WO2017094838A1 - 蛍光性を有するレチノイドx受容体結合性分子及びその用途 - Google Patents

蛍光性を有するレチノイドx受容体結合性分子及びその用途 Download PDF

Info

Publication number
WO2017094838A1
WO2017094838A1 PCT/JP2016/085729 JP2016085729W WO2017094838A1 WO 2017094838 A1 WO2017094838 A1 WO 2017094838A1 JP 2016085729 W JP2016085729 W JP 2016085729W WO 2017094838 A1 WO2017094838 A1 WO 2017094838A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
ethyl acetate
receptor
binding molecule
mmol
Prior art date
Application number
PCT/JP2016/085729
Other languages
English (en)
French (fr)
Inventor
博貴 加来田
翔也 山田
将貴 渡邉
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2017554175A priority Critical patent/JP6852897B2/ja
Priority to CN201680070701.XA priority patent/CN108290841B/zh
Publication of WO2017094838A1 publication Critical patent/WO2017094838A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4433Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6875Nucleoproteins

Definitions

  • the present invention relates to a retinoid X receptor-binding molecule having fluorescence. Further, a test method for evaluating the binding ability of the evaluation substance to the retinoid X receptor using the binding molecule, a test kit for evaluating the binding ability and function of the evaluation substance including the binding molecule, and the binding ability
  • the present invention relates to a pharmaceutical composition containing a molecule as an active ingredient.
  • Rexinoid is a general term for substances that exhibit binding to a retinoid X receptor (retinoid X receptor). That is, rexinoid is a retinoid X receptor binding molecule (ligand for retinoid X receptor).
  • Bexarotene (targretin®), one of the rexinoids, is an activator (agonist) of RXR and has been clinically applied to cutaneous invasive T-cell lymphoma (CTCL) in the United States (patent) Reference 1).
  • CTCL cutaneous invasive T-cell lymphoma
  • bexarotene has been reported to be effective not only for cancer but also for diabetes (Non-patent document 1), Alzheimer's disease (Patent document 2, Non-patent document 2), and Parkinson's disease (Non-patent document 3).
  • RXR cooperates with other nuclear receptors that control sugar / lipid metabolism, and the heterodimer activity of RXR and other nuclear receptors is controlled by rexinoids. It is to be done.
  • Non-Patent Document 4 DHA and EPA are known as natural rexinoids (Non-Patent Document 4). These are also used to improve memory ability, metabolic syndrome and cancer cachexia, and foods containing them are also applied as functional foods. RXR is thus a very attractive drug discovery and functional food target.
  • the search for ligands targeting RXR is carried out by a transcription activation test by a reporter gene assay which is a binding test using a radioisotope (RI) -labeled ligand or a transcription activation test using cultured cells (non-patent literature) 5).
  • RI radioisotope
  • RI radioisotope
  • the reporter gene assay evaluates the transcription activation ability of a test compound using cells overexpressing RXR.
  • the reporter gene assay is an optimal test method for examining the transcription activation ability of a test substance, but it takes a long time (3 to 4 days) to obtain a result. Therefore, if a binding test for RXR can be performed as a primary screening, useless reporter gene assay tests can be avoided.
  • (B) Binding test using RI-labeled compound As a binding test for RXR, a method using a radioisotope-labeled ligand is known. This method evaluates the binding ability of the test compound from competitive binding of the RI-labeled compound and the test compound to RXR, and is highly sensitive. However, special facilities are required to implement this method. Further, it is necessary to separate the RI-labeled compound bound to the test compound and the liberated RI-labeled compound, and the test operation is complicated. Furthermore, the radioisotope (RI) reagent ([3H] 9-cis retinoic acid) used in this method is very expensive, and complicated operation is required for use, especially in Japan under legal restrictions.
  • RI radioisotope
  • the TR-FRET method is a method for evaluating the RXR activation ability of a test compound by measuring the FRET phenomenon between a terbium-labeled RXR and a fluorescently-labeled coactivator. According to the rexinoid search method by the TR-FRET method using a commercially available kit, data suggesting the agonist activity of the test compound can be obtained in a short time.
  • a plate reader compatible with the TR-FRET method is necessary, and there are limitations on the plate readers that can be used.
  • RXR is a very attractive drug discovery target, but has side effects.
  • bexarotene the only rexinoid that is clinically applied, has serious side effects such as increased blood lipids, hypothyroidism, and easy infection. Therefore, monitoring of blood levels is recommended when using bexarotene.
  • the drug is usually quantified by extracting the drug from the blood and measuring the UV absorbance intensity of the drug using HPLC. Since ultraviolet light absorption is used as an index, there are problems such as low sensitivity and being affected by contaminants derived from living organisms.
  • RXR agonists such as bexarotene generally have a hydrophobic site consisting of a 1,1,4,4-tetramethyltetralin structure, an acidic site consisting of benzoic acid or nicotinic acid, and a linker that connects the hydrophobic site and the acidic site.
  • Consists of Non-Patent Document 6 describes an RXR agonist having fluorescence due to the hydrophobic portion being a carbostyril skeleton exhibiting fluorescence. It is described that the ability of the agonist to bind to RXR can be measured by observing the degree of fluorescence polarization of the agonist.
  • the RXR agonist described in Non-Patent Document 6 has a problem that the fluorescence intensity is low and the binding ability to RXR is also low.
  • Non-Patent Document 7 describes a method in which the cofactor partial peptide having a fluorophore and RXR are used to measure the binding ability of the cofactor partial peptide to RXR by changing the degree of fluorescence polarization. And it is described that according to this method, the operability or antagonistic property of the substance to be evaluated against RXR can be qualitatively measured. However, in the method described in Non-Patent Document 7, the operability or antagonistic property of the substance to be evaluated against RXR could not be examined unless two types of coactivators having a fluorophore and a corepressor were used. For this reason, there is a problem that the amount of RXR used in the experiment increases and the working time also increases.
  • the present invention has been made to solve the above-described problems, and provides an RXR-binding molecule having fluorescence. Further, the present invention provides a test method for easily evaluating the binding ability of an evaluation substance to RXR using such a binding molecule. Furthermore, the present invention provides a pharmaceutical composition comprising such a binding molecule as an active ingredient and capable of easily monitoring blood concentration.
  • R 1 is methyl, alkoxy or styryl; R 2 is hydroxy, alkoxy or alkylamino; A is N or CH; B is NH or O.
  • R 1 , R 2 , A and B are the same as in formula (1); R 3 is isopropyl or tertiary butyl; R 4 is isopropyl or isobutyl. ]
  • R 5 is isopropyl or tertiary butyl; R 6 is an isopropyl or isobutyl; W is NR 7 , C ⁇ CH 2 , C ⁇ NOH or C (OCH 3 ) 2 ; R 7 is alkyl; X is N or CH; Y is N or CH; Z is CH ⁇ CH (trans), NHCO, CONH, CH ⁇ CH—CO or CO—CH ⁇ CH; Fluorophore is a fluorophore containing an aromatic ring, and the aromatic ring is bonded to Z. ]
  • R 5, R 6, W , R 7, X and Y are as defined in the formula (4);
  • Z 1 is CH ⁇ CH (trans), NHCO, CONH, CH ⁇ CH—CO or CO—CH ⁇ CH;
  • Z 2 is CH ⁇ CH, NHCO, CONH, NHSO 2 , SO 2 NH, CH 2 NHCO or CH 2 NHSO 2 ;
  • Ring Q is a benzene ring, pyridine ring, thiophene ring, naphthalene ring or quinoline ring;
  • Fluorophore is a fluorophore containing an aromatic ring, the aromatic ring is bonded to Z 2.
  • a preferred embodiment is a test method for evaluating the binding ability of an evaluation substance to a retinoid X receptor using a binding molecule represented by any of the above formulas (1) to (5).
  • the evaluation substance for the retinoid X receptor is measured by measuring the decrease in the fluorescence intensity of the binding molecule due to the binding molecule binding to the retinoid X receptor. It is preferable to evaluate the binding ability.
  • the binding ability and function of the evaluation substance for the retinoid X receptor using both the binding molecule represented by any one of the above formulas (1) to (5) and a cofactor peptide having a fluorophore. This is a test method for evaluating.
  • An object of the present invention is to provide a test method for evaluating the binding ability and function of an evaluation substance for a nuclear receptor using both a nuclear receptor binding molecule having fluorescence and a nuclear receptor cofactor peptide having a fluorophore. It is also solved by providing. At this time, it is preferable that the excitation and fluorescence wavelengths of the binding molecule do not overlap with the excitation and fluorescence wavelengths of the cofactor peptide. Further, in the aqueous solution containing the evaluation substance, the binding ability of the evaluation substance to the receptor is measured by measuring the decrease in the fluorescence intensity of the binding molecule due to the binding molecule binding to the receptor. At the same time, it is also preferable to evaluate the function of the evaluation substance for the receptor by measuring the fluorescence polarization degree of the nuclear receptor cofactor peptide.
  • An object of the present invention is to provide a test kit for evaluating the binding ability and function of an evaluation substance for a nuclear receptor, including a nuclear receptor binding molecule having fluorescence and a nuclear receptor cofactor peptide having a fluorophore. It is also solved by providing.
  • the above problem can also be solved by providing a pharmaceutical composition containing as an active ingredient a binding molecule represented by any one of the above formulas (1) to (5).
  • the retinoid X receptor-binding molecule of the present invention By using the retinoid X receptor-binding molecule of the present invention, it is possible to easily perform a binding evaluation test for RXR and contribute to the search for drug candidates and functional foods that target RXR. Further, blood concentration monitoring of a drug can be easily performed using fluorescence as an index.
  • 5 is a graph relating to RXR binding ability of a test substance using Compound 44. It is the graph which measured simultaneously the RXR binding ability and RXR activation ability of a test substance using the compound 10 and the fluorescence labeling coactivator.
  • 2 is a graph showing the blood concentration of Compound 10 upon oral administration to mice. 2 is a graph showing the blood concentration at the time of oral administration of mice at each dose of Compound 10.
  • 3 is a graph showing SEAP activity when Compound 10 is added. It is a graph which shows the fluorescence intensity of the compound 62 at the time of RXR presence.
  • the retinoid X receptor binding molecule of the present invention is represented by any one of the above formulas (1) to (5).
  • the compounds represented by the above formulas (1) to (5) may further be pharmaceutically acceptable salts.
  • the compounds represented by the above formulas (1) to (5) or salts thereof when there are isomers (for example, optical isomers, geometric isomers and compatible isomers), the present invention Including solvates, hydrates, and crystals of various shapes.
  • pharmaceutically acceptable salts include pharmacologically and pharmaceutically acceptable general salts. Specific examples of such salts are as follows.
  • Examples of basic addition salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts; ammonium salts; trimethylamine salts and triethylamine salts; dicyclohexylamine salts and ethanolamines.
  • Aliphatic amine salts such as salts, diethanolamine salts, triethanolamine salts and brocaine salts; aralkylamine salts such as N, N-dibenzylethylenediamine; heteroaromatics such as pyridine salts, picoline salts, quinoline salts and isoquinoline salts
  • tetramethylammonium salt tetraethylammonium salt, benzyltrimethylammonium salt, benzyltriethylammonium salt, benzyltributylammonium salt, methyltrioctylammonium salt
  • Quaternary ammonium salts such as tetrabutylammonium salts
  • arginine basic amino acid salts such as lysine salt and the like.
  • the acid addition salt examples include inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate, carbonate, hydrogen carbonate, perchlorate; for example, acetate, propionate, lactate, maleate , Organic acid salts such as fumarate, tartrate, malate, citrate and ascorbate; sulfonic acids such as methanesulfonate, isethionate, benzenesulfonate, p-toluenesulfonate Salts; for example, acidic amino acids such as aspartate and glutamate.
  • inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate, carbonate, hydrogen carbonate, perchlorate
  • Organic acid salts such as fumarate, tartrate, malate, citrate and ascorbate
  • sulfonic acids such as methanesulfonate, isethionate, benzenesulfonate
  • Alkyl means a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, Examples include isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl and the like.
  • alkyl having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert -Pentyl, n-hexyl, isohexyl.
  • a lower alkyl having 1 to 6 carbon atoms is particularly preferred.
  • Alkenyl means straight or branched alkenyl having 2 to 20, preferably 2 to 8 carbon atoms having one or more double bonds to the above “alkyl”. Examples include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 3-methyl-2-butenyl and the like.
  • Alkynyl means alkynyl having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, having one or more triple bonds in the above alkyl. For example, ethynyl, 1-propynyl, 2-propynyl, 1 -Butynyl, 2-butynyl, 3-butynyl and the like.
  • Alkoxy means a linear or branched (chain) alkoxy group having 1 to 20 carbon atoms. For example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec -Butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octadecanoxy group, allyloxy group and the like.
  • a straight-chain or branched lower alkoxy having 1 to 6 carbon atoms is preferred.
  • “Acyl” means alkanoyl, aroyl and the like.
  • the alkanoyl include alkanoyl having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms (formyl, acetyl, trifluoroacetyl, propionyl, butyryl, etc.).
  • Examples of aroyl include aroyl having 7 to 15 carbon atoms, and specific examples include benzoyl and naphthoyl.
  • Fluorophore shown as Fluorophore in the above formulas (4) and (5) examples include quinoline, quinolinium, xanthene, coumarin dyes, dansyl, pyridinium, benzofurazan dyes, fluorescein dyes (for example, fluorescein, carboxynaphthofluorescein) , Tetrachlorofluorescein, tetrabromosulfonefluorescein, etc.), rhodamine dyes (eg, rhodamine, carboxy-X-rhodamine, carboxyrhodamine, tetraethylrhodamine, tetramethylrhodamine, rhodamine red, rhodamine green, etc.) and cyanine dyes ( For example, Cy7, Cy5.5, Cy5, Cy3.5, Cy3 and other Cy dyes: GE Healthcare), Alexa Fluors (eg, Alexa Fluor 790, Alexa
  • the binding ability of the evaluation substance to RXR can be easily evaluated. Specifically, the binding ability of the evaluation substance to RXR is measured by measuring the decrease in the fluorescence intensity of the binding molecule due to the binding molecule binding to RXR in an aqueous solution in which the evaluation substance is present. Can be evaluated. This utilizes the fact that the fluorescence intensity of the RXR-binding molecule is large when it is released in water and small when it is bound to RXR and in a hydrophobic environment (see FIG. 4).
  • the fluorescent ligand of the present invention decreases in fluorescence intensity when it binds to RXR, but when other ligand binds to RXR, the fluorescent ligand is liberated and the fluorescence intensity increases. This makes it possible to measure the ability of other ligands to bind to RXR.
  • a test method for evaluating the binding ability and function of an evaluation substance for a retinoid X receptor using both the RXR binding molecule represented by any one of the above formulas (1) to (5) and a cofactor peptide having a fluorophore are also preferably employed. According to this method, it is possible to simultaneously evaluate the ability of the evaluation substance to bind to RXR and the ability to activate RXR.
  • the binding ability of the evaluation substance to RXR is measured by measuring the decrease in the fluorescence intensity of the binding molecule due to the binding molecule binding to RXR in an aqueous solution in which the evaluation substance is present.
  • the function of the evaluation substance for RXR can be evaluated by measuring the fluorescence polarization degree of the RXR cofactor peptide.
  • the measurement of the degree of fluorescence polarization is based on the fact that the degree of fluorescence polarization is large if the RXR cofactor peptide is bound to RXR, and the degree of fluorescence polarization is small if it is free.
  • FIG. 2 shows a schematic diagram when a fluorescent rexinoid whose fluorescence intensity decreases when bound to RXR is combined with a fluorescent cofactor.
  • a fluorescently labeled coactivator is bound to RXR to which a fluorescent agonist is bound, weak fluorescence from the fluorescent agonist is observed and a high degree of polarization from the fluorescently labeled coactivator is observed. Fluorescence is observed.
  • another agonist binds to RXR, strong fluorescence from the fluorescent agonist is observed, and fluorescence with a high degree of polarization from the fluorescence-labeled coactivator is observed.
  • the excitation and fluorescence wavelength of the fluorescent RXR-binding molecule do not overlap with the excitation and fluorescence wavelength of the cofactor peptide. Since these wavelengths do not overlap, it is possible to measure accurately.
  • a cofactor peptide used for the said test method you may use any of a coactivator peptide and a corepressor peptide.
  • a cofactor partial peptide as a cofactor peptide.
  • a test kit for evaluating the binding ability and function of an evaluation substance for RXR including an RXR-binding molecule having fluorescence and an RXR cofactor peptide having a fluorophore, is also useful.
  • a fluorescent ligand that binds to a target nuclear receptor and a coactivator having a fluorophore are combined.
  • the binding ability of the evaluation substance to the receptor is measured by measuring the decrease in the fluorescence intensity of the binding molecule due to the binding molecule binding to the receptor in an aqueous solution in which the evaluation substance is present.
  • it is possible to evaluate the function of the evaluation substance for the receptor by measuring the fluorescence polarization degree of the nuclear receptor cofactor peptide.
  • a binding assay that combines a fluorescent ligand that binds to the nuclear receptor of interest and a coactivator with a fluorophore
  • the excitation and fluorescence wavelength of the fluorescent ligand and the excitation and fluorescence of the coactivator with the fluorophore It is desirable that the wavelengths do not overlap.
  • a test kit for evaluating the binding ability and function of an evaluation substance for a nuclear receptor including a nuclear receptor binding molecule having fluorescence and a nuclear receptor cofactor peptide having a fluorophore is also suitable. This is an embodiment.
  • the dosage is not particularly limited.
  • the compound of the present invention is used in combination to regulate the action of retinoid, or the drug of the present invention is administered to control the action of retinoic acid already present in the living body without using a medicine containing retinoid.
  • an appropriate dose can be easily selected.
  • the active ingredient can be used in the range of about 0.01 to 1000 mg per adult day.
  • the drug of the present invention can be administered either during the retinoid administration period and / or before or after that period. is there.
  • one or more selected from the compounds represented by the above formulas (1) to (5) may be administered as they are, but one or more of the above compounds or It is preferably administered as an oral or parenteral pharmaceutical composition containing two or more.
  • Oral or parenteral pharmaceutical compositions can be prepared using pharmaceutical additives available to those skilled in the art, that is, pharmacologically and pharmaceutically acceptable carriers.
  • a pharmaceutical composition in the form of a so-called mixture one or more of the compounds represented by the above formulas (1) to (5) may be blended with a pharmaceutical having a therapeutic effect on inflammatory respiratory diseases. It can also be used. Specifically, it can be used in combination with an inhaled steroid drug, an inhaled long-acting ⁇ 2 agonist, a leukotriene receptor antagonist, an oral steroid drug, and the like.
  • Examples of the pharmaceutical composition suitable for oral administration include tablets, capsules, powders, fine granules, granules, liquids, and syrups.
  • the pharmaceutical composition suitable for parenteral administration includes For example, injections, drops, suppositories, inhalants, nasal drops, ointments, creams, patches and the like can be mentioned.
  • Examples of pharmacologically and pharmaceutically acceptable carriers used in the production of the above pharmaceutical composition include, for example, excipients, disintegrating agents or disintegrating aids, binders, lubricants, coating agents, dyes, Diluents, bases, solubilizers or solubilizers, isotonic agents, pH adjusters, stabilizers, propellants, adhesives, and the like can be mentioned.
  • any of the compounds included in the scope of the present invention can be produced by appropriately modifying or altering the starting materials and reagents used in the method for producing the compound and reaction conditions.
  • the manufacturing method of the compound of this invention is not limited to what was specifically demonstrated by the Example.
  • the obtained crude product was dissolved in distilled ethanol (2.0 mL), piperidine (20 ⁇ L) and diethyl malonate (110 ⁇ L, 0.75 mmol) were added, and the mixture was heated to reflux for 6 hours under an argon atmosphere.
  • Example 4 Synthesis of Target Compound 36 A synthesis scheme of the target compound 36 in this example is shown in the following formula.
  • Example 6 Synthesis of Target Compound 44 A synthesis scheme of the target compound 44 in this example is shown in the following formula.
  • the reaction mixture was poured into ice water (150 mL), neutralized with 2N hydrochloric acid, and extracted with ethyl acetate (100 mL ⁇ 3). The organic layer was washed with water (150 mL ⁇ 2) and saturated brine (150 mL). The obtained organic layer was dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product (390 mg) as a yellow solid.
  • Example 8 Synthesis of target compound 62 A synthesis scheme of the target compound 62 in this example is shown in the following formula.
  • a reporter gene assay is performed as a means for measuring the transcriptional activity.
  • An RXR receptor protein expression plasmid and a reporter plasmid are introduced into cells such as COS-1 cells and HeLa cells.
  • RXR agonist ligand
  • binds to the receptor transcription occurs in a ligand-dependent manner and production of downstream luciferase begins.
  • RXR agonist activity was measured by measuring this luciferase activity.
  • RXR antagonist activity was evaluated by measuring antagonism against existing RXR agonists.
  • the transformation efficiency was corrected by introducing a secretory alkaline phosphatase (SEAP) expression plasmid and measuring the activity of SEAP.
  • SEAP secretory alkaline phosphatase
  • DMEM Host cell culture Dulbecco's modified Eagle medium
  • DMEM powder was dissolved in 500 mL of ultrapure water (produced with Milli-Q (registered trademark)), sterilized under high pressure heat (121 ° C., 20 minutes), returned to room temperature, Inactivated fetal bovine serum (FBS) was added to 10% (v / v), 10 mL of 10% NaHCO 3 sterilized by high-pressure heat was further added, and then 0.292 g of L-glutamine was added to 8 mL of ultrapure water. The product dissolved in was added after filtration sterilization.
  • FBS Inactivated fetal bovine serum
  • Each cell was subcultured by removing the culture supernatant of cells cultured in a 100 mm culture dish, collecting the cells by trypsin treatment, centrifuging at 1500 rpm for 3 minutes, adding a growth medium to disperse the cells, 15 mL of a growth medium in which cells were dispersed was added and cultured at 37 ° C. in a 5% CO 2 atmosphere. Transformation was performed using Effectene TM Transection Reagent (QIAGEN). LGD1069 was used as a positive control for RXR. These were measured in a plate to be assayed using DMSO-dissolved stock solution.
  • the assay buffer was prepared by the following method. L-homoarginine (0.45 g) and magnesium chloride (0.02 g) were dissolved in 50 mL of ultrapure water (produced with Milli-Q (registered trademark)), and diethanolamine (21 mL) was added. Then, after adjusting the pH to 9.8 with hydrochloric acid, the volume was adjusted to 100 mL with ultrapure water and stored at 4 ° C.
  • Dilution buffer was prepared by the following method. Sodium chloride (4.38 g) and Tris Base (2.42 g) were dissolved in 90 mL of ultrapure water (produced with Milli-Q®). Thereafter, the pH was adjusted to 7.2 with hydrochloric acid to prepare a 5-fold concentration dilution buffer, which was stored at 4 ° C. Dilution buffer was prepared by diluting it 5 times immediately before use.
  • 4-Methylumbelliferyl phosphate was dissolved in ultrapure water (produced with Milli-Q (registered trademark)) to a concentration of 25 mM and stored at ⁇ 20 ° C. to make 10 ⁇ MUP.
  • luciferase activity a 96-well white plate manufactured by NUNC was used, and the luminescence intensity with the reaction product with a luminescent substrate (Stadey-Glo (registered trademark) Luciferase® Assay® System, Promega) was measured using a microplate reader (Infinite® 200, TECAN The measurement was performed using
  • FIG. 3A shows the result of examining the relative activity when the transcriptional activity when 1 ⁇ M of bexarotene, which is a positive control, was reacted was 1, and the relative activity was examined.
  • RXR agonist activity was observed for compounds 10, 23a, 23b, and 30.
  • FIG. 3B shows the result of adding Compound 44 in the presence of NEt-TMN, which is an RXR agonist.
  • RXR antagonist activity was observed for Compound 44.
  • RXR antagonist activity was recognized about compound 23c and 49 by testing similarly.
  • Example 10 Fluorescent physical properties of creation compound The synthesized compounds were evaluated for excitation maximum wavelength and fluorescence maximum wavelength in methanol and chloroform. The measurement was performed with a Hitachi F-4500 spectrofluorometer using a four-sided transparent quartz cell (optical path length 1 cm) with excitation, a fluorescence slit of 10 nm, and a photomultiplier voltage of 700 V. The measurement results are shown in Table 2 below.
  • Example 11 Fluorescence intensity of compound 10 in various solvents Fluorescence intensity of compound 10 at an excitation wavelength of 340 nm and a fluorescence wavelength of 465 nm was measured in water, methanol, acetonitrile, chloroform, and cyclohexane. The measurement was carried out with Tecan SPARK 10M using a Greiner 96-well half area black plate with excitation and a fluorescence bandwidth of 20 nm. The measurement results are shown in FIG. As a result of the measurement, the fluorescence intensity was attenuated in an organic solvent as compared with water.
  • Example 12 Monitoring of RXR binding of compound 10 by fluorescence intensity measurement
  • the buffer for fluorescence intensity measurement in the presence of RXR protein was 20 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM dithio. Threitol and 10% glycerol were used.
  • the measurement was performed with Tecan Infinite 200F using a 384-hole small volume black plate manufactured by Greiner at an excitation wavelength of 360 nm, a fluorescence wavelength of 465 nm, excitation, and a fluorescence bandwidth of 35 nm.
  • the sample volume per well was 20 ⁇ L.
  • RXR ⁇ protein As the RXR ⁇ protein, a ligand binding domain (LBD) manufactured by Active Motif was used at 100 nM (FIG. 5A) or full-length RXR ⁇ was used at 3 ⁇ M (FIG. 5B).
  • LBD ligand binding domain
  • the solution was prepared by changing the concentration of Compound 10, incubated at room temperature for 2 hours, and the amount of decrease in fluorescence intensity from Compound 10 alone was plotted. In addition, the amount of decrease in fluorescence intensity when bexarotene 10 ⁇ M was allowed to coexist there was also plotted. In either case, the concentration of dimethyl sulfoxide used as a compound solubilizer was 1%. As a result, as shown in FIG.
  • the fluorescence intensity of 10 was attenuated by the presence of the RXR ⁇ protein, and the fluorescence intensity was recovered by the coexistence of bexarotene.
  • the change in fluorescence intensity due to specific binding of Compound 10 to RXR ⁇ protein was plotted.
  • the binding dissociation constant (Kd) of Compound 10 for RXR ⁇ protein was calculated to be 87 nM by the least square method from the obtained specific binding plot.
  • Example 13 Evaluation of RXR binding ability of RXR ligand using compound 10
  • the buffer for fluorescence intensity measurement in RXR binding ability evaluation of RXR ligand using compound 10 was 20 mM Tris-HCl (pH 7.5), 150 mM. Sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM dithiothreitol, and 10% glycerol were used. The measurement was performed with Tecan Infinite 200F using a 384-hole small volume black plate manufactured by Greiner at an excitation wavelength of 360 nm, a fluorescence wavelength of 465 nm, excitation, and a fluorescence bandwidth of 35 nm. The sample volume per well was 20 ⁇ L.
  • RXR ⁇ protein (ligand binding domain (LBD)) manufactured by Active Motif is used at 100 nM, 10 is used at 100 nM, and the test compounds are RXR agonist bexarotene, CBTF-PMN, RXR antagonist PA452, RXR agonistic environmental hormone Tributyltin chloride was used. After preparing the solution, it was incubated at room temperature for 2 hours, and the fluorescence intensity was measured and plotted. In either case, the concentration of dimethyl sulfoxide used as a compound solubilizer was 1%.
  • Example 14 Monitoring of RXR binding of compound 44 by fluorescence intensity measurement
  • Buffers for fluorescence intensity measurement in the presence of RXR protein were 20 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM. Dithiothreitol and 10% glycerol were used. The measurement was performed at Tecan SPARK 10M using a Thermofischer 384-well black plate with an excitation wavelength of 330 nm, a fluorescence wavelength of 560 nm, excitation, and a fluorescence bandwidth of 20 nm. The sample volume per well was 20 ⁇ L.
  • Compound 44 was 30 nM, RXR ⁇ protein (ligand binding domain (LBD)) manufactured by Active Motif was prepared by changing the concentration, incubated at room temperature for 2 hours, and fluorescence intensity was plotted. In addition, the fluorescence intensity when 1 ⁇ M bexarotene coexisted there was also plotted. In either case, the concentration of dimethyl sulfoxide used as a compound solubilizer was 1%.
  • Example 15 Detection of RXR binding of RXR ligand using compound 44
  • the buffer for fluorescence intensity measurement in the presence of RXR protein was 20 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM. Dithiothreitol and 10% glycerol were used.
  • the measurement was performed at Tecan SPARK 10M using a Thermofischer 384-well black plate with an excitation wavelength of 330 nm, a fluorescence wavelength of 560 nm, excitation, and a fluorescence bandwidth of 20 nm.
  • the sample volume per well was 20 ⁇ L.
  • Compound 44 was prepared at 30 nM, RXR ⁇ protein (ligand binding domain (LBD)) manufactured by Active Motif was 100 nM, test compound was prepared at 1 ⁇ M, incubated at room temperature for 2 hours, and fluorescence intensity was measured. In either case, the concentration of dimethyl sulfoxide used as a compound solubilizer was 1%.
  • the fluorescence intensity of compound 44 decreased due to the presence of RXR ligands Bexarotene, NEt-3IB, NEt-SB, and the binding of RXR ligand to RXR was detected.
  • Example 16 Combined assay combining binding evaluation using compound 10 and RXR activation ability evaluation using fluorescent labeled coactivator Measuring fluorescence polarization degree of fluorescein-labeled coactivator peptide (Fluorescein-PGC1a) Thus, recruitment of coactivators to RXR, ie, changes to the activated structure of RXR can be detected.
  • Fluorescein-PGC1a By combining the binding test using Compound 10 and the activation ability test using Fluorescein-PGC1a, it is possible to simultaneously evaluate the RXR binding ability and RXR activation ability of the test compound as shown in FIG. Is possible.
  • the buffer solution for measuring the fluorescence intensity of compound 10 and the fluorescence polarization degree of fluorescein-PGC1a was 20 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM dithiothreitol, 10% glycerol. The measurement was performed at Tecan Polarion using a 384-hole small volume black plate manufactured by Greiner.
  • the fluorescence measurement of compound 10 was performed at an excitation wavelength of 360 nm and a fluorescence wavelength of 465 nm, and the fluorescence polarization measurement of fluorescein-PGC1a was performed at an excitation wavelength of 485 nm and a fluorescence wavelength of 535 nm. went.
  • the sample volume per well was 20 ⁇ L.
  • Full-length RXR ⁇ protein was used at 3 ⁇ M
  • 10 was used at 3 ⁇ M
  • Fluorescein-PGC1a was used at 30 nM
  • RXR agonist bexarotene and RXR antagonist PA452 were used at 10 ⁇ M, respectively.
  • Example 17 Translocation of compound 10 into blood during oral administration of compound 10
  • Compound 10 was orally administered to ICR mice (male, 6 weeks old, 5 mice per group) at 30 mg / kg. Blood was collected after 3 and 6 hours, and the blood concentration was measured. The blood concentration was measured using a sample prepared by the following experimental method. Fasted 6-week-old male ICR mice were orally administered and every 1, 3 and 6 hours, individual mice were euthanized under ether anesthesia and then blood was collected. The collected blood was centrifuged at 4400 g at 4 ° C., and 100 ⁇ L of the supernatant was collected.
  • Example 18 Measurement of blood concentration of compound 10 at the time of oral administration to mice at low volume Compound 10 was administered to ICR mice (male, 6 weeks old, 4-5 mice per group) at 10, 3, and 1 mg / kg. After oral administration, blood was collected 1 hour after oral administration, and the blood concentration was measured. The blood concentration was measured using a sample prepared by the following experimental method. Fasted 6-week-old male ICR mice were orally administered and one hour later, each mouse was euthanized under ether anesthesia and then blood was collected. The collected blood was centrifuged at 4400 g at 4 ° C., and 100 ⁇ L of the supernatant was collected.
  • the blood concentration could be measured even at a concentration around EC 50 .
  • Example 19 Inhibitory activity test for NF ⁇ B transcriptional activity under LPS stimulation NF ⁇ B / EAPorter RAW Cell Line purchased from Novus biologics was adjusted to 56 ⁇ 10 4 cells / mL and seeded in a 96-well transparent plate at 90 ⁇ L / well. (5 ⁇ 10 4 cells / well), 37 ° C., 5% CO 2 culture. On the next day, 10 ⁇ L / well of a test compound dilution adjustment solution and LPS (final concentration 1 ng / mL) were added, and the total amount was 100 ⁇ L / well, followed by incubation at 37 ° C. and 5% CO 2 .
  • test compound dilution adjustment solution 25 ⁇ L of the culture supernatant was dispensed onto a 96-well white plate, and SEAP activity was measured with a fluorescent plate reader.
  • the inhibitory activity on the NF ⁇ B transcriptional activity of the test compound was calculated by comparing the SEAP activity of the test compound / LPS added well against the SEAP activity of the LPS-added well to which no test compound was added.
  • Fig. 12 shows the results.
  • the hatched portion shows the relative SEAP activity with the SEAP activity when LPS is added and when no test compound is added as 100%.
  • the white area is the relative SEAP activity when LPS is not added and the test compound is not added, and the black area is the relative SEAP activity when LPS is added and the test compound is added at each concentration.
  • the addition of Compound 10 as a test compound suppressed SEAP activity and showed inhibitory activity against NF ⁇ B.
  • Example 20 Monitoring of RXR binding of compound 62 by fluorescence intensity measurement The fluorescence intensity of compound 62 was measured in the absence and presence of RXR protein.
  • a solution composed of 20 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid, 5 mM dithiothreitol, 10% glycerol was used as a buffer, and a 384-hole small volume black plate manufactured by Greiner was used.
  • the sample volume per well was 20 ⁇ L, the final concentration of Compound 62 was 10 ⁇ M, and RXR ⁇ -LBD was used at 100 nM.
  • the concentration of dimethyl sulfoxide used as a compound solubilizer was 1%.
  • the measurement was performed using Tecan Infinite 200F with an excitation wavelength of 360 nm, a fluorescence wavelength of 465 nm, excitation, and a fluorescence bandwidth of 35 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Obesity (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Emergency Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Endocrinology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)

Abstract

下記式(1)~(3)のいずれかで示され、蛍光性を有するレチノイドX受容体結合性分子を用いることで、RXRに対する結合性の評価試験が容易に行える。[式中、Rは、メチル、アルコキシ又はスチリルであり;Rは、ヒドロキシ、アルコキシ又はアルキルアミノであり;Aは、N又はCHであり;Bは、NH又はOであり;Rは、イソプロピル又はターシャリーブチルであり;Rは、イソプロピル又はイソブチルである。]

Description

蛍光性を有するレチノイドX受容体結合性分子及びその用途
 本発明は、蛍光性を有するレチノイドX受容体結合性分子に関する。また、当該結合性分子を用いたレチノイドX受容体に対する評価物質の結合能を評価する試験方法、当該結合性分子を含む評価物質の結合能と機能を評価するための試験キット、及び当該結合性分子を有効成分として含む医薬組成物に関する。
 レキシノイド(rexinoid)とはレチノイドX受容体(retinoid X receptor: RXR)に対し結合性を示す物質の総称である。すなわち、レキシノイドは、レチノイドX受容体結合性分子(ligand for retinoid X receptor)である。
 レキシノイドの1つであるベキサロテン(bexarotene)(targretin(登録商標))は、RXRの活性化物質(作動薬)であり、米国において皮膚浸潤性T細胞リンパ腫(CTCL)に臨床応用されている(特許文献1)。また、bexaroteneはがんのみならず、糖尿病(非特許文献1)やアルツハイマー病(特許文献2、非特許文献2)、パーキンソン病(非特許文献3)への有効性も報告されている。その理由は、RXRが糖・脂質代謝を制御している他の核内受容体と協働するためであり、さらにRXRと他の核内受容体とのヘテロ二量体の活性がレキシノイドにより制御されるためである。
 また、天然のレキシノイドとしては、DHAやEPAが知られる(非特許文献4)。これらは、記憶力の向上や、メタボリックシンドロームやがん悪液質の改善にも用いられ、それを含む食品は機能性食品としても応用されている。このように、RXRは非常に魅力的な創薬及び機能性食品のターゲットである。
 RXRを標的とするリガンドの探索は放射性同位体(RI)標識リガンドを用いた結合試験や培養細胞を用いた転写活性化試験であるレポータージーンアッセイによる転写活性化試験によって行われている(非特許文献5)。また、キットとして市販されているTR-FRET法も知られている。以下、これらの既存のレキシノイド探索方法について説明する。
(a)レポータージーンアッセイ
 レポータージーンアッセイは、RXRを過剰発現させた細胞を用いて、試験化合物の転写活性化能を評価するものである。レポータージーンアッセイは試験物質の転写活性化能を調べるための最適試験法であるが、結果を得るまでに長時間(3~4日)を要する。そのため、RXRに対する結合試験を一次スクリーニングとして行うことができれば、無駄なレポータージーンアッセイ試験を回避できる。
(b)RI標識化合物を用いた結合試験
 RXRに対する結合試験としては放射性同位体標識リガンドを用いた方法が知られる。この方法は、RI標識化合物と試験化合物のRXRに対する競合的な結合から試験化合物の結合能を評価するものであり、高感度である。しかし、この方法を実施するには特別な施設が必要である。また、試験化合物に結合したRI標識化合物と遊離したRI標識化合物とを分離する必要があり、試験操作も煩雑である。さらに、この方法に用いられるラジオアイソトープ(RI)試薬([3H]9-cisレチノイン酸)は非常に高価であり、使用にあたって特に日本においては法的な制約のもと煩雑な操作が必要とされる。
(c)TR-FRET法
 TR-FRET法は、テルビウム標識したRXRと蛍光標識したコアクチベーターとのFRET現象を測定することで試験化合物のRXR活性化能を評価する方法である。市販されているキットを用いたTR-FRET法によるレキシノイド探索法によれば、試験化合物のアゴニスト活性を示唆するデータを短時間で得ることができる。しかしながら、TR-FRET法に対応したプレートリーダーが必要であり、使用できるプレートリーダーには制限がある。
 RXRは非常に魅力的な創薬ターゲットである一方で副作用の問題を有している。例えば、唯一臨床応用されているレキシノイドであるベキサロテンでは、血中脂質の上昇や甲状腺機能低下症、易感染などの重篤な副作用が問題となっている。そのためベキサロテンの使用時には血中濃度のモニタリングが推奨されている。血中濃度のモニタリングをするに際しては通常、血中から薬物を抽出し、HPLCを用いて薬物の紫外線吸光度の強度を測定することで定量している。紫外線吸光を指標にしているため、感度が低い、生体由来の夾雑物の影響を受け得るなどの問題点がある。
 ベキサロテンのようなRXRアゴニストは、一般的に1,1,4,4-テトラメチルテトラリン構造からなる疎水性部位と安息香酸もしくはニコチン酸からなる酸性部位、そして疎水性部位と酸性部位を連結するリンカーから構成される。非特許文献6には、疎水性部位が蛍光性を示すカルボスチリル骨格であることによって蛍光性を有するRXRアゴニストが記載されている。そして、そのアゴニストの蛍光偏光度を観測することによって、当該アゴニストのRXRに対する結合能を測定できることが記載されている。しかしながら、非特許文献6記載のRXRアゴニストは、蛍光強度が低く、さらにRXRへの結合能も低いという問題を有していた。
 非特許文献7には、蛍光団を有するコファクター部分ペプチドとRXRを用いることによって、当該コファクター部分ペプチドのRXRに対する結合能をその蛍光偏光度の変化によって測定する方法が記載されている。そして、この方法によれば、被評価物質のRXRに対する作動性もしくは拮抗性を定性的に測定できることが記載されている。しかしながら、非特許文献7記載の方法では、蛍光団を有するコアクチベーターとコリプレッサーの2種類を用いなければ、被評価物質のRXRに対する作動性もしくは拮抗性は調べることができなかった。そのため、実験に用いられるRXR量が多くなる上に、作業時間も長くなるという問題があった。
WO93/21146A1 WO2013/056232A2
Nature (1997), 386(6623), 407-410 Science (2012), 335(6075), 1503-1506 ACS Chem Neurosci. (2013), 4(11), 1430-1438 Mol Cell Proteomics. (2004), 3(7), 692-703 J. Med. Chem. (1994), 37, 2930-2941 Bioorg. Med. Chem. Lett. (2010), 20, 5143-5146 J. Med. Chem. (2013), 56, 1865-1877
 本発明は、上記課題を解決するためになされたものであり、蛍光性を有するRXR結合性分子を提供するものである。また、そのような結合性分子を用いてRXRに対する評価物質の結合能を容易に評価する試験方法を提供するものである。さらに、そのような結合性分子を有効成分として含む、容易に血中濃度モニタリングを行える医薬組成物を提供するものである。
 上記課題は、下記式(1)~(3)のいずれかで示され、蛍光性を有するレチノイドX受容体結合性分子を提供することによって解決される。
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、メチル、アルコキシ又はスチリルであり;
 Rは、ヒドロキシ、アルコキシ又はアルキルアミノであり;
 Aは、N又はCHであり;
 Bは、NH又はOである。]
Figure JPOXMLDOC01-appb-C000007
[式中、R、R、A及びBは、式(1)と同じである。]
Figure JPOXMLDOC01-appb-C000008
[式中、R、R、A及びBは、式(1)と同じであり;
 Rは、イソプロピル又はターシャリーブチルであり;
 Rは、イソプロピル又はイソブチルである。]
 また上記課題は、下記式(4)又は(5)で示され、蛍光性を有するレチノイドX受容体結合性分子を提供することによっても解決される。
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、イソプロピル又はターシャリーブチルであり;
 Rは、イソプロピル又はイソブチルであり;
 Wは、NR、C=CH、C=NOH又はC(OCHであり;
 Rはアルキルであり;
 Xは、N又はCHであり;
 Yは、N又はCHであり;
 ZはCH=CH(トランス)、NHCO、CONH、CH=CH-CO又はCO-CH=CHであり;
 Fluorophoreは芳香環を含む蛍光団であり、該芳香環がZと結合する。]
Figure JPOXMLDOC01-appb-C000010
[式中、R、R、W、R、X及びYは、式(4)と同じであり;
 ZはCH=CH(トランス)、NHCO、CONH、CH=CH-CO又はCO-CH=CHであり;
 ZはCH=CH、NHCO、CONH、NHSO、SONH、CHNHCO又はCHNHSOであり;
 環Qは、ベンゼン環、ピリジン環、チオフェン環、ナフタレン環又はキノリン環であり;
 Fluorophoreは芳香環を含む蛍光団であり、該芳香環がZと結合する。]
 好適な実施態様は、上記式(1)~(5)のいずれかで示される結合性分子を用いて、レチノイドX受容体に対する評価物質の結合能を評価する試験方法である。このとき、前記評価物質が存在する水溶液中において、前記結合性分子がレチノイドX受容体に結合することによる該結合性分子の蛍光強度の減少量を測定することによって、レチノイドX受容体に対する評価物質の結合能を評価することが好ましい。
 他の好適な実施態様は、上記式(1)~(5)のいずれかで示される結合性分子及び蛍光団を有するコファクターペプチドを共に用いる、レチノイドX受容体に対する評価物質の結合能と機能を評価する試験方法である。
 上記課題は、蛍光性を有する核内受容体結合性分子及び蛍光団を有する核内受容体コファクターペプチドを共に用いる、当該核内受容体に対する評価物質の結合能と機能を評価する試験方法を提供することによっても解決される。このとき、前記結合性分子の励起及び蛍光波長と、前記コファクターペプチドの励起及び蛍光波長とが重ならないことが好ましい。また、前記評価物質が存在する水溶液中において、前記結合性分子が前記受容体に結合することによる該結合性分子の蛍光強度の減少量を測定することによって、前記受容体に対する評価物質の結合能を評価し、同時に、核内受容体コファクターペプチドの蛍光偏光度を測定することによって、前記受容体に対する評価物質の機能を評価することも好ましい。
 上記課題は、蛍光性を有する核内受容体結合性分子及び蛍光団を有する核内受容体コファクターペプチドを含む、核内受容体に対する評価物質の結合能と機能を評価するための試験キットを提供することによっても解決される。
 また上記課題は、上記式(1)~(5)のいずれかで示される結合性分子を有効成分として含む医薬組成物を提供することによっても解決される。
 本発明のレチノイドX受容体結合性分子を用いることで、RXRに対する結合性の評価試験が容易に行え、RXRを標的とする医薬候補や機能性食品の探索に貢献できる。また、蛍光を指標にして、薬剤の血中濃度モニタリングを容易に行うこともできる。
試験物質のRXR結合能を評価する方法の原理を説明する図である。 試験物質のRXR結合能とRXR活性化能を同時に評価する方法の原理を説明する図である。 本発明の結合性分子のRXRに対する転写活性化能を示す用量曲線である。 化合物10の各種溶媒中での蛍光強度を示すグラフである。 蛍光強度測定による化合物10のRXR結合のモニタリングに関するグラフである。 化合物10を用いた試験物質のRXR結合能の用量曲線である。 化合物44を用いた試験物質のRXR結合能の用量曲線である。 化合物44を用いた試験物質のRXR結合能に関するグラフである。 化合物10及び蛍光標識コアクチベーターを用いて、試験物質のRXR結合能とRXR活性化能を同時測定したグラフである。 化合物10のマウス経口投与時の血中濃度を示すグラフである。 化合物10の各投与量におけるマウス経口投与時の血中濃度を示すグラフである。 化合物10添加時のSEAP活性を示すグラフである。 RXR存在時の化合物62の蛍光強度を示すグラフである。
 本発明のレチノイドX受容体結合性分子は、上記式(1)~(5)のいずれかで示される。
 本発明において、上記式(1)~(5)で表される化合物は、さらに、薬学的に許容される塩であってもよい。また、上記式(1)~(5)で表される化合物又はその塩において、異性体(例えば光学異性体、幾何異性体及び互換異性体)などが存在する場合は、本発明はそれらの異性体を包含し、また溶媒和物、水和物及び種々の形状の結晶を包含するものである。
 本発明において、薬学的に許容される塩とは、薬理学的及び製剤学的に許容される一般的な塩が挙げられる。そのような塩として、具体的には以下が例示される。
 塩基性付加塩としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩;例えばカルシウム塩、マグネシウム塩等のアルカリ土類金属塩;例えばアンモニウム塩;例えばトリメチルアミン塩、トリエチルアミン塩;ジシクロヘキシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、ブロカイン塩等の脂肪族アミン塩;例えばN、N-ジベンジルエチレンジアミン等のアラルキルアミン塩;例えばピリジン塩、ピコリン塩、キノリン塩、イソキノリン塩等の複素環芳香族アミン塩;例えばテトラメチルアンモニウム塩、テトラエチルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;アルギニン塩;リジン塩等の塩基性アミノ酸塩等が挙げられる。
 酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;例えば酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;例えばメタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩;例えばアスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等を挙げることができる。
 本明細書において用いる用語は、単独で又は他の用語と一緒になって以下の意義を有する。
 「アルキル」は、炭素数1~20、好ましくは1~10個の直鎖状、分枝状又は環状のアルキル基を意味し、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル等が挙げられる。好ましくは、炭素数1~6個のアルキルであり、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ぺンチル、イソペンチル、ネオペンチル、tert-ペンチル、n-ヘキシル、イソヘキシルが挙げられる。炭素数1~6個の低級アルキルが特に好ましい。
 「アルケニル」は、上記「アルキル」に1個又はそれ以上の二重結合を有する炭素数2~20個、好ましくは2~8個の直鎖状又は分枝状のアルケニルを意味し、例えば、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1、3-ブタジエニル、3-メチル-2-ブテニル等が挙げられる。
 「アルキニル」は、上記アルキルに1個又はそれ以上の三重結合を有する炭素数2~20個、好ましくは2~10個のアルキニルを意味し、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル等が挙げられる。
 「アルコキシ」とは、炭素数1~20の直鎖状または分枝(鎖)状のアルコキシ基を意味し、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクタデカノキシ基、アリルオキシ基などが挙げられる。炭素数1~6個の直鎖状または分枝状の低級アルコキシが好ましい。
 「アシル」とは、アルカノイルおよびアロイルなどを意味する。該アルカノイルとしては、例えば、炭素数1~6個、好ましくは1~4個のアルキルを有するアルカノイル(ホルミル、アセチル、トリフルオロアセチル、プロピオニル、ブチリルなど)が挙げられる。アロイルとしては、例えば、炭素数7~15個のアロイル、具体的には、例えばベンゾイル、ナフトイルなどが挙げられる。
 上記式(4)及び(5)においてFluorophoreとして示される蛍光団の例としては、キノリン、キノリニウム、キサンテン、クマリン系色素、ダンシル、ピリジニウム、ベンゾフラザン系色素、フルオレセイン系色素(例えば、フルオレセイン,カルボキシナフトフルオレセイン、テトラクロロフルオレセイン、テトラブロモスルホンフルオレセイン等)、ローダミン系色素(例えば、ローダミン、カルボキシ-X-ローダミン、カルボキシローダミン、テトラエチルローダミン、テトラメチルローダミン、ローダミンレッド、ローダミングリーン等)のほか、シアニン系色素(例えば、Cy7、Cy5.5、Cy5、Cy3.5、Cy3その他のCy色素:GE Healthcare)、Alexa Fluor類(例えば、Alexa Fluor 790、Alexa Fluor 750、Alexa Fluor 700、Alexa Fluor 680、Alexa Fluor 647、Alexa Fluor 633、Alexa Fluor 594、Alexa Fluor 568、 Alexa Fluor 555、Alexa Fluor 546、Alexa Fluor 532、Alexa Fluor 488、Alexa Fluor 430、Alexa Fluor 405等:INVITROGEN)、VivoTag(例えば、VivoTag S750、VivoTag 680、VivoTag S680、:VisEn Medical)、Atto系色素(例えば、Atto 740、Atto 725、Atto 700、Atto 680、Atto 655、Atto 647、Atto 637、Atto 635、Atto 633、Atto 620、Atto 611X、Atto 610、Atto 594、Atto 590、Atto 565、Atto 550、Atto 532、Atto 520、Atto 495、Atto 488、Atto 465、Atto 425等:ATTO-TEC GmbH)、BODIPY系色素(例えば、BODIPY 493/503、BODIPY 558/568、BODIPY 576/589、BODIPY 581/591、BODIPY TMR-X、BODIPY TR-X、BODIPY-530/550、BODIPY-FL-X、CAL Fluor系色素(例えば、CAL Fluor-Gold 540、CAL Fluor Orange 560、CAL Fluor Red 590、CAL Fluor Red 610、CAL Fluor Red 635等)、カスケード(Cascade)ブルー、オレゴングリーン系色素(例えば,Oregon Green 488、Oregon Geen 500、Oregon Green 514等)ロードル(Rhodol)グリーン、テキサスレッド等が挙げられる。
 上記式(1)~(5)のいずれかで示されるRXR結合性分子を用いれば、RXRに対する評価物質の結合能を容易に評価することができる。具体的には、前記評価物質が存在する水溶液中において、前記結合性分子がRXRに結合することによる該結合性分子の蛍光強度の減少量を測定することによって、RXRに対する評価物質の結合能を評価することができる。これは、上記RXR結合性分子の蛍光強度が、水中で遊離している場合に大きく、RXRに結合して疎水性の環境にある場合に小さいことを利用したものである(図4参照)。
 図1に示されるように、本発明の蛍光性リガンドは、RXRと結合すると蛍光強度が小さくなるが、他のリガンドがRXRに結合すると蛍光性リガンドは遊離して蛍光強度が大きくなる。これによって、他のリガンドのRXRへの結合能力を測定することが可能である。
 また、上記式(1)~(5)のいずれかで示されるRXR結合性分子及び蛍光団を有するコファクターペプチドを共に用いる、レチノイドX受容体に対する評価物質の結合能と機能を評価する試験方法も好適に採用される。この方法によれば、評価物質のRXRへの結合能とRXRの活性化能を同時に評価することが可能である。
 より具体的には、前記評価物質が存在する水溶液中において、前記結合性分子がRXRに結合することによる該結合性分子の蛍光強度の減少量を測定することによって、RXRに対する評価物質の結合能を評価し、同時に、RXRコファクターペプチドの蛍光偏光度を測定することによって、RXRに対する評価物質の機能を評価することができる。蛍光偏光度の測定は、RXRコファクターペプチドがRXRに結合していれば蛍光偏光度が大きく、遊離していれば蛍光偏光度が小さいことを利用したものである。
 図2に、RXRに結合すると蛍光強度が減少する蛍光性レキシノイドと、蛍光性コファクターとを併用した場合の模式図を示す。図2に示されるように、蛍光性アゴニストが結合したRXRに蛍光標識コアクチベーターが結合している場合、蛍光アゴニストからの弱い蛍光が観察されるとともに、蛍光標識コアクチベーターからの高偏光度の蛍光が観察される。ここで、他のアゴニストがRXRに結合すると、蛍光アゴニストからの強い蛍光が観察されるようになるとともに、蛍光標識コアクチベーターからの高偏光度の蛍光が観察される。また、他のアンタゴニストがRXRに結合すると、蛍光アゴニストからの強い蛍光が観察されるようになるとともに、蛍光標識コアクチベーターからの低偏光度の蛍光が観察される。すなわち、蛍光標識コファクターとしてコアクチベーター(あるいはコリプレッサー)を使用するのみで、評価化合物がアゴニストであるかアンタゴニストであるかを判別することができる。
 このとき、蛍光性RXR結合性分子の励起及び蛍光波長と、前記コファクターペプチドの励起及び蛍光波長とが重ならないことが望ましい。これらの波長が重ならないことによって、精度よく測定することが可能である。また、上記試験方法に用いられるコファクターペプチドとしては、コアクチベーターペプチドとコレプレッサーペプチドのいずれを用いてもよい。また、コファクターペプチドとして、コファクター部分ペプチドを用いてもよい。
 蛍光性を有するRXR結合性分子及び蛍光団を有するRXRコファクターペプチドを含む、RXRに対する評価物質の結合能と機能を評価するための試験キットも有用である。
 一方、上記式(1)~(5)で表される化合物から選ばれる蛍光性レキシノイドの代わりに、対象としたい核内受容体に結合する蛍光性リガンドと蛍光団を有するコアクチベーターを組み合わせることで、RXR以外の核内受容体について、試験化合物の当該核内受容体への結合能と当該核内受容体の活性化能を同時に評価することが可能である。すなわち、前記評価物質が存在する水溶液中において、前記結合性分子が前記受容体に結合することによる該結合性分子の蛍光強度の減少量を測定することによって、前記受容体に対する評価物質の結合能を評価し、同時に、核内受容体コファクターペプチドの蛍光偏光度を測定することによって、前記受容体に対する評価物質の機能を評価することが可能である。
 対象としたい核内受容体に結合する蛍光性リガンドと蛍光団を有するコアクチベーターを組み合わせる結合試験法においては、蛍光性リガンドの励起ならびに蛍光波長と、蛍光団を有するコアクチベーターの励起ならびに蛍光波長が重ならないことが望ましい。また、蛍光性を有する核内受容体結合性分子及び蛍光団を有する核内受容体コファクターペプチドを含む、核内受容体に対する評価物質の結合能と機能を評価するための試験キットも好適な実施態様である。
 本発明の化合物を有効成分とする医薬を用いる場合には、投与量は特に限定されない。本発明の化合物を併用してレチノイドの作用を調節する場合、あるいは、レチノイドを含む医薬を併用せずに、生体内に既に存在するレチノイン酸の作用調節のために本発明の薬剤を投与する場合など、あらゆる投与方法において適宜の投与量が容易に選択できる。例えば、経口投与の場合には有効成分を成人一日あたり0.01~1000mg程度の範囲で用いることができる。レチノイドを有効成分として含む医薬と本発明の薬剤とを併用する場合には、レチノイドの投与期間中、及び/又はその前若しくは後の期間のいずれにおいても本発明の薬剤を投与することが可能である。
 本発明の化合物を薬剤として用いる場合は、上記式(1)~(5)で表される化合物から選ばれる1種又は2種以上をそのまま投与してもよいが、上記の化合物の1種又は2種以上を含む、経口用あるいは非経口用の医薬組成物として投与することが好ましい。経口用あるいは非経口用の医薬組成物は、当業者に利用可能な製剤用添加物、即ち薬理学的及び製剤学的に許容しうる担体を用いて製造することができる。例えば、炎症性呼吸器疾患に治療効果を示す医薬に上記式(1)~(5)で表される化合物の1種又は2種以上を配合して、いわゆる合剤の形態の医薬組成物として用いることもできる。具体的には、吸入ステロイド薬、吸入長期間作用性β2刺激薬、ロイコトリエン受容体拮抗剤、経口ステロイド薬等と併用して用いることも出来る。
 経口投与に適する医薬用組成物としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができ、非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、坐剤、吸入剤、点鼻剤、軟膏剤、クリーム剤、及び貼付剤等を挙げることができる。上記の医薬組成物の製造に用いられる薬理学的及び製剤学的に許容しうる担体としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を挙げることができる。
 以下、本発明の化合物の製造方法ならびに蛍光物性などを具体的に説明する。化合物の製造方法において用いられた出発原料及び試薬、並びに反応条件などを適宜修飾ないし改変することにより、本発明の範囲に包含される化合物はいずれも製造可能である。本発明の化合物の製造方法は、実施例に具体的に説明されたものに限定されるものではない。
[実施例1]目的化合物10の合成
 本実施例における目的化合物10の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000011
1)化合物2の合成
 2,4-ジヒドロキシベンズアルデヒド(3.3g、24mmol)を酢酸(24mL)に溶解し、臭素(1.2g、24mmol)を10分間かけて滴下した後、20時間室温撹拌した。その後、TLC(Thin Layer Chromatography)プレート(酢酸エチル:n-ヘキサン=1:3、2回展開)で反応の終了を確認した。水(35mL)を加え、析出した固体をろ取し、水で洗浄し、粗結晶(5.3g)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4→1:3)、さらに再結晶(酢酸エチル:n-ヘキサン)を行い、淡褐色針状結晶の2(1.5g、28%)を得た。
1H NMR (300 MHz, CDCl3) δ 11.25 (s, 1H), 9.70 (d, 1H, J = 0.5 Hz), 7.66 (s, 1H), 6.63 (s, 1H), 6.11 (s, 1H)
2)化合物3aの合成
 化合物2(220mg、1mmol)を無水N,N-ジメチルホルムアミド(3.0mL)に溶解し、ジイソプロピルエチルアミン(520μL、3.0mmol)、クロロメチルメチルエーテル(330μL、4.3mmol)をアルゴン雰囲気下、氷冷しながら加えた後、27時間室温撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、飽和塩化アンモニウム水(60mL)にあけ、酢酸エチル(40mL×3)で抽出した。有機層を水(60mL×2)、飽和食塩水(60mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(350mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)を行い、白色固体の3a(280mg、92%)を得た。
1H-NMR (300 MHz, CDCl3) δ 10.29 (s, 1H), 8.03 (s, 1H), 7.01 (s, 1H), 5.32 (s, 2H), 5.29 (s, 2H), 3.53 (s, 6H)
3)化合物3bの合成
 化合物2(220mg、1mmol)を無水N,N-ジメチルホルムアミド(2.0mL)に溶解し、炭酸カリウム(420mg、3.0mmol)、ベンジルブロミド(360μL、3.0mmol)を加え、アルゴン雰囲気下、60℃で20時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、水(100mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(460mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:10→1:3)を行い、白色固体の3b(390mg、99%)を得た。
1H-NMR (400 MHz, CDCl3) δ 10.31 (s, 1H), 8.05 (s,1H), 7.42-7.36 (m, 10H), 6.54 (s, 1H), 5.17 (s, 2H), 5.11 (s, 2H)
4)化合物6の合成
 2,5-ジメチル-2,5-ヘキサンジオール(2.0g、14mmol)を濃塩酸(20mL)に溶解し、室温で14時間撹拌した。固体をろ取し、水で洗浄した後、ジクロロメタン(150mL)に溶解し、水(50mL)で洗浄した。有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、白色固体の粗生成物(2.8g)を得た。得た粗生成物と2-ブロモトルエン(3.3mL、27mmol)を無水ジクロロメタン(30mL)に溶解し、塩化アルミニウム(III)(170mg)を三回に分けて加え、アルゴン雰囲気下、室温で20時間撹拌した。TLCプレート(n-ヘキサン)で反応の終了を確認し、反応液をn-ヘキサン(150mL)で薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(4.2g)を得た。再結晶(メタノール)を行い、白色固体の6(3.0g、78%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.42 (s, 1H), 7.14 (s, 1H), 2.34 (s, 3H), 1.65 (s, 4H), 1.25 (s, 12H)
5)化合物7aの合成
 化合物6(560mg、2.0mmol)を無水テトラヒドロフラン(6.0mL)に溶解し、-78℃で冷却しながらn-ブチルリチウム(1.55M n-ヘキサン溶液、1.6mL、2.4mmol)を滴下した。-78℃で20分間撹拌した後、無水テトラヒドロフラン(0.5mL)に溶解したホウ酸トリイソプロピル(1.4mL、6.0mmol)を滴下し、-78℃で2時間撹拌した。2規定塩酸(10mL)を加え、室温で1時間撹拌した後、酢酸エチル(150mL)に薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、白色固体の粗生成物(450mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)を行い、白色固体の7a(360mg、73%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.28 (s, 1H), 7.21 (s, 1H), 2.81 (s, 3H), 1.72 (s, 4H), 1.34 (s, 6H), 1.32 (s, 6H)
6)化合物7bの合成
 化合物6(1.6g、5.8mmol)、[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(140mg、0.17mmol)、酢酸カリウム(1.7g、17mmol)、ビスピナコラトジボロン(1.6g、6.3mmol)を無水ジメチルスルホキシド(20mL)に懸濁し、アルゴン雰囲気、マイクロウェーブ照射下、150℃で90分間撹拌した。TLCプレート(n-ヘキサン)で反応の終了を確認し、反応液をセライトろ過した。ろ液を酢酸エチルに薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色固体の粗生成物(2.3g)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=0:1→1:50)を行い、黄色固体の7b(1.2g、63%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.73 (s, 1H), 7.09 (s, 1H), 2.48 (s, 3H), 1.66 (s, 4H), 1.31 (s, 12H), 1.30 (s, 6H), 1.26 (s, 6H)
7)化合物8の合成
 化合物3a(150mg、0.50mmol)、7b(200mg、0.60mmol)をトルエン(2.0mL)、エタノール(1.0mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(30mg、0.026mmol)、2規定炭酸ナトリウム水(0.5mL)を加え、100℃で24時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(100mL)、水(100mL)、飽和食塩水(100mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(200mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:6)を行い、無色オイル状の8(180mg、86%)を得た。
1H-NMR (300 MHz, CDCl3) δ 10.40 (s, 1H), 7.69 (s, 1H), 7.14 (s, 1H), 7.04 (s, 1H), 5.33 (s, 2H), 5.16 (s, 2H), 3.56 (s, 3H), 3.39 (s, 3H), 2.10 (s, 3H), 1.69 (s, 4H), 1.31 (s, 6H), 1.25 (s, 6H)
8)化合物9の合成
 化合物8(18mg、0.041mmol)をジクロロメタン(2.0mL)に溶解し、トリフルオロ酢酸(200μL)を加え室温で1時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、溶媒留去し、褐色オイル状の粗生成物(16mg)を得た。得られた粗生成物を蒸留エタノール(1.0mL)に溶解し、ピペリジン(20μL、0.20mmol)、マロン酸ジエチル(22μL、0.14mmol)を加え、アルゴン雰囲気下、14時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、飽和塩化アンモニウム水(50mL)にあけ、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(15mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)を行い、褐色固体の9(7.0mg、39%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 7.39 (s, 1H), 7.27 (s, 1H), 7.12 (s, 1H), 6.98 (s, 1H), 5.75 (s, 1H), 4.41 (q, 2H, J = 7.0 Hz), 2.11 (s, 3H), 1.72 (s, 4H), 1.40 (t, 3H, J = 7.0 Hz), 1.33 (s, 6H), 1.27 (s, 6H)
9)目的化合物10の合成
 化合物9(22mg、0.051mmol)をメタノール(4.0mL)に溶解し、2規定水酸化ナトリウム(1.0mL)を加え、室温で7時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄し、得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(18mg)を得た。再結晶(メタノール)を行い、黄色針状結晶の10(15mg、74%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.70 (s, 1H), 7.63 (s, 1H), 7.18 (s, 1H), 7.03 (s, 1H), 6.85 (s, 1H), 2.05 (s, 3H), 1.65 (s, 4H), 1.27 (s, 6H), 1.22 (s, 6H)
[実施例2]目的化合物23a-cの合成
 本実施例における目的化合物23a-cの合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000012
 
1)化合物18の合成
 2,5-ジメチル-2,5-ヘキサンジオール(2.0g、14mmol)を濃塩酸(20mL)に溶解し、室温で14時間撹拌した。固体をろ取し、水で洗浄した後、ジクロロメタン(150mL)に溶解し、水(50mL)で洗浄した。有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、白色固体の粗生成物(2.4g)を得た。得た粗生成物と2-ブロモフェノール(2.1mL、20mmol)を無水ジクロロメタン(30mL)に溶解し、塩化アルミニウム(III)(170mg)を加え、アルゴン雰囲気下、室温で3時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:10)で反応の終了を確認し、反応液を酢酸エチル(150mL)で薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色固体の粗生成物(4.4g)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=0:1→1:10)、さらに再結晶(n-ヘキサン)を行い、褐色粉末状の18(2.4g、61%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.34 (s, 1H), 6.95 (s, 1H), 5.25 (s, 1H), 1.65 (s, 4H), 1.25 (s, 6H), 1.24 (s, 6H)
2)化合物19aの合成
 化合物18(200mg、0.71mmol)を無水N,N-ジメチルホルムアミド(1.5mL)に溶解し、水素化ナトリウム(オイル中で純度60%、44mg、1.1mmol)、ヨードメタン(68μL、1.1mmol)を加え、アルゴン雰囲気下、0℃で2時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:10)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(220mg)を得た。フラッシュクロマトグラフィー(n-ヘキサン)を行い、白色固体の19a(200mg、97%)を得た。
1H-NMR (400 MHz, CDCl3) δ 7.42 (s, 1H), 6.79 (s, 1H), 3.87 (s, 3H), 1.66 (m, 4H), 1.28 (s, 6H), 1.24 (s, 6H)
3)化合物19bの合成
 化合物18(400mg、1.4mmol)を無水N,N-ジメチルホルムアミド(3.0mL)に溶解し、水素化ナトリウム(オイル中で純度60%、70mg、1.7mmol)、1-ヨードプロパン(170μL、1.7mmol)を加え、アルゴン雰囲気下、0℃で2時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:20)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(420mg)を得た。フラッシュクロマトグラフィー(n-ヘキサン)を行い、無色オイル状の19b(390mg、84%)を得た。
1H-NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 6.78 (s, 1H), 3.96 (t, 2H, J = 6.5 Hz), 1.89-1.80 (m, 2H), 1.67-1.64 (m, 4H), 1.26 (s, 6H), 1.24 (s, 6H), 1.07 (t, 3H, J = 7.5 Hz)
4)化合物19cの合成
 化合物18(400mg、1.4mmol)を無水N,N-ジメチルホルムアミド(3.0mL)に溶解し、水素化ナトリウム(オイル中で純度60%、70mg、1.7mmol)、1-ブロモペンタン(210μL、1.7mmol)を加え、アルゴン雰囲気下、0℃で2時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:20)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(490mg)を得た。フラッシュクロマトグラフィー(n-ヘキサン)を行い、黄色オイル状の19c(430mg、88%)を得た。
1H-NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 6.78 (s, 1H), 3.98 (t, 2H, J = 6.5 Hz), 1.86-1.79 (m, 2H), 1.67-1.64 (m, 4H), 1.50-1.46 (m, 2H), 1.41-1.37 (m, 2H), 1.26 (s, 6H), 1.24 (s, 6H), 0.94 (t, 3H, J = 7.0 Hz)
5)化合物20aの合成
 化合物19a(170mg、0.58mmol)を無水テトラヒドロフラン(2.0mL)に溶解し、-78℃で冷却しながらn-ブチルリチウム(1.55M n-ヘキサン溶液、0.41mL、0.64mmol)を滴下した。-78℃で20分間撹拌した後、無水テトラヒドロフラン(0.5mL)に溶解したホウ酸トリイソプロピル(0.46mL、2.0mmol)を滴下し、-78℃で2時間撹拌した。2規定塩酸(5mL)を加え、室温で1時間撹拌した後、酢酸エチル(150mL)に薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、白色固体の粗生成物(110mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20→1:5)を行い、白色固体の20a(100mg、68%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.77 (s, 1H), 6.81 (s, 1H), 5.82 (br s, 2H), 3.90 (s, 3H), 1.73-1.64 (s, 4H), 1.30 (s, 6H), 1.29 (s, 6H)
6)化合物20bの合成
 化合物19b(390mg、1.2mmol)を無水テトラヒドロフラン(3.5mL)に溶解し、-78℃で冷却しながらn-ブチルリチウム(1.55M n-ヘキサン溶液、0.92mL、1.4mmol)を滴下した。-78℃で20分間撹拌した後、無水テトラヒドロフラン(0.5mL)に溶解したホウ酸トリイソプロピル(0.80mL、3.5mmol)を滴下し、-78℃で2時間撹拌した。2規定塩酸(5mL)を加え、室温で1時間撹拌した後、酢酸エチル(150mL)に薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、白色固体の粗生成物(310mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=0:1→1:10)を行い、白色固体の20b(280mg、80%)を得た。
1H-NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 6.79 (s, 1H), 5.85 (s, 2H), 4.03 (t, 2H, J = 6.5 Hz), 1.91-1.83 (m, 2H), 1.71-1.64 (m, 4H), 1.29-1.28 (m, 12H), 1.07 (t, 3H, J = 7.5 Hz)
7)化合物20cの合成
 化合物19c(430mg、1.3mmol)を無水テトラヒドロフラン(4.0mL)に溶解し、-78℃で冷却しながらn-ブチルリチウム(1.55M n-ヘキサン溶液、0.95mL、1.5mmol)を滴下した。-78℃で20分間撹拌した後、無水テトラヒドロフラン(0.5mL)に溶解したホウ酸トリイソプロピル(0.92mL、4.0mmol)を滴下し、-78℃で2時間撹拌した。2規定塩酸(5mL)を加え、室温で1時間撹拌した後、酢酸エチル(150mL)に薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(310mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=0:1→1:20)を行い、白色固体の20c(270mg、71%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.77 (s, 1H), 6.79 (s, 1H), 5.80 (br s, 2H), 4.05 (t, 2H, J = 6.5 Hz), 1.87-1.82 (m, 2H), 1.68 (s, 4H), 1.49-1.36 (m, 4H), 1.29 (m, 12H), 0.94 (t, 3H, J = 7.0 Hz)
8)化合物21bの合成
 化合物3a(89mg、0.29mmol)、20b(100mg、0.35mmol)をトルエン(1.0mL)、エタノール(0.5mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(17mg、0.010mmol)、2規定炭酸ナトリウム水(0.25mL)を加え、100℃で10時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(50mL)、水(50mL)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(83mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20→1:10)を行い、白色固体の21b(76mg、56%)を得た。
1H-NMR (400 MHz, CDCl3) δ 10.38 (s, 1H), 7.81 (s, 1H), 7.13 (s, 1H), 7.02 (s, 1H), 6.82 (s, 1H), 5.33 (s, 2H), 5.15 (s, 2H), 3.84 (t, 2H, J = 6.5 Hz), 3.56 (s, 3H), 3.42 (s, 3H), 1.72-1.67 (m, 4H), 1.65-1.62 (m, 2H), 1.32 (s, 6H), 1.25 (s, 6H), 0.86 (t, 3H, J = 7.5 Hz)
9)化合物21cの合成
 化合物3b(76mg、0.24mmol)、20c(80mg、0.20mmol)をトルエン(1.0mL)、エタノール(0.5mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(12mg、0.010mmol)、2規定炭酸ナトリウム水(0.25mL)を加え、100℃で19時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:6)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(50mL)、水(50mL)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(290mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=0:1→1:20)を行い、白色固体の21c(90mg、76%)を得た。
1H-NMR (400 MHz, CDCl3) δ 10.41 (s, 1H), 7.83 (s, 1H), 7.42-7.22 (m, 10H), 7.15 (s, 1H), 6.82 (s, 1H), 6.56 (s, 1H), 5.14 (s, 2H), 5.07 (s, 2H), 3.84 (t, 2H, J = 6.5 Hz), 1.72-1.64 (m, 4H), 1.61-1.57 (m, 2H), 1.32 (s, 6H), 1.22-1.20 (m, 10H), 0.81 (t, 3H, J = 7.0 Hz)
10)化合物22aの合成
 化合物3a(78mg、0.25mmol)、20a(80mg、0.30mmol)をトルエン(0.80mL)、エタノール(0.40mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(15mg、0.013mmol)、2規定炭酸ナトリウム水(0.20mL)を加え、100℃で24時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:4)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(50mL)、水(50mL)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(110mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)を行い、無色オイル状の粗生成物(82mg)を得た。得られた粗生成物をメタノール(2.0mL)に溶解し、濃塩酸(20μL)を加え室温で12時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:4)で反応の終了を確認し、溶媒留去し、粗生成物を得た。得られた粗生成物を蒸留エタノール(2.0mL)に溶解し、ピペリジン(20μL)、マロン酸ジエチル(110μL、0.75mmol)を加え、アルゴン雰囲気下、6時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、飽和塩化アンモニウム水(80mL)にあけ、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(48mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:3)を行い、黄色固体の22a(27mg、24%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.54 (s, 1H), 7.47 (s, 1H), 7.19 (s, 1H), 7.05 (s, 1H), 6.97 (s, 1H), 6.96 (s, 1H), 4.41 (q, 2H, J = 7.0 Hz), 3.89 (s, 3H), 1.73 (s, 4H), 1.41 (t, 3H, J = 7.0 Hz), 1.35 (s, 6H), 1.30 (s, 6H)
11)化合物22bの合成
 化合物21b(76mg、0.20mmol)をメタノール(4.0mL)に溶解し、濃塩酸(40μL)を加え室温で10時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:4)で反応の終了を確認し、溶媒留去し、桃色固体の粗生成物を得た。得られた粗生成物を蒸留エタノール(2.0mL)に溶解し、ピペリジン(20μL)、マロン酸ジエチル(92μL、0.60mmol)を加え、アルゴン雰囲気下、14時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、飽和塩化アンモニウム水(80mL)にあけ、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(52mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4)を行い、黄色固体の22b(42mg、54%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.55 (s, 1H), 7.48 (s, 1H), 7.20 (s, 1H), 6.97 (s, 1H), 6.96 (s, 1H), 4.41 (q, 2H, J = 7.0 Hz), 4.02 (t, 2H, J = 6.5 Hz), 1.79-1.72 (m, 4H), 1.41 (t, 3H, J = 7.0 Hz), 1.34 (s, 6H), 1.30 (s, 6H), 0.95 (t, 3H, J = 7.5 Hz)
12)化合物22cの合成
 化合物21c(90mg、0.15mmol)をメタノール(4.0mL)、酢酸エチル(2.0mL)に溶解し、10%活性化パラジウムカーボン(触媒量)を加え水素雰囲気下、室温で24時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:10)で反応の終了を確認し、反応液をセライトろ過した後、溶媒留去し、褐色オイル状の粗生成物(58.7mg)を得た。得られた粗生成物を蒸留エタノール(1.0mL)に溶解し、ピペリジン(20μL)、マロン酸ジエチル(65μL、0.42mmol)を加え、アルゴン雰囲気下、24時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、飽和塩化アンモニウム水(80mL)にあけ、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(50mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5)を行い、黄色固体の22c(27mg、35%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.55 (d, 1H, J = 0.5 Hz), 7.48 (s, 1H), 7.47 (s, 1H), 7.19 (s, 1H), 6.97 (d, 1H, J = 0.5 Hz), 6.95 (s, 1H), 4.41 (q, 2H, J = 7.0 Hz), 4.04 (t, 2H, J = 6.5 Hz), 1.74-1.71 (m, 6H), 1.41 (t, 3H, J = 7.0 Hz), 1.34-1.30 (m, 16H), 0.90-0.84 (m, 3H)
13)目的化合物23aの合成
 化合物22a(27mg、0.059mmol)をメタノール(4.0mL)に溶解し、2規定水酸化ナトリウム(2.0mL)を加え、室温で5時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(20mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2)を行い黄色固体の16a(13mg、53%)を得た。さらに再結晶(酢酸エチル:n-ヘキサン)を行い、黄色針状結晶の23a(8.0mg、32%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.90 (d, 1H, J = 0.5 Hz), 7.60 (s, 1H), 7.26 (s, 1H), 7.19 (s, 1H), 7.08 (d, 1H, J = 0.5 Hz), 6.98 (s, 1H), 3.90 (s, 3H), 1.76-1.70 (m, 4H), 1.36 (s, 6H), 1.30 (s, 6H)
14)目的化合物23bの合成
 化合物22b(42mg、0.088mmol)をメタノール(4.0mL)に溶解し、2規定水酸化ナトリウム(2.0mL)を加え、室温で10時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(25mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4)を行い黄色固体の23b(15mg、38%)を得た。さらに再結晶(酢酸エチル:n-ヘキサン)を行い、黄色粉末状結晶の23b(7.0mg、18%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.90 (s, 1H), 7.68 (s, 1H), 7.61 (s, 1H), 7.20 (s, 1H), 7.08 (s, 1H), 6.97 (s, 1H), 4.03 (t, 2H, J = 6.5 Hz),  1.80-1.69 (m, 6H), 1.34 (s, 6H), 1.30 (s, 6H), 0.94 (t, 3H, J = 7.5 Hz)
15)目的化合物23cの合成
 化合物22c(27mg、0.053mmol)をメタノール(4.0mL)に溶解し、2規定水酸化ナトリウム(2.0mL)を加え、室温で6時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、水(50mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(25mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2)を行い黄色固体の23c(20mg、77%)を得た。さらに再結晶(酢酸エチル:n-ヘキサン)を行い、黄色粉末状結晶の23c(17mg、66%)を得た。
1H-NMR (300 MHz, CDCl3) δ 12.23 (br s, 1H), 8.91 (d, 1H, J = 0.5 Hz), 7.71 (s, 1H), 7.61 (s, 1H), 7.20 (s, 1H), 7.08 (d, 1H, J = 0.5 Hz), 6.97 (s, 1H), 4.06 (t, 2H, J = 6.5 Hz), 1.74-1.70 (m, 6H), 1.33?1.27 (m, 16H), 0.86 (t, 3H, J = 7.0 Hz)
[実施例3]目的化合物30の合成
 本実施例における目的化合物30の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000013
1)化合物25の合成
 チモール(150mg、1.0mmol)をメタノール(4mL)に溶解し、硫酸銀(370mg、1.2mmol)、ヨウ素(300mg、1.2mmol)を加え、室温で6時間撹拌した。(酢酸エチル:n-ヘキサン=1:10)で反応の終了を確認し、反応液を飽和チオ硫酸ナトリウム水(30mL)にあけ、セライトろ過し、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(270mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:50→1:30)を行い黄色固体の25(230mg、85%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.53 (s, 1H), 6.67 (s, 1H), 4.68 (s, 3H), 3.10 (sep, 1H, J = 7.0 Hz), 2.33 (s, 3H), 1.22 (d, 6H, J = 7.0 Hz)
2)化合物26の合成
 化合物25(230mg、0.85mmol)を無水N,N-ジメチルホルムアミド(4.0mL)に溶解し、炭酸カリウム(150mg、1.1mmol)、2-ブロモプロパン(94μL、1.1mmol)、ヨウ化カリウム(14mg、0.085mmol)を加え、アルゴン雰囲気下、60℃で4時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:10)で反応の終了を確認し、水(80mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(210mg)を得た。フラッシュクロマトグラフィー(n-ヘキサン)を行い、無色オイル状の26(190mg、69%)を得た。
1H-NMR (300 MHz, CDCl3) δ 7.53 (s, 1H), 6.74 (s, 1H), 4.51 (sep, 1H, J = 6.0 Hz), 3.20 (sep, 1H, J = 7.0 Hz), 2.37 (s, 3H), 1.32 (d, 6H, J = 6.0 Hz), 1.16 (d, 6H, J = 7.0 Hz)
3)化合物27の合成
 化合物26(190mg、0.59mmol)を無水テトラヒドロフラン(1.8mL)に溶解し、-78℃で冷却しながらn-ブチルリチウム(1.55M n-ヘキサン溶液、0.45mL、0.70mmol)を滴下した。-78℃で20分間撹拌した後、無水テトラヒドロフラン(0.5mL)に溶解したホウ酸トリイソプロピル(0.41mL、1.8mmol)を滴下し、-78℃で2時間撹拌した。2規定塩酸(5mL)を加え、室温で1時間撹拌した後、酢酸エチル(150mL)に薄め、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(90mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:10→1:5)を行い、白色固体の27(79mg、57%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.15 (s, 1H), 6.73 (s, 1H), 4.68 (sep, 1H, J = 6.0 Hz), 3.32 (sep, 1H, J = 7.0 Hz), 2.82 (s, 3H), 1.38 (d, 6H, J = 6.0 Hz), 1.25 (d, 6H, J = 7.0 Hz)
4)化合物28の合成
 化合物3b(110mg、0.28mmol)、27(79mg、0.33mmol)をトルエン(1.2mL)、エタノール(0.6mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(16mg、0.014mmol)、2規定炭酸ナトリウム水(0.30mL)を加え、100℃で12時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(50mL)、水(50mL)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(150mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20→1:10)を行い、無色オイル状の28(1200mg、82%)を得た。
1H-NMR (400 MHz, CDCl3) δ 10.43 (s, 1H), 7.71 (s, 1H), 7.39-7.24 (m, 10H), 6.98 (s, 1H), 6.73 (s, 1H), 6.59 (s, 1H), 5.15 (s, 2H), 5.08 (s, 2H), 4.58 (sep, 1H, J = 6.0 Hz), 3.30 (sep, 1H, J = 7.0 Hz), 2.11 (s, 3H), 1.37 (d, 6H, J = 6.0 Hz), 1.20 (d, 6H, J = 7.0 Hz)
5)化合物29の合成
 化合物28(120mg、0.23mmol)を酢酸エチル(6.0mL)に溶解し、10%活性化パラジウムカーボン(触媒量)を加え水素雰囲気下、室温で4時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、反応液をセライトろ過した後、溶媒留去し、無色オイル状の粗生成物を得た。得られた粗生成物を蒸留エタノール(2.0mL)に溶解し、ピペリジン(20μL)、マロン酸ジエチル(100μL、0.68mmol)を加え、アルゴン雰囲気下、11時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、飽和塩化アンモニウム水(80mL)にあけ、酢酸エチル(40mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(61mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4→1:3)を行い、黄色固体の29(41mg、42%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.51 (s, 1H), 7.37 (s, 1H), 7.00 (s, 1H), 6.96 (s, 1H), 6.82 (s, 1H), 5.63 (s, 1H), 4.63 (sep, 1H, J = 6.0 Hz), 4.41 (q, 2H, J = 7.0 Hz), 3.30 (sep, 1H, J = 7.0 Hz), 2.11 (s, 3H), 1.43-1.38 (m, 9H), 1.20 (d, 6H, J = 7.0 Hz)
6)目的化合物30の合成
 化合物29(41mg、0.096mmol)をメタノール(4.0mL)に溶解し、2規定水酸化ナトリウム(2.0mL)を加え、室温で3時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、水(60mL)にあけ、2規定塩酸で酸性にし、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(47mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:1)を行い黄色固体の23(37mg、97%)を得た。さらに再結晶(酢酸エチル:n-ヘキサン)を行い、黄色粉末状結晶の30(28mg、74%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.86 (d, 1H, J = 0.5 Hz), 7.50 (s, 1H), 7.07 (d, 1H, J = 0.5 Hz), 6.99 (s, 1H), 6.83 (s, 1H), 5.86 (s, 1H), 4.63 (sep, 1H, J = 6.0 Hz), 3.31 (sep, 1H, J = 7.0 Hz), 2.10 (s, 3H), 1.40 (d, 6H, J = 6.0 Hz), 1.20 (d, 6H, J = 7.0 Hz)
[実施例4]目的化合物36の合成
 本実施例における目的化合物36の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000014
1)化合物32の合成
 イソバニリン(300mg、2.0mmol)を酢酸エチル(5.0mL)に溶解し、濃硝酸(380μL、5.0mmol)を加え、室温で2時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、酢酸エチル(100mL)で薄め、飽和重曹水(50mL)、水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(370mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:2→2:3)を行い黄色固体の32(100mg、26%)を得た。
1H-NMR (300 MHz, CDCl3) δ 10.42 (s, 1H), 7.66 (s, 1H), 7.47 (s, 1H), 6.20 (s, 1H), 4.08 (s, 3H)
2)化合物33の合成
 化合物32(42mg、0.21mmol)を無水ジクロロメタン(1.0mL)に溶解し、トリフルオロメタンスルホン酸無水物(39μL、0.23mmol)、無水ピリジン(100μL)を加え、室温で13時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、2規定塩酸(20mL)にあけ、酢酸エチル(20mL×3)で抽出した。有機層を水(30mL×2)、飽和食塩水(30mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(59mg)を得た。シリカろ過を行い黄色固体の33(58mg、82%)を得た。
1H-NMR (300 MHz, CDCl3) δ 10.33 (s, 1H), 7.89 (s, 1H), 7.74 (s, 1H), 4.13 (s, 1H)
3)化合物34の合成
 化合物33(150mg、0.45mmol)、7b(180mg、0.54mmol)をトルエン(2.0mL)、エタノール(1.0mL)に溶解し、テトラキス(トリフェニルホスフィン)パラジウム(0)(26mg、0.022mmol)、2規定炭酸ナトリウム水(0.45mL)を加え、100℃で3時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:4)で反応の終了を確認し、酢酸エチル(150mL)に薄め、飽和塩化アンモニウム水(100mL)、水(100mL)、飽和食塩水(100mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(150mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:25)を行い、黄色固体の34(140mg、80%)を得た。
1H-NMR (300 MHz, CDCl3) δ 10.40 (s, 1H), 7.84 (s, 1H), 7.61 (s, 1H), 7.18 (s, 1H), 7.04 (s, 2H), 3.95 (s, 3H), 2.07 (s, 3H), 1.70 (s, 4H), 1.32 (s, 6H), 1.27 (s, 6H)
4)化合物35の合成
 化合物34(30mg、0.079mmol)をメタノール(6.0mL)に溶解し、10%活性化パラジウムカーボン(触媒量)を加え水素雰囲気下、室温で30分間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:4)で反応の終了を確認し、反応液をセライトろ過した後、溶媒留去し、黄色オイル状の粗生成物を得た。得られた粗生成物を蒸留エタノール(1.0mL)に溶解し、ピペリジン(20μL)、マロン酸ジエチル(120μL、0.79mmol)を加え、アルゴン雰囲気下、30時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=2:1)で反応の終了を確認し、水(60mL)にあけ、酢酸エチル(30mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(100mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=3:1→5:1→1:0)を行い、黄色オイル状の35(12mg、34%)を得た。
1H-NMR (300 MHz, CDCl3) δ 12.24 (br s, 1H), 8.56 (s, 1H), 7.44 (s, 1H), 7.17 (s, 1H), 7.10 (s, 1H), 6.97 (s, 1H), 4.42 (q, 2H, J = 7.0 Hz), 3.94 (s, 3H), 2.08 (s, 3H), 1.71 (s, 4H), 1.42 (t, 3H, J = 7.0 Hz), 1.33 (s, 6H), 1.28 (s, 6H)
5)目的化合物36の合成
 化合物35(12mg、0.027mmol)を無水ジクロロメタン(1.0mL)に溶解し、三臭化ホウ素(1.0M ジクロロメタン溶液、14滴)を0℃で加え、室温で22時間撹拌した。水(30mL)にあけ、酢酸エチル(20mL×3)で抽出した。有機層を水(30mL×2)、飽和食塩水(30mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色固体の粗生成物(21mg)を得た。再結晶(酢酸エチル:n-ヘキサン)を行い、淡褐色粉末状結晶の36(5.1mg、45%)を得た。
1H-NMR (300 MHz, CDCl3) δ 12.14 (br s, 1H), 8.94 (s, 1H), 7.60 (s, 1H), 7.19 (s, 1H), 7.09 (s, 1H), 6.98 (s, 1H), 3.96 (s, 3H), 2.08 (s, 3H), 1.72 (s, 4H), 1.33 (s, 6H), 1.28 (s, 6H)
[実施例5]目的化合物40の合成
 本実施例における目的化合物40の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000015
1)化合物38の合成
 化合物37(110mg、0.23mmol)、トリブチルビニルスズ(130μL、0.46mmol)、トリスベンジリデンアセトンジパラジウム(11mg、0.012mmol)、トリフェニルホスフィン(13mg、0.048mmol)に無水トルエン(2.0mL)を加え、アルゴン雰囲気下で18時間加熱還流した。HPLC(水:メタノール=10:90、0.1%ギ酸添加)で反応の終了を確認した。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20)を行い褐色オイル状の38(84mg、93%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.86 (dd, 1H, J = 2.5, 0.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.5 Hz), 7.53 (s, 1H), 6.57-6.50 (m, 2H), 5.99 (d, 1H, J = 9.0 Hz), 5.63 (dd, 1H, J = 17.5, 1.0 Hz), 5.10 (dd, 1H, J = 11.0, 1.0 Hz), 4.20-4.15 (m, 1H), 3.85 (s, 3H), 3.83-3.76 (m, 1H), 3.67 (d, 2H, J = 6.5 Hz), 3.35 (sep, 1H, J = 7.0 Hz), 2.11 (sep, 1H, J = 6.5 Hz), 1.29 (t, 6H, J = 6.5 Hz), 1.24 (t, 3H, J = 7.0 Hz), 1.05 (d, 6H, J = 6.5 Hz)
2)化合物39の合成
 化合物38(50mg、0.13mmol)、6-ブロモキノリン(35μL、0.26mmol)、ジクロロビストリフェニルホスフィンパラジウム(2.7mg、0.0038mmol)、炭酸カリウム(54mg、0.39mmol)に無水N、N-ジメチルホルムアミド(1.0mL)を加え、アルゴン雰囲気下で48時間100℃撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、水(50mL)にあけ、酢酸エチル(20mL×3)で抽出した。有機層を水(30mL×2)、飽和食塩水(30mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(71mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4)を行い褐色オイル状の39(43mg、65%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.92 (dd, 1H, J = 2.5, 0.5 Hz), 8.83 (dd, 1H, J = 4.5, 2.0 Hz), 8.09 (dd, 1H, J = 8.5, 1.0 Hz), 8.00 (d, 1H, J = 9.0 Hz), 7.82 (dd, 1H, J = 9.0, 2.5 Hz), 7.77 (dd, 1H, J = 9.0, 2.0 Hz), 7.71 (d, 1H, J = 16.5 Hz), 7.08 (d, 1H, J = 16.5 Hz), 6.60 (s, 1H), 6.10 (d, 1H, J = 9.0 Hz), 4.30-4.21 (m, 1H), 3.88-3.82 (m, 4H), 3.70 (d, 2H, J = 6.5 Hz), 3.40 (sep, 1H, J = 7.0 Hz), 2.14 (sep, 1H J = 6.5 Hz), 1.35 (d, 6H, J = 5.0 Hz), 1.29 (t, 3H, J = 7.0 Hz), 1.07 (d, 6H, J = 6.5 Hz)
3)化合物40の合成
 化合物39(50mg、0.095mmol)をメタノール(2.0mL)、テトラヒドロフラン(1.0mL)に溶解し、水(1.0mL)に溶解した水酸化リチウム水和物(80mg、1.9mmol)を加え、室温で46時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、飽和塩化アンモニウム水(40mL)にあけ、酢酸エチル(20mL×3)で抽出した。有機層を水(30mL×2)、飽和食塩水(30mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の40(46mg)を得た。
1H-NMR (300 MHz, CDCl3) δ 9.03 (dd, 1H, J = 2.5, 0.5 Hz), 8.86 (dd, 1H, J = 4.5, 1.5 Hz), 8.13 (dd, 1H, J = 8.5, 1.0 Hz), 8.08 (d, 1H, J = 9.0 Hz), 7.89 (dd, 1H, J = 9.0, 2.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.0 Hz), 7.72 (d, 1H, J = 2.0 Hz), 7.70 (s, 1H), 7.39 (dd, 1H, J = 8.5, 4.5 Hz), 7.18 (d, 1H, J = 16.5 Hz), 7.08 (d, 1H, J = 16.5 Hz), 6.62 (s, 1H), 6.12 (d, 1H, J = 9.0 Hz), 4.27-4.25 (m, 1H), 3.93-3.89 (m, 1H), 3.72 (d, 2H, J = 6.5 Hz), 3.41 (sep, 1H, J = 7.0 Hz), 2.14 (sep, 1H J = 6.5 Hz), 1.36 (d, 6H, J = 6.5 Hz), 1.30 (t, 3H, J = 7.0 Hz), 1.07 (d, 6H, J = 6.5 Hz)
[実施例6]目的化合物44の合成
 本実施例における目的化合物44の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000016
1)化合物42の合成
 ダンシルクロリド(100mg、0.37mmol)を無水ジクロロメタン(1.0mL)に懸濁し、ジイソプロピルエチルアミン(70μL、0.40mmol)、4-アミノスチレン(40μL、0.34mmol)を加え、アルゴン雰囲気下、室温で24時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、飽和塩化アンモニウム水(80mL)にあけ、酢酸エチル(30mL×3)で抽出した。有機層を水(40mL×2)、飽和食塩水(40mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(150mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:10→1:4)を行い黄色固体の42(100mg、83%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.49 (dt, 1H, J = 8.5, 1.0 Hz), 8.32 (d, 1H, J = 8.5 Hz), 8.16 (dd, 1H, J = 7.5, 1.5 Hz), 7.59 (dd, 1H, J = 8.5, 7.5 Hz), 7.43 (dd, 1H, J = 8.5, 7.5 Hz), 7.19-7.17 (m, 3H), 6.88 (d, 2H, J = 6.67 (s, 1H), 6.67 (s, 1H), 6.55 (dd, 1H, J = 17.5, 11.0 Hz), 5.59 (dd, 1H, J = 17.5, 1.0 Hz), 5.15 (dd, 1H, J = 11.0, 1.0 Hz), 2.88 (s, 6H)
2)化合物43の合成
 化合物42(44mg、0.12mmol)、37(60mg、0.12mmol)、酢酸パラジウム(2.0mg、0.0089mmol)、トリトリルホスフィン(6.0mg、0.020mmol)、トリエチルアミン(84μL、0.61mmol)に無水アセトニトリル(1.0mL)を加え、アルゴン雰囲気下、27時間加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:10→1:5)を行い黄色オイル状の43(16mg、18%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.86 (s, 1H), 8.47 (d, 1H, J = 8.5 Hz), 8.35-8.32 (m, 1H), 8.17 (dd, 1H, J = 7.5, 1.0 Hz), 7.77 (dd, 1H, J = 9.0, 1.5 Hz), 7.54-7.51 (m, 2H), 7.41 (dd, 1H, J = 8.5, 7.5 Hz), 7.15 (d, 2H, J = 7.5 Hz), 7.10 (d, 2H, J = 8.5 Hz), 6.87-6.82 (m, 3H), 6.74 (d, 1H, J = 16.3 Hz), 6.53 (s, 1H), 6.01 (d, 1H, J = 9.0 Hz), 4.20-4.13 (m, 1H), 3.85 (s, 3H), 3.80-3.72 (m, 1H), 3.66 (d, 2H, J = 6.0 Hz), 3.35 (sep, 1H, J = 7.0 Hz), 2.85 (s, 6H), 2.11 (sep, 1H, J = 6.5 Hz), 1.31-1.26 (m, 6H), 1.21 (t, 3H, J = 7.0 Hz), 1.04 (d, 6H, J = 6.5 Hz)
3)目的化合物44の合成
 化合物43(16mg、0.022mmol)をメタノール(5.0mL)に溶解し、2規定水酸化ナトリウム水(0.5mL)を加え、65℃で1時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、フラッシュクロマトグラフィー(メタノール:ジクロロメタン=1:40)を行い黄色固体の44(6mg、39%)を得た。
1H-NMR (400 MHz, CDCl3) δ 8.92 (d, 1H, J = 2.25 Hz), 8.47 (dd, 1H, J = 8.5, 1.0 Hz), 8.31 (d, 1H, J 8.5 Hz), 8.15 (dd, 1H, J = 7.5, 1.5 Hz), 7.79 (dd, 1H, J = 9.0, 2.25 Hz), 7.56-7.54 (m, 2H), 7.41 (dd, 1H, J = 8.5, 7.5 Hz), 7.16 (d, 1H, J = 7.5 Hz), 7.10 (d, 2H, J = 8.5 Hz), 6.99 (s, 1H), 6.85-6.82 (m, 3H), 6.73 (d, 1H, J = 16.5 Hz), 6.54 (s, 1H), 6.02 (d, 1H, J = 9.0 Hz), 4.22-4.15 (m, 1H), 3.81-3.77 (m, 1H), 3.67 (d, 2H, J = 6.5 Hz), 3.35 (sep, 1H, J = 7.0 Hz), 2.85 (s, 6H), 2.11 (sep, 1H, J = 6.5 Hz), 1.29-1.23 (m, 9H), 1.05 (d, 6H, J = 7.0 Hz)
[実施例7]目的化合物48の合成
 本実施例における目的化合物48の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000017
 
1)化合物46の合成
 化合物45(340mg、1.0mmol)を無水酢酸(5.0mL)、テトラヒドロフラン(5.0mL)に溶解し、氷冷下、無水酢酸(0.6mL)に溶解した濃硝酸(210μL、3.0mmol)を滴下し、室温で22時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、5規定水酸化ナトリウム水により塩基性にし、室温で30分間撹拌した。反応液を氷水(150mL)にあけ、2規定塩酸で中和し、酢酸エチル(100mL×3)で抽出した。有機層を水(150mL×2)、飽和食塩水(150mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(390mg)を得た。得られた粗生成物を無水N,N-ジメチルホルムアミド(5.0mL)に溶解し、氷冷下、トリエチルアミン(210μL、1.5mmol)、クロロメチルメチルエーテル(110μL、1.5mmol)を加え、アルゴン雰囲気下、0℃で1時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、氷水(100mL)にあけ、酢酸エチル(50mL×3)で抽出した。有機層を水(100mL×2)、飽和食塩水(100mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(500mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:8)を行い淡黄色オイル状の46(400mg、93%)を得た。
1H-NMR (300 MHz, CDCl3) δ 8.87 (d, 1H, J = 2.0 Hz), 8.03 (s, 1H), 7.95 (dd, 1H, J = 9.0, 2.5 Hz), 6.67 (s, 1H), 6.22 (d, 1H, J = 9.0 Hz), 5.44 (s, 2H), 4.61 (sep, 1H, J = 6.0 Hz), 4.34-4.22 (m, 1H), 3.86-3.59 (m, 1H), 3.52 (s, 3H), 3.33 (sep, 1H, J = 7.0 Hz), 1.39 (d, 6H, J = 6.0 Hz), 1.28-1.26 (m, 9H)
2)化合物47の合成
 化合物46(400mg、0.92mmol)を酢酸エチル(15mL)に溶解し、10%活性化パラジウムカーボン(触媒量)を加え、水素雰囲気下、室温で20時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、反応液をセライトろ過した後、溶媒留去し、褐色オイル状の粗生成物(340mg)を得た。得られた粗生成物(26mg、0.06mmol)、7-(ジエチルアミノ)クマリン-3-カルボン酸(16mg、0.06mmol)を無水ジクロロメタン(0.5mL)、ジイソプロピルエチルアミン(20μL、0.11mmol)に溶解し、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(17mg、0.09mmol)、1-ヒドロキシベンゾトリアゾール水和物(14mg、0.09mmol)を加え、アルゴン雰囲気下、室温で20時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:2)で反応の終了を確認し、水(30mL)にあけ、酢酸エチル(15mL×3)で抽出した。有機層を水(20mL×2)、飽和食塩水(20mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(49mg)を得た。フラッシュクロマトグラフィー(酢酸エチル:n-ヘキサン=1:4→1:2)を行い黄色固体の47(42mg、93%)を得た。
1H-NMR (400 MHz, CDCl3) δ 10.93 (s, 6H), 8.96 (dd, 1H, J = 2.5, 0.5 Hz), 8.71 (s, 1H), 8.55 (s, 1H), 7.86 (dd, 1H, J = 9.0, 2.5 Hz), 7.40 (d, 1H, J = 9.0 Hz), 6.65 (s, 1H), 6.63 (dd, 1H, J = 9.0, 2.35 Hz), 6.43 (d, 1H, J = 2.35 Hz), 6.16 (d, 1H, J = 9.0 Hz), 5.42 (s, 2H), 4.45 (sep, 1H, J = 6.0 Hz), 4.35-4.29 (m, 1H), 3.89-3.83 (m, 1H), 3.51 (s, 3H), 3.43 (q, 4H, J = 7.0 Hz), 3.36 (sep, 1H, J = 7.0 Hz), 1.34-1.27 (m, 15H), 1.22 (t, 6H, J = 7.0 Hz)
3)目的化合物48の合成
 化合物47(41mg、0.064mmol)を酢酸エチル(2mL)に溶解し、4規定塩酸酢酸エチル(2mL)を氷冷下加え、0℃で50分間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、溶媒留去し、再結晶(ジクロロメタン:n-ヘキサン)を行い、黄色針状結晶の48(32mg、84%)を得た。
1H-NMR (300 MHz, CD3OD) δ 10.96 (s, 1H), 8.67 (s, 1H), 8.48 (s, 1H), 8.40-8.38 (m, 2H), 7.57 (d, 1H, J = 9.0 Hz), 7.06-7.03 (m, 2H), 6.85 (dd, 1H, J = 9.0, 2.3 Hz), 6.56 (d, 1H, J = 2.3 Hz), 4.63 (sep, 1H, J = 6.0 Hz), 4.19-4.09 (m, 1H), 4.02-3.93 (m, 1H), 3.53 (q, 4H, J = 7.0 Hz), 3.41 (sep, 1H, J = 7.0 Hz), 1.38-1.34 (m, 9H), 1.30 (d, 6H, J = 7.0 Hz), 1.23 (t, 6H, J = 7.0 Hz)
[実施例8]目的化合物62の合成
 本実施例における目的化合物62の合成スキームを以下の式に示す。
Figure JPOXMLDOC01-appb-C000018
1)化合物57の合成
1,3-ベンゼンジオール(1.1g、10mmol)を無水DMF(10mL)に溶解し、N,N-ジイソプロピルエチルアミン(5.2mL,30mmol),クロロメチルメチルエーテル(2.3mL,30mmol)を加えて室温で168時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、飽和塩化アンモニウム水溶液(100mL)にあけ、酢酸エチル(50mL×3)で抽出した。有機層を水(80mL×2)、飽和食塩水(80mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色オイル状の粗生成物(3.14g)を得た。フラッシュカラムクロマトグラフィー(n-ヘキサン)を行い、無色オイル状の57(1.28g,65%)を得た。
1H-NMR(400 MHz, CDCl3) 7.19 (t, 1H, J = 8.2 Hz), 6.74 (d, 1H, J = 2.2 Hz), 6.70 (dd, 2H, J = 8.2, 2.2 Hz), 5.16 (s, 4H), 3.48 (s, 6H)
2)化合物58の合成
 化合物57(297mg、1.5mmol)をジエチルエーテル1.5 mLに溶解し、0℃で1.6Mのn-ブチルリチウム/ヘキサン溶液(1.125mL、1.8mmol)を加えて室温で3時間撹拌した。その後、0℃でホウ酸トリメチル(250μL、2.25mmol)を加えて室温で1時間撹拌した。その後、0℃で2N塩酸水溶液を加えて酸性化し、室温で1時間撹拌した。析出した結晶を水を用いて吸引ろ過し、淡黄色結晶58(177mg、49%)を得た。
1H-NMR(300 MHz, CDCl3) 7.36 (t, 1H, J = 8.3 Hz), 7.23 (s, 2H), 6.88 (d, 2H, J = 8.3 Hz), 5.30 (s, 4H), 3.51 (s, 6H)
3)化合物59の合成
 化合物6(113mg、0.4mmol)、化合物58(145mg、0.6mmol)、テトラキストリフェニルホスフィンパラジウム(69mg、0.06mmol)、リン酸カリウム(255mg、1.2mmol)にジメトキシエタン(4mL)、水(1.3mL)を加え、30分加熱還流した。TLCプレート(酢酸エチル:n-ヘキサン=1:3)で反応の終了を確認し、水(30mL)にあけ、酢酸エチル(30mL×3)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、褐色の粗生成物(263mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:30)を行い、白色固体59(124mg,78%)を得た。
1H-NMR(400 MHz, CDCl3) 7.24 (t, 1H, J = 8.4 Hz), 7.13 (s, 1H), 7.05 (s, 1H), 6.89 (d, 2H, J = 8.4 Hz), 5.04 (d, 2H, J = 6.6 Hz), 4.96 (d, 2H, J = 6.6 Hz), 3.27 (s, 6H), 2.07 (s, 3H), 1.68 (s, 4H), 1.55 (s, 3H), 1.30 (s, 6H), 1.23 (s, 6H)
4)化合物60の合成
 化合物59(108mg,0.27mmol)を酢酸エチル(2mL)に溶解し、4N塩酸/酢酸エチル溶液(2mL)を加えて室温で3時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、水(30mL)にあけ、酢酸エチル(30mL)を加え、水(30mL)、飽和食塩水(30mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色固体の粗生成物(88mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:8)を行い、淡黄色固体60(46mg,54%)を得た。
1H-NMR(300 MHz, CDCl3) 7.31 (s, 1H), 7.17 (t, 1H, J = 8.1 Hz), 6.60 (d, 2H, J = 8.1 Hz), 4.67 (s, 2H), 2.10 (s, 3H), 1.71 (s, 4H), 1.33 (s, 6H), 1.25 (s, 6H)
5)化合物61の合成
 N,N-ジメチルホルムアミド(350μL)に0℃で塩化ホスホリル(100μL)を加えて1.5時間撹拌した。そこへ、N,N-ジメチルホルムアミド(1.5mL)に溶解した化合物60(40mg,0.13mmol)を滴下し、室温で48時間撹拌した。TLCプレート(酢酸エチル:n-ヘキサン=1:5)で反応の終了を確認し、氷水(30mL)にあけ、飽和炭酸水素ナトリウム水溶液でpHを2-3に調整し、酢酸エチル(50mL×2)で抽出した。有機層を水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、黄色オイル状の粗生成物(60mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:8)を行い淡黄色固体の61(17mg,39%)を得た。
1H-NMR(300 MHz, CDCl3) 11.71 (s,1H), 9.76 (s, 1H), 7.48 (d, 1H, J = 8.5 Hz), 7.29 (s, 1H), 7.11 (s, 1H), 6.69 (d, 1H, J = 8.5 Hz), 5.61 (s, 1H), 2.11 (s, 3H), 1.70 (s, 4H), 1.32 (d, 6H, J = 5.3 Hz), 1.26 (d, 6H, J = 5.3 Hz)
6)目的化合物62の合成
 化合物61(17mg,0.05mmol)、2,2-ジメチル-1,3-ジオキサン-4,6-ジオン(7.2mg,0.05mmol)、ピペリジン(50μL)、エタノール(1mL)を混合し、30分加熱還流した。TL11Cプレート(酢酸エチル:n-ヘキサン=1:1)で反応の終了を確認し、水(30mL)にあけ、酢酸エチル(50mL×2)で洗浄し、水層を2N塩酸水溶液で酸性化して、酢酸エチル(50mL×2)で抽出した。水(50mL×2)、飽和食塩水(50mL)で洗浄した。得た有機層を硫酸マグネシウムで乾燥した後、減圧下にて溶媒留去し、淡黄色固体の粗生成物(29mg)を得た。フラッシュカラムクロマトグラフィー(酢酸エチル:n-ヘキサン1:3→1:0)を行い黄色固体の62(14mg,69%)を得た。
1H-NMR(400 MHz, CDCl3) 8.92 (s, 1H), 7.69 (d, 1H, J = 8.6 Hz), 7.32 (s, 1H), 7.16 (d, 1H, J = 8.6 Hz), 7.10 (s, 1H), 5.92 (s, 1H), 2.06 (s, 3H), 1.72 (d, 4H, J = 8.6 Hz), 1.35 (d, 6H, J = 16.4 Hz), 1.26 (d, 6H, 16.4 Hz)
[実施例9]RXRアゴニスト活性及びRXRアンタゴニスト活性の評価
 合成した各化合物について、ルシフェラーゼレポータージーンアッセイにより、RXRに対する転写活性化能を評価した。
1)測定原理
 核内受容体の多くは転写調節に関わる転写因子であるため、その転写活性を測定する手段としてレポーター遺伝子アッセイ(reporter gene assay)が行われる。COS-1細胞やHeLa細胞などの細胞に、RXR受容体タンパク質発現プラスミド及びレポータープラスミドを導入する。そこに、RXR作動性物質(リガンド)が受容体に結合すると、転写がリガンド依存的に起こり、下流にあるルシフェラーゼの産生が始まる。このルシフェラーゼ活性を測ることにより、RXRアゴニスト活性を測定した。また、RXRアンタゴニスト活性は、既存のRXRアゴニストに対する拮抗作用を測定することにより評価した。また、分泌型アルカリホスファターゼ(SEAP)発現プラスミドを導入し、SEAPの活性を測定することで、形質転換効率の補正を行った。
2)宿主細胞の培養
 細胞の増殖培地は、ダルベッコ変法イーグル培地(DMEM)を用いた。まず、500mLの超純水(Milli-Q(登録商標)にて生成)にDMEM粉末を4.75g溶解し、高圧加熱滅菌(121℃、20分間)を行った後、室温に戻し、これに非働化したウシ胎児血清(FBS)を10%(v/v)となるように加え、さらに高圧加熱滅菌した10% NaHCO3を10mL添加し、その後L-グルタミン0.292gを8mLの超純水に溶解したものをろ過滅菌後添加して調製した。
 各細胞の継代は、100mm培養シャーレで培養した細胞の培養上清を除き、トリプシン処理により細胞を回収し、1500rpm、3分間遠心分離後、増殖培地を加えて細胞を分散させ、100mm培養シャーレに細胞を分散した増殖培地を15mL加え、37℃、5% CO2雰囲気下で培養した。
 形質転換はEffecteneTM Transection Reagent(QIAGEN社)を用いて行った。RXRの陽性コントロールにはLGD1069を用いた。これらは、DMSO溶解したものをストック溶液とし、アッセイするプレートにおいて計測した。
3)転写活性の測定
(1日目)60mm培養シャーレに、増殖培地5mLとともにCOS-1細胞を50×104cells播種し、一晩培養した。
(2日目)EffecteneTM Transection Reagent(QIAGEN社)を用いたリポフェクション法により形質転換を行った。形質転換には、受容体タンパク質発現プラスミド1μg、レポータープラスミド4μg、SEAP発現プラスミド1μgを用いた。
(3日目)16~18時間後、培養上清を除き、トリプシン処理により細胞を回収し、1500rpm、3分間遠心分離後、増殖培地を加えて細胞を分散し、20×104cells/wellとなるように96ウェルのホワイトプレートに播種した。その後、DMSO濃度が1%になるように各化合物を加えた。
(4日目)24時間後、上清25μLをSEAP測定に用い、残りの細胞液はルシフェラーゼ活性測定に用いた。
 SEAP測定は、Methods in molecular biology,63,pp.49-60,1997/BD Great EscAPe SEAP User manual(BD bioscience)に記載の方法に従い行った。
 具体的には、以下の方法で測定した。上記4日目の上清25μLに対して希釈用緩衝液を25μL加えた後、65℃で30分間インキュベートした。その後室温に戻し、アッセイ用緩衝液(7μL)、10×MUP(0.3μL)、希釈用緩衝液(2.7μL)を加え、暗所室温で60分間インキュベートした。その後、マイクロプレートリーダー(Infinite 200、TECAN社製)を用い励起波長360nm、蛍光波長465nmにより蛍光強度を測定した。
 アッセイ用緩衝液は、以下の方法で調製した。50mLの超純水(Milli-Q(登録商標)にて生成)にL-ホモアルギニン(0.45g)と塩化マグネシウム(0.02g)を溶解させ、ジエタノールアミン(21mL)を加えた。その後、塩酸を用いてpHを9.8になるように調整後、超純水を用いて全量が100mLになるようにメスアップし、それを4℃で保存した。
 希釈用緩衝液は、以下の方法で調製した。90mLの超純水(Milli-Q(登録商標)にて生成)に塩化ナトリウム(4.38g)とTris Base(2.42g)を溶解させた。その後、塩酸を用いてpHが7.2になるように調整し、5倍濃度希釈用緩衝液を作製し、それを4℃で保存した。使用直前にそれを5倍希釈することで希釈用緩衝液を作製した。
 4-メチルウンベリフェリルホスフェートを25mMになるように超純水(Milli-Q(登録商標)にて生成)に溶解させ、それを-20℃で保存したものを、10×MUPとした。
 ルシフェラーゼ活性は、NUNC社製の96穴ホワイトプレートを用い、発光基質(Steady-Glo(登録商標)Luciferase Assay System、Promega社製)との反応産物との発光強度をマイクロプレートリーダー(Infinite 200、TECAN社製)を用いて測定した。
4)測定結果
 上記の測定結果を図3に示す。
 陽性コントロールであるbexaroteneを1μM反応させたときの転写活性を1とし、相対活性を調べた結果を図3Aに示す。その結果、化合物10、23a、23b、30についてRXRアゴニスト活性を認めた。また、RXRアゴニストであるNEt-TMNの存在下に化合物44を添加した結果を図3Bに示す。その結果、化合物44についてRXRアンタゴニスト活性を認めた。また、同様に試験することによって、化合物23c、49についてRXRアンタゴニスト活性を認めた。
[実施例10]創出化合物の蛍光物性
 合成した化合物について、メタノール中、クロロホルム中での励起極大波長、蛍光極大波長を評価した。測定は日立F-4500形分光蛍光光度計にて、四面透明石英セル(光路長1cm)を用い、励起、蛍光スリット10nm、フォトマル電圧700Vで行った。測定結果を以下の表2に示した。
Figure JPOXMLDOC01-appb-T000019
[実施例11]化合物10の各種溶媒中での蛍光強度
 化合物10について、水中、メタノール中、アセトニトリル中、クロロホルム中、シクロヘキサン中で、励起波長340nm、蛍光波長465nmでの蛍光強度を測定した。測定はTecan SPARK 10Mにて、Greiner社製96穴ハーフエリア黒色プレートを用い、励起、蛍光バンド幅20nmで行った。測定結果を図4に示す。測定結果は、水中に比べ、有機溶媒中で蛍光強度が減弱した。
[実施例12]蛍光強度測定による化合物10のRXR結合のモニタリング
 RXRタンパク質存在下における蛍光強度測定の緩衝液は、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールとした。測定はTecan Infinite200Fにて、Greiner社製384穴スモールボリューム黒色プレートを用い、励起波長360nm、蛍光波長465nm、励起、蛍光バンド幅35nmで行った。1ウェルあたりのサンプル量は20μLとした。RXRαタンパク質はActive Motif社製のリガンド結合ドメイン(LBD)を100nM(図5A)もしくはfull-length RXRαを3μM(図5B)で用いた。化合物10の濃度を変化させて溶液調製し、室温にて2時間インキュベートし、化合物10単独時からの蛍光強度の減少量をプロットした。また、そこへbexarotene10μMを共存させた際の蛍光強度の減少量も同様にプロットした。なお、いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。
 その結果、図5に示すように、RXRαタンパク質の存在により10の蛍光強度は減弱し、bexaroteneを共存させることで蛍光強度が回復した。化合物10およびRXRαタンパク質存在時のプロットから、bexarotene共存時のプロットを減じることにより、化合物10のRXRαタンパク質への特異的な結合による蛍光強度の変化をプロットした。RXRα-LBDを用い、得られた特異的結合のプロットから最小二乗法により化合物10のRXRαタンパク質に対する結合解離定数(Kd)は87nMと算出された。
[実施例13]化合物10を用いたRXRリガンドのRXR結合能の評価
 化合物10を用いたRXRリガンドのRXR結合能評価における蛍光強度測定の緩衝液は、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールとした。測定はTecan Infinite200Fにて、Greiner社製384穴スモールボリューム黒色プレートを用い、励起波長360nm、蛍光波長465nm、励起、蛍光バンド幅35nmで行った。1ウェルあたりのサンプル量は20μLとした。RXRαタンパク質(リガンド結合ドメイン(LBD))はActive Motif社製のものを100nMで、10は100nMで用い、試験化合物としてはRXRアゴニストbexarotene、CBTF-PMN、RXRアンタゴニストPA452、RXR作動性のある環境ホルモンであるトリブチルスズクロリドを用いた。溶液調製後、室温で2時間インキュベートし、蛍光強度を測定し、プロットした。なお、いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。
 その結果、図6に示すように、いずれのRXRリガンドも濃度依存的に10の蛍光強度を回復させた。
 それぞれのプロットから最小二乗法によりEC50値を求め、Cheng-Prusoff式(Ki=EC50/(1+([化合物10濃度]/Kd)))により結合阻害定数(Ki)を求めた。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000020
[実施例14]蛍光強度測定による、化合物44のRXR結合のモニタリング
 RXRタンパク質存在下における蛍光強度測定の緩衝液は、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールとした。測定はTecan SPARK 10Mにて、Thermofischer社製384穴黒色プレートを用い、励起波長330nm、蛍光波長560nm、励起、蛍光バンド幅20nmで行った。1ウェルあたりのサンプル量は20μLとした。化合物44は30nMとし、RXRαタンパク質(リガンド結合ドメイン(LBD))はActive Motif社製のものを濃度を変化させて溶液調製し、室温にて2時間インキュベートし、蛍光強度をプロットした。また、そこへbexarotene 1μMを共存させた際の蛍光強度も同様にプロットした。なお、いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。
 その結果、図7に示すように、RXRαタンパク質の濃度上昇により化合物44の蛍光強度は増大し、bexaroteneを共存させることで蛍光強度が減少した。
[実施例15]化合物44を用いたRXRリガンドのRXR結合の検出
 RXRタンパク質存在下における蛍光強度測定の緩衝液は、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールとした。測定はTecan SPARK 10Mにて、Thermofischer社製384穴黒色プレートを用い、励起波長330nm、蛍光波長560nm、励起、蛍光バンド幅20nmで行った。1ウェルあたりのサンプル量は20μLとした。化合物44は30nM、RXRαタンパク質(リガンド結合ドメイン(LBD))はActive Motif社製のものを100nM、試験化合物は1μMで溶液調製し、室温にて2時間インキュベートしたのち、蛍光強度を測定した。なお、いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。
 その結果、図8に示すように、RXRリガンドである、Bexarotene、NEt-3IB、NEt-SBの存在により化合物44の蛍光強度は減少しRXRリガンドのRXRへの結合を検出した。
[実施例16]化合物10を用いた結合評価と蛍光標識コアクチベーターを用いたRXR活性化能評価を組み合わせた複合アッセイ
 フルオレセイン標識コアクチベーターペプチド(Fluorescein-PGC1a)の蛍光偏光度を測定することで、RXRへのコアクチベーターのリクルート、則ち、RXRの活性化型構造への変化を検出することができる。化合物10を用いた結合試験と、Fluorescein-PGC1aを用いた活性化能試験を組み合わせることで、図2に示すように、試験化合物のRXRへの結合能とRXR活性化能を同時に評価することが可能である。
 化合物10の蛍光強度測定およびfluorescein-PGC1aの蛍光偏光度測定における緩衝液は、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールとした。測定はTecan Polarionにて、Greiner社製384穴スモールボリューム黒色プレートを用い、化合物10の蛍光測定は励起波長360nm、蛍光波長465nmで、fluorescein-PGC1aの蛍光偏光測定は励起波長485nm、蛍光波長535nmで行った。1ウェルあたりのサンプル量は20μLとした。Full-length RXRαタンパク質は3μM、10は3μM、Fluorescein-PGC1aは30nMで用い、試験化合物としてはRXRアゴニストbexarotene、RXRアンタゴニストPA452をそれぞれ10μMで用いた。溶液調製後、室温で2時間インキュベートし、化合物10の蛍光強度、およびFluorescein-PGC1aの蛍光偏光度を測定した。なお、いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。
 その結果、いずれのRXRリガンドも10の蛍光強度を回復させた(図9A)。一方、Fluorescein-PGC1aの蛍光偏光度はRXRアゴニストであるbexaroteneでは上昇したのに対し、RXRアンタゴニストであるPA452では減少した(図9B)。なお、有意差検定はone-way ANOVA(Bonferroni法)にて行った(**: p < 0.01)。
[実施例17]化合物10のマウス経口投与時の血中移行性
 化合物10を30mg/kgでICRマウス(雄性、6週齢、一群あたり5匹)に経口投与し、経口投与0.5、1、3、および6時間後に採血を施し、血中濃度を測定した。血中濃度の測定は次の実験方法によって準備したサンプルを用いて行った。絶食した6 週齢の雄性ICRマウスに対し、経口投与を施し、1、3、および6時間毎に、個々のマウスをエーテル麻酔下安楽死させた後、採血した。採血した血液を4℃、4400gにて遠心分離し、上清を100μL採取した。そこに、100μLの氷冷した5mM酢酸アンモニウム水溶液(酢酸によりpH5.0に調整)を加え、さらに酢酸エチル1mLを加えた後、30秒間ボルテックス(登録商標)にて攪拌し、その上清800μLを分取した。減圧下、溶媒を蒸発させ、これに100μLのHPLC用メタノールを加えた。これのうち30μLを、 液体クロマトグラフィーシステム(SCL-10AD、島津製作所)およびHPLC(Inertsil(登録商標)、ODS-3カラム(4.6i.d.x250mm、5μm)、GLSciences)を用い、溶媒としてメタノール:水:酢酸=90:9:1(v/v)、0.7mL/minの流速、励起波長350nm、蛍光波長450nmにて測定を行った。得られるピーク面積にて、サンプル量を定量した。
 その結果、図10に示すように、投与0.5時間後でおよそ3μMの血中濃度を与えた。また、時間依存的な血中からの消失が観測された。
[実施例18]化合物10の低容量でのマウス経口投与時の血中濃度測定
 化合物10を10、3、および1mg/kgでICRマウス(雄性、6週齢、一群あたり4-5匹)に経口投与し、経口投与1時間後に採血を施し、血中濃度を測定した。血中濃度の測定は次の実験方法によって準備したサンプルを用いて行った。絶食した6週齢の雄性ICRマウスに対し、経口投与を施し、1時間後に、個々のマウスをエーテル麻酔下安楽死させた後、採血した。採血した血液を4℃、4400gにて遠心分離し、上清を100μL採取した。そこに、100μLの氷冷した5mM酢酸アンモニウム水溶液(酢酸によりpH5.0に調整)を加え、さらに酢酸エチル1mLを加えた後、30秒間ボルテックス(登録商標)にて攪拌し、その上清800μLを分取した。減圧下、溶媒を蒸発させ、これに100μLのHPLC用メタノールを加えた。これのうち30μLを、 液体クロマトグラフィーシステム(SCL-10AD、島津製作所)およびHPLC(Inertsil(登録商標)、ODS-3カラム(4.6i.d.x250mm、5μm)、GLSciences)を用い、溶媒としてメタノール:水:酢酸=90:9:1(v/v)、0.7mL/minの流速、励起波長350nm、蛍光波長450nmにて測定を行った。得られるピーク面積にて、サンプル量を定量した。
 その結果、図11に示すように、EC50付近の濃度をでも血中濃度の測定が可能であった。
[実施例19]LPS刺激下におけるNFκB転写活性に対する阻害活性試験
 Novus biologicalsより購入したNFκB/EAPorter RAW Cell Lineを56×10cells/mLに調整し、90 μL/wellで96穴透明プレートに播種(5×10cells/well)、37℃、5%CO培養した。その翌日に、被験化合物の希釈調整溶液とLPS(最終濃度1ng/mL)を10μL/wellずつ添加し、全量が100μL/wellとなるようにして、37℃、5%CO培養した。被験化合物の希釈調整溶液とLPS添加24時間後に、培養上清25μLを96well白色プレートに分注し、SEAP活性を蛍光プレートリーダーにて測定した。被験化合物非添加のLPS添加ウェルのSEAP活性に対する、被験化合物/LPS添加ウェルのSEAP活性を比較することで、被験化合物のNFκB転写活性に対する阻害活性を算出した。
 図12に、結果を示す。図中、斜線箇所はLPS添加時の被検化合物未添加時のSEAP活性を100%とした相対的SEAP活性を示す。白塗り箇所はLPS未添加かつ被検化合物未添加時、黒塗り箇所はLPS添加かつ各濃度の被検化合物添加時での相対的SEAP活性である。図に示すように、被検化合物である化合物10を添加することで、SEAP活性が抑制され、NFκBに対する阻害活性が示された。
[実施例20]蛍光強度測定による化合物62のRXR結合のモニタリング
 化合物62の、RXRタンパク質非存在下および存在下における蛍光強度測定を行った。実験には、20mMトリス-塩酸(pH7.5)、150mM塩化ナトリウム、1mMエチレンジアミン四酢酸、5mMジチオスレイトール、10%グリセロールからなる溶液を緩衝液として用いて、Greiner社製384穴スモールボリューム黒色プレートを用い、1ウェルあたりのサンプル量は20μL、化合物62の最終濃度を10μMとして、RXRα-LBDを100nMで用いた。いずれの場合においても化合物の溶解補助剤として用いるジメチルスルホキシド濃度は1%とした。測定にはTecan Infinite200Fを用いて、励起波長360nm、蛍光波長465nm、励起、蛍光バンド幅35nmで行った。
 実験結果を図13に示す。その結果、RXRαタンパク質の存在により化合物10の蛍光強度は減弱し、RXRに対する結合が示された。

Claims (15)

  1.  下記式(1)~(3)のいずれかで示され、蛍光性を有するレチノイドX受容体結合性分子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、メチル、アルコキシ又はスチリルであり;
     Rは、ヒドロキシ、アルコキシ又はアルキルアミノであり;
     Aは、N又はCHであり;
     Bは、NH又はOである。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R、A及びBは、式(1)と同じである。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R、A及びBは、式(1)と同じであり;
     Rは、イソプロピル又はターシャリーブチルであり;
     Rは、イソプロピル又はイソブチルである。]
  2.  前記式(1)で示される、請求項1に記載の結合性分子。
  3.  前記式(2)で示される、請求項1に記載の結合性分子。
  4.  前記式(3)で示される、請求項1に記載の結合性分子。
  5.  下記式(4)又は(5)で示され、蛍光性を有するレチノイドX受容体結合性分子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、イソプロピル又はターシャリーブチルであり;
     Rは、イソプロピル又はイソブチルであり;
     Wは、NR、C=CH、C=NOH又はC(OCHであり;
     Rはアルキルであり;
     Xは、N又はCHであり;
     Yは、N又はCHであり;
     ZはCH=CH(トランス)、NHCO、CONH、CH=CH-CO又はCO-CH=CHであり;
     Fluorophoreは芳香環を含む蛍光団であり、該芳香環がZと結合する。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、R、R、W、R、X及びYは、式(4)と同じであり;
     ZはCH=CH(トランス)、NHCO、CONH、CH=CH-CO又はCO-CH=CHであり;
     ZはCH=CH、NHCO、CONH、NHSO、SONH、CHNHCO又はCHNHSOであり;
     環Qは、ベンゼン環、ピリジン環、チオフェン環、ナフタレン環又はキノリン環であり;
     Fluorophoreは芳香環を含む蛍光団であり、該芳香環がZと結合する。]
  6.  前記式(4)で示される、請求項5に記載の結合性分子。
  7.  前記式(5)で示される、請求項5に記載の結合性分子。
  8.  請求項1~7のいずれかに記載の結合性分子を用いて、レチノイドX受容体に対する評価物質の結合能を評価する試験方法。
  9.  前記評価物質が存在する水溶液中において、前記結合性分子がレチノイドX受容体に結合することによる該結合性分子の蛍光強度の減少量を測定することによって、レチノイドX受容体に対する評価物質の結合能を評価する、請求項8に記載の試験方法。
  10.  請求項1~7のいずれかに記載の結合性分子及び蛍光団を有するコファクターペプチドを共に用いる、レチノイドX受容体に対する評価物質の結合能と機能を評価する試験方法。
  11.  蛍光性を有する核内受容体結合性分子及び蛍光団を有する核内受容体コファクターペプチドを共に用いる、当該核内受容体に対する評価物質の結合能と機能を評価する試験方法。
  12.  前記結合性分子の励起及び蛍光波長と、前記コファクターペプチドの励起及び蛍光波長とが重ならない、請求項11に記載の試験方法。
  13.  前記評価物質が存在する水溶液中において、前記結合性分子が前記受容体に結合することによる該結合性分子の蛍光強度の減少量を測定することによって、前記受容体に対する評価物質の結合能を評価し、同時に、核内受容体コファクターペプチドの蛍光偏光度を測定することによって、前記受容体に対する評価物質の機能を評価する、請求項11又は12に記載の試験方法。
  14.  蛍光性を有する核内受容体結合性分子及び蛍光団を有する核内受容体コファクターペプチドを含む、核内受容体に対する評価物質の結合能と機能を評価するための試験キット。
  15.  請求項1~7のいずれかに記載の結合性分子を有効成分として含む医薬組成物。
PCT/JP2016/085729 2015-12-03 2016-12-01 蛍光性を有するレチノイドx受容体結合性分子及びその用途 WO2017094838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017554175A JP6852897B2 (ja) 2015-12-03 2016-12-01 蛍光性を有するレチノイドx受容体結合性分子及びその用途
CN201680070701.XA CN108290841B (zh) 2015-12-03 2016-12-01 具有荧光性的类视黄醇x受体结合性分子及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237017 2015-12-03
JP2015237017 2015-12-03

Publications (1)

Publication Number Publication Date
WO2017094838A1 true WO2017094838A1 (ja) 2017-06-08

Family

ID=58796979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085729 WO2017094838A1 (ja) 2015-12-03 2016-12-01 蛍光性を有するレチノイドx受容体結合性分子及びその用途

Country Status (4)

Country Link
JP (1) JP6852897B2 (ja)
CN (1) CN108290841B (ja)
TW (1) TW201726622A (ja)
WO (1) WO2017094838A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963988B (zh) * 2018-09-29 2023-08-22 泰州医药城国科化物生物医药科技有限公司 一种可作为gpr35受体激动剂的香豆素衍生物、制备方法及其应用
CN113200893B (zh) * 2021-04-20 2021-12-21 江苏极易新材料有限公司 一种4,4′-硫代双(6-叔丁基-3-甲基苯酚)的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297045A (ja) * 1989-04-25 1990-12-07 Avl Medical Instr Ag 試料の化学的パラメータの定量測定法
WO2006103813A1 (ja) * 2005-03-29 2006-10-05 Enbiotec Laboratories Co., Ltd. 核内受容体に対する結合物質の検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297045A (ja) * 1989-04-25 1990-12-07 Avl Medical Instr Ag 試料の化学的パラメータの定量測定法
WO2006103813A1 (ja) * 2005-03-29 2006-10-05 Enbiotec Laboratories Co., Ltd. 核内受容体に対する結合物質の検出方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KOICHI SAITO ET AL: ""Biotechnology for 5-15 A Analysis of Biological Effects of Endocrine 1-4 Disrupting Chemicals on Wildlife Using Nuclear Hormone Receptor Superfamily", JOURNAL OF ENVIRONMENTAL BIOTECHNOLOGY, vol. 3, 2003, pages 3 - 13 *
OHSAWA, F. ET AL.: "Mechanism of Retinoid X Receptor Partial Agonistic Action of 1-(3, 5, 5, 8, 8-Pentamethyl-5, 6, 7, 8-tetrahydro-2-naphthyl)-1H-b enzotriazole-5-carboxylic Acid and Structural Development To Increase Potency", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, 2013, pages 1865 - 1877, XP055157660, DOI: doi:10.1021/jm400033f *
OZERS, M. S. ET AL.: "Analysis of Ligand-Dependent Recruitment of Coactivator Peptides to Estrogen Receptor Using Fluorescence Polarization", MOLECULAR ENDOCRINOLOGY, vol. 19, no. 1, January 2005 (2005-01-01), pages 25 - 34, XP055599442 *
SHERMAN, W. R. ET AL.: "Fluorescence of Substituted 7-Hydroxycoumarins", ANALYTICAL CHEMISTRY, vol. 40, no. 4, April 1968 (1968-04-01), pages 803 - 805, XP055599446 *
WOODS, L. L. ET AL.: "Coumarin-3-carboxylic Acids", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 30, pages 312 - 313, XP000983898, DOI: doi:10.1021/jo01012a517 *
YAMADA, S. ET AL.: "Fluorescent retinoid X receptor ligands for fluorescence polarization assay", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 20, 2010, pages 5143 - 5146, XP027207944 *

Also Published As

Publication number Publication date
JP6852897B2 (ja) 2021-03-31
CN108290841B (zh) 2021-05-04
CN108290841A (zh) 2018-07-17
TW201726622A (zh) 2017-08-01
JPWO2017094838A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
Zeng et al. A distinctive mitochondrion-targeting, in situ-activatable near-infrared fluorescent probe for visualizing sulfur dioxide derivatives and their fluctuations in vivo
FR2500165A1 (fr) Procede et reactifs d'immunodetermination par polarisation de fluorescence utilisant des carboxyfluoresceines
Islam et al. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells
CN111592472B (zh) 一种荧光染料及其制备方法和用途
JP7140398B2 (ja) ニトロベンゼン誘導体またはその塩およびそれらの用途
WO2017094838A1 (ja) 蛍光性を有するレチノイドx受容体結合性分子及びその用途
Mora et al. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye
Xu et al. Structure–activity relationship of Garcinia xanthones analogues: Potent Hsp90 inhibitors with cytotoxicity and antiangiogenesis activity
Zhang et al. Synthesis and fluorescence properties of Tb (III) complex with a novel β-diketone ligand as well as spectroscopic studies on the interaction between Tb (III) complex and bovine serum albumin
WO2023087169A1 (zh) 两种前列腺特异性膜抗原靶向荧光探针及其制备方法与应用
Xu et al. A mitochondria-targeted fluorescent probe based on biocompatible RBH-U for the enhanced response of Fe3+ in living cells and quenching of Cu2+ in vitro
JP2016033134A (ja) 蛍光プローブ
Ruan et al. Discovery of pterostilbene analogs as novel NLRP3 inflammasome inhibitors for potential treatment of DSS-induced colitis in mice
Liu et al. Synthesis and interaction studies of benzimidazole derivative with human serum albumin
Abdul-Rida et al. Development of novel imaging fluorescent agents bearing anti-inflammatory drugs: Synthesis, structural characterization and evaluation of biological activity
Wijesooriya et al. Coumarin‐based fluorescent probes for selectively targeting and imaging the endoplasmic reticulum in mammalian cells
Uusi-Oukari et al. Modifications of diflunisal and meclofenamate carboxyl groups affect their allosteric effects on GABA A receptor ligand binding
EP4043435A1 (en) Compound for detecting senescent cells and use thereof
JP2018145111A (ja) 生体分子検出用蛍光物質
WO2017090631A1 (ja) 細胞外代謝物を検出するための蛍光プローブ及び当該蛍光プローブを用いるスクリーニング方法
WO2021176428A1 (en) Phenanthroline, carbazole and flavylium based cyanines and compositions and methods of making and using the same
RU2642426C1 (ru) 1-Этил-6-фтор-4-оксо-7-(8-этокси-2-оксо-2Н-хромен-3-ил)-1,4-дигидрохинолин-3-карбоновая кислота, обладающая противотуберкулезной активностью
JP2004101389A (ja) アルミニウムイオン及び/又は第二鉄イオン測定用プローブ
Jonić et al. Development of fluoAHRL: A novel synthetic fluorescent compound that activates AHR and potentiates anti-inflammatory T regulatory cells
JP6493964B2 (ja) 新規化合物及び該化合物を含む蛍光組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870775

Country of ref document: EP

Kind code of ref document: A1