서에서, 광중합성 화합물은 빛이 조사되면, 예를 들어 가시 광선 또는자외선의 조사되면 중합 반웅을 일으키는 화합물을 통칭한다. 또한, 함불소 화합물은 화합물 중 적어도 1 개 이상의 불소 원소가 포함된 화합물을 의미한다 .
또한, (메트)아크릴 [ (Meth)acryl ]은 아크릴 (acryl ) 및 메타크릴레이트 (Methacryl ) 양쪽 모두를 포함하는 의미이다.
또한, (공)중합체는 공중합체 (co-polymer ) 및 단독 중합체 (homo- polymer ) 양쪽 모두를 포함하는 의미이다.
또한, 중공 실리카 입자 (s i l i ca hol low part i c les)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다ᅳ
발명의 일 구현예에 따르면, 표면의 중심선 평균거칠기 (Ra)가 1.2 nm 이하이고 34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층; 및 상기 하드 코팅층 상에 형성된 저굴절층;을 포함하는, 반사 방지 필름이 제공될 수 있다.
이전에는 반사 방지 필름의 저굴절층의 굴절율을 보다 낮추기 위하여 미세 무기 입자를 과량 첨가하였으나, 이에 따라 저굴절층의 표면의 내스크래치성과 방오성이 크게 저하되는 한계가 있었다. 그뫼고, 반사 방지 필름의 광학 특성이나 기계적 물성은 주로 저굴절층에 따라 결정되는데, 이에 따라 이전에는 저굴절층의 주요 특성을 변경하거나 새로운 첨가제를 사용하는 방법에 연구가 집중되었다.
이에 반해서, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 반사 방지 필름의 하드 코팅층이 이전에 알려지지 않은 표면 특성을 갖는 경우, 반사 방지 필름의 광학 특성이나 내스크래치성 등의 기계적 물성과 함께 방오성도 향상시킬 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
구체적으로, 상기 일 구현예의 반사 방지 필름에 관해서 제시한 바와 같이, 1.2 nm 이하의 표면의 중심선 평균거칠기 (Ra)을 갖고 34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층을 반사 방지 필름에 적용하면 반사 방지 필름 전체의 표면 특성을 조절할 수 있으며, 이와 같은 반사 방지 필름은 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율 구현을 통해 외부광의 반사를 저감시켜 디스플레이 장치의 시인성을 높일 수 있다. 상기 하드 코팅층의 표면은 1.2 nm 이하, 또는 0.4 ran 내지 1.0 nm , 또는 0.5 nm 내지 0.8 ran의 중심선 평균거칠기 (Ra) 가질 수 있다. 상기 증심선 평균 거칠기는 J IS 규격 (J IS B 0601-1982)의 표면거칠기를 나타낸 측정치일 수 있으며, 예를 들어 Bruker 사의 Mul t imode AFM(Mul t imode 8) 장비를 이용하여 0.5 내지 0.8 Hz 의 스캔 속도로 알루미늄 코팅된 Bruker 사 실리콘 팁을 사용하여 측정할 수 있다. 구체적으로, 각 시료 (가로 *세로: 1 cm * 1 cm )를 AFM sampl e di sk에 탄소 테이프로 고정하고 광학현미경으로 평탄한 부분을 찾아가면서 측정하며, 5 * 5 의 영역에서 3 points 측정한 값을 평균하여 계산하여 중심선 평균거칠기 (Ra)을 구할 수 있다.
또한, 상기 하드 코팅층은 34 mN/m 이하, 또는 28 mN/m 내지 34 mN/m 또는 30 mN/m 내지 33.5 mN/m 의 표면 에너지를 가질 수 있다. 상기 표면 에너지는 통상적으로 알려진 측정 장치, 예를 들어 Kruss 사의 DSA-100 접촉각 측정 장비를 이용하여 di-water (Gebhardt )와 di- i odomethane(Owens)의 접촉각을 10 point s 로 측정하여 평균값을 낸 후 평균 접촉각을 표면 에너지로 환산하여 측정할 수 있다. 구체적으로, 상기 표면 에너지의 측정에서는 Dropshape Analys i s 소프트웨어를 사용하고 0WRK(0wen Wendt , Rable , Kaelble) method의 하기 일반식 1을 프로그램 상에 적용하여 접촉각을 표면 에너지로 환산할 수 있다.
[일반식 1]
Figure imgf000005_0001
상기 하드 코팅층이 상술한 중심선 평균거칠기 및 표면 에너지를 가짐에 따라서, 상기 하드 코팅층을 포함한 반사 방지 필름이 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다.
상기 하트 코팅층의 표면 거칠기와 표면 에너지가 상술한 범위로 한정됨에 따라서, 상기 하트 코팅층 및 저굴절층을 포함한 반사 방지 필름의 표면 거칠기 또한 상대적으로 낮아질 수 있으며, 이에 따라 상기 반사 방지 필름의 표면 슬립성은 향상되고 마찰은 감소할 수 있다. 아울러, 상기 반사 방지 필름의 표면 거칠기 및 표면 에너지가 감소할 수 있으며, 이에 따라 오염 물질 들의 모세관 현상에 의한 표면 흡착이 어려워지며 이에 따라 표면 세정이 보다 용이해져서 향상된 방오 특성을 확보할 수 있다.
상기 하드 코팅층이 갖는 중심선 평균거칠기 및 표면 에너지는 상기 하드 코팅충의 표면 특성을 조절함에 따라서 얻어질 수 있다. 예를 들어, 상기 하드 코팅층의 표면 경화도를 조절함으로서, 상기 하드 코팅층의 표면은 1.2 nm 이하, 또는 0. 5 ran 내지 1 .0 nm의 중심선 평균거칠기 (Ra)를 가질 수 있고, 상기 하드 코팅층은 34 mN/m 이하, 또는 28 mN/m 내지 34 mN/m , 또는 30 mN/m 내지 33. 5 mN/m 의 표면 에너지를 가질 수 있다.
구체적으로, 상기 하드 코팅층의 형성 과정에서 경화 조건, 예를 들어 광조사량 또는 광조사 세기나 주입되는 질소의 유량 등을 조절함으로서, 상기 하드 코팅층의 경화도를 조절할 수 있으며, 약 30 % 내지 48 % 정도로 표면 경화된 하드 코팅층을 얻을 수 있다. 실질적으로 완전히 경화된 하드 코팅층의 경우 충분한 내스크래치성을 갖기 어려울 수 있으나, 상술한 바와 같이 약 30 % 내지 48 % 정도로 표면 경화된 하드 코팅층은 높은 내스크래치성 및 방오성을 동시에 가질 수 있다.
이와 같이 약 30 % 내지 48 % 정도로 표면 경화된 하드 코팅층은 표면에서 1 .2 nm 이하, 또는 0.5 皿 내지 1 .0 nm의 중심선 평균거칠기 (Ra)를 가질 수 있고 34 mN/m 이하, 또는 28 mN/m 내지 34 mN/m , 또는 30 mN/m 내지 33.5 mN/m 의 표면 에너지를 가질 수 있다. ' 예를 들어, 상기 하드 코팅층은 질소 대기 조건을 적용하기 위하여 질소 퍼징을 한 상태에서, 상기 하드 코팅층을 형성하는 수지 조성물을 5 내지 2 , 000 mJ/cin2 , 또는 10 내지 200 rnJ/cin2 의 노량량으로 자외선을 조사하여 얻어질 수 있으며, 또한 상기 하드 코팅층을 형성하는 수지 조성물을 기재에 도포한 상태로 10 m/분 내지 100 m/분의 속도로 이동시키면서 상기 자외선 조사를 수행할 수도 있다.
한편, 상기 하드 코팅충으로는 통상적으로 알려진 하드 코팅층올 큰 제한 없이 사용할 수 있다.
상기 하드 코팅 필름의 하나의 예로서, 광경화형 화합물의 중합체를 포함한 바인더 수지를 포함한 하드 코팅층을 포함할 수 있다.
상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다.
예를 들어, 상기 하드 코팅층은 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖는 (메트)아크릴레이트 단량체; 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖는 우레탄계 (메트)아크릴레이트, 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖는 에폭시계 (메트)아크릴레이트 및 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖는 에스테르계 (메트)아크릴레이트의 단량체 또는 올리고머; 및 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖고 헤테로환 골격을 갖는 (메타)아크릴레이트 화합물 또는 에틸렌성 불포화 결합을 1 개 이상 또는 2 개 이상 갖고 지환족 고리를 갖는 (메타)아크릴레이트; 으로 이루어진 군에서 선택된 1종 이상의 광경화형 화합물의 중합체를 포함한 바인더 수지를 포함할 수 있다.
또한, 상기 광경화형 화합물은 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10 , 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 7 인 것이, 하드코팅층의 물성 확보 측면에서 유리하다.
이러한 다관능성 (메트)아크릴레이트 단량체는 분자 내에 비닐기 또는 (메트)아크릴레이트기 등과 같이 에틸렌성 불포화 결합을 갖는 작용기를 1 개 이상 또는 2 개 이상 갖는 (메트)아크릴레이트 단량체이며, 보다 구체적인 예로는 에틸렌글리콜 디 (메트)아크릴레이트, 프로필렌글리콜 디 (메트)아크릴레이트, 펜타에리트리를 디 (메트)아크릴레이트 모노스테아레이트, 디시클로펜타닐 디 (메트)아크릴레이트, 이소시아누레아트 디 (메트)아크릴레이트 등의 2관능의 (메트)아크릴레이트; 트리메틸을프로판 트리 (메트)아크릴레이트, 펜타에리트리를 트리 (메트)아크릴레이트, 트리스 (아크릴옥시에틸)이소시아누레이트 등의 3 관능의 (메트)아크릴레이트; 펜타에리트리를 테트라 (메트)아크릴레이트, 디펜타에리트리를 테트라 (메트)아크릴레이트, 디펜타에라트리를 펜타 (메트)아크릴레이트, 디펜타에리트리를 핵사 (메트)아크릴레이트 등의
4 관능 이상의 (메트)아크릴레이트; 상기한 다관능성 (메트)아크릴레이트 단량체의 에틸렌옥시드 변성품, 카프로락톤 변성품, 프로피온산 변성품 등을 들 수 있다.
또한, 상기 광경화성 화합물은 우레탄계 (메트)아크릴레이트, 에폭시계 (메트)아크릴레이트 또는 에스테르계 (메트)아크릴레이트 등의 단량체 또는 을리고머를 1종 이상을 포함할 수 있다.
또한, 상기 광경화형 화합물은 헤테로환 골격을 갖는 (메타)아크릴레이트 화합물 또는 지환족 고리를 갖는 (메타)아크릴레이트 일 수 있다.
상기 헤테로환 골격으로서는 구체적으로 사용할 수 있는 골격으로서는 디옥산 골격, 트리옥산 골격, 이소시아누레이트 골격 등을 들 수 있다'. 상기 헤테로환 골격에는 (메타)아크릴로일기가 연결될 수 있으며, 구체적으로는 상기 헤테로환 골격에 (메타)아크릴로일기가 직접 또는 탄화수소기를 통해 연결되어 있는 것이 바람직하고, 탄화수소기를 통해 연결되어 있는 경우의 탄화수소기로서는 탄소수 1~ 10 의 알킬렌기 또는 에테르 결합을 갖는 탄소수 1~ 10의 알킬렌기를 들 수 있다.
상기 지환족 고리를 갖는 (메타)아크릴레이트의 구체적인 예로는, 단관능 (메타)아크릴레이트 화합물로서는 이소보르닐 (메타)아크릴레이트, 디시클로펜타닐 (메타)아크릴레이트, 디시클로펜테닐 (메타)아크릴레이트, 디시클로펜테닐옥시에틸 (메타)아크릴레이트, 시클로핵실 (메타)아크릴레이트,
1, 3-아다만탄디올디 (메타)아크릴레이트, 1 ,3- 아다만탄디메탄을디 (메타)아크릴레이트, 2-메틸 -2- 아다만틸 (메타)아크릴레이트, 2-에틸 -2-아다만틸 (메타)아크릴레이트, 3- 히드록시 -1-아다만틸 (메타)아크릴레이트, 1-아다만틸 (메타)아크릴레이트 등의 지환족 고리를 갖는 1 관능 (메타)아크릴레이트; 또는 트리시클로데칸디메탄을 (메타)아크릴레이트 등의 지환족 고리를 갖는 2관능 (메타)아크릴레이트 등을 들 수 있다.
한편, 상기 하드 코팅 필름의 다른 하나의 예로서, 광경화성 수지 및 증량평균분자량 10 , 000 이상의 고분자량 (공)중합체를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅 필름을 들 수 있다.
상기 고분자량 (공)중합체는 셀를로스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 상기 광경화형 화합물의 구체적인 예는 상술한 바와 같다.
상기 유기 또는 무기 미립자는 입경이 1 내지 10 일 수 있다.
상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다.
상기 하드 코팅 필름은 유기 또는 무기 미립자, 광경화성 수지, 광개시제 및 중량평균분자량 10 , 000 이상의 고분자량 (공)중합체를 포함하는 눈부심 방지 코팅 조성물로부터 형성될 수 있다.
또한, 상기 하드 코팅 필름의 또 다른 하나의 예로서, 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름을 들 수 있다.
상술한 바와 같이, 상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반웅을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 상기 광경화형 화합물의 구체적안 예는 상술한 바와 같다.
상기 대전 방지제는 4 급 암모늄염 화합물; 피리디늄염; 1 내지 3 개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화합물; 이러한 화합물들의 2 종 이상의 반응물 또는 고분자화물; 이러한 화합물들의 2 종 이상의 흔합물일 수 있다. 여기서, 상기 4 급 암모늄염 화합물은 분자 내에 1 개 이상의 4 급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다. 또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리 (파라페닐렌), 헤테로고리식 공액계의 폴리피를, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 흔합 형태 공액계의 폴리 (페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된. 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다.
상기 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅 필름은 알콕시 실란계 을리고머 및 금속 알콕사이드계 을리고머로 이루어진 군에서 선택되는 1 종 이상의 화합물을 더 포함할 수 있다.
상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메록시실란, 테트라에특시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에록시실란, 메타크릴록시프로필트리메록시실란, 글리시독시프로필 트리메록시실란, 및 글리시독시프로필 트리에특시실란으로 이루어진 군에서 선택되는 1 종 이상의 화합물일 수 있다:
또한, 상기 금속 알콕사이드계 을리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반웅을 통해 제조할 수 있다. 상기 졸-겔 반웅은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다. 다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반웅할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 회석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반웅을 수행할 수 있다. 이때, 반웅 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비 (금속이온 기준)는 3 내지 170 인 범위 내에서 조절하는 것이 바람직하다.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라- 이소프로폭사이드, 지르코늄 이소프로폭사이드, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1 종 이상의 화합물일 수 있다.
한편, 상기 하드 코팅 필름은 상기 광경화성 수지 또는 광경화형 화합물; 대전 방지제; 및 광중합 개시제를 포함하는 광경화성 코팅 조성물로부터 형성될 수 있다.
상기 광중합 개시제로는 광경화성 수자 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 흔합물을 사용할 수 있다. 상기 광중합성 화합물 100 중량부에 대하여, 상기 광중합 개시제는 1 내지 100 중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반웅 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. , 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코을류, 아세테이트류 및 에테르류 , 또는 이들의 2종 이상의 흔합물을 돌수 있다. 이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i-프로판올, n-부탄올, i _부탄을, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2 종 이상의 흔합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1 중량 % 내지 55 중량 %, 또는 30 내지 45중량 %가 되도록 유기 용매를 포함할 수 있다.
상기 광경화성 코팅 조성물은 첨가제를 더 포함할 수 있다. 이러한 첨가제의 예로는, 상기 광경화성 코팅 조성물의 코팅액의 표면 장력을 낮추어 기재 위에 wett ing 이 잘되도록 도와주는 습윤제 (wet t ing 제)와, 표면 레벨링을 향상시켜 균일한 두께 및 코팅성을 확보하게 하는 레벨링 등이 있다.
한편, 상술한 하드 코팅층과 함께, 광중합성 화합물, 광반웅성 작용기를 포함한 함불소 화합물 2종류 이상, 무기 미세 입자 및 광개시제를 포함한 광경화성 코팅 조성물을 사용하여 제조된 저굴절층을 포함한 반사 방지 필름은 반사율을 보다 낮추고 투광율을 보다 높이면서 내마모성 또는 내스크래치성을 향상시킬 수 있으며 또한 동시에 외부 오염 물질에 대한 우수한 방오성을 확보할 수 있다.
구체적으로, 상기 광경화성 코팅 조성물이 광반응성 작용기를 포함한 함불소 화합물을 2 종류 이상 포함함에 따라서, 최종 제조되는 저굴절층은 보다 낮은 반사율 및 향상된 투광율을 가질 수 있고 내스크래치성 등의 기계적 물성을 향상시키면서 외부로 오염에 대한 높은 방오성을 확보할 수 있다. 구체적으로, 상기 광반웅성 작용기를 포함한 함불소 화합물에 포함되는 불소 원소의 특성으로 인하여, 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층은 액체들이나 유기 물질에 대하여 상호 작용 에너지가 낮아질 수 있으며, 이에 따라 상기 저굴절층에 전사되는 오염 물질의 양을 크게 줄일 수 있을 뿐만 아니라 전사된 오염 물질이 표면에 잔류하는 현상을 방지할 수 있고, 상기 오염 물질 자체를 쉽게 제거할 수 있는 특성을 갖는다.
또한 , 상기 저굴절층 형성 과정에서 상기 광반웅성 작용기를 포함한 함블소 화합물에 포함된 반웅성 작용기가 가교 작용을 하게 되고, 이에 따라 상기 저굴절층이 갖는 물리적 내구성, 내스크래치성 및 열적 안정성을 높일 수 있다.
특히, 상기 광반웅성 작용기를 포함한 함불소 화합물 2 종 이상을 사용함에 따라서, 1 종류의 광반웅성 작용기를 포함한 함불소 화합물을 사용하는 경우에 비하여 보다 높은 상승 효과를 얻을 수 있으며, 구체적으로 상기 제조되는 저굴절층은 보다 높은 물리적 내구성 및 내스크래치성을 확보하면서 보다 향상된 방오성 및 슬립성 등의 표면 특성을 구현할 수 있다.
구체적으로, 상기 저굴절층은 광중합성 화합물 및 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물 간의 · 가교 (공)중합체를 포함하는 바인더 수지; 및 상기 바인더 수지에 분산된 무기 미세 입자;를 포함할 수 있다.
상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물은 포함되는 불소 함유 범위에 따라 구분될 수 있으며, 구체적으로 상기 광반웅성 작용기를 포함한 2종류 이상의 함불소 화합물은 종류에 따라 불소 함유 범위가 상이하다.
상기 광반응성 작용기를 포함한 2 종류 이상의 함불소 화합물 중 보다 높은 불소 함유량을 나타내는 함블소 화합물로부터 기인하는 특성으로 인하여 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층 및 반사 방지 필름은 보다 낮은 반사율을 확보하면서 보다 향상된 방오성을 가질 수 있다. 또한, 상기 광반웅성 작용기를 포함한 2종류 이상의 함불소 화합물 중 보다 낮은 불소 함유량을 나타내는 함불소 화합물은 상기 광경화성 코팅 조성물에 포함되는 다른 성분들과 상용성을 보다 높일 수 있고, 아을러 최종 제조되는 저굴절층 및 반사 방지 필름이 보다 높은 물리적 내구성 및 내스크래치성을 갖고 향상된 방오성과 함께 균질한 표면 특성 및 높은 표면 슬립성을 가질 수 있다.
보다 구체적으로, 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물은 포함되는 불소의 함량 25% 중량 %를 기준으로 구분될 수 있다. 상기 광반응성 작용기를 포함한 함불소 화합물 각각에 포함되는 불소의 함량은 통상적으로 알려진 분석 방법, 예를 들어 IC [ Ion Chromatograph] 분석 방법을 통해서 확인할 수 있다.
구체적인 예로, 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물은 광반응성 작용기를 포함하고 25 내지 60 증량 %의 불소를 포함하는 제 1함불소 화합물을 포함할 수 있다.
또한, 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물은 광반웅성 작용기를 포함하고 1 중량 ¾> 이상 25 중량 % 미만의 함량으로 불소를 포함하는 제 2함불소 화합물을 포함할 수도 있다.
' 상기 광경화성 코팅 조성물이 1) 광반웅성 작용기를 포함하고 25 내지 60 증량 »의 불소를 포함하는 제 1 함불소 화합물과 2) 광반응성 작용기를 포함하고 1 증량 % 이상 25중량 ¾> 미만의 함량으로 불소를 포함하는 제 2 함불소 화합물을 포함함에 따라서, 1 종류의 광반웅성 작용기를 포함한 함불소 화합물을 사용하는 경우에 비하여 보다 높은 물리적 내구성 및 내스크래치성을 확보하면서 보다 향상된 방오성 및 슬립성 등의 표면 특성을 구현할 수 있다. - 구체적으로, 보다 높은 불소 함량을 갖는 제 1 함불소 화합물로 인하여 최종 제조되는 저굴절층 및 반사 방지 필름은 보다 낮은 반사율을 확보하면서 보다 향상된 방오성을 가질 수 있으며, 보다 낮은 불소 함량을 갖는 제 2 함불소 화합물로 인하여 상기 광경화성 코팅 조성물에 포함되는 다른 성분들과 상용성을 보다 높일 수 있고, 아울러 최종 제조되는 저굴절층 및 반사 방지 필름이 보다 높은 물리적 내구성 및 내스크래치성을 갖고 향상된 방오성과 함께 균질한 표면 특성 및 높은 표면 슬립성을 가질 수 있다.
상기 제 1 함불소 화합물과 제 2 함블소 화합물 간의 불소 함유량의 차이가 5 중량%이상일 수 있다. 상기 제 1 함불소 화합물와 제 2 함불소 화합물 간의 불소 함유량의 차이가 5 중량 %이상, 또는 10 중량 %이상 임에 따라서, 상술한 제 1 함불소 화합물과 제 2 함불소 화합물 각각에 따른 효과가 보다 극대화될 수 있으며, 이에 따라 상기 제 1 함불소 화합물과 제 2함블소 화합물을 함께 사용함에 따른 상승 효과 또한 높아질 수 있다. 상기 제 1 및 제 2 의 용어는 지칭하는 구성 요소를 특정하기 위한 것으로서, 이에 의하여 순서 또는 중요도 등의 한정되는 것은 아니다.
상기 제 1 함불소 화합물과 제 2 함불소 화합물 간의 중량비가 크게
, 한정되는 것은 아니나, 최종 제조되는 저굴절층이 보다 향상된 내스크래치성 및 방오성과 함께 균질한 표면 특성을 갖도록 하기 위하여, 상기 제 1 함불소 화합물쎄 대한 제 2 함불소 화합물의 중량비가 0.01 내지 0.5, 바람직하게는 0.01 내지 0.4일 수 있다.
상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물 각각에는 1 이상의 광반웅성 작용기가 포함 또는 치환될 수 있으며, 상기 광반웅성 작용가는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반웅에 참여할 수 있는 작용기를 의미한다. 상기 광반웅성 작용기는 빛의 조사에 의하여 중합 반웅에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는
(메트)아크릴레이트기, 에폭사이드기, 비닐기 (Vinyl ) 또는 싸이올기 (Thi o l )를 들 수 있다.
상기 광반응성 작용가를 포함한 2 종류 이상의 함불소 화합물 각각은
2 , 000 내지 200 , 000, 바람직하게는 5, 000 내지 100 , 000 의 중량평균분자량 (GPC 법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 갖는 올리고머이거나 (공)중합체일 수 있다.
또한, 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물 각각 또는 어느 하나 이상은 1 .분자 중에 반웅성 관능기를 2 이상 갖는 불소 함유 단량체일 수 있다.
상기 저굴절층의 굴절율을 보다 낮추기 위하여 1 분자 중에 반웅성 관능기를 2 이상 갖는 불소 함유 단량체를 포함할 수 있다.
상기 불소 함유 단량체가 1 분자 중에 반웅성 관능기를 2 이상을 갖음에 따라서 상기 저굴절층의 도막 강도가 높아질 수 있으며, 아울러 불소를 함유함에 따라서 저굴절층의 굴절율 등의 광학 특성을 조절할 수 있다. 상기 1 분자 중에 반웅성 관능기를 2 이상 갖는 불소 함유 단량체의 예로는 펜타에리트리를 골격을 갖는 불소 함유 단량체, 디펜타에리트리를 골격을 갖는 불소 함유 단량체, 트리메틸올프로판 골격을 갖는 불소 함유 단량체, 시클로핵실 골격을 갖는 불소 함유 단량체, 직쇄상 골격을 갖는 불소 함유 단량체 등을 들 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물에서 함불소 화합물들이 표면에 균일하고 효과적으로 배열하지 못하고 최종 제조되는 저굴절층의 내부에 위치하게 되는데, 이에 따라 상기 저굴절층의 표면이 갖는 방오성이 저하되고 상기 저굴절층의 가교 밀도가 낮아져서 전체적인 강도나 내크스래치성 등의 기계적 물성이 저하될 수 있다.
또한, 상기 광반웅성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 광경화성 코팅 조성물에서 다른 성분들과의 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의 헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층의 강도 ' 또한 저하될 수 있다.
구체적으로, 상기 광반응성 작용기를 포함한 함불소 화합물은 i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 탄소에 1 이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; i i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로 (hetero) 지방족 화합물 또는 헤테로 (hetero)지방족 고리 화합물; i i i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 실리콘에 1 이상의 불소가 치환된 폴리디알킬실록산계 고분자 (예를 들에 폴리디메틸실록산계 고분자) ; iv) 1 이상의 광반웅성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 i ) 내지 iv) 중 2 이상의 흔합물 또는 이들의 공중합체를 들 수 있다.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100 중량부에 대하여 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물 20 내지 300 중량부를 포함할 수 있다. 상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물의 함량은 상기 광반웅성 작용기를 포함한 함불소 화합물 2 종류 이상의 전체 함량을 기준으로 한다.
상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물이 과량으로 첨가되는 경우 상기 구현예의 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 구현예의 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 광반웅성 작용기를 포함한 함불소 화합물의 양이 너무 작으면, 상기 구현예의 광경화성 코팅 조성물로부터 얻어진 저굴절층이 층분한 방오성이나 내스크래치성 등의 기계쩍 물성을 갖지 못할 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반웅성 작용기를 포함한 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 광반웅성 작용기를 포함한 함불소 화합물 중 규소의 함량은 0. 1 중량 % 내지 20중량%일 수 있다.
상기 광반웅성 작용기를 포함한 함불소 화합물 각각에 포함되는 규소 또는 규소 화합물의 함량 또한 통상적으로 알려진 분석 방법, 예를 들어 ICP [ Induct ively Coupled Pl asma] 분석 방법을 통해서 확인할 수 있다. 상기 광반웅성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기 구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 굴절층에 헤이즈 (haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있으며, 아울러 최종 제조되는 저굴절층이나 반사 방지 필름의 표면의 슬립성을 향상시켜 내스크래치성올 높일 수 있다.
한편, 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 구현예의 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화할물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 층분한 투광도나 반사 방지 성능을 갖지 못하여 표면의 방오성 또한 저하될 수 있다.
한편, 상기 광경화성 코팅 조성물은 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산을 더 포함할 수 있다. 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 표면에 반웅성 작용기가 존재하여 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 바인더 수지의 기계적 물성, 예를 들어 내스크래치성을 높일 수 있다.
상기 저굴절층을 형성하는 광경화성 코팅 조성물이.반웅성 작용기가
1 이상 치환된 폴리실세스퀴옥산올 더 포함함에 따라, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물, 광반웅성 작용기를 포함한 2종류 이상의 함블소 화합물 및 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산 간의 가교 (공)중합체를 더 포함할 수 있다.
이전에 알려진 실리카, 알루미나, 제을라이트 등의 미세 입자를 사용하는 경우 단순히 필름이나 도막의 강도를 높이는데 반하여, 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산을 사용하는 경우 최종 제조되는 저굴절층이나 반사 방지 필름의 강도를 높일 뿐만 아니라 필름 전체 영역에 걸쳐 가교 결합을 형성할 수 있어서 표면 강도 및 내스크래치성도 함께 향상시킬 수 있다.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100 중량부 대비 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산 0.5 내지 60중량부, 또는 1.5 내지 45 중량부를 포함할 수 있다.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물 대비 상가 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산의 함량이 너무 작은 경우, 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 바인더 수지의 내스크래치성을 층분히 확보하기 어려울 수 있다. 또한, 상기 광경화성 코팅 조성물 중 상기 광중합성 화합물 대비 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산의 함량이 너무 큰 경우, 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층이나 반사 방지 필름의 투명도가 저하될 수 있으며, 스크래치성이 오히려 저하될 수 있다.
상기 폴리실세스퀴옥산에 치환되는 반웅성 작용기는 알코올, 아민, 카르복실산, 에폭사이드, 이미드, (메트)아크릴레이트, 니트릴, 노보넨, 올레핀 [알릴 (al ly) , 사이클로알케닐 (cyc loalkenyl ) 또는 비닐디메틸실릴 등], 폴리에틸렌글리콜, 싸이올 및 비닐기로 이루어진 군에서 선택된 1 종 이상의 작용기를 포함할 수 있으며, 바람직하게는 에폭사이드 또는
(메트)아크릴레아트일 수 있다.
상기 반웅성 작용기의 보다 구체적인 예로는 (메트)아크릴레이트, 탄소수 1 내지 20 의 알킬 (메트)아크릴레이트, 탄소수 3 내지 20 의 사이클로알킬 (cyc loalkyl ) 에폭사이드, 탄소수 1 내지 10 의 알킬 사이클로알케인 (cycloalkane) 에폭사이드를 들 수 있다.
상기 알킬 (메트)아크릴레이트는 (메트)아크릴레이트와 결합하지 않은 '알킬 '의 다른 한 부분이 결합 위치라는 의미이며, 상기 사이클로알킬 에폭사이드는 에폭사이드와 결합하지 않은 '사이클로알킬'의 다른 부분이 결합 위치라는 의미이며, 알칼 사이클로알케인 (cycloalkane) 에폭사이드는 사이클로알케인 (cyc loalkane) 에폭사이드와 결합하지 않은 '알킬 '의 다른 부분이 결합 위치라는 의미이다.
한편, 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 상술한 반웅성 작용기 이외로 탄소수 1 내지 20 의 직쇄 또는 분지쇄의 알킬기, 탄소수 6 내지 20 의 사이클로핵실기 및 탄소수 6 내지 20 의 아릴기로 이루어진 군에서 선택된 1 종 이상의 미반응성 작용기가 1 이상 더 포함할 수 있다. 이와 같이 상기 폴리실세스퀴옥산에 반웅성 작용기와 미반웅성 작용기가 표면에 치환됨에 따라서, 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산에서 실록산 결합 (-Si-0-)이 분자 내부에 위치하면서 외부로 노출되지 않게 되어 다른 유기 재료들과의 상용성이 보다 높아질 수 있으며, 상기 실록산 결합이 상기 반웅성 작용기나 다른 유기 재료들 사이에서 견고하게 결합됨에 따라서 외부 압력에 의해서 떨어져 나가지 않게 되며, 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 바인더 수지 내부에 견고한 지지체 역할을 할 수 있고, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름의 강도나 내스크래치성을 크게 높일 수 있다.
한편, 상기 폴리실세스퀴옥산은 (RSiO 로 표기될 수 있으며 (이째, n 은 4 내지 30 또는 8 내지 20), 랜덤 , 사다리형, cage 및 부분적인 cage 등의 다양한 구조를 가질 수 있다.
다만, 상기 광경화성 코팅 조성물로부터 제조되는 저굴절층 및 반사 방지 필름의 물성 및 품질을 높히기 위하여 , 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산으로 반웅성 작용기가 1 이상 치환되고 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산 (Polyhedral 01 igomer i c Si l sesquioxane)을 사용할 수 있다 - 또한, 보다 바람직하게는, 상기 작용기가 1 이상 치환되고 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산은 분자 중 실리콘 8 내지 20개를 포함할 수 있다.
또한, 상기 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1 개 이상에는 반응성 작용기가 치환될 수 있으며, 반웅성 작용기가 치환되지 않은 실리콘들에는 상술한 비반웅성 작용기가 치환될 수 있다.
상기 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1 개에 반응성 작용가가 치환됨에 따라서 상기 광경화성 코팅 조성물의 광경화시 형성되는 도막이나 바인더 수지의 기계적 불성을 향상시킬 수 있으며, 아울러 나머지 실리콘들에 비반웅성 작용기가 '치환됨에 따라서 분자 구조적으로 입체적인 장애 (Ster i c hinderance)가 나타나서 실록산 결합 (-si-o-)이 외부로 노출되는 빈도나 확률을 크게 낮추어서 다른 유기 재료들과의 상용성이 보다 높아질 수 있으며, 상기 실록산 결합이 상기 반응성 작용기나 다른 유기 재료들 사이에서 견고하게 결합됨에 따라서 외부 압력에 의해서 떨어져 나가지 않게 되며, 상기 광경화성 코팅 조성물의 광경화시 형성되는 £막이나 바인더 수지 내부에 견고한 지지체 역할을 할 수 있고, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름의 강도나 내스크래치성을 크게 높일 수 있다.
이러한 반웅성 작용기가 1 이상 치환되고 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산 (Polyhedral 01 igomer i c Si l sesquioxane , POSS)의 예로는, TMP Diollsobutyl POSS, Cyclohexanediol Isobutyl POSS, 1,2-PropanediolIsobutyl POSS, 0cta(3— hydroxy-3 methylbutyldimet ylsi loxy) POSS 등 알코올이 1 이상 치환된 POSS; Aminopropyl Isobutyl POSS, Aminopropyl Isooctyl POSS, Am i noe t hy 1 am i nopr opy 1 Isobutyl POSS, . Nᅳ Phenyl aminopropyl POSS, Nᅳ Methyl aminopropyl Isobutyl POSS, OctaAmmonium POSS,
Am i nopheny 1 Cy c 1 ohexy 1 POSS, Am inophenyl Isobutyl POSS 등 아민이 1 이상 치환된 POSS; Maleamic Ac id-Cycl ohexy 1 POSS, Maleamic Acid-Isobutyl POSS, Octa Maleamic Acid POSS 등 카르복실산이 1 이상 치환된 POSS; EpoxyCyc 1 ohexy 1 Isobutyl POSS, Epoxycycl ohexy 1 POSS, Glycidyl POSS, GlycidylEthyl POSS, Glycidyl Isobutyl POSS, Glycidyl Isooctyl POSS 등 에폭사이드가 1 이상 치환된 POSS; POSS Maleimide Cy c 1 ohexy 1, POSS Maleimide Isobutyl 등 이미드가 1 이상 치환된 POSS; Acrylolsobutyl POSS, (Meth)acryl Isobutyl POSS, (Meth)acrylate Cycl ohexy 1 POSS, (Meth)acrylate Isobutyl POSS, (Meth)acrylate Ethyl POSS, (Meth)acrylEthyl POSS, (Meth)acrylate Isooctyl POSS,
(Meth)acryl Isooctyl POSS, (Meth)acrylPhenyl POSS, (Meth)acryl POSS, Acrylo POSS 등 (메트)아크릴레이트가 1 이상 치환된 POSS; Cyanopropyl Isobutyl POSS 등의 니트릴기가 1 이상 치환된 POSS; NorbornenylethylEthyl POSS, Norbornenyl ethyl Isobutyl POSS, Norbornenyl ethyl DiSi lanolsobutyl POSS, Tr isnorbornenyl Isobutyl POSS 등 노보넨기가 1 이상 치환된 POSS; Allyllsobutyl POSS, MonoVinyllsobutyl POSS, OctaCyclohexenyldimethylsi lyl POSS, OctaVinyldimethylsilyl POSS, OctaVinyl POSS 등 비닐기 1 이상 치환된 POSS; Allyllsobutyl POSS, MonoVinyllsobutyl POSS, OctaCyclohexenyldimethylsi lyl POSS,
OctaVinyldimethylsilyl POSS, OctaVinyl POSS 등의 을레핀이 1 이상 치환된
POSS; 탄소수 5 내지 30 의 PEG 가 치환된 POSS; 또는
Mercaptopropyl Isobutyl POSS 또는 Mercaptopropyl Isooctyl POSS 등의 싸이올기가 1이상 치환된 POSS;.등을 들 수 있다.
한편, 상기 구현예의 광경화성 코팅 조성물에 포함되는 광중합성 화합물은 제조되는 저굴절층의 바인더 수지를 형성할 수 있다. 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 을리고머를 포함할 수 있다 . 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 1 이상, 또는 2 이상, 또는 3이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.
상기 (메트)아크릴레이트를 포함한 단량체 또는 을리고머의 구체적인 예로는, 펜타에리스리를 트리 (메트)아크릴레이트, 펜타에리스리를 테트라 (메트)아크릴레이트, 디펜타에리스리를 펜타 (메트)아크릴레이트, 디펜타에리스리를 핵사 (메트)아크릴레이트, 트리펜타에리스리를 헵타 (메트)아크릴레이트, 트릴렌 디이소시아네이트, 자밀렌 디이소시아네이트, 핵사메틸렌 디이소시아네이트, 트리메틸을프로판 트리 (메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리 (메트)아크릴레이트, 트리메틸를프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디을 괴메타크릴레이트, 핵사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 흔합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2 종 이상의 흔합물을 들 수 있다. 이때 상기 을리고머의 분자량은 1 , 000 내지 10 , 000인 것이 바람직하다 .
상기 비닐기를 포함하는 단량체 또는 을리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량이 크게 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 10 중량 내지 80 중량%일 수 있다. 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다.
한편, 상기 광중합성 화합물은 상술한 단량체 또는 올리고머 이외로 불소계 (메트)아크릴레이트계 화합물을 더 포함할 수 있다. 상기 불소계 (메트)아크릴레이트계 화합물을 더 포함하는 경우, 상기
(메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머에 대한 상기 불소계 (메트)아크릴레이트계 화합물의 중량비는 0.1% 내지 1 일 수 있다.
상기 블소계 (메트)아크릴레이트계 화합물의 구체적인 예로는 하기 화학식 11 내지 15 로 이루어진 군에서 선택되는 1 종 이상의 화합물을 들 수 있다.
[화학식 11]
Figure imgf000023_0001
상기 화학식 11 에서, R1 은 수소기 또는 탄소수 1 내지 6 의 알킬기이고, a는 0 내지 7의 정수이며, b는 1 내지 3의 정수이다.
[화학식 12]
Figure imgf000023_0002
상기 화학식 12에서, c는 1 내지 10의 정수이다.
[화학식 13]
Figure imgf000023_0003
상기 화학식 13에서, d는 1 내지 11의 정수이다.
[화학식 14]
Figure imgf000024_0001
상기 화학식 14에서, e는 1 내지 5의 정수이다.
[화학식 15]
Figure imgf000024_0002
상기 화학식 15에서, f 는 4 내지 10의 정수이다.
한편, 상기 저굴절층은 바인더 수지에 분산된 무기 미세 입자를 포함할 수 있다 상기 무기 미세 입자는 나노 미터 또는 마이크 미터 단위의 직경을 갖는 무기 입자를 의미한다.
구체적으로, 상기 무기 미세 입자는 10 내지 100 nm 의 수평균 입경을 갖는 중공 실리카 입자, 1 내지 50 nm 의 수평균 입경을 갖는 나노 실리카 입자 또는 이들의 흔합물일 수 있다.
상기 중공 실리카 입자는 입자의 표면 및 /또는 내부에 빈 공간이 존재하는 실리카 입자를 꾀미한다. 상기 중공 실리카 입자는 속이 찬 입자에 비하여 낮은 굴절율을 가져 우수한 반사 방지 특성을 나타낼 수 있다.
상기 중공 실리카 입자는 수평균 입경이 10 내지 100 nm , 바람직하게는 20 내지 70 nm , 보다 바람직하게는 30 내지 70 nra 인 것일 수 있으며 ; 입자의 형상은 구상인 것이 바람직하지만, 부정형이라도 무방하다 . 또한, 상기 중공 실리카 입자로는 표면에 광반웅성 작용기가 치환된 중공 실리카 입자 단독, 표면이 함불소 화합물로 코팅된 중공실키라 입자 단독, 표면에 치환 또는 코팅되지 않는 중공실리카 입자 단독, 또는 이들의 2종 이상의 흔합물 또는 반응물을 사용할 수 있다. 상기 광반응성 작용기는 (메트)아크릴레이트기, 비닐기 , 히드록시기, 아민기, 알릴기 (al lyl ) , 에폭사이드기, 히드록시기, 이소시아네이트기, 아민기, 및 싸이올기 (Thiol )를 들 수 있다.
그리고, 상기 중공 실리카 입자는 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다. 상기 중공 실리카 입자를 포함하는 콜로이드상은 분산매로 유기 용매를 포함할 수 있다.
상기 중공 실리카 입자의 콜로이드상에서 중공 실리카 입자의 고형분 함량은 상기 일 구현예의 광경화성 코팅 조성물 중 중공 실리카의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 결정될 수 있으며, 예를 들어 상기 콜로이드상 중 상기 중공 실리카 입자의 고형분 함량은 5중량 % 내지 60중량%일 수 있다.
여기서, 상기 분산매 중 유기 용매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코을류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 를루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드/ 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1 , 4-디옥산 등의 에테르류; 또는 이들의 흔합물이 포함될 수 있다.
또한, 상기 무기 미세 입자로는 1 내지 50 nm , 또는 3 내지 30 nm 의 수평균 입경을 갖는 나노 실리카 입자를 사용할 수 있다. 상기 나노 실리카 입자는 상기 중공 실리카 입자와는 달리 내부가 채워져 있는 실리카 입자를 의미한다.
상기 나노 실리카 입자를 사용함에 따라서, 상기 구현의 광경화성 코팅 조성물로부터 제조되는 저굴절층이 보다 높은 기계적 강도 및 내스크래치성올 확보할 수 있다. 또한, 상기 1 내지 50 nm , 또는 3 내지 30 皿 의 수평균 입경을 갖는 나노 실리카 입자를 소정을 함량으로 포함함에 따라서, 상기 저굴절층의 형성 과정에서 무기 미세 입자 등의 상분리가 나타날 수 있으며, 이에 따라 상기 저굴절층의 반사율이 보다 낮아질 수 있다.
상기 저굴절층은 상기 광중합성 화합물 100 중량부에 대하여 상기 무기 미세 입자 10 내지 400 중량부, 또는 20 내지 200 중량부를 포함할 수 있다. 상기 무기 미세 입자가 과량으로 첨가될 경우, 최종 제조되는 저굴절층의 표면에 무기 미세 입자가 배열하게 되고 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. ᅳ 상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 흔합물을 사용할 수 있다. 상기 광중합성 화합물 100 중량부에 대하여, 상기 광중합 개시제는 1 내지 100 중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반웅 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
한편, 상기 광경화성 코팅 조성물은유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코을류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄을, 에탄올, n-프로판올, i-프로판올, n-부탄올, i-부탄을, 또는 t-부탄을 등의 알코올류; 에틸아세테이트, i -프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2 종 이상의 흔합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 층분힝 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1 중량 ¾ 내지 50 중량 %, 또는 2 내지 20중량%가 되도록 유기 용매를 포함할 수 있다.
상기 저굴절층은 상기 광경화성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광경화함으로서 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다.
상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 rol l reverse 코팅법, vacuum s lot die 코팅법, 2 rol l 코팅법 등을 사용할 수 있다. ,
상기 저굴절층은 l nm 내지 300 ran , 또는 50 nm 내지 200 nm의 두께를 가질 수 있다. 이에 따라, 상기 소정의 기재 상에 도포되는 상기 광경화성 코팅 조성물의 두께는 약 1 ran 내지 300 ran , 또는 50 nm 내지. 200 ran일 수 있다.
상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200~400nm 파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 5 내지 2 , 000 mJ/cin2 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치 , 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. '
또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.
상기 저굴절층은 2.0%이하, 또는 1.0%이하, 또는 0.7%이하의 평균반사율을 가질 수 있다.
【발명의 효과]
본 발명에 따르면, 낮은 반사율 및 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율 구현을 통해 외부광의 반사를 저감시켜 디스플레이 장치의 시인성을 높일 수 있는 반사 방지 필름이 제공될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 및 비교예: 반사방지 필름의 제조 >
( 1) 하드 코팅 필름의 제조
Toyo Ink 사의 염타입의 대전 방지 하드 코팅액 (고형분 50 중량 %, 제품명: LJD-1000)을 메틸이소부틸케톤으로 희석하여 고형분 40 중량 %의 하드 코팅액을 준비하였다. 상기 희석한 하드 코팅액을 트리아세틸 셀루로스 필름에 #10 mayer bar 로 코팅하고 90°C에서 2 분 건조한 이후, 하기 표 2 의 조건으로 광경화하여 10 卿의 두께를 갖는 하드 코팅 필름을 제조하였다.
(2) 저굴절층 제조용 광경화성 코팅 조성물의 제조
하기 표 1 의 성분을 흔합하고, MIBKGnethyl i sobutyl ketone)용매에 고형분이 3중량 %가 되도록 희석하였다.
[표 1] (단위: 고형분 전체 대비 증량 %)
Figure imgf000028_0001
MA0701 4 5
MIBK-ST 10 10 10 15 13 디펜타에리스리를 18 18 15 16 13 펜타아크릴레이트
Irgacure-127 4 4 3 4 4
1) THRULYA 4320(촉매화성 제품): 중공실리카 분산액 (MIBK 용매 중 고형분 20중량 ¾>)
2) X71-1203M (Shi net su 제품): 광반웅성 작용기를 포함한 함불소 화합물 (MIBK 용매 중 고형분 15 중량 으로 희석됨, 고형분 중 불소 함량 약
45 중량 %)
3) 0PT00L-AR110 (Daikin 제품): 광반응성 작용기를 포함한 함불소 화합물 (MIBK 용매 중 고형분 15 중량 %으로 희석됨, 고형분 중 불소 함량 약 약 51 중량 %)
4) RS537CDIC 사 제품): 광반웅성 작용기를 포함한 함불소 화합물 (MIBK 용매 중 고형분 40 중량 %으로 희석됨, 고형분 중 불소 함량 약 17 중량
5) MA0701: 폴리실세스퀴옥산 (Hybrid Plastics 사 제품)
6) MIBK-ST (Nissan Chemical 사 제품): 나노실리카 분산액으로 MIBK용매 중 고형분 3OT로 희석됨
(2) 저굴절층 및 반사방지 필름의 제조
하기 표 2 에 기재된 하드 코팅 필름 상에, 상기 표 1 에서 각각 얻어진 광경화성 코팅 조성물을 #3 mayer bar 로 코팅하고, 60°C에서 1 분 건조하였다. 그리고, 질소 퍼징하에서 상기 건조물에 100 mJ/cirf의 자외선을 조사하여 100 nm의 두께를 갖는 저굴절층을 형성함으로서 반사 방지 필름을 제조하였다.
[표 2] 하드코팅층 저굴절층 ' 광경화시 자외선 조사시 하드 코팅 자외선 강도 질소 퍼징 여부 필름의 이동 속도 [m/분] [mJ/ciii1]
실시예 1 0 47 20 LR1 실시예 2 0 47 20 LR2 실시예 3 0 47 20 LR3 실시예 4 0 47 . 20 LR4 실시예 5 0 47 20 LR5 실시예 6 0 15 60 LR4 비교예 1 X 4 445 LR4 비교예 2 X 8 220 LR4 비교예 3 X 4 445 LR5 비교예 4 X 8 . 220 . LR5
<실험예: 반사방지 필름의 물성 측정 >
상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다.
1. 하드코팅 필름의 표면 에너지 측정
실시예 및 비교예 각각의 하드 코팅층의 표면 에너지는 Kruss 사와 DSA-100 접촉각 측정 장비를 이용하여 di— water (Gebhardt )와 di- i odomethane(Owens)의 접촉각을 10 point s로 측정하여 평균값을 낸 후 평균 접촉각을 표면 에너지로 환산하여 측정하였다. 상기 표면 에너지의 측정에서는 Dropshape Analys i s 소프트웨어를 사용하고 0WRK(0wen, Wendt , Rable , Kaelble) method 의 하기 일반식 1 을 프로그램 상에 적용하여 접촉각을 표면 에너지로 환산하였다.
[일반식 1]
Figure imgf000030_0001
2. 중심선 평균거칠기 (Ra) 측정 실시예 및 비교예 각각의 하드 코팅층의 중심선 평균 거칠기는
J IS규격 (J IS B 0601-1982)의 표면거칠기 (Ra) 측정 기준에 따라 측정하였다. 구체적으로, Bruker 사의 Mul t imode AFM(Mul t imode 8) 장비를 이용하여 0.5 내지 0.8 Hz 의 스캔 속도로 알루미늄 코팅된 Bruker 사 실리콘 팁을 사용하여 실시예 및 비교예 각각의 하드 코팅층 시료 (가로 *세로: 1 cm * 1 cm)를 AFM sample di sk 에 탄소 테이프로 고정하고, 광학현미경으로 평탄한 부분을 찾아가면서 측정하며, 5 * 5 의 영역에서 3 points 측정한 값을 평균하여 계산하여 중심선 평균거칠기 (Ra)을 구하였다. 3. 방오성 측정
실시예 및 비교예에서 얻어진 각각의 반사 방지 필름의 표면에 붉은색 유성펜으로 3 개의 직선을 그린 이후 무진천으로 닦아서 지워지는 횟수를 통해 방오성을 평가하였다.
0: 5번 이하의 닦는 횟수에서 지워짐
Δ : 6 내지 10번의 닦는 횟수에서 지워짐
X: 11번 이상의 닦는 횟수에서 지워지거나 지워지지 않음
4. 내스크래치성 측정
20隱 * 20隱 면적의 스틸울 (#0000)에 하중을 걸고 10 cm/s 의 속도로 10 회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면올 문질렀다. 육안으로 관찰되는 1cm 이하의 스크래치 1 개 이하가 관찰되는 최대 하중을 측정하였다.
[표 2]
Figure imgf000031_0001
실시예 4 33 ᅳ 0 - 7 0 450 실시예 5 33 . 0.7 0 500 실시예 6 32. 11 0.7 0 500 비교예 1 35. 16 0.7 Δ 450 비교예 2 41.44 1.4 X 450 비교예 3 35. 16 0.7 Δ 500 비교예 4 41.44 1.4 X 500 상기 표 2 에 나타난 바와 같이, 실시예의 반사 방지 필름은 상대적으로 우수한 내스크래치성을 가지면서 동시에 우수한 방오성을 갖는다는 점이 확인되는데 반하여, 비교예의 반사 방지 필름은 실시예에 비하여 상대적으로 열위한 내스크래치성을 나타내며, 층분한 방오성을 확보하지 못하는 것을 확인되었다.
구체적으로, 1.2 ran 아하의 표면의 중심선 평균거칠기 (Ra)을 갖고 34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층을 사용한 실시예의 반사 방지 필름은 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다는 점이 확인되었고, 상대적으로 낮은 반사율, 예를 들어 0.7%이하의 평균반사율을 구현할 수 있다.

Claims

【특허청구범위】
【청구항 1】
표면의 증심선 평균거칠기 (Ra)가 1.2 nm 이하이고 34 mN/m 이하의 표면 에너지를 갖는 하드 코팅층; 및
상기 하드 코팅층 상에 형성된 저굴절층;을 포함하는ᅳ 반사 방지 필름.
【청구항 2]
제 1항에 있어서,
상기 하드 코팅층의 표면은 0.5 nm 내지 0.8 nm의 중심선 평균거칠기 (Ra)를 갖는, 반사 방지 필름.
【청구항 3】
제 1항에 있어서,
상기 하드 코팅층은 30 mN/m 내지 33.5 mN/m 의 표면 에너지를 갖는, 반사 방지 필름.
【청구항 4】
제 1항에 있어서,
상기 하드 코팅층은 에틸렌성 불포화 결합을 1 개 이상 갖는,
(메트)아크릴레이트 단량체; 우레탄계 (메트)아크릴레이트, 에폭시계 (메트)아크릴레이트 및 에스테르계 (메트)아크릴레이트의 단량체 또는 올리고머; 및 헤테로환 골격을 갖는 (메타)아크릴레이트 화합물 또는 지환족 고리를 갖는 (메타)아크릴레이트; 로 이루어진 군에서 선택된 1 종 이상의 광경화형 화합물의 중합체를 포함한 바인더 수지를 포함하는,
반사 방지 필름.
【청구항 5】
제 1항에 있어서,
상기 하드 코팅층은 광경화성 수지 및 중량평균분자량 10 , 000 이상의 고분자량 (공)중합체를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는, 반사 방지 필름.
【청구항 6】
제 1항에 있어서,
상기 하드 코팅층은 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는, 반사 방지 필름.
【청구항 7】
제 6항에 있어서,
상기 하드 코팅층은 알콕시 실란계 을리고머 및 금속 알콕사이드계 을리고머로 이루어진 군에서 선택되는 1 종 이상의 화합물을 더 포함하는, 반사 방지 필름.
【청구항 8】
제 1항에 있어서,
상기 저굴절층은 광중합성 화합물 및 광반웅성 작용기를 포함한
2 종류 이상의 함불소 화합물 간의 가교 (공)중합체를 포함하는 바인더 수지와 상기 바인더 수지에 분산된 무기 미세 입자를 포함하는 저굴절층;을 포함하는, 반사 방지 필름.
【청구항 9】
제 8항에 있어서,
상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물은 종류에 따라 불소 함유 범위가 상이한, 반사 방지 필름.
【청구항 10】
제 9항에 있어서,
상기 광반웅성 작용기를 포함한 2종류 이상의 함불소 화합물은, 광반웅성 작용기를 포함하고 25 내지 60 중량 »의 불소를 포함하는 제 1함불소 화합물을 포함하는, 반사 방지 필름.
【청구항 11】
제 10항에 있어서,
상기 광반웅성 작용기를 포함한 2종류 이상의 함불소 화합물은, 광반웅성 작용기를 포함하고 1 중량 % 이상 25 증량 % 미만의 함량으로 불소를 포함하는 제 2함불소 화합물을 포함하는, 반사 방지 필름.
[청구항 12】
제 11항에 있어서,
상기 제 1 함불소 화합물와 제 2 함불소 화합물 간의 불소 함유량의 차이가 5중량%이상인, 반사 방지 필름 .
【청구항 13]
제 11항에 있어서,
상기 제 1함불소 화합물에 대한 제 2함불소 화합물의 중량비가 0.01 내지 0.5인, 반사 방지 필름.
【청구항 14】
제 8항에 있어서,
상기 광반웅성 작용기를 포함한 함불소 화합물은 각각 2 , 000 내지 200 , 000의 중량평균분자량을 갖는 을리고머 또는 (공)중합체 이거나,
1 분자 중에 반웅성 관능기를 2 이상 갖는 불소 함유 단량체인, 반사 방지 필름.
【청구항 15]
제 8항에 있어서,
상기 저굴절층은 상기 광중합성 화합물 100 중량부에 대하여 상기 광반웅성 작용기를 포함한 2 종류 이상의 함불소 화합물을 20 내지 300중량부로 포함하는 , 반사 방지 필름 .
【청구항 16】
제 8항에 있어서 ,
상기 함불소 화합물에 포함되는 광반웅성 작용기는 (메트)아크릴레이트기 , 에폭사이드기, 비닐기 (Vinyl ) 및 싸아올기 (Thiol )로 이루어진 군에서 선택된 1종 이상인, 반사 방지 필름.
【청구항 17】
제 8항에 있어서,
상기 광반응성 작용기를 포함한 함불소ᅵ 화합물은 i ) 하나 아상의 광반응성 작용기가 치환되고, 적어도 하나의 탄소에 1 이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; i i ) 1 이상의 광반웅성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로 (hetero) 자방촉 화합물 또는 헤테로 (hetero)지방족 고리 화합물; i i i ) 하나 이상의 광반웅성 작용기가 치환되고, 적어도 하나의 실리콘에 1 이상의 불소가 치환된 폴리디알킬실록산계 고분자; 및 iv) 1 이상의 광반웅성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물;로 이루어진 군에서 선택된 1종 이상올 포함하는, 반사 방지 필름.
【청구항 18]
제 8항에 있어서,
상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물, 광반응성 작용기를 포함한 2 종류 이상의 함불소 화합물 및 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산 간의 가교 (공)중합체를 더 포함하는, 반사 방지 필름.
【청구항 19]
제 18항에 있어서,
상기 저굴절층은 상기 광중합성 화합물 100 중량부 대비 상기 반웅성 작용기가 1 이상 치환된 폴리실세스퀴옥산 0.5 내지 60 중량부를 포함하는, 반사 방지 필름.
【청구항 20]
제 18항에 있어서,
상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 반응성 작용기가 1 이상 치환되고 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산 (Polyhedral Ol igomer i c Si l sesquioxane)을 포함하는, 반사 방지 필름.
【청구항 21]
제 18항에 있어서,
상기 케이지 (cage)구조를 갖는 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1 개 이상에는 반웅성 작용기가 치환되고 상기 반응성 작용기가 치환되지 않은 나머지 실리콘들에는 비반응성 작용기가 치환되는, 반사 방지 필름.
【청구항 22】
제 8항에 있어서,
상기 무기 미세 입자는 10 내지 100 nm 의 수평균 입경을 갖는 중공 실리카 입자 및 1 내지 50 nm 의 수평균 입경을 갖는 나노 실리카 입자로 이루어진 군에서 선택된 1종 이상을 포함하는, 반사 방지 필름.
【청구항 23】
제 8항에 있어서,
상기 저굴절층은 상기 광중합성 화합물 100 중량부 대비 상기 무기 미세 입자 10 내지 400중량부를 포함하는, 반사 방지 필름.
PCT/KR2016/014182 2015-12-03 2016-12-05 반사 방지 필름 WO2017095206A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/741,465 US10809419B2 (en) 2015-12-03 2016-12-05 Antireflection film for a display device
EP16871102.6A EP3316008B1 (en) 2015-12-03 2016-12-05 Anti-reflection film
CN201680044423.0A CN107850693B (zh) 2015-12-03 2016-12-05 减反射膜
JP2018525335A JP6704624B2 (ja) 2015-12-03 2016-12-05 反射防止フィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150171773 2015-12-03
KR10-2015-0171773 2015-12-03
KR1020160163711A KR102017789B1 (ko) 2015-12-03 2016-12-02 반사 방지 필름
KR10-2016-0163711 2016-12-02

Publications (1)

Publication Number Publication Date
WO2017095206A1 true WO2017095206A1 (ko) 2017-06-08

Family

ID=58797459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014182 WO2017095206A1 (ko) 2015-12-03 2016-12-05 반사 방지 필름

Country Status (1)

Country Link
WO (1) WO2017095206A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535462A (ja) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド 反射防止フィルム、偏光板およびディスプレイ装置
JP2021056513A (ja) * 2019-10-01 2021-04-08 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ハードコートフィルムおよびこれを含むウィンドウおよび画像表示装置
JP2021515273A (ja) * 2018-05-18 2021-06-17 エルジー・ケム・リミテッド 反射防止フィルム、偏光板、およびディスプレイ装置
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112140A (ko) * 2005-02-22 2007-11-22 후지필름 가부시키가이샤 필름, 그 제조방법, 상기 필름을 사용한 편광판, 및 상기편광판을 사용한 액정 표시 장치 및 표시장치
KR20090119968A (ko) * 2007-03-12 2009-11-23 코니카 미놀타 옵토 인코포레이티드 방현성 반사 방지 필름의 제조 방법, 방현성 반사 방지 필름, 편광판 및 표시 장치
KR20100074024A (ko) * 2008-12-22 2010-07-01 니치유 가부시키가이샤 반사 방지 필름
KR20140084613A (ko) * 2012-12-27 2014-07-07 동우 화인켐 주식회사 반사방지필름 및 이를 포함하는 편광판
KR20140140139A (ko) * 2013-05-23 2014-12-09 에스케이이노베이션 주식회사 반사방지용 코팅조성물 및 이를 이용한 광학 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112140A (ko) * 2005-02-22 2007-11-22 후지필름 가부시키가이샤 필름, 그 제조방법, 상기 필름을 사용한 편광판, 및 상기편광판을 사용한 액정 표시 장치 및 표시장치
KR20090119968A (ko) * 2007-03-12 2009-11-23 코니카 미놀타 옵토 인코포레이티드 방현성 반사 방지 필름의 제조 방법, 방현성 반사 방지 필름, 편광판 및 표시 장치
KR20100074024A (ko) * 2008-12-22 2010-07-01 니치유 가부시키가이샤 반사 방지 필름
KR20140084613A (ko) * 2012-12-27 2014-07-07 동우 화인켐 주식회사 반사방지필름 및 이를 포함하는 편광판
KR20140140139A (ko) * 2013-05-23 2014-12-09 에스케이이노베이션 주식회사 반사방지용 코팅조성물 및 이를 이용한 광학 필름

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535462A (ja) * 2018-01-24 2020-12-03 エルジー・ケム・リミテッド 反射防止フィルム、偏光板およびディスプレイ装置
US11428848B2 (en) 2018-01-24 2022-08-30 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
US11506820B2 (en) 2018-01-24 2022-11-22 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
JP2021515273A (ja) * 2018-05-18 2021-06-17 エルジー・ケム・リミテッド 反射防止フィルム、偏光板、およびディスプレイ装置
JP7205815B2 (ja) 2018-05-18 2023-01-17 エルジー・ケム・リミテッド 反射防止フィルム、偏光板、およびディスプレイ装置
US11732142B2 (en) 2018-05-18 2023-08-22 Lg Chem, Ltd. Anti-reflective film, polarizing plate, and display apparatus
JP2021056513A (ja) * 2019-10-01 2021-04-08 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ハードコートフィルムおよびこれを含むウィンドウおよび画像表示装置
JP7039670B2 (ja) 2019-10-01 2022-03-22 東友ファインケム株式会社 ハードコートフィルムおよびこれを含むウィンドウおよび画像表示装置

Similar Documents

Publication Publication Date Title
KR102017789B1 (ko) 반사 방지 필름
TWI663063B (zh) 抗反射膜
KR102093950B1 (ko) 반사 방지 필름 및 이의 제조 방법
KR20180113483A (ko) 반사 방지 필름 및 이의 제조 방법
CN108027451B (zh) 减反射膜
WO2018012802A1 (ko) 반사 방지 필름
JP7138892B2 (ja) 反射防止フィルム
KR102086054B1 (ko) 광경화성 코팅 조성물, 저굴절층 및 반사 방지 필름
KR101973197B1 (ko) 반사 방지 필름
JP6690808B2 (ja) 反射防止フィルムおよびその製造方法
WO2017095206A1 (ko) 반사 방지 필름
CN108139668B (zh) 用于形成低折射率层的可光固化的涂层组合物
KR102361621B1 (ko) 반사 방지 필름
WO2017155335A1 (ko) 반사 방지 필름
WO2017052186A1 (ko) 광경화성 코팅 조성물, 저굴절층 및 반사 방지 필름
WO2017160027A1 (ko) 반사 방지 필름
WO2017155358A1 (ko) 반사 방지 필름 및 이의 제조 방법
WO2017155337A1 (ko) 반사 방지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE