WO2017094779A1 - 軸及び密封構造 - Google Patents

軸及び密封構造 Download PDF

Info

Publication number
WO2017094779A1
WO2017094779A1 PCT/JP2016/085560 JP2016085560W WO2017094779A1 WO 2017094779 A1 WO2017094779 A1 WO 2017094779A1 JP 2016085560 W JP2016085560 W JP 2016085560W WO 2017094779 A1 WO2017094779 A1 WO 2017094779A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
shaft
seal ring
housing
annular
Prior art date
Application number
PCT/JP2016/085560
Other languages
English (en)
French (fr)
Inventor
勝好 佐久間
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to KR1020187015246A priority Critical patent/KR20180075645A/ko
Priority to US15/780,351 priority patent/US20180355980A1/en
Priority to EP16870716.4A priority patent/EP3385577A4/en
Priority to CN201680070592.1A priority patent/CN108291647B/zh
Priority to JP2017554145A priority patent/JP6394819B2/ja
Publication of WO2017094779A1 publication Critical patent/WO2017094779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/46Sealings with packing ring expanded or pressed into place by fluid pressure, e.g. inflatable packings
    • F16J15/48Sealings with packing ring expanded or pressed into place by fluid pressure, e.g. inflatable packings influenced by the pressure within the member to be sealed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the present invention relates to a shaft that rotates relative to a housing and a sealing structure that seals an annular gap between the housing and the shaft that rotate relatively.
  • a recess for introducing a fluid to be sealed to generate dynamic pressure is provided.
  • a technique for reducing sliding resistance between the side surface and the side wall surface of the annular groove by forming the side surface is known (see Patent Document 1).
  • the seal ring is made of resin, its sliding surface can wear over time. Therefore, when the concave portion disclosed in the above-described prior art is formed on the side surface of the resin seal ring, the shape of the concave portion can change due to wear of the side surface over time. In particular, since the concave portion can gradually become shallower, the sliding resistance reducing action by the concave portion can be gradually reduced.
  • an object of the present invention is to provide a shaft and a sealing structure that can reduce the sliding resistance of the seal ring regardless of the wear of the side surface of the seal ring over time.
  • the shaft according to the present invention is A shaft that is inserted into a shaft hole provided in the housing and rotates relative to the housing, and is made of a resin that seals the annular gap between the housing and maintains the pressure of the fluid to be sealed.
  • a shaft provided with an annular groove on its outer peripheral side where a seal ring is mounted A side wall surface on which the seal ring in the annular groove slides is made of metal, and a dynamic pressure is generated on the side wall surface by the fluid to be sealed that is introduced when the housing and the shaft rotate relative to each other.
  • a generation groove is formed.
  • the shaft of the present invention a part of the pressure of the fluid to be sealed that presses the seal ring against the side wall surface is canceled by the dynamic pressure generated in the dynamic pressure generating groove formed on the side wall surface of the annular groove. Is done. Thereby, the sliding resistance with respect to the said side wall surface of a seal ring is reduced.
  • the side wall surface of the annular groove is made of metal, it is difficult to wear even if the resin seal ring slides. Therefore, since the shape of the dynamic pressure generating groove formed on the side wall surface is suppressed from being changed due to wear, the reduction of the sliding resistance reducing effect by the dynamic pressure generating groove is also suppressed.
  • the sliding resistance of the seal ring can be reduced regardless of the wear of the side surface of the seal ring over time.
  • the shaft according to the present invention may include a metal annular member that constitutes a side wall surface of the annular groove. If such a structure is employ
  • the dynamic pressure generating groove includes a first groove extending in the circumferential direction, a second groove extending radially inward from a circumferential center of the first groove, and guiding the fluid to be sealed into the first groove. , May be provided. Thereby, dynamic pressure can be generated in the dynamic pressure generating groove regardless of the relative rotational direction of the shaft. Moreover, since the fluid to be sealed guided into the first groove is suppressed from leaking in the radial direction (the width direction of the first groove), dynamic pressure can be effectively generated.
  • the sealing structure according to the present invention is A housing provided with a shaft hole; A shaft that is inserted into the shaft hole and rotates relative to the housing, and a shaft having an annular groove on the outer peripheral side thereof; A resin-made seal ring mounted in the annular groove, which seals the annular gap between the housing and maintains the pressure of the fluid to be sealed; and
  • a sealing structure comprising: A side wall surface on which the seal ring in the annular groove slides is made of metal, and a dynamic pressure is generated on the side wall surface by the fluid to be sealed that is introduced when the housing and the shaft rotate relative to each other. A generation groove is formed.
  • the sliding resistance of the seal ring can be reduced regardless of the wear of the side surface of the seal ring over time, like the shaft according to the present invention.
  • the sealing structure according to the present invention may include a metal annular member constituting the side wall surface of the annular groove.
  • a first groove extending in a circumferential direction; a second groove extending radially inward from a circumferential center of the first groove; and a second groove that guides the fluid to be sealed into the first groove. , May be provided.
  • the same effects as those of the shaft according to the present invention can be obtained.
  • the present invention can also be understood as an annular member or a sealing device mounted in an annular groove provided on the outer peripheral side of the shaft. That is, the annular member according to the present invention is It is provided on the outer peripheral side of a shaft that is inserted into a shaft hole provided in the housing and rotates relative to the housing, and seals an annular gap between the housing and maintains the pressure of the fluid to be sealed.
  • the annular member fixed to the annular groove where the resin seal ring is mounted A sliding surface on which a side surface of the seal ring slides; The sliding surface is made of metal, and a dynamic pressure generating groove for generating a dynamic pressure by the fluid to be sealed introduced at the time of relative rotation between the housing and the shaft is formed on the sliding surface. It is characterized by.
  • the sealing device is A sealing device that holds a pressure of a fluid to be sealed by sealing an annular gap between a housing provided with a shaft hole and a shaft that is inserted into the shaft hole and rotates relative to the housing.
  • a sealing device mounted in an annular groove provided on the outer peripheral side of the shaft A resin seal ring that seals the annular gap and maintains the pressure of the fluid to be sealed;
  • the sliding resistance of the seal ring can be reduced regardless of the wear of the side surface of the seal ring over time.
  • the sliding resistance of the seal ring can be reduced regardless of the wear of the side surface of the seal ring over time.
  • FIG. 3 is a schematic cross-sectional view illustrating a state when the shaft according to Example 1 is used.
  • FIG. 3 is a cross-sectional view of a shaft according to Embodiment 1.
  • FIG. 1 is a side view of a seal ring according to Embodiment 1.
  • FIG. 3 is a partially enlarged view of a side wall surface of an annular groove according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view of a dynamic pressure generating groove according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing another shape of the dynamic pressure generating groove according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing another shape of the dynamic pressure generating groove according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing another shape of the dynamic pressure generating groove according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing another shape of the dynamic pressure generating groove according to Embodiment 1.
  • FIG. FIG. 6 is a schematic cross-sectional view illustrating a state when a shaft according to Example 2 is used.
  • 6 is a side view of an annular member according to Embodiment 2.
  • the shaft according to the present embodiment is used in a transmission such as an AT or CVT for automobiles, and is inserted into the shaft hole of the housing and rotates relative to the shaft hole.
  • the shaft is provided with an annular groove on the outer peripheral side, and a sealing device such as a seal ring is attached to the groove.
  • the fluid to be sealed is the hydraulic fluid of the transmission, and in the following description, the “high pressure side” and the “low pressure side” indicate the hydraulic pressure when a differential pressure is generated on both sides of the seal ring. It means the higher side and the lower side.
  • FIG. 1 is a schematic cross-sectional view illustrating a state in use of the shaft according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the shaft according to the first embodiment (AA cross-sectional view in FIG. 1), and shows a configuration of a side wall surface of the annular groove.
  • FIG. 3 is a side view of the seal ring attached to the shaft according to the first embodiment.
  • FIG. 4 is a partially enlarged view of the side wall surface of the annular groove shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of a dynamic pressure generating groove provided on the side wall surface, and is a CC cross-sectional view of FIG.
  • the sealing structure 100 includes a housing 300 provided with a shaft hole 310 and a metal shaft that is inserted into the shaft hole 310 and rotates relative to the housing 300. 200 and a resin seal ring 400 mounted in an annular groove 210 provided on the outer peripheral side of the shaft 200.
  • the seal ring 400 seals the annular gap between the inner peripheral surface of the shaft hole 310 and the outer peripheral surface of the shaft 200, and maintains the pressure of the hydraulic oil in the high-pressure side H on the left side in the drawing. That is, in the present embodiment, the region on the high pressure side H is the region to be sealed.
  • the seal ring 400 is made of a resin material such as polyether ether ketone (PEEK), polyphenylene sulfide (PPS), or polytetrafluoroethylene (PTFE).
  • PEEK polyether ether ketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • the seal ring 400 includes a joint portion 410 at one place in the circumferential direction, and is divided by the joint portion 410. In this embodiment, as shown in FIG.
  • the abutment portion 410 employs a so-called special step cut that is divided in a step shape when viewed from either the outer peripheral surface side or both side surfaces. Since the special step cut is a known technique, a detailed description thereof is omitted, but has a characteristic of maintaining a stable sealing performance even if the circumference of the seal ring 400 is changed due to thermal expansion and contraction.
  • the special step cut shape is formed by injection molding.
  • a special step cut is adopted as an example of the abutment portion 410.
  • the present invention is not limited to this, and a straight cut, a bias cut, or the like is adopted as long as a desired sealing performance is exhibited. May be.
  • the side surface 401 (axial end surface) of the seal ring 400 is formed flat except for the joint portion 410. The other side surface is also formed in the same manner.
  • the annular groove 210 formed in the shaft 200 includes a groove bottom 211, a side wall surface 212 on the high pressure side H (left side in the figure), and a side wall surface 213 on the low pressure side L (right side in the figure).
  • a plurality (29 in this embodiment) of dynamic pressure generating grooves 220 are formed in the side wall surface 213 at equal intervals in the circumferential direction.
  • the dynamic pressure generating groove 220 includes a first groove 221 having a constant radial width and extending in the circumferential direction, and a sealing target extending radially inward from the circumferential center of the first groove 221.
  • the second groove 222 is configured to guide the fluid into the first groove 221.
  • the first groove 221 is provided at a position within the sliding region X where the side surface of the seal ring 400 slides (see FIGS. 1 and 4). Further, as shown in FIG. 5 which is a CC cross-sectional view of FIG. 4, the first groove 221 has a constant depth in the central portion, but gradually becomes shallower on a plane toward both ends. It is comprised so that it may become. On the other hand, as shown in FIG. 4, the second groove 222 is formed so that the radially inner portion extends to the inner side of the sliding region X.
  • the dynamic pressure generating groove 220 is formed by directly performing processing such as cutting on the side wall surface 213 of the annular groove 210.
  • FIG. 1 shows a state in which a differential pressure is generated between two regions separated by the seal ring 400 and the pressure on the high pressure side H is increased by starting the automobile engine. Due to this differential pressure, fluid pressure (hydraulic pressure) acts on the side surface on the high pressure side H and the inner peripheral surface of the seal ring 400. Due to the fluid pressure, the seal ring 400 closely contacts the inner peripheral surface of the shaft hole 310 of the housing 300 and the side wall surface 213 of the annular groove 210 on the low pressure side L.
  • a seal surface is formed between the outer peripheral surface of the seal ring 400 and the inner peripheral surface of the shaft hole 310 and between the side surface 401 and the side wall surface 213 of the seal ring 400.
  • the annular gap between the two is sealed and the hydraulic pressure is maintained.
  • the side surface 401 of the seal ring 400 is configured to rotate and slide with respect to the side wall surface 213. Therefore, during rotation, hydraulic oil flows from a portion radially inward of the sliding region X in the second groove 222.
  • the hydraulic oil that has flowed into the second groove 222 is guided to the first groove 221 and then flows through the first groove 221 in the circumferential direction and then flows between the sliding surfaces. At this time, dynamic pressure is generated. .
  • the seal ring 400 rotates relative to the side wall surface 213 in the clockwise direction in FIG. 2
  • the hydraulic oil flows out from the end portion on the clockwise direction side of the first groove 221.
  • the seal ring 400 rotates relative to the side wall surface 213 counterclockwise in FIG. 2
  • the hydraulic oil flows out from the end of the first groove 221 on the counterclockwise direction side.
  • the pressing force acting in the direction of the side wall surface 213 is reduced, and a force in a direction away from the side wall surface 213 is generated, so that the sliding resistance of the seal ring 400 with respect to the side wall surface 213 is effectively reduced. Is done. Furthermore, since the heat generated by sliding can be reduced by reducing the sliding resistance, the seal ring 400 can be suitably used even under high-speed and high-pressure environmental conditions.
  • the side wall surface 213 of the annular groove 210 is also made of metal. Therefore, the side wall surface 213 is not easily worn even when the resin seal ring 400 having a relatively low hardness slides. Therefore, since the shape of the dynamic pressure generating groove 220 formed on the side wall surface 213 is suppressed from being changed due to wear, the reduction in the sliding resistance reducing effect by the dynamic pressure generating groove 220 is also suppressed. In practice, the shape of the dynamic pressure generating groove 220 hardly changes and does not become shallow, so that the effect of reducing the sliding resistance is hardly reduced.
  • the sliding resistance of the seal ring 400 can be reduced regardless of the wear of the side surface of the seal ring 400 over time.
  • the dynamic pressure generating groove 220 includes the first groove 221 and the second groove 222 extending radially inward from the circumferential center of the first groove 221, the rotation of the seal ring 400 with respect to the side wall surface 213 is performed.
  • the above dynamic pressure is generated regardless of the direction.
  • the first groove 221 has wall surfaces on the radially inner side and the radially outer side from the shape thereof, the hydraulic oil guided into the first groove 221 is suppressed from leaking in the radial direction. Dynamic pressure can be generated. Since the first groove 221 is formed at a position within the sliding region X that slides with respect to the side surface of the seal ring 400, the fluid to be sealed introduced into the first groove 221 is radially directed.
  • the first groove 221 is configured such that its circumferential depth becomes shallower toward both ends. Therefore, the dynamic pressure can be effectively generated by the so-called wedge effect.
  • channel 222 is formed so that it may extend to the inner side rather than the sliding area
  • both side surfaces of the seal ring 400 can be made flat. Therefore, when attaching the seal ring 400 to the annular groove 210, the workability is improved because it is not necessary to consider its orientation.
  • the dynamic pressure generating groove 220 is formed only on one side wall surface 213 of the annular groove 210, but the dynamic pressure generating groove 220 may be formed also on the other side wall surface 212. In this case, it is possible to reduce the sliding resistance acting on the seal ring 400 even in a situation where the pressure levels in the two regions separated by the seal ring 400 are interchanged.
  • FIGS. 6 to 8 are views corresponding to the CC cross-sectional view in FIG. 4, similar to FIG. 6 and 7 show another example of the groove bottom of the first groove 221 configured to be shallower at both ends compared to the central portion in the circumferential direction.
  • FIG. 6 shows an example of a groove bottom that gradually becomes shallow in a curved shape from the center in the circumferential direction toward both sides.
  • FIG. 7 shows an example in which the depth becomes shallower in steps from the central portion in the circumferential direction.
  • dynamic pressure due to the wedge effect can be effectively generated.
  • FIG. 8 even when the depth of the groove bottom of the first groove 221 is configured to be constant in the circumferential direction, it is possible to generate dynamic pressure to some extent.
  • Example 2 Next, with reference to FIG.9 and FIG.10, the axis
  • the second embodiment is different from the first embodiment in that the shaft includes a metal annular member that forms the side wall surface on which the dynamic pressure generating grooves are formed.
  • symbol is attached
  • the operation of the same configuration is also substantially the same.
  • FIG. 9 is a schematic cross-sectional view illustrating a state when the shaft according to the second embodiment is used.
  • FIG. 10 is a side view of the annular member included in the shaft according to the second embodiment, and shows the side surface on the side where the dynamic pressure generating groove is formed.
  • the shaft 200 according to the second embodiment includes a metal annular member 230 that forms the side wall surface 213 of the annular groove 210. That is, the side surface 233 on the high pressure side H of the annular member 230 fixed at a position near the low pressure side L in the annular groove 210 constitutes the side wall surface 213 of the annular groove 210.
  • a plurality of dynamic pressure generating grooves 220 are formed on one side surface 233 of the annular member 230 in the same manner as the side wall surface 213 in the first embodiment. Since the shape and action of the dynamic pressure generating groove 220 formed in the annular member 230 are the same as those in the first embodiment, description thereof is omitted. Also in this embodiment, the dynamic pressure generating groove 220 is formed by processing the side surface 233 such as cutting.
  • the shaft hole 231 of the annular member 230 has an inner diameter that is substantially the same as the outer diameter of the groove bottom 211 of the annular groove 210.
  • the annular member 230 can be fixed to the shaft 200 by fitting the shaft hole 231 and the groove bottom 211 of the shaft 200.
  • the shaft 200 according to the present embodiment includes two shaft portions 200A and 200B configured to be detachable. Therefore, after fixing the annular member 230 to the groove bottom 211 formed in the shaft portion 200A, the annular member 230 having no cutting portion is attached to the shaft 200 by combining the shaft portion 200A and the shaft portion 200B. It becomes possible.
  • the seal ring 400 and the annular member 230 function as the sealing device 110 that seals the annular gap between the housing 300 and the shaft 200 and maintains the pressure of the hydraulic oil.
  • FIG. 9 shows a state in which the pressure on the high-pressure side H is increased, and the seal ring 400 is formed between the inner peripheral surface of the shaft hole 310 of the housing 300 and the annular shape by the differential pressure.
  • the groove 210 is in close contact with the side wall surface 213 of the low pressure side L, that is, the side surface 233 of the annular member 230.
  • the annular gap between the shaft 200 and the housing 300 is sealed and the hydraulic pressure is maintained.
  • At the time of relative rotation between the shaft 200 and the housing 300 at least the side surface 401 of the seal ring 400 is configured to rotate and slide with respect to the side surface 233. Therefore, at the time of rotation, the hydraulic oil flows into the dynamic pressure generating groove 220, so that dynamic pressure is generated between the sliding surfaces.
  • the side wall surface 213 of the annular groove 210 is composed of a metallic annular member 230 that is a separate component from the shaft 200. Therefore, in this embodiment, it is possible to configure the side wall surface 213 of the annular groove 210 by attaching the annular member 230 to the shaft 200 after the dynamic pressure generating groove 220 is previously formed on the side surface 233.
  • the dynamic pressure generating groove 220 is formed. It becomes easy.
  • the annular member 230 is made of metal, it is possible to use other materials for the shaft 200, so that the degree of freedom in design is increased.
  • the effect exhibited by the present embodiment can also be understood as the effect exhibited by the annular member 230 itself or the sealing device 110 including the seal ring 400 and the annular member 230.
  • only one side wall surface 213 in the annular groove 210 is constituted by the annular member 230, but the other side wall surface 212 may also be constituted by the annular member 230.
  • the annular member 230 is fixed so that the side surface 233 on which the dynamic pressure generating groove 220 is formed faces the inside of the annular groove 210.
  • the shape of the dynamic pressure generating groove 220 is not limited to that described above, and other shapes can be appropriately employed. Further, in order to achieve the object of the present invention with respect to the annular member 230 of the above-described second embodiment, at least a portion constituting the side wall surface 213 of the annular groove 210 may be made of metal. Therefore, the annular member 230 is not limited to the above-described metal, but only the portion constituting the side wall surface 213 (the portion that slides with respect to the seal ring 400) is made of metal, and the other portions are made of other materials. You may employ
  • sealing structure 110 sealing device 200: shaft 200A, 200B: shaft portion 210: annular groove 211: groove bottom 212, 213: side wall surface 220: dynamic pressure generating groove 221: first groove 222: second groove 230: annular Member 231: Shaft hole 233: Side surface 300: Housing 310: Shaft hole 400: Seal ring 401: Side surface 410: Abutment portion H: High pressure side L: Low pressure side X: Sliding region

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Fluid Mechanics (AREA)
  • Sealing Devices (AREA)

Abstract

シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることのできる軸及び密封構造を提供する。ハウジング300に対して相対的に回転する軸であって、ハウジングと300の間の環状隙間を封止して密封対象流体の圧力を保持する樹脂製のシールリング400が装着される環状溝210をその外周側に備える軸200において、環状溝210におけるシールリング400が摺動する側壁面213が金属で構成され、側壁面213に相対的な回転時に導入される密封対象流体によって動圧を発生させる動圧発生溝220が形成されている。

Description

軸及び密封構造
 本発明は、ハウジングに対して相対的に回転する軸、及び、相対的に回転するハウジングと軸との間の環状隙間を密封する密封構造に関する。
 従来、自動車用の自動変速機(AT)や無段変速機(CVT)においては、油圧を保持するために、相対的に回転する軸とハウジングとの間の環状隙間を封止する樹脂製のシールリングが用いられている。一般に、この種類のシールリングは、軸の外周側に設けられた環状溝に装着されて、その外周面をハウジングの軸孔の内周面に密着させると共に、その一方の側面(軸方向における一方の端面)を環状溝の側壁面に密着させることによって、軸とハウジングとの間の環状隙間を封止する。ここで、いわゆる側面摺動タイプのシールリング、即ち、その側面が環状溝の側壁面に対して密着しながら摺動するシールリングにおいては、密封対象流体を導入させて動圧を発生させる凹部を当該側面に形成することによって、当該側面と環状溝の側壁面との間の摺動抵抗を低減させる技術が知られている(特許文献1参照)。
国際公開第2011/105513号
 シールリングが樹脂製の場合には、その摺動面は経時的に摩耗し得る。したがって、上述の従来技術に開示された凹部を樹脂製のシールリングの側面に形成した場合には、当該側面の経時的な摩耗によって凹部の形状が変化し得る。特に凹部が徐々に浅く成り得るため、当該凹部による摺動抵抗の低減作用は徐々に低下し得る。
 このような課題に鑑み、本発明は、シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることのできる軸及び密封構造を提供することを目的とする。
 本発明は、上記課題を解決するために以下の手段を採用した。
 即ち、本発明に係る軸は、
 ハウジングに設けられた軸孔に挿通されて前記ハウジングに対して相対的に回転する軸であって、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持する樹脂製のシールリングが装着される環状溝をその外周側に備える軸において、
 前記環状溝における前記シールリングが摺動する側壁面が金属で構成され、前記側壁面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする。
 本発明に係る軸によれば、環状溝の側壁面に形成された動圧発生溝において発生した動圧によって、シールリングを当該側壁面に対して押圧する密封対象流体の圧力の一部が相殺される。これにより、シールリングの当該側壁面に対する摺動抵抗が低減される。ここで、環状溝の側壁面は金属から構成されているため、樹脂製のシールリングが摺動しても摩耗しにくい。ゆえに、側壁面に形成された動圧発生溝の形状が摩耗によって変化することが抑制されるため、動圧発生溝による摺動抵抗の低減作用の低下も抑制される。特に、シールリングの側面が経時的に摩耗したとしても、動圧発生溝による摺動抵抗の低減作用は損なわれない。したがって、本発明によれば、シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることができる。
 また、本発明に係る軸は、前記環状溝の側壁面を構成する金属製の環状部材を備えてもよい。このような構成を採用すれば、例えば、予め動圧発生溝を形成した環状部材を軸に取り付けることによって環状溝の側壁面を構成することが可能になる。したがって、既に軸に構成された環状溝の側壁面に動圧発生溝を形成する場合に比して、動圧発生溝の形成が容易になる。
 また、前記動圧発生溝は、周方向に延びる第1溝と、前記第1溝における周方向の中央から径方向内側に延びる、前記密封対象流体を前記第1溝内に導く第2溝と、を備えてもよい。これにより、軸の相対的な回転方向に関わらず、動圧発生溝において動圧を発生させることができる。また、第1溝内に導かれた密封対象流体が径方向(第1溝の幅方向)に漏れ出ることが抑制されるため、効果的に動圧を発生させることができる。
 また、本発明に係る密封構造は、
 軸孔が設けられたハウジングと、
 前記軸孔に挿通されて前記ハウジングに対して相対的に回転する軸であって、その外周側に環状溝を備える軸と、
 前記環状溝に装着される樹脂製のシールリングであって、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持するシールリングと、
 を備える密封構造において、
 前記環状溝における前記シールリングが摺動する側壁面が金属で構成され、前記側壁面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする。
 本発明に係る密封構造においても、上記の本発明に係る軸と同様に、シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることができる。
 また、本発明に係る密封構造は、前記環状溝の側壁面を構成する金属製の環状部材を備えてもよい。また、前記動圧発生溝が、周方向に延びる第1溝と、前記第1溝における周方向の中央から径方向内側に延びる、前記密封対象流体を前記第1溝内に導く第2溝と、を備えてもよい。何れの場合においても、上記の本発明に係る軸と同様の効果が奏される。
 ここで、本発明は、軸の外周側に設けられた環状溝に装着される環状部材や密封装置としても捉えることができる。
 即ち、本発明に係る環状部材は、
 ハウジングに設けられた軸孔に挿通されて前記ハウジングに対して相対的に回転する軸の外周側に設けられ、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持する樹脂製のシールリングが装着される環状溝に固定される環状部材において、
 前記シールリングの側面が摺動する摺動面を備え、
 前記摺動面が金属で構成され、前記摺動面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする。
 また、本発明に係る密封装置は、
 軸孔が設けられたハウジングと、前記軸孔に挿通されて前記ハウジングに対して相対的に回転する軸との間の環状隙間を封止して密封対象流体の圧力を保持する密封装置であって、前記軸の外周側に設けられた環状溝に装着される密封装置において、
 前記環状隙間を封止して前記密封対象流体の圧力を保持する樹脂製のシールリングと、
 前記シールリングの側面が摺動する摺動面を備え、前記環状溝に固定される環状部材と、を備え、
 前記摺動面が金属で構成され、前記摺動面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする。
 何れの発明においても、上記の本発明に係る軸や密封構造と同様に、シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることができる。
 以上説明したように、本発明によれば、シールリングの側面の経時的な摩耗に関わらず、シールリングの摺動抵抗を低減させることができる。
実施例1に係る軸の使用時の状態を示す模式的断面図である。 実施例1に係る軸の断面図である。 実施例1に係るシールリングの側面図である。 実施例1に係る環状溝の側壁面の部分拡大図である。 実施例1に係る動圧発生溝の模式的断面図である。 実施例1に係る動圧発生溝の他の形状を示す模式的断面図である。 実施例1に係る動圧発生溝の他の形状を示す模式的断面図である。 実施例1に係る動圧発生溝の他の形状を示す模式的断面図である。 実施例2に係る軸の使用時の状態を示す模式的断面図である。 実施例2に係る環状部材の側面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。なお、本実施例に係る軸は、自動車用のATやCVT等の変速機に用いられるものであって、ハウジングの軸孔に挿通されて、これに対して相対的に回転する。ここで、この軸には、外周側に環状溝が設けられており、当該溝にシールリング等の密封装置が装着される。なお、本実施例においては、密封対象流体は変速機の作動油であり、以下の説明において、「高圧側」と「低圧側」は、シールリングの両側に差圧が生じたときに油圧が高くなる側と低くなる側をそれぞれ意味する。
 [実施例1]
 図1から図5を参照して、本発明の実施例1に係る軸及び密封構造について説明する。図1は、実施例1に係る軸の使用時の状態を示す模式的断面図である。図2は、実施例1に係る軸の断面図(図1におけるAA断面図)であって、環状溝の側壁面の構成を示す図である。図3は、実施例1に係る軸に装着されるシールリングの側面図である。図4は、図2に示される環状溝の側壁面の一部拡大図である。図5は、側壁面に設けられた動圧発生溝の模式的断面図であって、図4のCC断面図である。
 <軸及び密封構造の構成>
 図1に示されるように、実施例1に係る密封構造100は、軸孔310が設けられたハウジング300と、軸孔310に挿通されてハウジング300に対して相対的に回転する金属製の軸200と、軸200の外周側に設けられた環状溝210に装着される樹脂製のシールリング400とから構成される。
 シールリング400は、軸孔310の内周面と、軸200の外周面との間の環状隙間を封止して、図中左側の高圧側H内の作動油の圧力を保持する。つまり、本実施例では、高圧側Hの領域が密封対象領域である。このシールリング400は、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)等の樹脂材料からなる。図3に示されるように、シールリング400は、周方向の1箇所に合口部410を備えており、この合口部410によって分断されている。本実施例では、図3に示されるように、合口部410は、外周面側及び両側面側の何れから見ても階段状に分断された、いわゆる特殊ステップカットを採用している。特殊ステップカットは公知技術であるため、その詳細な説明は省略するが、熱膨張収縮によりシールリング400の周長が変化しても安定したシール性能を維持する特性を有する。また、シールリング400においては、特殊ステップカットの形状は射出成形によって成形される。なお、本実施例においては、合口部410の一例として特殊ステップカットが採用されているが、これに限定されず、所望のシール性能が発揮される限りにおいて、ストレートカットやバイアスカット等を採用してもよい。なお、図3に示されるように、シールリング400の側面401(軸方向の端面)は、合口部410を除いて平坦に形成されている。また、他方の側面も同様に形成されている。
 軸200に形成された環状溝210は、溝底211、高圧側H(図中左側)の側壁面212、及び、低圧側L(図中右側)の側壁面213を備えている。側壁面213には、図2に示されるように、複数(本実施例では29個)の動圧発生溝220が周方向に等間隔に形成されている。詳細は後述するが、シールリング400の側面と側壁面213との摺動時には、動圧発生溝220に作動油が流入することによって動圧が発生する。図4に示されるように、動圧発生溝220は、径方向の幅が一定で周方向に延びる第1溝221と、第1溝221における周方向の中央から径方向内側に延びる、密封対象流体を第1溝221内に導く第2溝222とから構成される。
 ここで、第1溝221は、シールリング400の側面が摺動する摺動領域X内に収まる位置に設けられている(図1、4参照)。また、第1溝221は、図4のCC断面図である図5に示されるように、その周方向の深さが、中央部では一定であるものの、両端へ向かって平面上に徐々に浅くなるように構成されている。一方、図4に示されるように、第2溝222は、径方向内側の部分が摺動領域Xよりも内側まで延びるように形成されている。なお、本実施例においては、動圧発生溝220は、環状溝210の側壁面213に切削等の加工を直接施すことによって形成される。
 <軸及び密封構造の使用時のメカニズム>
 特に図1を参照して、本実施例に係る軸200及び密封構造100の使用時のメカニズムについて説明する。図1は、自動車のエンジンが始動することによって、シールリング400に隔てられた2つの領域間に差圧が生じ、高圧側Hの圧力が高くなった状態を示している。この差圧によって、シールリング400の高圧側Hの側面と内周面とには流体圧力(油圧)が作用する。この流体圧力により、シールリング400は、ハウジング300の軸孔310の内周面と、環状溝210の低圧側Lの側壁面213に対して密着する。これにより、シールリング400の外周面と軸孔310の内周面との間、及び、シールリング400の側面401と側壁面213との間にシール面が形成されるため、軸200とハウジング300との間の環状隙間が封止されて油圧が保持される。
 そして、本実施例においては、軸200とハウジング300との相対的な回転時には、少なくともシールリング400の側面401が、側壁面213に対して回転摺動するように構成されている。したがって、回転時には、第2溝222における摺動領域Xよりも径方向内側の部分から作動油が流入する。第2溝222に流入した作動油は、第1溝221まで導かれた後に、第1溝221内を周方向に流れてから摺動面間に流出するが、このときに動圧が発生する。なお、シールリング400が、側壁面213に対して、図2中時計回りに相対的に回転する場合には、第1溝221の時計回り方向側の端部から作動油が流出する。一方、シールリング400が、側壁面213に対して、図2中反時計回りに相対的に回転する場合には、第1溝221の反時計回り方向側の端部から作動油が流出する。
 <本実施例に係る密封装置の優れた点>
 本実施例に係る軸200及び密封構造100によれば、動圧発生溝220内に作動油が導入されるため、シールリング400に対して低圧側から作用する作動油の圧力と、高圧側から作用する作動油の圧力の一部とが相殺される。これにより、シールリング400に作用する側壁面213方向(低圧側L方向)の押圧力が低減される。また、シールリング400が、側壁面213に対して摺動しているときには、第1溝221から摺動面間へ作動油が流出する際に動圧が発生する。この動圧によって、シールリング400には、側壁面213から離れる方向の力が作用する。このようにして、側壁面213方向に作用する押圧力が低減されると共に、側壁面213から離れる方向の力が発生することによって、シールリング400の側壁面213に対する摺動抵抗が効果的に低減される。更に、摺動抵抗の低減により、摺動による発熱を低減させることも可能になるため、高速高圧の環境条件下でもシールリング400を好適に使用することが可能になる。
 ここで、軸200が金属製であることから、環状溝210の側壁面213も金属から構成されている。そのため、側壁面213は、相対的に硬度の低い樹脂製のシールリング400が摺動しても摩耗しにくい。ゆえに、側壁面213に形成された動圧発生溝220の形状が摩耗によって変化することが抑制されるため、動圧発生溝220による摺動抵抗の低減作用の低下も抑制される。なお、実際には、動圧発生溝220の形状はほとんど変化せず、浅くならないため、摺動抵抗の低減作用もほとんど低下しない。特に、樹脂製のシールリング400が経時的に摩耗したとしても、側壁面213がほとんど摩耗しないため、動圧発生溝220による摺動抵抗の低減作用はほとんど損なわれない。したがって、軸200及び密封構造100によれば、シールリング400の側面の経時的な摩耗に関わらず、シールリング400の摺動抵抗を低減させることができる。
 また、動圧発生溝220は、第1溝221と、第1溝221の周方向の中央から径方向内側に延びる第2溝222とから構成されるため、側壁面213に対するシールリング400の回転方向に関わらず上記の動圧が発生する。また、第1溝221は、その形状から径方向内側と径方向外側に壁面を有することから、第1溝221内に導かれた作動油が径方向に漏れ出ることが抑制されるため、効果的に動圧を発生させることができる。なお、第1溝221は、シールリング400の側面に対して摺動する摺動領域X内に収まる位置に形成されているため、第1溝221内に導入された密封対象流体が径方向に流出することが一層抑制される。更に、第1溝221は、その周方向の深さが、両端へ向かって浅くなるように構成されている。そのため、いわゆる楔効果により、上記動圧を効果的に発生されることが可能になる。そして、第2溝222は、摺動領域Xよりも内側まで延びるように形成されているため、軸200の相対的な回転時においても作動油を効果的に内部に導くことができる。
 また、本実施例によれば、側壁面213に動圧発生溝220を設けているため、シールリング400の両側面は共に平坦にすることができる。したがって、シールリング400を環状溝210に装着する際に、その向きを考慮する必要がなくなるため作業性が向上する。
 なお、本実施例においては、環状溝210における一方の側壁面213のみに動圧発生溝220が形成されているが、他方の側壁面212にも動圧発生溝220を形成してもよい。この場合には、シールリング400によって隔てられた2つの領域の圧力の高低が入れ替わる状況下においても、シールリング400に作用する摺動抵抗を低減させることが可能になる。
 <動圧発生溝の形状の他の例>
 次に、図6から図8を参照して、動圧発生溝220の他の形状について説明する。図6から図8は、上記図5と同様の、図4中のCC断面図に相当する図である。図6及び図7は、周方向の中央部に比べて両端側の方が浅くなるように構成された第1溝221の溝底の他の例を示している。図6は、周方向の中央部から両側に向かって曲面状に徐々に浅くなる溝底の例を示している。一方、図7は、周方向の中央部から両側に向かって階段状に浅くなる場合の例を示している。何れの形状においても、楔効果による動圧が効果的に発生し得る。なお、図8に示すように、第1溝221の溝底の深さが周方向に一定となるように構成された場合でも、動圧をある程度発生させることは可能である。
 [実施例2]
 次に、図9及び図10を参照して、本発明の実施例2に係る軸及び密封構造について説明する。実施例2は、動圧発生溝が形成された側壁面を構成する金属製の環状部材を、軸が別に備えている点で上記の実施例1とは異なる。なお、実施例1と同一の構成については、同一の符号を付してその説明は省略する。また、同一の構成の作用も実質的に同一である。なお、図9は、実施例2に係る軸の使用時の状態を示す模式的断面図である。図10は、実施例2に係る軸が備える環状部材の側面図であって、動圧発生溝が形成されている側の側面を示している。
 図9に示されるように、実施例2に係る軸200は、環状溝210の側壁面213を構成する金属製の環状部材230を備えている。つまり、環状溝210内において低圧側L寄りの位置に固定された環状部材230における高圧側Hの側面233が、環状溝210の側壁面213を構成している。なお、図10に示されるように、環状部材230の一方の側面233には、実施例1における側壁面213と同様に、複数の動圧発生溝220が形成されている。環状部材230に形成された動圧発生溝220の形状や作用は、実施例1と同様なので説明は省略する。なお、本実施例においても、動圧発生溝220は、側面233に切削等の加工を施すことによって形成される。
 なお、環状部材230が有する軸孔231は、その内径が、環状溝210の溝底211の外径と略同一に構成されている。これにより、軸孔231と軸200の溝底211とを嵌合させることによって、環状部材230を軸200に対して固定することができる。なお、本実施例に係る軸200は、図9に示されるように、着脱可能に構成された2つの軸部200A、200Bから構成される。したがって、軸部200Aに形成された溝底211に環状部材230を固定した後に、軸部200Aと軸部200Bとを組み合わせることによって、切断部を有さない環状部材230を軸200に対して取り付けることが可能になる。
 なお、本実施例においては、シールリング400と環状部材230とが、ハウジング300と軸200との間の環状隙間を封止して作動油の圧力を保持する密封装置110として機能している。
 <軸及び密封構造の使用時のメカニズム>
 特に図9を参照して、本実施例に係る軸200及び密封構造100の使用時のメカニズムについて説明する。上記の実施例1と同様に、図9は、高圧側Hの圧力が高くなった状態を示しており、差圧によって、シールリング400は、ハウジング300の軸孔310の内周面と、環状溝210の低圧側Lの側壁面213、即ち、環状部材230の側面233に対して密着する。これにより、軸200とハウジング300との間の環状隙間が封止されて油圧が保持される。本実施例においても、軸200とハウジング300との相対的な回転時には、少なくともシールリング400の側面401が、側面233に対して回転摺動するように構成されている。ゆえに、回転時には、作動油が動圧発生溝220内に流入するため、摺動面間に動圧が発生する。
 <本実施例に係る密封装置の優れた点>
 本実施例に係る軸200及び密封構造100においても、上記実施例1と同様の作用効果が発揮される。なお、本実施例においては、環状溝210の側壁面213は、軸200とは別の構成部品である金属製の環状部材230から構成されている。ゆえに、本実施例においては、側面233に予め動圧発生溝220を形成した後に、環状部材230を軸200に取り付けることによって環状溝210の側壁面213を構成することが可能になる。したがって、上記実施例1のように、金属製の軸200に構成された環状溝210の側壁面213に動圧発生溝220を直接形成する場合に比して、動圧発生溝220の形成が容易になる。また、環状部材230が金属製であることから、軸200として他の材料を用いることが可能になるため、設計の自由度が高くなる。
 なお、本実施例によって奏される効果は、環状部材230それ自体、或いは、シールリング400と環状部材230とを備える密封装置110によって奏される効果としても捉えることができる。
 なお、本実施例においては、環状溝210における一方の側壁面213のみが環状部材230から構成されているが、他方の側壁面212も環状部材230から構成してもよい。この場合には、動圧発生溝220が形成された側面233が環状溝210の内側を向くようにして環状部材230が固定される。このような構成を採用した場合には、シールリング400によって隔てられた2つの領域の圧力の高低が入れ替わる状況下においても、シールリング400に作用する摺動抵抗を低減させることが可能になる。
 <その他>
 動圧発生溝220の形状は、上記したものに限られず他の形状も適宜採用することができる。また、上記した実施例2の環状部材230について、本発明の目的が達成されるためには、少なくとも環状溝210の側壁面213を構成する部分が金属から構成されていればよい。したがって、環状部材230としては、上記した金属製のものに限られず、側壁面213を構成する部分(シールリング400に対して摺動する部分)のみが金属から構成され、他の部分は他の材料から構成される形態を採用してもよい。
 また、上記した実施例では、環状溝の側壁面が金属から構成される場合を説明したが、シールリングとの摺動に対する耐摩耗性が確保されるならば、他の材料から構成されてもよい。
100:密封構造
110:密封装置
200:軸
200A、200B:軸部
210:環状溝
211:溝底
212、213:側壁面
220:動圧発生溝
221:第1溝
222:第2溝
230:環状部材
231:軸孔
233:側面
300:ハウジング
310:軸孔
400:シールリング
401:側面
410:合口部
H:高圧側
L:低圧側
X:摺動領域

Claims (8)

  1.  ハウジングに設けられた軸孔に挿通されて前記ハウジングに対して相対的に回転する軸であって、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持する樹脂製のシールリングが装着される環状溝をその外周側に備える軸において、
     前記環状溝における前記シールリングが摺動する側壁面が金属で構成され、前記側壁面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする軸。
  2.  前記環状溝の側壁面を構成する金属製の環状部材を備えることを特徴とする請求項1に記載の軸。
  3.  前記動圧発生溝が、
     周方向に延びる第1溝と、
     前記第1溝における周方向の中央から径方向内側に延びる、前記密封対象流体を前記第1溝内に導く第2溝と、
     を備えることを特徴とする請求項1または2に記載の軸。
  4.  軸孔が設けられたハウジングと、
     前記軸孔に挿通されて前記ハウジングに対して相対的に回転する軸であって、その外周側に環状溝を備える軸と、
     前記環状溝に装着される樹脂製のシールリングであって、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持するシールリングと、
     を備える密封構造において、
     前記環状溝における前記シールリングが摺動する側壁面が金属で構成され、前記側壁面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする密封構造。
  5.  前記環状溝の側壁面を構成する金属製の環状部材を備えることを特徴とする請求項4に記載の密封構造。
  6.  前記動圧発生溝が、
     周方向に延びる第1溝と、
     前記第1溝における周方向の中央から径方向内側に延びる、前記密封対象流体を前記第1溝内に導く第2溝と、
     を備えることを特徴とする請求項4または5に記載の密封構造。
  7.  ハウジングに設けられた軸孔に挿通されて前記ハウジングに対して相対的に回転する軸の外周側に設けられ、前記ハウジングとの間の環状隙間を封止して密封対象流体の圧力を保持する樹脂製のシールリングが装着される環状溝に固定される環状部材において、
     前記シールリングの側面が摺動する摺動面を備え、
     前記摺動面が金属で構成され、前記摺動面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする環状部材。
  8.  軸孔が設けられたハウジングと、前記軸孔に挿通されて前記ハウジングに対して相対的に回転する軸との間の環状隙間を封止して密封対象流体の圧力を保持する密封装置であって、前記軸の外周側に設けられた環状溝に装着される密封装置において、
     前記環状隙間を封止して前記密封対象流体の圧力を保持する樹脂製のシールリングと、
     前記シールリングの側面が摺動する摺動面を備え、前記環状溝に固定される環状部材と、を備え、
     前記摺動面が金属で構成され、前記摺動面に前記ハウジングと前記軸との相対的な回転時に導入される前記密封対象流体によって動圧を発生させる動圧発生溝が形成されていることを特徴とする密封装置。
PCT/JP2016/085560 2015-12-03 2016-11-30 軸及び密封構造 WO2017094779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187015246A KR20180075645A (ko) 2015-12-03 2016-11-30 축 및 밀봉구조
US15/780,351 US20180355980A1 (en) 2015-12-03 2016-11-30 Shaft and sealing structure
EP16870716.4A EP3385577A4 (en) 2015-12-03 2016-11-30 TREE AND GASKET STRUCTURE
CN201680070592.1A CN108291647B (zh) 2015-12-03 2016-11-30 轴和密封构造
JP2017554145A JP6394819B2 (ja) 2015-12-03 2016-11-30 軸及び密封構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015236904 2015-12-03
JP2015-236904 2015-12-03

Publications (1)

Publication Number Publication Date
WO2017094779A1 true WO2017094779A1 (ja) 2017-06-08

Family

ID=58797323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085560 WO2017094779A1 (ja) 2015-12-03 2016-11-30 軸及び密封構造

Country Status (6)

Country Link
US (1) US20180355980A1 (ja)
EP (1) EP3385577A4 (ja)
JP (2) JP6394819B2 (ja)
KR (1) KR20180075645A (ja)
CN (2) CN108291647B (ja)
WO (1) WO2017094779A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506511B2 (ja) * 2020-04-03 2024-06-26 Nok株式会社 密封装置
CN113236781B (zh) * 2021-04-15 2022-04-15 大连理工大学 一种端面具有减摩散热结构的密封环及其加工方法
CN114857273B (zh) * 2022-03-31 2023-06-02 清华大学 端面密封组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182959A (ja) * 2006-01-10 2007-07-19 Nok Corp 密封構造
JP2015175474A (ja) * 2014-03-17 2015-10-05 Nok株式会社 シールリング

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156474A (en) * 1961-06-19 1964-11-10 Chicago Rawhide Mfg Co Self-contained oil seal assembly
JPH09287405A (ja) * 1996-04-22 1997-11-04 Mitsubishi Heavy Ind Ltd 非接触シール
JP4773886B2 (ja) * 2006-06-01 2011-09-14 カヤバ工業株式会社 Uパッキン及び流体圧単動シリンダ
JP5292902B2 (ja) * 2008-04-15 2013-09-18 Nok株式会社 シールリングの装着方法
US20110278799A1 (en) * 2009-01-20 2011-11-17 Nok Corporation Seal ring
JPWO2011105513A1 (ja) * 2010-02-26 2013-06-20 Nok株式会社 シールリング
CN101806362A (zh) * 2010-04-12 2010-08-18 西华大学 中间旋转环机械密封装置
CN101846143A (zh) * 2010-06-23 2010-09-29 北京理工大学 端面等深度螺旋槽密封环
US8844937B2 (en) * 2011-03-11 2014-09-30 Nok Corporation Sealing device
WO2013137199A1 (ja) * 2012-03-12 2013-09-19 Nok株式会社 密封装置及び密封構造
WO2014129505A1 (ja) * 2013-02-20 2014-08-28 Nok株式会社 密封装置
WO2015111707A1 (ja) * 2014-01-24 2015-07-30 Nok株式会社 シールリング
CN104179974B (zh) * 2014-07-21 2016-07-06 浙江工业大学 抗轴向振动型机械密封装置
CN105090512B (zh) * 2015-07-22 2017-01-25 哈尔滨工业大学 旋转机械用的非接触式动压箔片密封件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182959A (ja) * 2006-01-10 2007-07-19 Nok Corp 密封構造
JP2015175474A (ja) * 2014-03-17 2015-10-05 Nok株式会社 シールリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385577A4 *

Also Published As

Publication number Publication date
JP6394819B2 (ja) 2018-09-26
CN108291647B (zh) 2019-08-30
JPWO2017094779A1 (ja) 2018-08-16
CN108916383A (zh) 2018-11-30
US20180355980A1 (en) 2018-12-13
KR20180075645A (ko) 2018-07-04
EP3385577A1 (en) 2018-10-10
JP6597840B2 (ja) 2019-10-30
EP3385577A4 (en) 2019-07-03
CN108291647A (zh) 2018-07-17
JP2018159471A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6491374B2 (ja) シールリング
JP6314689B2 (ja) 密封装置
JP6615833B2 (ja) シールリング
WO2016148048A1 (ja) シールリング
JPWO2019221226A1 (ja) シールリング
WO2019059341A1 (ja) シールリング
JP6597840B2 (ja) 軸及び密封構造
JP2008275052A (ja) シールリング
JP6428916B2 (ja) シールリング
WO2014024741A1 (ja) 摺動部品
JP2015158215A (ja) シールリング
JP2020046077A (ja) シールリング
JP6170271B2 (ja) シールリング
WO2015020075A1 (ja) シールリング
JP7377891B2 (ja) 密封装置
US12025229B2 (en) Sealing device
JP2017125570A (ja) 密封装置
JP2017133528A (ja) 密封構造
JP2017101736A (ja) シールリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554145

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015246

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870716

Country of ref document: EP