WO2017094819A1 - 冷却部材及び蓄電モジュール - Google Patents

冷却部材及び蓄電モジュール Download PDF

Info

Publication number
WO2017094819A1
WO2017094819A1 PCT/JP2016/085681 JP2016085681W WO2017094819A1 WO 2017094819 A1 WO2017094819 A1 WO 2017094819A1 JP 2016085681 W JP2016085681 W JP 2016085681W WO 2017094819 A1 WO2017094819 A1 WO 2017094819A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
heat
enclosure
storage element
cooling member
Prior art date
Application number
PCT/JP2016/085681
Other languages
English (en)
French (fr)
Inventor
秀幸 久保木
平井 宏樹
東小薗 誠
細江 晃久
知陽 竹山
廣瀬 義幸
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112016005527.7T priority Critical patent/DE112016005527T5/de
Priority to US15/776,211 priority patent/US11322784B2/en
Priority to CN201680068200.8A priority patent/CN108292790B/zh
Publication of WO2017094819A1 publication Critical patent/WO2017094819A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technology described in this specification relates to a cooling member and a power storage module.
  • Patent Document 1 Conventionally, a heat pipe described in Patent Document 1 is known.
  • a heat transfer fluid is sealed in a liquid-tight manner inside a pipe made of a metal material.
  • the pipe is required to have strength in order to enclose the heat transfer fluid. This is because when the heat transfer fluid receives heat from the heating element and evaporates, the volume of the heat transfer fluid increases and the pressure in the pipe increases.
  • a heat transfer fluid is sealed in a liquid-tight manner in a pipe and a relatively high strength pipe is used, there is a problem that the manufacturing cost increases.
  • the technology disclosed in the present specification has been completed based on the above-described circumstances, and aims to reduce the manufacturing cost of the cooling member.
  • the cooling member described in the present specification includes a refrigerant, an absorption member that absorbs the refrigerant, a flexible sheet member, and an enclosure that encloses the refrigerant and the absorption member in a sealed state.
  • a heat dissipating part that receives heat of the enclosure and dissipates heat to the outside.
  • the heat radiating part has a groove part through which the end part side of the enclosure is inserted. In this way, since the inner wall of the groove portion of the heat radiating portion faces the outer surface on the end portion side of the enclosure, the area of the heat radiating portion that receives the heat of the enclosure can be increased, thereby improving the heat dissipation. Can do.
  • the heat radiating part radiates heat to the outside by circulation of gas or liquid. If it does in this way, the heat dissipation of a thermal radiation part can be improved.
  • the power storage module includes the cooling member and a power storage element in which at least a part of the outer surface is in contact with the cooling member. If it does in this way, the heat of an electrical storage element can be radiated in a thermal radiation part.
  • the power storage module includes a case having an inner surface that contacts the outer surface of the power storage element, and the heat dissipation portion is a power storage module provided in the case. If it does in this way, the heat of an electrical storage element can be radiated with a case.
  • the power storage module includes a pair of sandwiching plates that sandwich the power storage element in contact with the outer surface of the power storage element, and the sandwiching plate is a power storage module that is in contact with the heat dissipation portion. If it does in this way, the heat of an electrical storage element can be thermally radiated from a thermal radiation part via a clamping board.
  • the manufacturing cost of the cooling member can be reduced.
  • Perspective view showing heat transfer pack Disassembled perspective view of heat transfer pack The perspective view which shows the electrical storage module of Embodiment 2.
  • the power storage module 10 includes a plurality (six in this embodiment) of power storage elements 11 and a cooling member 20 that cools the power storage elements 11.
  • a cooling member 20 that cools the power storage elements 11.
  • the plurality of power storage elements 11 are arranged in a line in the direction in which the power storage elements 11 are thin.
  • Each power storage element 11 is formed by sandwiching a power storage element between a pair of laminate sheets 12 and liquid-tightly joining the edge portions of the laminate sheet 12 by a known technique such as thermal welding.
  • a positive electrode terminal 13 and a negative electrode terminal 14 each having a thin metal foil shape are led out from the inner side to the outer side of the laminate sheet 12 from the lower end edge of the power storage element 11 in a liquid-tight state with the inner surface of the laminate sheet 12. ing.
  • the positive electrode terminal 13 and the negative electrode terminal 14 are each electrically connected to an internal power storage element.
  • the adjacent power storage elements 11 are arranged in opposite directions, and the positive electrode terminal 13 and the negative electrode terminal 14 of the adjacent power storage elements 11 are bent in a direction approaching each other and stacked vertically. They are electrically connected by a known method such as welding, ultrasonic welding, brazing or the like. Thereby, the some electrical storage element 11 is connected in series.
  • a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery, or a capacitor such as an electric double layer capacitor or a lithium ion capacitor may be used as the power storage element 11. Accordingly, any storage element 11 can be appropriately selected.
  • a power terminal 16 made of a metal plate is connected to the positive terminal 13 and the negative terminal 14 at the end of the series connection by a known method such as laser welding, ultrasonic welding, brazing, or the like.
  • the cooling member 20 includes a plurality of (in this embodiment, five) heat transfer packs 20A that receive heat from the plurality of power storage elements 11, and a case 30 that has a heat radiating portion 35 that receives heat from the heat transfer packs 20A and dissipates heat to the outside. And comprising.
  • the plurality of heat transfer packs 20A have the same configuration and are sandwiched between adjacent power storage elements 11, and as shown in FIG. 12, a refrigerant 21 whose state changes between liquid and gas, An enclosure 22 that is liquid-tight and encloses the refrigerant 21 therein, and an absorption member 26 that is disposed inside the enclosure 22 and absorbs the refrigerant 21 are provided.
  • the plurality of power storage elements 11 constitute a power storage element group 10A (see FIG. 9) in a state where each heat transfer pack 20A is disposed between the adjacent power storage elements 11.
  • refrigerant 21 As the refrigerant 21, for example, one or more selected from the group consisting of perfluorocarbon, hydrofluoroether, hydrofluoroketone, fluorine inert liquid, water, methanol, ethanol and other alcohols can be used.
  • the refrigerant 21 may have insulating properties or may have conductivity.
  • the enclosure 22 is formed by liquid-tightly joining two sheet members 23 and 24 having a substantially rectangular shape by a known method such as adhesion, welding, or welding.
  • Each sheet member 23, 24 is formed by laminating synthetic resin films on both surfaces of a metal sheet.
  • a metal constituting the metal sheet any metal such as aluminum, aluminum alloy, copper, copper alloy and the like can be appropriately selected as necessary.
  • Synthetic resins constituting the synthetic resin film include polyolefins such as polyethylene and polypropylene, polyesters such as polybutylene terephthalate and polyethylene terephthalate, polyamides such as nylon 6, nylon 6 and 6, and any synthetic resin as required. Can be selected as appropriate.
  • the left and right ends of the sheet members 23 and 24 are expanded so as to expand and deform in a direction to widen the interval between the sheet members 23 and 24 when the pressure inside the enclosure 22 rises.
  • An opening 25 is formed.
  • the expanding portion 25 is bent inward of the enclosure 22 with the sheet members 23 and 24 being joined.
  • the refrigerant 21 evaporates into a gas
  • the expanding portion 25 is expanded and deformed.
  • the outer surfaces of the sheet members 23 and 24 come into contact with the inner wall surface of the groove portion 37 formed inside the heat radiating portion 35 in contact with each other (substantially in the same plane, see the broken line in FIG. 5).
  • an absorbing member 26 capable of absorbing the refrigerant 21 is disposed inside the enclosure 22.
  • the absorbing member 26 has a substantially rectangular sheet shape.
  • the absorbing member 26 is made of a material that can absorb the refrigerant 21, and may be, for example, a fibrous woven fabric or a non-woven fabric.
  • the form of the nonwoven fabric may be a fiber sheet, a web (a thin film-like sheet composed only of fibers), or a bat (a blanket-like fiber).
  • the material constituting the absorbent member 26 may be natural fibers, may be synthetic fibers made of synthetic resin, or may be a material using both natural fibers and synthetic fibers.
  • the case 30 covers the entire power storage element group 10 ⁇ / b> A, and includes a lower case 31 having a substantially rectangular shape and an upper case 32 attached to the upper side of the lower case 31.
  • the upper case 32 includes a rectangular tube-shaped main body 33 that covers the side surface of the power storage element group 10 ⁇ / b> A, and a heat radiating portion 35 that is provided above the main body 33 (upper part of the upper case 32) and has a large surface area.
  • the inner surfaces of the front surface portion 33 ⁇ / b> A and the rear surface portion 33 ⁇ / b> B are in contact with the surface of the power storage element 11.
  • the heat dissipating part 35 is formed with a plurality (five in the present embodiment) of heat dissipating fins 36 arranged at equal intervals.
  • the inside (inside) of the heat radiating fin 36 is a groove portion 37 into which the end portion side of the heat transfer pack 20A (the enclosure 22) is inserted.
  • the groove portions 37 are arranged at equal intervals according to the position of the heat transfer pack 20A, and open downward.
  • the gap interval between the groove portions 37 (the interval between the groove walls facing each other in the direction in which the groove portions 37 are arranged) is set larger than the thickness of the heat transfer pack 20A in a state where the internal pressure is low.
  • the heat of the electricity storage element 11 is transferred to the heat transfer pack 20A that is in contact with the electricity storage element 11, the refrigerant 21 is vaporized, the internal pressure of the enclosure 22 rises, and as shown in FIG. To do.
  • the outer surfaces of the sheet members 23 and 24 come into contact with the inner wall surface of the groove portion 37 so that the heat of the enclosure 22 is transferred to the heat radiating portion 35 and radiated from the heat radiating portion 35 to the external space.
  • the lower case 31 and the upper case 32 are made of a material having high thermal conductivity, and can be made of metal such as aluminum, aluminum alloy, copper, copper alloy, for example.
  • the lower case 31 and the upper case 32 may be formed of the same material or different materials.
  • the heat radiating portion 35 in the case 30 may be formed of a material having high thermal conductivity, and a portion other than the heat radiating portion 35 may be formed of a material different from that of the heat radiating portion 35.
  • the lower case 31 and the upper case 32 can be joined by a known method such as laser welding, brazing, an engagement structure between a lock member and a member to be locked, a screwing structure, and adhesion using an adhesive.
  • the lower case 31 and the upper case 32 are assembled
  • the cooling member 20 includes a refrigerant 21, an absorption member 26 that absorbs the refrigerant 21, and sheet members 23 and 24 having flexibility, and an enclosure 22 that encloses the refrigerant 21 and the absorption member 26 in a sealed state. And a heat dissipating part 35 that receives heat from the enclosure 22 and dissipates heat to the outside.
  • the refrigerant 21 evaporates, the pressure in the enclosure 22 increases.
  • the flexible sheet members 23 and 24 are deformed, so that the internal volume of the enclosure 22 increases and the pressure in the enclosure 22 decreases.
  • the cooling member 20 is formed by a metal container whose inner volume does not change, the pressure resistance in the enclosure 22 can be lowered. Therefore, the manufacturing cost of the cooling member 20 can be reduced.
  • the heat transmitted from the electrical storage element 11 to the enclosure 22 is radiated to the outside by the heat radiating portion 35, the heat dissipation can be improved.
  • the heat radiating portion 35 has a groove portion 37 through which the end portion side of the enclosure 22 is inserted. In this way, since the inner wall surface of the groove portion 37 in the heat radiating portion 35 faces the outer surface on the end portion side of the encapsulant 22, the area of the heat radiating portion 35 that receives the heat of the enclosure 22 can be increased. The heat dissipation can be improved.
  • the power storage module 10 includes the cooling member 20 and the power storage element 11 in which at least a part of the outer surface contacts the cooling member 20. In this way, the heat of the power storage element 11 in the power storage module 10 can be radiated from the heat radiating portion 35.
  • the case 30 having the inner surface that accommodates the power storage element 11 and contacts the outer surface of the power storage element 11 is provided, and the heat dissipation portion 35 is provided in the case 30. In this way, the heat of the power storage element 11 in the power storage module 10 can be radiated by the case 30.
  • Embodiment 2 A second embodiment will be described with reference to FIGS.
  • the heat radiation part 50 of Embodiment 1 was the structure cooled with a natural air cooling type
  • the heat radiation part 50 of Embodiment 2 is cooled with a water cooling type.
  • the same components as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the power storage module 40 includes a plurality (six in this embodiment) of power storage elements 11 and a cooling member 41 that cools the power storage elements 11.
  • the cooling member 41 includes a heat transfer pack 20A, a jacket portion 43 that receives heat from the heat transfer pack 20A and radiates the heat to the outside, and a pair of sandwiching plates 55 that sandwich the power storage element group 10A.
  • the jacket portion 43 is made of a metal such as aluminum or an aluminum alloy, and includes a base portion 44 and a heat radiating portion 50 that cools the end portion side of the heat transfer pack 20A. ) Extends over the entire interior while being folded back multiple times.
  • the pipe passes through the inside of the base portion 44. However, for example, the pipe may pass through a portion without the groove portion 51 inside the heat radiating portion 50.
  • a cooling liquid inlet 45 and outlet 46 are formed in the base portion 44. The coolant is introduced from the lower inlet 45, the coolant is led out from the upper outlet 46, and the coolant circulates through a heat dissipation path (not shown), so that the heat transmitted to the coolant is dissipated to the outside.
  • water is used as the coolant, but the present invention is not limited to this, and a liquid such as oil may be used. Moreover, it is not restricted to a liquid, You may use gas as a coolant. Further, an antifreeze liquid may be used as the cooling liquid.
  • the heat radiation part 50 is formed side by side with a groove part 51 through which the end side of the heat transfer pack 20A (the enclosure 22) is inserted.
  • the groove portions 51 are formed at equal intervals according to the position of the heat transfer pack 20A.
  • the pair of sandwiching plates 55 is made of a metal plate material such as aluminum, aluminum alloy, copper, copper alloy, and the like, as shown in FIGS. 13 and 16, the end portions of the respective sandwiching plates 55 are bent in an L shape. A bent portion 56 is formed. The bent portion 56 is fixed to the surface of the base portion 44 on the heat radiating portion 50 side by known fixing means 56A such as welding or screwing.
  • the pair of sandwiching plates 55 are connected by a plurality of cylindrical rod-like connecting members 57 on both the left and right sides.
  • the heat of the power storage elements 11 at both ends in the power storage element group 10A is transferred to the jacket portion 43 after being transferred to the pair of sandwiching plates 55, and the heat of each power storage element 11 is transferred from the heat transfer pack 20A to the jacket portion. 43 is dissipated to the outside.
  • the heat radiating unit 50 radiates heat to the outside by circulation of gas or liquid. If it does in this way, the heat dissipation of the thermal radiation part 50 can be improved.
  • a pair of sandwiching plates 55 that sandwich the plurality of storage elements 11 and the heat transfer pack 20 ⁇ / b> A as the cooling member 41 in a state of being in contact with the outer surface of the storage element 11 are provided. Yes. In this way, the heat of the plurality of power storage elements 11 can be radiated from the heat radiating unit 50 via the sandwiching plate 55.
  • the technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and for example, the following embodiments are also included in the technical scope of the technology disclosed in the present specification.
  • the sheet members 23 and 24 are not limited to the laminate film, and may be configured by a metal sheet.
  • the cooling members 20 and 41 according to the above embodiment are used in the power storage modules 10 and 40.
  • the cooling members 20 and 41 are not limited thereto, and the cooling members 20 and 41 include an electrical connection box, an ECU (electronic control unit), and the like. Can be used for any heat generating component.
  • the enclosure 22 is formed by joining the two sheet members 23 and 24.
  • the present invention is not limited to this, and the enclosure 22 is folded in a state where one sheet member is bent. It is good also as a structure formed by joining an edge liquid-tightly, and good also as a structure formed by joining three or more sheet members liquid-tightly.
  • Power storage module 11 Power storage element 20
  • Cooling member 21 Refrigerant 22: Inclusion body 23
  • Sheet member 26 Absorbing member 30: Case 35
  • Heat radiation part 36 Heat radiation fins 37, 51: Groove 43: Jacket 55: Holding plate

Abstract

冷却部材20は、冷媒21と、冷媒21を吸収する吸収部材26と、可撓性を有するシート部材23,24が接合され、冷媒21及び吸収部材26を密閉状態で封入する封入体22と、封入体22の熱を受けて外部に放熱する放熱部35と、を備える。

Description

冷却部材及び蓄電モジュール
 本明細書に記載された技術は、冷却部材及び蓄電モジュールに関する。
 従来、ヒートパイプとして特許文献1に記載のものが知られている。このヒートパイプは、金属材料で作られたパイプの内部に伝熱流体が液密に封入されている。
特開平11-23169号公報
 上記の構成によると、伝熱流体を封入するために、パイプには強度が必要とされていた。その理由は、伝熱流体が発熱体から熱を受けて蒸発すると、伝熱流体の体積が増大し、パイプ内の圧力が高まるからである。パイプ内に伝熱流体を液密に封入し、且つ、比較的に強度の高いパイプを用いると、製造コストが高くなるという問題がある。
 本明細書に開示された技術は上記のような事情に基づいて完成されたものであって、冷却部材の製造コストを低減することを目的とする。
 本明細書に記載された冷却部材は、冷媒と、前記冷媒を吸収する吸収部材と、可撓性を有するシート部材が接合され、前記冷媒及び前記吸収部材を密閉状態で封入する封入体と、前記封入体の熱を受けて外部に放熱する放熱部と、を備える。
 上記構成によれば、冷媒が蒸発すると封入体内の圧力が上昇する。すると、可撓性を有するシート部材が変形することにより封入体の内容積が増大して封入体内の圧力が下がる。これにより、内容積が変化しない金属製の容器によって冷却部材を形成する場合に比べて、封入体内の耐圧性を低くすることができる。よって、冷却部材の製造コストを低減することができる。また、封入体の熱は、放熱部によって外部に放熱されるため、放熱性を向上させることができる。
 本明細書に記載された技術の実施態様としては以下の態様が好ましい。
 前記放熱部は、前記封入体の端部側が挿通される溝部を有する。
 このようにすれば、放熱部の溝部の内壁が封入体の端部側の外面と対向することで、放熱部における封入体の熱を受ける面積を増やすことができるため、放熱性を向上させることができる。
 前記放熱部は、気体又は液体の循環により外部に熱を放熱する。
 このようにすれば、放熱部の放熱性を向上させることができる。
 前記冷却部材と、少なくとも外面の一部が前記冷却部材と接触する蓄電素子と、を備えた蓄電モジュールとする。
 このようにすれば、蓄電素子の熱を放熱部で放熱することができる。
 前記蓄電素子を収容し、前記蓄電素子の外面に接触する内面を有するケースを備え、前記放熱部は、前記ケースに設けられている蓄電モジュールとする。
 このようにすれば、蓄電素子の熱をケースにより放熱することができる。
 前記蓄電素子の外面に接触した状態で前記蓄電素子を挟持する一対の挟持板を備え、前記挟持板は、前記放熱部に接触している蓄電モジュールとする。
 このようにすれば、蓄電素子の熱を挟持板を介して放熱部から放熱することができる。
 本明細書に記載された技術によれば、冷却部材の製造コストを低減することができる。
実施形態1の蓄電モジュールを示す斜視図 蓄電モジュールを示す平面図 蓄電モジュールを示す正面図 図3のA-A断面図 図4の一部を拡大した図 図3のB-B断面図 図3のC-C断面図 蓄電モジュールを示す側面図 蓄電モジュールの分解斜視図 蓄電素子群を示す正面図 伝熱パックを示す斜視図 伝熱パックの分解斜視図 実施形態2の蓄電モジュールを示す斜視図 蓄電モジュールを示す平面図 図14のD-D断面図 蓄電モジュールを示す正面図 蓄電モジュールを示す側面図 蓄電モジュールを示す背面図
 <実施形態1>
 実施形態1について、図1から図12を参照しつつ説明する。
 本実施形態に係る蓄電モジュール10は、図7に示すように、複数(本実施形態では6つ)の蓄電素子11と、蓄電素子11を冷却する冷却部材20とを備えている。以下の説明においては、X方向を右方とし、Y方向を前方とし、Z方向を上方として説明する。
(蓄電素子11)
 複数の蓄電素子11は、当該蓄電素子11の厚みの薄い方向に一列に並べて配されている。各蓄電素子11は、一対のラミネートシート12の間に蓄電要素を挟み、ラミネートシート12の端縁部を、熱溶着等の公知の手法により液密に接合して形成されている。蓄電素子11の下端縁からは、厚みの薄い金属箔状をなす正極端子13と、負極端子14とが、ラミネートシート12の内面と液密状態で、ラミネートシート12の内側から外側へと導出されている。正極端子13及び負極端子14は、それぞれ内部の蓄電要素と電気的に接続されている。
 隣り合う蓄電素子11は反対向きに配置されており、隣り合う蓄電素子11における正極端子13と負極端子14とが互いに近づく方向に折り曲げられて上下に重ねられており、この重ねられた状態でレーザー溶接、超音波用溶接、ロウ付け等の公知の手法により電気的に接続されている。これにより、複数の蓄電素子11は直列に接続されている。
 本実施形態においては、蓄電素子11として、例えば、リチウムイオン二次電池、ニッケル水素二次電池等の二次電池や、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタを用いてもよく、必要に応じて任意の蓄電素子11を適宜に選択できる。直列接続の端部の正極端子13及び負極端子14には、それぞれ金属板材からなる電力端子16がレーザー溶接、超音波用溶接、ロウ付け等の公知の手法により接続されている。
(冷却部材20)
 冷却部材20は、複数の蓄電素子11の熱を受ける複数(本実施形態では5つ)の伝熱パック20Aと、伝熱パック20Aの熱を受けて外部に放熱する放熱部35を有するケース30と、を備える。
(伝熱パック20A)
 複数の伝熱パック20Aは、同一構成であって、隣り合う蓄電素子11の間に密着状態で挟まれており、図12に示すように、液体と気体とに状態が変化する冷媒21と、液密に形成され、内部に冷媒21が封入される封入体22と、封入体22の内部に配されて冷媒21を吸収する吸収部材26とを備えている。複数の蓄電素子11は、隣り合う蓄電素子11間に各伝熱パック20Aが配された状態で蓄電素子群10A(図9参照)を構成する。
(冷媒21)
 冷媒21は、例えば、パーフルオロカーボン、ハイドロフルオロエーテル、ハイドロフルオロケトン、フッ素不活性液体、水、メタノール、エタノール等のアルコールからなる群から選ばれる1つ、又は複数を用いることができる。冷媒21は、絶縁性を有していてもよく、また、導電性を有していてもよい。
(封入体22)
 封入体22は、図12に示すように、略長方形状をなす2枚のシート部材23,24を、接着、溶着、溶接等の公知の手法により液密に接合してなる。各シート部材23,24は、金属製シートの両面に合成樹脂製のフィルムが積層されてなる。金属製シートを構成する金属としては、アルミニウム、アルミニウム合金、銅、銅合金等、必要に応じて任意の金属を適宜に選択できる。合成樹脂製のフィルムを構成する合成樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ナイロン6、ナイロン6,6等のポリアミド等、必要に応じて任意の合成樹脂を適宜に選択できる。
 シート部材23,24の左右の両端部には、図5に示すように、封入体22の内部の圧力が上昇した際に、シート部材23,24間の間隔を広げる方向に拡開変形する拡開部25が形成されている。拡開部25は、シート部材23,24が接合された状態で封入体22の内方に折れ曲がった状態とされており、冷媒21が蒸発して気体になると、拡開部25が拡開変形して、シート部材23,24の外面が放熱部35の内側に形成された溝部37の内壁面に面当たり状態で接触する(ほぼ同一平面で接触する。図5の破線参照)。これにより、シート部材23,24間の間隔が大きくなって封入体22の内容積が増大するので、封入体22の内圧が減少し、封入体22に要求される物理的な強度をパイプ等よりも低減させても問題は生じない。
(吸収部材26)
 封入体22の内部には、図12に示すように、冷媒21を吸収可能な吸収部材26が配されている。吸収部材26は略長方形のシート状をなしている。吸収部材26は、冷媒21を吸収可能な材料により形成されており、例えば、繊維状の織物等としてもよく、また、不織布でもよい。不織布の形態としては、繊維シート、ウェブ(繊維だけで構成された薄い膜状のシート)、又はバット(毛布状の繊維)であってもよい。吸収部材26を構成する材料としては、天然繊維でもよく、また、合成樹脂からなる合成繊維であってもよく、また、天然繊維と合成繊維の双方を用いたものであってもよい。
(ケース30)
 ケース30は、図9に示すように、蓄電素子群10Aの全体を覆うものであり、略長方形状をなすロアケース31と、ロアケース31の上方側に取り付けられるアッパーケース32とを備える。アッパーケース32は、蓄電素子群10Aの側面を覆う角筒状の本体33と、本体33の上方(アッパーケース32の上部)に設けられて表面積が大きくされた放熱部35とを有する。本体33のうち、前面部33Aと後面部33Bの内面は、蓄電素子11の面に接触状態とされている。
 放熱部35は、図7に示すように、複数(本実施形態では5つ)の放熱フィン36が等間隔を空けて並んで形成されている。放熱フィン36の内側(内部)は、伝熱パック20A(の封入体22)の端部側が挿通される溝部37とされている。溝部37は、伝熱パック20Aの位置に応じて、等間隔に並んで配されており、下方側に開口している。溝部37の隙間の間隔(溝部37の並び方向における対向する溝壁間の間隔)は、内圧が低い状態の伝熱パック20Aの厚みよりも大きくされている。蓄電素子11の熱は、この蓄電素子11に接触した伝熱パック20Aに伝わり、冷媒21が気化して封入体22の内圧が上昇し、図5に示すように、拡開部25が拡開する。これにより、シート部材23,24の外面が溝部37の内壁面に面当たり状態で接触することで、封入体22の熱が放熱部35に伝熱され、放熱部35から外部の空間に放熱される。
 ロアケース31、及びアッパーケース32は、熱伝導性の高い材料が用いられ、例えば、アルミニウム、アルミニウム合金、銅、銅合金等の金属とすることができる。ロアケース31、及びアッパーケース32は、同一の材料で形成しても、異なる材料で形成してもよい。また、例えば、ケース30における放熱部35を熱伝導性の高い材料で形成し、放熱部35以外の部分を放熱部35とは異なる材料で形成してもよい。ロアケース31とアッパーケース32とは、レーザー溶接、ロウ付け、ロック部材と被ロック部材との係合構造、ねじ止め構造、接着材による接着等の公知の手法により接合することができる。また、本実施形態では、ロアケース31及びアッパーケース32は、互いに液密でない状態で組み付けられているが、互いに液密に組み付けられていてもよい。
 本実施形態によれば、以下の作用、効果を奏する。
 冷却部材20は、冷媒21と、冷媒21を吸収する吸収部材26と、可撓性を有するシート部材23,24が接合され、冷媒21及び吸収部材26を密閉状態で封入する封入体22と、封入体22の熱を受けて外部に放熱する放熱部35と、を備える。
 本実施形態によれば、冷媒21が蒸発すると封入体22内の圧力が上昇する。すると、可撓性を有するシート部材23,24が変形することにより封入体22の内容積が増大して封入体22内の圧力が下がる。これにより、内容積が変化しない金属製の容器によって冷却部材20を形成する場合に比べて、封入体22内の耐圧性を低くすることができる。よって、冷却部材20の製造コストを低減することができる。また、蓄電素子11から封入体22に伝わった熱は、放熱部35によって外部に放熱されるため、放熱性を向上させることができる。
 また、放熱部35は、封入体22の端部側が挿通される溝部37を有する。
 このようにすれば、放熱部35における溝部37の内壁面が封入体22の端部側の外面と対向することで、放熱部35における封入体22の熱を受ける面積を増やすことができるため、放熱性を向上させることができる。
 また、冷却部材20と、少なくとも外面の一部が冷却部材20と接触する蓄電素子11と、を備えた蓄電モジュール10である。
 このようにすれば、蓄電モジュール10における蓄電素子11の熱を放熱部35から放熱することができる。
 また、蓄電素子11を収容し、蓄電素子11の外面に接触する内面を有するケース30を備え、放熱部35は、ケース30に設けられている。
 このようにすれば、蓄電モジュール10における蓄電素子11の熱をケース30により放熱することができる。
 <実施形態2>
 実施形態2を図13ないし図18を参照して説明する。実施形態1の放熱部50は、自然空冷式で冷却する構成であったが、実施形態2の放熱部50は、水冷式で冷却するものである。以下では、実施形態1と同一の構成については同一の符号を付して説明を省略する。
 蓄電モジュール40は、図15に示すように、複数(本実施形態では6つ)の蓄電素子11と、蓄電素子11を冷却する冷却部材41とを備えている。
 冷却部材41は、伝熱パック20Aと、伝熱パック20Aの熱を受け、外部に放熱するジャケット部43と、蓄電素子群10Aを挟持する一対の挟持板55と、を備えている。
 ジャケット部43は、アルミニウム、アルミニウム合金等の金属からなり、ベース部44と、伝熱パック20Aの端部側を冷却する放熱部50と、を有し、内部に冷却液が通るパイプ(図示しない)が複数回折り返しつつ内部の全体に亘って延びている。このパイプは、ベース部44の内部を通されているが、例えば、放熱部50の内部における溝部51のない部分についてもパイプが通るようにしてもよい。ベース部44には、図13に示すように、冷却液の導入口45と導出口46が形成されている。下側の導入口45から冷却液が導入され、上方の導出口46から冷却液が導出され、図示しない放熱経路を通って冷却液が循環することで、冷却液に伝わった熱が外部に放熱される。本実施形態では、冷却液として水が用いられているが、これに限られず、油等の液体を用いてもよい。また、液体に限られず、気体を冷却剤として用いてもよい。また、冷却液として不凍液を用いてもよい。
 放熱部50は、伝熱パック20A(の封入体22)の端部側が挿通される溝部51が並んで形成されている。溝部51は、伝熱パック20Aの位置に応じて等間隔に並んで形成されている。冷媒21が気化して封入体22が膨らむと、各シート部材23,24が溝部51の溝壁に接触した状態となり、封入体22の熱が放熱部50に伝熱される。
 一対の挟持板55は、アルミニウム、アルミニウム合金、銅、銅合金等の金属板材からなり、図13,図16に示すように、各挟持板55の端部には、L字状に屈曲された曲げ部56が形成されている。曲げ部56は、ベース部44における放熱部50側の面に、溶接やネジ留め等の公知の固定手段56Aで固定される。
一対の挟持板55の間は、左右の両側について、複数の円柱の棒状の連結部材57で連結されている。
 これにより、蓄電素子群10Aにおける両端の蓄電素子11の熱は、一対の挟持板55に伝熱された後、ジャケット部43に伝わるとともに、各蓄電素子11の熱は伝熱パック20Aからジャケット部43に伝わり、外部に放熱される。
 実施形態2によれば、放熱部50は、気体又は液体の循環により外部に熱を放熱する。
 このようにすれば、放熱部50の放熱性を向上させることができる。
 また、蓄電素子11の外面に接触した状態で複数の蓄電素子11及び冷却部材41としての伝熱パック20Aを挟持する一対の挟持板55を備え、挟持板55は、放熱部50に接触している。
 このようにすれば、複数の蓄電素子11の熱を挟持板55を介して放熱部50から放熱することができる。
<他の実施形態>
 本明細書に開示された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に開示された技術の技術的範囲に含まれる。
(1)シート部材23,24は、ラミネートフィルムに限られず、金属製シートからなる構成としてもよい。
(2)上記実施形態に係る冷却部材20,41は、蓄電モジュール10,40に使用されたが、これに限られず、冷却部材20,41は、電気接続箱、ECU(electronic control unit)等、任意の発熱部品に使用することができる。
(3)上記実施形態においては、封入体22は、2つのシート部材23,24を接合することにより形成したが、これに限られず、封入体22は、1つのシート部材を折り曲げた状態で端縁を液密に接合して形成する構成としてもよく、また、3つ以上のシート部材を液密に接合して形成する構成としてもよい。
(4)放熱部35,50にファン等で送風して冷却する強制空冷式としてもよい。
10,40: 蓄電モジュール
11: 蓄電素子
20,41: 冷却部材
21: 冷媒
22: 封入体
23,24: シート部材
26: 吸収部材
30: ケース
35,50: 放熱部
36: 放熱フィン
37,51: 溝部
43: ジャケット部
55: 挟持板

Claims (6)

  1. 冷媒と、
     前記冷媒を吸収する吸収部材と、
     可撓性を有するシート部材が接合され、前記冷媒及び前記吸収部材を密閉状態で封入する封入体と、
     前記封入体の熱を受けて外部に放熱する放熱部と、を備える冷却部材。
  2. 前記放熱部は、前記封入体の端部側が挿通される溝部を有する、請求項1に記載の冷却部材。
  3. 前記放熱部は、気体又は液体の循環により外部に熱を放熱する請求項1又は請求項2に記載の冷却部材。
  4. 請求項1から請求項3のいずれか一項に記載の冷却部材と、
     少なくとも外面の一部が前記冷却部材と接触する蓄電素子と、を備えた蓄電モジュール。
  5. 前記蓄電素子を収容し、前記蓄電素子の外面に接触する内面を有するケースを備え、
     前記放熱部は、前記ケースに設けられている請求項4に記載の蓄電モジュール。
  6. 前記蓄電素子の外面に接触した状態で前記蓄電素子を挟持する一対の挟持板を備え、前記挟持板は、前記放熱部に接触している請求項4に記載の蓄電モジュール。
PCT/JP2016/085681 2015-12-02 2016-12-01 冷却部材及び蓄電モジュール WO2017094819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016005527.7T DE112016005527T5 (de) 2015-12-02 2016-12-01 Kühlelement und Energiespeichermodul
US15/776,211 US11322784B2 (en) 2015-12-02 2016-12-01 Cooling member and power storage module
CN201680068200.8A CN108292790B (zh) 2015-12-02 2016-12-01 冷却构件及蓄电模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015235679A JP6555107B2 (ja) 2015-12-02 2015-12-02 冷却部材及び蓄電モジュール
JP2015-235679 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017094819A1 true WO2017094819A1 (ja) 2017-06-08

Family

ID=58797519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085681 WO2017094819A1 (ja) 2015-12-02 2016-12-01 冷却部材及び蓄電モジュール

Country Status (5)

Country Link
US (1) US11322784B2 (ja)
JP (1) JP6555107B2 (ja)
CN (1) CN108292790B (ja)
DE (1) DE112016005527T5 (ja)
WO (1) WO2017094819A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111488A1 (ja) * 2017-12-08 2019-06-13 住友電気工業株式会社 冷却材及びこれを用いた蓄電パック
EP3719920A4 (en) * 2017-11-30 2020-12-23 Mitsubishi Chemical Corporation SEPARATION ELEMENT AND ASSEMBLED BATTERY

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670449B2 (ja) * 2016-08-16 2020-03-25 株式会社オートネットワーク技術研究所 蓄電モジュール
JP6597519B2 (ja) * 2016-08-16 2019-10-30 株式会社オートネットワーク技術研究所 蓄電モジュール
JP6860449B2 (ja) * 2017-08-30 2021-04-14 ビークルエナジージャパン株式会社 電池モジュール
EP3719921A4 (en) * 2017-11-30 2020-12-23 Mitsubishi Chemical Corporation ISOLATOR AND COMPOSITE BATTERY
JP7031260B2 (ja) * 2017-12-01 2022-03-08 株式会社オートネットワーク技術研究所 蓄電モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147637A (ja) * 2003-11-20 2005-06-09 Seiji Ichihara 冷却シ−ト材
JP2012018915A (ja) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd 電池モジュール
JP2012115589A (ja) * 2010-12-03 2012-06-21 Tigers Polymer Corp ゲル状物質を封入した冷却シートおよびゲル状物質の冷却用途への使用
JP2012248363A (ja) * 2011-05-26 2012-12-13 Jfe Engineering Corp 電池システム及び電気自動車
JP2013131428A (ja) * 2011-12-22 2013-07-04 Panasonic Corp 冷却部付き電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123169A (ja) 1997-07-01 1999-01-26 Harness Sogo Gijutsu Kenkyusho:Kk ヒートパイプ
CN100364083C (zh) * 2004-07-20 2008-01-23 鸿富锦精密工业(深圳)有限公司 热管
CN101529647A (zh) * 2006-10-23 2009-09-09 丰田自动车株式会社 冷却装置及车辆
JP4508221B2 (ja) * 2007-08-27 2010-07-21 豊田合成株式会社 組電池装置
JP5092657B2 (ja) * 2007-09-28 2012-12-05 三菱自動車工業株式会社 バッテリユニット
JP5857254B2 (ja) * 2010-07-30 2016-02-10 パナソニックIpマネジメント株式会社 電池モジュール
JP5451694B2 (ja) 2011-07-05 2014-03-26 株式会社日立製作所 非水電解質電池モジュール
KR101272524B1 (ko) * 2011-09-20 2013-06-11 현대자동차주식회사 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
US9050898B2 (en) * 2011-10-19 2015-06-09 GM Global Technology Operations LLC Wave fin battery module
CN202616368U (zh) 2012-03-29 2012-12-19 深圳市西盟特电子有限公司 一种自散热器件
JPWO2013145611A1 (ja) * 2012-03-30 2015-12-10 日本電気株式会社 蓄電デバイス及び蓄電デバイスの放熱方法
JP2013232364A (ja) * 2012-05-01 2013-11-14 Nissan Motor Co Ltd 電池装置
KR101428383B1 (ko) * 2013-04-26 2014-08-08 현대자동차주식회사 친환경 차량의 배터리모듈 간접 냉각장치
US10218043B2 (en) * 2015-09-24 2019-02-26 Faraday & Future Inc. Dual phase battery cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147637A (ja) * 2003-11-20 2005-06-09 Seiji Ichihara 冷却シ−ト材
JP2012018915A (ja) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd 電池モジュール
JP2012115589A (ja) * 2010-12-03 2012-06-21 Tigers Polymer Corp ゲル状物質を封入した冷却シートおよびゲル状物質の冷却用途への使用
JP2012248363A (ja) * 2011-05-26 2012-12-13 Jfe Engineering Corp 電池システム及び電気自動車
JP2013131428A (ja) * 2011-12-22 2013-07-04 Panasonic Corp 冷却部付き電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719920A4 (en) * 2017-11-30 2020-12-23 Mitsubishi Chemical Corporation SEPARATION ELEMENT AND ASSEMBLED BATTERY
US11515590B2 (en) 2017-11-30 2022-11-29 Mitsubishi Chemical Corporation Partition member and assembled battery
WO2019111488A1 (ja) * 2017-12-08 2019-06-13 住友電気工業株式会社 冷却材及びこれを用いた蓄電パック
JPWO2019111488A1 (ja) * 2017-12-08 2020-12-03 住友電気工業株式会社 冷却材及びこれを用いた蓄電パック
US11380946B2 (en) 2017-12-08 2022-07-05 Sumitomo Electric Industries, Ltd. Coolant and power storage pack using same
JP7209949B2 (ja) 2017-12-08 2023-01-23 住友電気工業株式会社 冷却材及びこれを用いた蓄電パック

Also Published As

Publication number Publication date
JP6555107B2 (ja) 2019-08-07
US11322784B2 (en) 2022-05-03
CN108292790B (zh) 2021-05-11
JP2017103109A (ja) 2017-06-08
CN108292790A (zh) 2018-07-17
DE112016005527T5 (de) 2018-09-13
US20200251790A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6555107B2 (ja) 冷却部材及び蓄電モジュール
JP6548032B2 (ja) 冷却部材、及び蓄電モジュール
US10714798B2 (en) Cooling member and power storage module with same
JP6186209B2 (ja) 組電池の冷却兼加熱構造
CN108292788B (zh) 蓄电模块
WO2018034122A1 (ja) 蓄電モジュール
WO2016148225A1 (ja) 冷却部材、及び蓄電モジュール
WO2018061761A1 (ja) 蓄電モジュール
CN108779963B (zh) 冷却部件及蓄电模块
CN109565095B (zh) 蓄电模块
WO2017159478A1 (ja) 冷却部材、及び蓄電モジュール
CN109565093B (zh) 蓄电模块
JP6598026B2 (ja) 蓄電モジュール
WO2018034132A1 (ja) 冷却部材及び冷却部材を備えた蓄電モジュール
JP6866854B2 (ja) 熱輸送部材、熱輸送システム、及び蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005527

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870756

Country of ref document: EP

Kind code of ref document: A1