WO2017095027A1 - 누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버 - Google Patents

누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버 Download PDF

Info

Publication number
WO2017095027A1
WO2017095027A1 PCT/KR2016/012382 KR2016012382W WO2017095027A1 WO 2017095027 A1 WO2017095027 A1 WO 2017095027A1 KR 2016012382 W KR2016012382 W KR 2016012382W WO 2017095027 A1 WO2017095027 A1 WO 2017095027A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
tool
wearable device
magnitude
cumulative impact
Prior art date
Application number
PCT/KR2016/012382
Other languages
English (en)
French (fr)
Inventor
김주용
최민기
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of WO2017095027A1 publication Critical patent/WO2017095027A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/14Central alarm receiver or annunciator arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • G08B5/36Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems

Definitions

  • the present invention relates to a method for measuring an accumulated impact amount, a wearable device and a monitoring method, and a server, and more particularly, to a technology for measuring and monitoring an accumulated impact amount harmful to a human body in real time.
  • Hand and arm vibrations reduce subjective perception, fine motor skills, and the ability to perform tasks, and may cause diseases such as circulatory disorders, nerve dysfunction, muscle tissue changes, and skeletal and joint damage, especially when exposed for years. have.
  • the present invention is to solve the above-mentioned problems of the prior art, by measuring the amount of impact accumulated to the worker at the work site, to monitor whether the cumulative impact amount reaches a warning or dangerous level, and to notify the operator or manager of the result I would like to provide a solution.
  • a wearable device for measuring the cumulative impact amount by a tool (hereinafter, referred to as a "vibration tool") that is worn on the hand of the operator to generate a vibration
  • Vibration detection sensor for detecting the number and vibration of vibration transmitted to the hand of the operator when the operation of the vibration tool
  • Memory for accumulating and storing the detected vibration number and magnitude for a predetermined time, Cumulative vibration number and magnitude stored in the memory
  • a communication unit which transmits an identifier of the wearable device to a monitoring server, receives information on a risk level according to the cumulative impact amount calculated from the monitoring server, and an output unit which outputs information corresponding to the received risk level information.
  • the cumulative impact amount is specified by the worker wearing the wearable device Used is characterized in that the number and size of the vibration caused by one or more vibration tool accumulated for the liver.
  • the wearable device worn on the operator's hand a method for measuring the cumulative impact amount by a tool (hereinafter referred to as "vibration tool") that generates vibration (a) detecting the vibration frequency and magnitude transmitted to the operator's hand when the vibration tool is operated, and accumulating and storing the detected vibration frequency and magnitude for a predetermined time; and (b) storing the accumulated vibration frequency. And transmitting the size and the identifier of the wearable device to a monitoring server, receiving information on the risk level according to the cumulative impact amount calculated from the monitoring server, and (c) outputting information corresponding to the received risk level.
  • the cumulative impact amount is one or more used by the worker wearing the wearable device for a specific period of time. It characterized in that the number and size of the vibration caused by the same tool cumulative.
  • the server for monitoring the cumulative impact amount measured by the wearable device worn on the worker's hand the identifier of the wearable device from the wearable device, the operator is used
  • a communication unit for receiving job information including an identifier of a tool for generating a vibration in use (hereinafter referred to as a 'vibration tool') and a cumulative number of vibrations and a magnitude detected by the use of the vibration tool for a predetermined time; Based on the job information, the cumulative frequency and magnitude of the vibration tool by using the pre-stored vibration tool are updated, and the vibration frequency and magnitude by one or more vibration tools used by the operator during the specific period including the vibration tool are accumulated. The cumulative impact amount is calculated, and information on the risk level according to the cumulative impact amount is provided. But includes a job analysis information that comprise the communication unit is characterized in that the transmission over one of the wearable device and the administrator terminal information about the risk of the generation.
  • a method for monitoring the cumulative impact amount measured by the wearable device worn on the operator's hand by the monitoring server (a) from the wearable device identifier of the wearable device And receiving job information including an identifier of a tool (hereinafter, referred to as a 'vibration tool') that generates vibration in use by the worker and a cumulative number of vibrations and magnitude detected due to use of the vibration tool for a predetermined time. (B) updating the cumulative vibration frequency and magnitude by the use of the pre-stored vibration tool based on the received job information, and (c) one used by the worker for the specific period including the vibration tool.
  • the cumulative impact amount in which the vibration frequency and magnitude by the above-mentioned vibration tool are accumulated is calculated, Generating information on the risk level and (d) transmitting the generated information on the risk level to one or more of the wearable device and the administrator terminal.
  • the work schedule of the worker can be adjusted according to the cumulative amount of vibration, it can contribute to minimize the damage of the worker due to harmful vibration.
  • FIG. 1 is a view showing a system for monitoring the cumulative impact amount according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a cumulative impact measuring glove according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of a monitoring server according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a process of measuring the cumulative impact amount according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process of monitoring a cumulative impact amount according to an embodiment of the present invention.
  • FIG. 6 is a view showing the structure of a vibration sensor according to an embodiment of the present invention.
  • module' refers to a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view showing a system for monitoring the cumulative impact amount according to an embodiment of the present invention.
  • the system 100 for monitoring the cumulative impact amount may include a wearable device 110 and a monitoring server 120.
  • the wearable device 110 may be worn on the body of a worker using a vibration tool, and may be included in the worker's gloves, clothing, shoes, and the like.
  • the 'vibration tool' is used in a state in which the worker grips the grinder, chipping hammer, welding, cutting, impact wrench, etc., and includes means for transmitting a shock by vibration to the operator's hand during operation. Can be.
  • the wearable device 110 may measure the number and magnitude of vibrations generated from the vibration tool, and may include a sensor (hereinafter, referred to as a 'vibration detection sensor') capable of detecting vibration for this purpose.
  • a sensor hereinafter, referred to as a 'vibration detection sensor'
  • the 'vibration detection sensor' may include a three-way acceleration sensor as an embodiment, in another embodiment there is a first electrode and a second electrode surrounding the first electrode and the first electrode is the second by vibration When contacting the inner wall of the electrode, it may include a sensor using a plurality of electrodes that can detect the frequency and size according to the number and area of contact.
  • a sensor using the plurality of electrodes will be described later with reference to FIG. 6.
  • the wearable device 110 may transmit the detected vibration frequency and magnitude to the monitoring server 120 periodically (for example, for 10 minutes, 30 minutes, 1 hour, etc.) using wireless communication.
  • the wearable device 110 may transmit the identifier of the wearable device 110 matched with the corresponding worker and the identifier of the vibration tool currently being used.
  • the vibration tool may be attached with a tag including an identifier for identifying the vibration tool.
  • the wearable device 110 may identify an identifier of the vibration tool from a tag attached to the vibration tool. Can be obtained.
  • the wearable device 110 may be connected to the monitoring server 120 through a network repeater (for example, a base station, an access point, etc.) (not shown).
  • a network repeater for example, a base station, an access point, etc.
  • Communicating with may refer to the involvement of a network repeater (not shown).
  • the wearable device 110 may receive information on a risk level according to the cumulative impact amount from the monitoring server 120 and output the information through an output unit (not shown).
  • the cumulative impact amount is a result of accumulating the frequency and magnitude of one or more vibration tools used by a worker during a specific period including a vibration tool currently in use, and when the cumulative impact amount exceeds a reference value,
  • the risk level eg normal-warning-dangerous
  • the wearable device 110 may receive information informing of this from the monitoring server 120 and output the information through the output unit (not shown).
  • the output unit may include a display unit, a vibrator, a speaker, a lamp, and the like, and the wearable device 110 may control the cumulative impact amount of the operator through at least one of the display unit, the vibrator, the speaker, and the lamp. Information can be provided.
  • an 'glove' is used as an embodiment of the wearable device 110.
  • the wearable device 110 is referred to as a 'cumulative impact amount measuring glove 110'.
  • the monitoring server 120 may store the information on the risk level according to the cumulative impact amount for each vibration tool in the storage (not shown).
  • the monitoring server 120 may store one or more of the types of vibration tools used by a worker during a specific period, a use time of each vibration tool, a cumulative number of vibrations, and a size in a storage (not shown).
  • the monitoring server 120 may receive the job information from the cumulative impact measuring glove 110, including one or more of the identifier of the glove, the identifier of the vibration tool currently in use, and the number and magnitude of vibration accumulated for a predetermined time. Can be.
  • the monitoring server 120 may update the pre-stored cumulative vibration frequency and magnitude for the vibration tool currently being used and calculate the cumulative impact amount by the one or more vibration tools including the vibration tool. Can be,
  • the cumulative number of vibrations and magnitude of the vacuum tool is the cumulative impact amount.
  • the summation result can be the cumulative impact amount.
  • the monitoring server 120 may generate information on a risk level according to the cumulative impact amount and provide the information to one or more of the cumulative impact amount measurement glove 110 and an administrator terminal (not shown).
  • the magnitude of vibration generated by each vibration tool is affected by the degree of wear of the tool.
  • the monitoring server 120 estimates the degree of wear or damage of the vibration tool based on a change in the cumulative vibration magnitude.
  • the notification message informing of this may be provided to one or more of the cumulative impact measuring glove 110 and an administrator terminal (not shown).
  • the monitoring server 120 may be connected to the cumulative impact amount measurement gloves 110 through a network repeater (for example, a base station, an access point, etc.) (not shown), the monitoring server 120 is a cumulative impact amount measurement gloves 110 ) May mean the involvement of a network repeater (not shown).
  • a network repeater for example, a base station, an access point, etc.
  • FIG. 2 is a block diagram illustrating a configuration of a cumulative impact measuring glove according to an embodiment of the present invention.
  • the cumulative impact measuring glove 110 may include a vibration sensor 111, a memory 112, a communication unit 113, an output unit 114, and a controller 115.
  • the vibration sensor 111 may detect the number and magnitude of vibrations generated from a vibration tool used by an operator.
  • the vibration sensor 111 may include, as an example, a three-way acceleration sensor, and the three-way acceleration sensor may measure the number and magnitude (acceleration value) of vibrations on the x-axis, y-axis, and z-axis. Can be.
  • 'three directions' refers to the x-axis direction (axial direction of the vibration tool handle) and the y-axis direction (handle of the vibration tool) based on the back of the hand of the operator while the user grips the handle of the vibration tool. In the state in which the finger is held) and the z-axis direction (vertical direction from the back of the hand).
  • the vibration sensor 111 may include a sensor using a plurality of electrodes.
  • the frequency and magnitude of the vibration are changed according to the number of times of contact and the contact area. It can be measured.
  • the vibration is large, the area in contact with the inner wall of the second electrode to the first electrode will be widened, the magnitude of the vibration corresponding to each contact area can be stored in the storage (not shown) DB.
  • the structure of the vibration sensor 110 according to another embodiment will be described later with reference to FIG. 6.
  • the memory 112 may store the number and magnitude of vibrations detected by the vibration sensor 111 in predetermined time units, for example, 10 minute units, 30 minute units, 1 hour units, and the like.
  • a time other than the actual work time such as work preparation time or travel time may be excluded.
  • the controller 115 may determine the number of vibrations in the memory 112 only when vibrations are generated continuously for a predetermined time (for example, 5 seconds or 10 seconds) when vibrations are generated due to the use of the vibration tool. And size can be stored.
  • the memory 112 may store the identifier of the cumulative impact amount measuring gloves 110 matched with the operator, and may store the identifier of the vibration tool obtained from the tag attached to the vibration tool.
  • the communication unit 113 may periodically transmit the identifier of the vibration tool stored in the memory 112 and the vibration frequency and magnitude accumulated for a predetermined time to the monitoring server 120 using wireless communication.
  • peripheral may mean a unit of time in which the number and magnitude of vibrations detected by the vibration sensor 111 are stored in the memory 112.
  • the communication unit 113 may transmit the stored vibration frequency and magnitude at 30 minute intervals. .
  • the communication unit 113 may receive information on the level of danger according to the cumulative impact amount by the one or more vibration tools from the monitoring server 120.
  • the risk level can be broken down such as 'normal-warning-danger'.
  • the communication unit 113 may include a wireless communication means for wirelessly communicating with the monitoring server 120, the wireless communication means may use a local area network, such as Wi-Fi (wifi) or Bluetooth (bluetooth), mobile Communication networks can also be used.
  • a wireless communication means for wirelessly communicating with the monitoring server 120
  • the wireless communication means may use a local area network, such as Wi-Fi (wifi) or Bluetooth (bluetooth), mobile Communication networks can also be used.
  • the communication unit 113 may include a tag reader (eg, an RFID reader) for obtaining an identifier of the vibration tool from a tag including the identifier of the vibration tool.
  • a tag reader eg, an RFID reader
  • the output unit 114 may output information on the risk level according to the cumulative impact amount received from the monitoring server 120.
  • the output unit 114 may include a display unit, a vibration unit, a speaker, a lamp, and the like, and when the cumulative impact amount of the vibration tool currently being used reaches each predetermined reference value, information corresponding to each risk level is provided.
  • the output may be performed using one or more of a display unit, a vibrator, a speaker, and a lamp.
  • controller 115 may control the vibration sensor 111, the memory 112, the communication unit 113, and the output unit 114 to allow each component to perform the above-described operation.
  • FIG. 3 is a block diagram showing the configuration of a monitoring server according to an embodiment of the present invention.
  • Monitoring server 120 may include a vibration tool information storage unit 121, a worker job information storage unit 122, a job information analysis unit 123 and the communication unit 124.
  • the vibration tool information storage unit 121 may store information on the risk level according to the cumulative impact amount for each vibration tool, the combination of a plurality of vibration tools and the risk level according to the cumulative impact amount of the combination You can store more information about.
  • the vibration frequency and magnitude of the vibration tool may be calculated as the cumulative impact amount, but in the case of an operator using a plurality of vibration tools, the vibration frequency of each vibration tool is used. Both and are reflected and can be calculated as cumulative impact.
  • the frequency and magnitude of the vibration must also be considered.
  • the vibration tool A with a vibration magnitude of 1 can exert an impact corresponding to the warning level when the number of vibrations is 100, and a vibration tool with a vibration magnitude of 5 B can give a warning to the operator when the number of vibrations is 20.
  • the cumulative impact amount at which the danger level reaches a 'warning' must take into account both the frequency and the magnitude of the vibrating tools A and B.
  • the vibration number of the vibration tool B may have reached 12 times (the vibration magnitude is 5).
  • the cumulative impact amount is 100, it corresponds to the danger level 'warning'.
  • the worker operation information storage unit 122 includes an identifier of each worker, an identifier of the cumulative impact amount measuring gloves 110 worn by each worker, an identifier of the vibration tool used by each worker, the cumulative vibration frequency by each vibration tool and One or more of the sizes can be stored.
  • the job information analysis unit 123 is based on the job information received from the cumulative impact measuring gloves 110, the job information for the worker stored in the worker job information storage unit 122, that is, the vibration tool currently in use The cumulative frequency and magnitude of can be updated.
  • the job information analyzer 123 may store the vibration frequency and magnitude accumulated for 1 hour with respect to the vibration tool currently being used. It can be updated by reflecting (summing) the frequency and magnitude.
  • the job information analysis unit 123 may generate information on a risk level according to the cumulative impact amount based on the number (type) of vibration tools used by the worker and the number and magnitude of vibrations accumulated for each vibration tool. have.
  • the job information analyzer 123 may generate a message for notifying whether the corresponding vibration tool is worn.
  • the communication unit 124 may include a wireless communication means for wirelessly communicating with the cumulative impact measuring gloves 110, the wireless communication means may use a local area network such as Wi-Fi, Bluetooth, or use a mobile communication network It may be.
  • the communication unit 124 the information indicating the risk level according to the cumulative impact amount of the worker generated by the work information analysis unit 123 or a message notifying the user to check whether the vibration tool wear wear cumulative impact amount measurement gloves 110 of the worker And an administrator terminal (not shown).
  • FIG. 4 is a flowchart illustrating a process of measuring the cumulative impact amount according to an embodiment of the present invention.
  • FIG. 4 may be executed by the cumulative impact measuring glove 110.
  • the flowchart illustrated in FIG. 4 will be described based on the cumulative impact amount measuring glove 110.
  • the cumulative impact amount measurement gloves 110 obtains an identifier of the vibration tool from the tag of the vibration tool (S401).
  • the cumulative impact amount measuring glove 110 detects the frequency and magnitude of vibration generated according to the use of the vibration tool for a predetermined time (for example, 10 minutes) (S402).
  • the cumulative impact measuring glove 110 stops counting for the working time, and when the use of the vibrating tool is resumed, the work until the predetermined time is reached. Count the time again.
  • the cumulative impact measuring glove 110 transmits the work information including the vibration number and the magnitude of the vibration tool accumulated and measured during the corresponding time to the monitoring server 120. (S403).
  • the cumulative impact measuring glove 110 may transmit its identifier and the identifier of the vibration tool obtained in S401.
  • the cumulative impact measurement glove 110 receives information about the risk level according to the cumulative impact amount of the vibration tool (which may be one or more depending on the work of the operator) used in the meantime from the monitoring server 120 and Check the degree (S404).
  • the cumulative impact measurement glove 110 outputs the information corresponding to the level of the identified risk level using one or more of the display unit, vibration unit, speaker and lamp (S405).
  • FIG. 5 is a flowchart illustrating a process of monitoring a cumulative impact amount according to an embodiment of the present invention.
  • FIG. 5 may be executed by the monitoring server 120.
  • the flowchart illustrated in FIG. 5 will be described based on the monitoring server 120 as an execution agent.
  • the monitoring server 120 receives work information periodically from the cumulative impact amount measuring gloves 110 (S501).
  • the work information may include an identifier of the cumulative impact measuring glove 110, an identifier of a vibration tool currently being used, and a cumulative number of vibrations and a magnitude during a predetermined time generated by the vibration tool.
  • the monitoring server 120 updates previously stored job information based on the received job information, and analyzes a risk level for the cumulative impact amount according to the use of the vibration tool (S502).
  • the cumulative impact amount according to the use of the vibrating tool may reflect the frequency and magnitude of one or more vibrating tools depending on the type of vibrating tool used by the operator.
  • the monitoring server 120 determines that the vibration magnitude is increased due to the wear of the tool, and measures the cumulative impact amount to inform the user of whether the tool is worn. May be sent to the glove 110.
  • the monitoring server 120 transmits an analysis result, that is, information on a risk level according to the cumulative impact amount, to the cumulative impact amount measurement glove 110 (S503).
  • FIG. 6 is a view showing the structure of a vibration sensor according to an embodiment of the present invention.
  • 6 is a vibration detection sensor using a plurality of electrodes, and includes a first electrode 111a and a second electrode surrounding the first electrode 111a. 111b).
  • the vibrating tool When the operator wears the cumulative impact measuring glove 110 on his hand and grips the handle of the vibrating tool, the vibrating tool operates to vibrate, and the first electrode 111a is shaken by the vibration and the second electrode 111b. It comes in contact with the inner wall.
  • an area in which the first electrode 111a contacts the inner wall of the second electrode 111b may vary according to the magnitude of the vibration, and the cumulative impact measuring glove 110 detects the magnitude of the vibration based on the contacted area. can do.
  • the number of vibrations may also be sensed along with the magnitude of the vibrations.
  • each component can be identified as a respective process.
  • the process of the above-described embodiment can be easily understood in terms of the components of the apparatus.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks. Magneto-optical media, and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

누적 충격량을 측정하는 방법, 웨어러블 디바이스 및 누적 충격량을 모니터링하는 방법 및 서버가 제공된다. 본 발명의 일 실시예에 따른 작업자의 손에 착용되어 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)에 의한 누적 충격량을 측정하는 웨어러블 디바이스는, 상기 진동 공구의 동작 시 상기 작업자의 손에 전달되는 진동 수와 크기를 감지하는 진동 감지 센서, 미리 정해진 시간 동안 상기 감지된 진동 수와 크기를 누적하여 저장하는 메모리, 상기 미리 정해진 시간 동안 상기 메모리에 저장된 누적 진동 수와 크기, 상기 진동 공구의 식별자 및 상기 웨어러블 디바이스의 식별자를 모니터링 서버로 전송하고, 상기 모니터링 서버로부터 누적 충격량에 따른 위험 수준에 대한 정보를 수신하는 통신부 및 상기 수신된 위험 수준에 대한 정보에 대응하는 정보를 출력하는 출력부를 포함하되, 상기 누적 충격량은 상기 진동 공구를 포함하여 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 것을 특징으로 한다.

Description

누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버
본 발명은 누적 충격량을 측정하는 방법, 웨어러블 디바이스 및 모니터링 방법, 서버에 관한 것으로, 더욱 상세하게는 인체에 유해한 누적 충격량을 실시간 측정하고 모니터링하는 기술에 관한 것이다.
산업 현장의 진동 공구들 중 대부분은 작업자의 손과 팔, 또는 전신에 진동을 가하게 된다.
특히 손, 팔 진동은 주관적 지각 능력과 미세한 운동 기능, 업무 수행 능력 등을 떨어뜨리며, 특히 수 년간 노출 될 때에 순환기 장애, 신경 기능 장애, 근육 조직 변화, 골격 및 관절 손상 등의 질병을 발생시킬 수도 있다.
이에, 작업 현장에서 작업자에게 누적되는 충격량을 모니터링하여 누적 충격량이 경고 또는 위험 수준에 도달 시 이를 해당 작업자나 관리자가 인지하도록 하는 방안이 요구되고 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 작업 현장에서 작업자에게 누적되는 충격량을 측정하여, 누적 충격량이 경고 또는 위험 수준에 도달하는지 모니터링하고, 그 결과를 해당 작업자나 관리자에게 통보할 수 있는 방안을 제공하고자 한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 작업자의 손에 착용되어 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)에 의한 누적 충격량을 측정하는 웨어러블 디바이스는, 상기 진동 공구의 동작 시 상기 작업자의 손에 전달되는 진동 수와 크기를 감지하는 진동 감지 센서, 미리 정해진 시간 동안 상기 감지된 진동 수와 크기를 누적하여 저장하는 메모리, 상기 메모리에 저장된 누적 진동 수와 크기 및 상기 웨어러블 디바이스의 식별자를 모니터링 서버로 전송하고, 상기 모니터링 서버로부터 산출된 누적 충격량에 따른 위험 수준에 대한 정보를 수신하는 통신부 및 상기 수신된 위험 수준에 대한 정보에 대응하는 정보를 출력하는 출력부를 포함하되, 상기 누적 충격량은 상기 웨어러블 디바이스를 착용한 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 것을 특징으로 한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 작업자의 손에 착용된 웨어러블 디바이스가 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)에 의한 누적 충격량을 측정하는 방법은 (a) 상기 진동 공구의 동작 시 상기 작업자의 손에 전달되는 진동 수와 크기를 감지하고, 미리 정해진 시간 동안 상기 감지된 진동 수와 크기를 누적하여 저장하는 단계, (b) 상기 저장된 누적 진동 수와 크기 및 상기 웨어러블 디바이스의 식별자를 모니터링 서버로 전송하고, 상기 모니터링 서버로부터 산출된 누적 충격량에 따른 위험 수준에 대한 정보를 수신하는 단계 및 (c) 상기 수신된 위험 수준에 대응하는 정보를 출력하는 단계를 포함하되, 상기 누적 충격량은 상기 웨어러블 디바이스를 착용한 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 것을 특징으로 한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 작업자의 손에 착용된 웨어러블 디바이스가 측정한 누적 충격량을 모니터링하는 서버는, 상기 웨어러블 디바이스로부터 상기 웨어러블 디바이스의 식별자, 상기 작업자가 사용 중인 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)의 식별자 및 미리 정해진 시간 동안 상기 진동 공구의 사용으로 인해 감지된 누적 진동 수와 크기를 포함하는 작업 정보를 수신하는 통신부 및 상기 수신된 작업 정보에 근거하여, 기 저장된 상기 진동 공구의 사용에 의한 누적 진동 수와 크기를 갱신하고, 상기 진동 공구를 포함하여 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 누적 충격량을 산출하며, 상기 누적 충격량에 따른 위험 수준에 대한 정보를 생성하는 작업 정보 분석부를 포함하되, 상기 통신부는 상기 생성된 위험 수준에 대한 정보를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 것을 특징으로 한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 모니터링 서버가 작업자의 손에 착용된 웨어러블 디바이스가 측정한 누적 충격량을 모니터링하는 방법은 (a) 상기 웨어러블 디바이스로부터 상기 웨어러블 디바이스의 식별자, 상기 작업자가 사용 중인 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)의 식별자 및 미리 정해진 시간 동안 상기 진동 공구의 사용으로 인해 감지된 누적 진동 수와 크기를 포함하는 작업 정보를 수신하는 단계, (b) 상기 수신된 작업 정보에 근거하여, 기 저장된 상기 진동 공구의 사용에 의한 누적 진동 수와 크기를 갱신하는 단계, (c) 상기 진동 공구를 포함하여 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 누적 충격량을 산출하고, 상기 누적 충격량에 따른 위험 수준에 대한 정보를 생성하는 단계 및 (d) 상기 생성된 위험 수준에 대한 정보를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 진동 공구 및 기타 진동에 노출되어 있는 산업 재해 환경에 대비할 수 있다.
또한, 진동의 누적량에 따라서 작업자의 작업 스케줄이 조정될 수 있으므로, 유해 진동으로 인한 작업자의 피해를 최소화하는데 기여할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 누적 충격량을 모니터링하는 시스템을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 누적 충격량 측정 장갑의 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 모니터링 서버의 구성을 도시한 블록도이다.
도 4는 본 발명의 일 실시예에 따른 누적 충격량을 측정하는 과정을 도시한 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 누적 충격량을 모니터링하는 과정을 도시한 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 진동 감지 센서의 구조를 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 명세서에 기재된 '…부', '…모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 누적 충격량을 모니터링하는 시스템을 도시한 도면이다.
본 발명의 일 실시예에 따른 누적 충격량을 모니터링하는 시스템(100)은 웨어러블 디바이스(wearable device)(110) 및 모니터링 서버(120)를 포함할 수 있다.
각 구성 요소를 간략히 설명하면, 웨어러블 디바이스(110)는 진동 공구를 사용하는 작업자의 신체에 착용될 수 있으며, 작업자의 장갑, 의복, 신발 등에 포함될 수 있다.
여기서, '진동 공구'는 그라인더, 칩핑 해머, 용접, 절단, 임팩트 렌치 등 작업자가 손에 파지(把持)한 상태로 사용되며, 동작 시 작업자의 손에 진동에 의한 충격을 전달시키는 수단을 포함할 수 있다.
또한, 웨어러블 디바이스(110)는 진동 공구로부터 발생되는 진동 수와 크기를 측정할 수 있으며, 이를 위해 진동을 감지할 수 있는 센서(이하, '진동 감지 센서'라 칭함)를 포함할 수 있다.
여기서, '진동 감지 센서'는 일 실시예로서 3방향 가속도 센서를 포함할 수 있으며, 다른 실시예로서 제 1 전극 및 제 1 전극을 둘러싼 제 2 전극이 존재하고 진동에 의해 제 1 전극이 제 2 전극의 내벽에 접촉 시, 접촉되는 회수와 면적에 따라서 진동 수와 크기를 감지할 수 있는 복수의 전극을 이용한 센서를 포함할 수 있다.
상기 복수의 전극을 이용한 센서에 대해서는 도 6을 참조하여 후술하도록 한다.
또한, 웨어러블 디바이스(110)는 감지된 진동 수와 크기를 무선 통신을 이용하여 주기적으로(예를 들어 10분 단위, 30분 단위, 1시간 단위 등) 모니터링 서버(120)로 전송할 수 있다.
이때, 웨어러블 디바이스(110)는 해당 작업자와 매칭된 웨어러블 디바이스(110)의 식별자 및 현재 사용 중인 진동 공구의 식별자를 함께 전송할 수 있다.
이를 위해 진동 공구에는 해당 진동 공구를 식별할 수 있는 식별자가 포함된 태그가 부착될 수 있으며, 사용자가 진동 공구를 파지 시, 웨어러블 디바이스(110)는 진동 공구에 부착된 태그로부터 해당 진동 공구의 식별자를 획득할 수 있다.
참고로, 웨어러블 디바이스(110)는 네트워크 중계기(예를 들어 기지국, 액세스 포인트 등)(미도시)를 통해 모니터링 서버(120)와 연결될 수 있으며, 이하에서 웨어러블 디바이스(110)가 모니터링 서버(120)와 통신한다는 것은 네트워크 중계기(미도시)의 개입을 의미할 수 있다.
또한, 웨어러블 디바이스(110)는 모니터링 서버(120)로부터 누적 충격량에 따른 위험 수준에 대한 정보를 수신하여 출력부(미도시)를 통해 출력할 수 있다.
여기서 '누적 충격량'은 현재 사용 중인 진동 공구를 포함하여 특정 기간 동안 작업자가 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적되어 합산된 결과이며, 누적 충격량이 기준치를 초과하는 경우, 해당 작업자의 위험 수준(예를 들어, 정상 - 경고 - 위험)은 높아질 수 있다.
만일, 누적 충격량이 미리 정해진 각각의 기준치를 초과하는 경우, 웨어러블 디바이스(110)는 모니터링 서버(120)로부터 이를 알리는 정보를 수신하여 출력부(미도시)를 통해 출력할 수 있다.
여기서 출력부(미도시)는 디스플레이부, 진동부, 스피커, 램프 등을 포함할 수 있으며, 웨어러블 디바이스(110)는 상기 디스플레이부, 진동부, 스피커 및 램프 중 하나 이상을 통해 작업자의 누적 충격량에 대한 정보를 제공할 수 있다.
이하, 웨어러블 디바이스(110)의 실시예로서 '장갑'을 사용하도록 하며, 이하에서는 웨어러블 디바이스(110)를 '누적 충격량 측정 장갑(110)'으로 칭하도록 한다.
한편, 모니터링 서버(120)는 각 진동 공구별 누적 충격량에 따른 위험 수준에 대한 정보를 저장소(미도시)에 저장할 수 있다.
또한, 모니터링 서버(120)는 작업자가 특정 기간 동안 사용한 진동 공구의 종류와 각 진동 공구의 사용 시간, 누적 진동 수 및 크기 중 하나 이상을 저장소(미도시)에 저장할 수 있다.
또한, 모니터링 서버(120)는 누적 충격량 측정 장갑(110)으로부터 해당 장갑의 식별자, 현재 사용 중인 진동 공구의 식별자, 미리 정해진 시간 동안 누적된 진동 수와 크기 중 하나 이상을 포함하는 작업 정보를 수신할 수 있다.
이후, 모니터링 서버(120)는 상기 작업 정보에 기반하여, 현재 사용 중인 진동 공구에 대한 기 저장된 누적 진동 수와 크기를 갱신하고, 해당 진동 공구를 포함하는 하나 이상의 진동 공구에 의한 누적 충격량을 산출할 수 있다.,
즉, 특정 기간 동안 사용했던 진동 공구가 하나라면, 해당 진공 공구의 누적 진동 수와 크기가 누적 충격량이 되고, 특정 기간 동안 사용했던 진동 공구가 복수라면, 복수의 진동 공구에 의한 누적 진동 수와 크기의 합산 결과가 누적 충격량이 될 수 있다.
이후, 모니터링 서버(120)는 누적 충격량에 따른 위험 수준에 대한 정보를 생성하여 누적 충격량 측정 장갑(110) 및 관리자 단말기(미도시) 중 하나 이상으로 제공할 수 있다.
참고로, 공구의 마모 정도에 따라서 각 진동 공구별로 발생하는 진동의 크기가 영향을 받게 되는데, 모니터링 서버(120)는 누적 진동 크기의 변화 추이에 기반하여 해당 진동 공구의 마모 또는 손상 정도를 추정하고 이를 알리는 알림 메시지를 누적 충격량 측정 장갑(110) 및 관리자 단말기(미도시) 중 하나 이상으로 제공할 수 있다.
또한, 모니터링 서버(120)는 네트워크 중계기(예를 들어 기지국, 액세스 포인트 등)(미도시)를 통해 누적 충격량 측정 장갑(110)과 연결될 수 있으며, 모니터링 서버(120)가 누적 충격량 측정 장갑(110)과 통신한다는 것은 네트워크 중계기(미도시)의 개입을 의미할 수 있다.
도 2는 본 발명의 일 실시예에 따른 누적 충격량 측정 장갑의 구성을 도시한 블록도이다.
본 발명의 일 실시예에 따른 누적 충격량 측정 장갑(110)은 진동 감지 센서(111), 메모리(112), 통신부(113), 출력부(114) 및 제어부(115)를 포함할 수 있다.
먼전, 진동 감지 센서(111)는 작업자가 사용하는 진동 공구로부터 발생되는 진동 수와 크기를 감지할 수 있다.
이를 위해 진동 감지 센서(111)는, 일 실시예로서 3방향 가속도 센서를 포함할 수 있으며, 3방향 가속도 센서는 x축, y축 및 z축에 대한 진동 수와 크기(가속도 값)를 측정할 수 있다.
여기서 '3방향'은 작업자가 진동 공구의 손잡이를 파지한 상태에서 작업자의 손등(the back of the hand)을 기준으로 x축 방향(진동 공구 손잡이의 축 방향), y축 방향(진동 공구의 손잡이를 파지한 상태에서 손가락 정면 방향) 및 z축 방향(손등에서 수직 방향)을 의미할 수 있다.
또한, 진동 감지 센서(111)의 다른 실시예로서, 복수의 전극을 이용하는 센서를 포함할 수 있다.
구체적으로, 제 1 전극 및 제 1 전극을 둘러싸는 제 2 전극이 존재하고, 진동에 의해 제 1 전극이 흔들리면서 제 2 전극의 내벽에 접촉하면, 접촉되는 회수와 접촉 면적에 따라서 진동 수와 크기를 측정할 수 있다.
즉, 진동이 크면 제 1 전극에 제 2 전극의 내벽에 접촉되는 면적이 넓어질 것이며, 각 접촉 면적에 대응하는 진동의 크기는 DB화 되어 저장소(미도시)에 저장될 수 있다.
상기 다른 실시예에 따른 진동 감지 센서(110)의 구조에 대해서는 도 6을 참조하여 후술하도록 한다.
한편, 메모리(112)는 진동 감지 센서(111)에서 감지된 진동 수와 크기를 미리 정해진 시간 단위, 예를 들어 10분 단위, 30분 단위, 1시간 단위 등으로 저장할 수 있다.
이때, 작업 준비 시간 또는 이동 시간 등 실제 작업 시간 이외의 시간은 제외될 수 있다.
이를 위해, 제어부(115)는 진동 공구 사용으로 인한 진동 발생 시, 미리 정해진 시간(예를 들어, 5초 또는 10초 등) 동안 연속으로 진동이 발생되는 경우에 한해서 메모리(112)에 진동의 수와 크기가 저장되도록 할 수 있다.
또한, 메모리(112)는 작업자와 매칭된 누적 충격량 측정 장갑(110)의 식별자를 저장할 수 있으며, 진동 공구에 부착된 태그로부터 획득된 진동 공구의 식별자를 저장할 수 있다.
한편, 통신부(113)는 메모리(112)에 저장된 진동 공구의 식별자와 미리 정해진 시간 동안 누적된 진동 수 및 크기를 무선 통신을 이용하여 주기적으로 모니터링 서버(120)로 전송할 수 있다.
여기서 '주기적'이란 의미는 진동 감지 센서(111)에서 감지된 진동 수와 크기가 메모리(112)에 저장되는 시간 단위일 수 있다.
예를 들어, 진동 감지 센서(111)에서 감지된 진동 수와 크기가30분 단위로 메모리(112)에 저장되는 경우, 통신부(113)는 저장된 누적 진동 수와 크기를 30분 간격으로 전송할 수 있다.
또한, 통신부(113)는 모니터링 서버(120)로부터 하나 이상의 진동 공구에 의한 누적 충격량에 따른 위험 수준에 대한 정보를 수신할 수 있다.
여기서, 위험 수준은 '정상 - 경고 - 위험' 등과 같이 세분화될 수 있다.
이를 위해 통신부(113)는 모니터링 서버(120)와 무선으로 통신하기 위한 무선 통신 수단을 포함할 수 있으며, 무선 통신 수단은 와이파이(wifi)나 블루투스(bluetooth)와 같은 근거리 통신망을 이용할 수도 있고, 이동 통신망을 이용할 수도 있다.
또한, 통신부(113)는 진동 공구의 식별자를 포함하는 태그로부터 해당 진동 공구의 식별자를 획득하기 위한 태그 리더기(예를 들어 RFID 리더기 등)를 포함할 수 있다.
한편, 출력부(114)는 모니터링 서버(120)로부터 수신된 누적 충격량에 따른 위험 수준에 대한 정보를 출력할 수 있다.
여기서 출력부(114)는 디스플레이부, 진동부, 스피커, 램프 등을 포함할 수 있으며, 현재 사용중인 진동 공구의 누적 충격량이 미리 정해진 각각의 기준치에 도달한 경우, 각 위험 수준에 대응하는 정보를 디스플레이부, 진동부, 스피커 및 램프 중 하나 이상을 이용하여 출력할 수 있다.
한편, 제어부(115)는 상기 진동 감지 센서(111), 메모리(112), 통신부(113) 및 출력부(114)를 제어하여 각 구성 요소가 전술한 바와 같은 동작을 수행하도록 할 수 있다.
도 3은 본 발명의 일 실시예에 따른 모니터링 서버의 구성을 도시한 블록도이다.
본 발명의 일 실시예에 따른 모니터링 서버(120)는 진동 공구 정보 저장부(121), 작업자 작업 정보 저장부(122), 작업 정보 분석부(123) 및 통신부(124)를 포함할 수 있다.
각 구성 요소를 설명하면, 진동 공구 정보 저장부(121)는 각 진동 공구별로 누적 충격량에 따른 위험 수준에 대한 정보를 저장할 수 있으며, 복수의 진동 공구의 조합과 해당 조합의 누적 충격량에 따른 위험 수준에 대한 정보를 더 저장할 수 있다.
즉, 하나의 진동 공구만을 사용하는 작업자의 경우, 해당 진동 공구에 의한 진동 수와 크기가 누적 충격량으로 산출될 수 있지만, 복수의 진동 공구를 사용하는 작업자의 경우는 각각의 진동 공구에 의한 진동 수와 크기가 모두 반영되어 누적 충격량으로 산출될 수 있다.
그리고, 진동 공구의 종류에 따라서 진동 수와 크기가 서로 다른 점 또한 고려되어야 한다.
예를 들어, 위험 수준이 '경고'인 경우가 100이라면, 진동 크기가 1인 진동 공구 A는 진동 수가 100회일 때 경고 수준에 해당하는 충격을 작업자에게 가할 수 있고, 진동 크기가 5인 진동 공구 B는 진동 수가 20회일 때 경고 수준에 해당하는 충격을 작업자게 가할 수 있다.
만일 작업자가 진동 공구 A와 B를 모두 사용하는 경우, 위험 수준이 '경고'에 도달하는 누적 충격량은 진동 공구 A와 B에 의한 진동 수와 크기를 모두 고려해야 한다.
예를 들어, 작업자가 진동 공구 A를 사용한 최근 진동 수가 40회(진동 크기는 1)이고, 이후에 진공 공구 B를 사용한다면, 진동 공구 B의 진동 수가 12회(진동 크기는 5)에 도달했을 때 누적 충격량 100이 되어 위험 수준 '경고'에 해당하게 된다.
한편, 작업자 작업 정보 저장부(122)는 각 작업자의 식별자, 각 작업자가 착용하는 누적 충격량 측정 장갑(110)의 식별자, 각 작업자가 사용하는 진동 공구의 식별자, 각 진동 공구에 의한 누적 진동 수와 크기 중 하나 이상을 저장할 수 있다.
한편, 작업 정보 분석부(123)는 누적 충격량 측정 장갑(110)으로부터 수신된 작업 정보에 근거하여, 작업자 작업 정보 저장부(122)에 저장된 해당 작업자에 대한 작업 정보, 즉, 현재 사용 중인 진동 공구의 누적 진동 수와 크기를 갱신할 수 있다.
예를 들어, 누적 충격량 측정 장갑(110)으로부터 1시간 간격으로 작업 정보가 수신되는 경우, 작업 정보 분석부(123)는 현재 사용 중인 진동 공구에 대하여 1시간 동안 누적된 진동 수와 크기를 기 저장된 진동 수와 크기에 반영(합산)하여 갱신할 수 있다.
이후, 작업 정보 분석부(123)는 해당 작업자가 사용하는 진동 공구의 수(종류) 및 각 진동 공구별로 누적된 진동 수와 크기에 기반하여, 누적 충격량에 따른 위험 수준에 대한 정보를 생성할 수 있다.
또한, 작업 정보 분석부(123)는 진동 공구의 진동 크기가 특정 기준 값을 초과하는 경우, 해당 진동 공구의 마모 여부를 점검하도록 알리는 메시지를 생성할 수 있다.
한편, 통신부(124)는 누적 충격량 측정 장갑(110)과 무선으로 통신할 수 있는 무선 통신 수단을 포함할 수 있으며, 무선 통신 수단은 와이파이, 블루투스와 같은 근거리 통신망을 이용할 수도 있고, 이동 통신망을 이용할 수도 있다.
또한, 통신부(124)를 작업 정보 분석부(123)에서 생성된 작업자의 누적 충격량에 따른 위험 수준에 대한 정보나 진동 공구의 마모 여부를 점검하도록 알리는 메시지를 해당 작업자의 누적 충격량 측정 장갑(110)과 관리자 단말기(미도시) 중 하나 이상으로 전송할 수 있다.
도 4는 본 발명의 일 실시예에 따른 누적 충격량을 측정하는 과정을 도시한 흐름도이다.
도 4는 누적 충격량 측정 장갑(110)에 의해 실행될 수 있으며, 이하, 누적 충격량 측정 장갑(110)을 실행 주체로 도 4에 도시된 흐름도를 설명하도록 한다.
작업자가 누적 충격량 측정 장갑(110)을 손에 착용하고 진동 공구를 파지하면, 누적 충격량 측정 장갑(110)은 진동 공구의 태그로부터 해당 진동 공구의 식별자를 획득한다(S401).
S401 후, 진동 공구가 동작하면, 누적 충격량 측정 장갑(110)은 진동 공구의 사용에 따라 발생하는 진동 수와 크기를 미리 정해진 시간 동안(예를 들어 10분) 감지한다(S402).
이때, 휴식이나 이동으로 인해 진동 공구의 사용이 중지되면, 누적 충격량 측정 장갑(110)은 작업 시간에 대한 카운트를 중지하고, 진동 공구의 사용이 다시 시작되면 상기 미리 정해진 시간에 도달할 때까지 작업 시간을 다시 카운트한다.
S402 후, 누적 충격량 측정 장갑(110)은 작업 시간이 상기 미리 정해진 시간에 도달하면, 해당 시간 동안 누적하여 측정한 진동 공구의 진동 수와 크기를 포함하는 작업 정보를 모니터링 서버(120)로 전송한다(S403).
이때, 누적 충격량 측정 장갑(110)은 자신의 식별자와 S401에서 획득한 진동 공구의 식별자를 함께 전송할 수 있다.
S403 후, 누적 충격량 측정 장갑(110)은 모니터링 서버(120)로부터 그 동안 사용했던 진동 공구(작업자의 작업에 따라서 하나 이상일 수 있음)의 누적 충격량에 따른 위험 수준에 대한 정보를 수신하고 위험 수준의 정도를 확인한다(S404).
S404 후, 누적 충격량 측정 장갑(110)은 상기 확인된 위험 수준의 정도에 대응하는 정보를 디스플레이부, 진동부, 스피커 및 램프 중 하나 이상을 이용하여 출력한다(S405).
도 5는 본 발명의 일 실시예에 따른 누적 충격량을 모니터링하는 과정을 도시한 흐름도이다.
도 5는 모니터링 서버(120)에 의해 실행될 수 있으며, 이하, 모니터링 서버(120)를 실행 주체로 도 5에 도시된 흐름도를 설명하도록 한다.
모니터링 서버(120)는 누적 충격량 측정 장갑(110)으로부터 주기적으로 작업 정보를 수신한다(S501).
여기서 작업 정보는 누적 충격량 측정 장갑(110)의 식별자, 현재 사용 중인 진동 공구의 식별자, 해당 진동 공구에 의해 발생된 미리 정해진 시간 동안의 누적 진동 수와 크기를 포함할 수 있다.
S501 후, 모니터링 서버(120)는 상기 수신된 작업 정보에 기반하여 기 저장된 작업 정보를 갱신하고, 진동 공구 사용에 따른 누적 충격량에 대한 위험 수준을 분석한다(S502).
여기서 진동 공구 사용에 따른 누적 충격량은 그 동안 작업자가 사용한 진동 공구의 종류에 따라서 하나 이상의 진동 공구에 의한 진동 수와 크기가 반영될 수 있다.
참고로, 모니터링 서버(120)는 진동 공구의 진동 크기가 특정 기준치 이상 증가하는 경우, 공구의 마모로 인하여 진동 크기가 증가된 것으로 판단하고, 공구의 마모 여부를 점검할 것을 알리는 메시지를 누적 충격량 측정 장갑(110)으로 전송할 수 있다.
S502 후, 모니터링 서버(120)는 분석 결과, 즉, 누적 충격량에 따른 위험 수준에 대한 정보를 누적 충격량 측정 장갑(110)으로 전송한다(S503).
도 6은 본 발명의 일 실시예에 따른 진동 감지 센서의 구조를 도시한 도면이다.
도 6에 도시된 본 발명의 일 실시예에 따른 진동 감지 센서(111)는 복수의 전극을 이용하는 진동 감지 센서로서, 제 1 전극(111a) 및 제 1 전극(111a)을 둘러싸는 제 2 전극(111b)을 포함할 수 있다.
작업자가 누적 충격량 측정 장갑(110)을 손에 착용하고 진동 공구의 손잡이를 파지한 상태에서 진동 공구가 동작하여 진동이 발생하면, 제 1 전극(111a)은 진동에 의해 흔들리면서 제 2 전극(111b)의 내벽에 접촉하게 된다.
이때, 진동의 크기에 따라서 제 1 전극(111a)이 제 2 전극(111b)의 내벽에 접촉하는 면적이 달라질 수 있으며, 누적 충격량 측정 장갑(110)은 접촉된 면적에 기반하여 진동의 크기를 감지할 수 있다.
물론, 이때 진동의 크기와 함께 진동의 수 또한 감지될 수 있다.
한편, 전술된 실시예의 구성 요소는 프로세스적인 관점에서 용이하게 파악될 수 있다.
즉, 각각의 구성 요소는 각각의 프로세스로 파악될 수 있다. 또한 전술된 실시예의 프로세스는 장치의 구성 요소 관점에서 용이하게 파악될 수 있다.
또한 앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.
상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.
상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.
프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허 청구 범위에 속하는 것으로 보아야 할 것이다.

Claims (11)

  1. 작업자의 손에 착용되어 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)에 의한 누적 충격량을 측정하는 웨어러블 디바이스에 있어서,
    상기 진동 공구의 동작 시 상기 작업자의 손에 전달되는 진동 수와 크기를 감지하는 진동 감지 센서;
    미리 정해진 시간 동안 상기 감지된 진동 수와 크기를 누적하여 저장하는 메모리;
    상기 메모리에 저장된 누적 진동 수와 크기 및 상기 웨어러블 디바이스의 식별자를 모니터링 서버로 전송하고, 상기 모니터링 서버로부터 산출된 누적 충격량에 따른 위험 수준에 대한 정보를 수신하는 통신부; 및
    상기 수신된 위험 수준에 대한 정보에 대응하는 정보를 출력하는 출력부
    를 포함하되,
    상기 누적 충격량은 상기 웨어러블 디바이스를 착용한 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 것을 특징으로 하는 웨어러블 디바이스.
  2. 제 1 항에 있어서,
    상기 진동 감지 센서는
    3방향 가속도 센서를 포함하되,
    상기 3방향 가속도 센서는
    진동에 의해 x축, y축 및 z축 중 하나 이상의 축에 발생하는 가속도와 상기 가속도의 크기에 근거하여 진동 수 및 크기를 감지하는 것을 특징으로 하는 웨어러블 디바이스.
  3. 제 1 항에 있어서,
    상기 진동 감지 센서는
    복수의 전극을 이용하는 센서를 포함하되,
    상기 복수의 전극을 이용하는 센서는
    제 1 전극과 상기 제 1 전극을 둘러싸는 제 2 전극을 포함하며,
    진동에 의해 상기 제 1 전극이 흔들리면서 상기 제 2 전극의 내벽에 접촉하면, 접촉되는 회수와 접촉 면적에 근거하여 진동 수 및 크기를 감지하는 것을 특징으로 하는 웨어러블 디바이스.
  4. 제 1 항에 있어서,
    상기 통신부는
    상기 진동 공구의 식별자를 상기 모니터링 서버로 더 전송하되,
    상기 진동 공구에 부착된 태그로부터 상기 진동 공구의 식별자를 인식하는 태그 리더기를 포함하는 것을 특징으로 하는 웨어러블 디바이스.
  5. 제 1 항에 있어서,
    상기 출력부는
    디스플레이 화면, 진동, 스피커 및 램프 중 하나 이상을 통해 상기 정보를 출력하는 것을 특징으로 하는 웨어러블 디바이스.
  6. 작업자의 손에 착용된 웨어러블 디바이스가 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)에 의한 누적 충격량을 측정하는 방법에 있어서,
    (a) 상기 진동 공구의 동작 시 상기 작업자의 손에 전달되는 진동 수와 크기를 감지하고, 미리 정해진 시간 동안 상기 감지된 진동 수와 크기를 누적하여 저장하는 단계;
    (b) 상기 저장된 누적 진동 수와 크기 및 상기 웨어러블 디바이스의 식별자를 모니터링 서버로 전송하고, 상기 모니터링 서버로부터 산출된 누적 충격량에 따른 위험 수준에 대한 정보를 수신하는 단계; 및
    (c) 상기 수신된 위험 수준에 대응하는 정보를 출력하는 단계
    를 포함하되,
    상기 누적 충격량은 상기 웨어러블 디바이스를 착용한 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 것을 특징으로 하는 누적 충격량 측정 방법.
  7. 제 6 항에 있어서,
    상기 (a) 단계 이전에
    상기 진동 공구에 부착된 태그로부터 상기 진동 공구의 식별자를 인식하는 단계
    를 더 포함하고,
    상기 (b) 단계는
    상기 인식된 진동 공구의 식별자를 상기 모니터링 서버로 더 전송하는 것을 특징으로 하는 누적 충격량 측정 방법.
  8. 작업자의 손에 착용된 웨어러블 디바이스가 측정한 누적 충격량을 모니터링하는 서버에 있어서,
    상기 웨어러블 디바이스로부터 상기 웨어러블 디바이스의 식별자, 상기 작업자가 사용 중인 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)의 식별자 및 미리 정해진 시간 동안 상기 진동 공구의 사용으로 인해 감지된 누적 진동 수와 크기를 포함하는 작업 정보를 수신하는 통신부; 및
    상기 수신된 작업 정보에 근거하여, 기 저장된 상기 진동 공구의 사용에 의한 누적 진동 수와 크기를 갱신하고, 상기 진동 공구를 포함하여 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 누적 충격량을 산출하며, 상기 누적 충격량에 따른 위험 수준에 대한 정보를 생성하는 작업 정보 분석부
    를 포함하되,
    상기 통신부는
    상기 생성된 위험 수준에 대한 정보를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 것을 특징으로 하는 모니터링 서버.
  9. 제 8 항에 있어서,
    상기 작업 정보 분석부는
    상기 진동 공구의 진동 크기가 특정 기준 값을 초과하는 경우, 상기 진동 공구의 마모 여부를 점검하도록 알리는 메시지를 생성하고,
    상기 통신부는
    상기 생성된 메시지를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 것을 특징으로 하는 모니터링 서버.
  10. 모니터링 서버가 작업자의 손에 착용된 웨어러블 디바이스가 측정한 누적 충격량을 모니터링하는 방법에 있어서,
    (a) 상기 웨어러블 디바이스로부터 상기 웨어러블 디바이스의 식별자, 상기 작업자가 사용 중인 진동을 발생시키는 공구(이하, '진동 공구'라 칭함)의 식별자 및 미리 정해진 시간 동안 상기 진동 공구의 사용으로 인해 감지된 누적 진동 수와 크기를 포함하는 작업 정보를 수신하는 단계;
    (b) 상기 수신된 작업 정보에 근거하여, 기 저장된 상기 진동 공구의 사용에 의한 누적 진동 수와 크기를 갱신하는 단계;
    (c) 상기 진동 공구를 포함하여 상기 작업자가 특정 기간 동안 사용한 하나 이상의 진동 공구에 의한 진동 수와 크기가 누적된 누적 충격량을 산출하고, 상기 누적 충격량에 따른 위험 수준에 대한 정보를 생성하는 단계; 및
    (d) 상기 생성된 위험 수준에 대한 정보를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 단계
    를 포함하는 것을 특징으로 하는 누적 충격량 모니터링 방법.
  11. 제 10 항에 있어서,
    상기 (c) 단계는
    상기 진동 공구의 진동 크기가 특정 기준 값을 초과하는 경우, 상기 진동 공구의 마모 여부를 점검하도록 알리는 메시지를 생성하는 단계
    를 포함하고,
    상기 (d) 단계는
    상기 생성된 메시지를 상기 웨어러블 디바이스 및 관리자 단말기 중 하나 이상으로 전송하는 단계
    를 포함하는 것을 특징으로 하는 누적 충격량 모니터링 방법.
PCT/KR2016/012382 2015-12-01 2016-10-31 누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버 WO2017095027A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0169898 2015-12-01
KR1020150169898A KR20170064295A (ko) 2015-12-01 2015-12-01 누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버

Publications (1)

Publication Number Publication Date
WO2017095027A1 true WO2017095027A1 (ko) 2017-06-08

Family

ID=58797559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012382 WO2017095027A1 (ko) 2015-12-01 2016-10-31 누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버

Country Status (2)

Country Link
KR (1) KR20170064295A (ko)
WO (1) WO2017095027A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029692A (zh) * 2018-07-12 2018-12-18 军事科学院军事医学研究院环境医学与作业医学研究所 可穿戴式个体噪声暴露评估预警系统
CN110674752A (zh) * 2019-09-25 2020-01-10 广东省智能机器人研究院 一种基于隐马尔可夫模型的刀具磨损状态识别与预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029581A1 (en) * 1995-03-22 1996-09-26 British Gas Plc Vibration dosimeter worn by an operator
JP2010194664A (ja) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd インパクト回転工具
KR20120053481A (ko) * 2010-11-17 2012-05-25 서울대학교산학협력단 작업자의 생체정보 측정시스템 및 신체활동량과 종합스트레스지수 예측모델 시스템
KR101343403B1 (ko) * 2013-08-14 2013-12-20 (주)한국툴모니터링 공작기계 운전시의 이상 검출방법
KR101436984B1 (ko) * 2012-10-04 2014-09-04 한국기계연구원 공작기계 진동 저감 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029581A1 (en) * 1995-03-22 1996-09-26 British Gas Plc Vibration dosimeter worn by an operator
JP2010194664A (ja) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd インパクト回転工具
KR20120053481A (ko) * 2010-11-17 2012-05-25 서울대학교산학협력단 작업자의 생체정보 측정시스템 및 신체활동량과 종합스트레스지수 예측모델 시스템
KR101436984B1 (ko) * 2012-10-04 2014-09-04 한국기계연구원 공작기계 진동 저감 장치 및 방법
KR101343403B1 (ko) * 2013-08-14 2013-12-20 (주)한국툴모니터링 공작기계 운전시의 이상 검출방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029692A (zh) * 2018-07-12 2018-12-18 军事科学院军事医学研究院环境医学与作业医学研究所 可穿戴式个体噪声暴露评估预警系统
CN109029692B (zh) * 2018-07-12 2019-06-11 军事科学院军事医学研究院环境医学与作业医学研究所 可穿戴式个体噪声暴露评估预警系统
CN110674752A (zh) * 2019-09-25 2020-01-10 广东省智能机器人研究院 一种基于隐马尔可夫模型的刀具磨损状态识别与预测方法

Also Published As

Publication number Publication date
KR20170064295A (ko) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2017095027A1 (ko) 누적 충격량을 측정하는 방법, 웨어러블 디바이스, 모니터링 방법 및 서버
WO2013133125A1 (ja) 無線端末装置、測定制御方法、制御方法、測定制御プログラムおよび記録媒体
CN107534926A (zh) 无线网状网络气体检测实时定位系统
JP2011150399A (ja) 保守システム、保守端末、復旧作業支援方法および復旧作業支援用プログラム
JP3770547B2 (ja) イオナイザ制御システム
WO2023027421A1 (ko) 작업 공간에서의 관심 영역을 모니터링하는 방법 및 센싱 장치
JP4696600B2 (ja) 無線アクセスネットワークシステム
KR20090123644A (ko) 알에프아이디(rfid)를 이용한 블라스팅 셀 내부 작업자상황인지 시스템 및 그 방법
JP2011243085A (ja) 移動者の転倒監視システム
CN104574805A (zh) 监视事件和人员位置的系统和方法
WO2020076077A2 (ko) 배회 감지 시스템
KR20180060984A (ko) 실시간 작업자 안전 모니터링 시스템 및 방법
WO2018174567A1 (ko) 보행 보조기의 위험 상황 판단 방법 및 장치
JP5387010B2 (ja) ユーザ行動監視システム及びユーザ行動監視方法
KR20190035274A (ko) 안전 장비 착용 장려 시스템 및 이의 동작 방법
WO2019189950A1 (ko) 설비의 원격 진단 방법, 시스템 및 프로그램
JP2010244152A (ja) 作業支援装置、作業支援システム、作業支援方法およびプログラム
CN113788377A (zh) 一种机器人乘梯检测方法及装置
KR102205608B1 (ko) 근로자 안전을 보호하기 위한 스마트 웨어러블 시스템
US11381643B2 (en) System and method for monitoring a work situation
CN104378246B (zh) 一种网络设备故障定位系统、方法及装置
WO2019139409A1 (ko) 움직임에 기반하여, 외부의 공기와 관련된 데이터 보정 및 생성하기 위한 방법 및 전자 장치
JP2019209426A (ja) ロボット状態監視システム及びロボット状態監視方法
WO2014104427A1 (ko) 구조물 진동 위치 추적 방법 및 시스템
WO2021033926A1 (ko) 홀 위치 업데이트 장치 및 홀 위치 업데이트 장치의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870923

Country of ref document: EP

Kind code of ref document: A1