WO2017094563A1 - インプリント装置、インプリント方法、および物品の製造方法 - Google Patents

インプリント装置、インプリント方法、および物品の製造方法 Download PDF

Info

Publication number
WO2017094563A1
WO2017094563A1 PCT/JP2016/084601 JP2016084601W WO2017094563A1 WO 2017094563 A1 WO2017094563 A1 WO 2017094563A1 JP 2016084601 W JP2016084601 W JP 2016084601W WO 2017094563 A1 WO2017094563 A1 WO 2017094563A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
imprint material
imprint
discharge port
supply
Prior art date
Application number
PCT/JP2016/084601
Other languages
English (en)
French (fr)
Inventor
怜介 堤
坂本 英治
永 難波
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020187018568A priority Critical patent/KR102102754B1/ko
Publication of WO2017094563A1 publication Critical patent/WO2017094563A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an imprint apparatus, an imprint method, and a method of manufacturing an article.
  • An imprint apparatus is known as an apparatus for forming a fine pattern on a substrate for manufacturing a semiconductor device or the like.
  • the imprint apparatus brings an imprint material (for example, a photocurable composition) supplied on a substrate into contact with a mold, and imparts energy for curing to the imprint material, thereby transferring the concavo-convex pattern of the mold. It is an apparatus which forms the pattern of hardened
  • Patent Document 1 an imprint material is supplied which is generated when the arrangement direction of a plurality of discharge ports for discharging the imprint material and the short direction of the rectangular processing region are inclined in the rotation direction around the vertical direction. Discloses a method of correcting the deviation of the target position from the target supply position.
  • the angle of the rotation direction between the arrangement direction of the plurality of discharge ports and the short direction of the rectangular processing area is measured, and based on the rotation angle, the timing or stage of discharging the imprint material is measured. It discloses that the moving direction is corrected.
  • the discharge timing is determined in consideration of a predetermined air staying time.
  • the supply position of the imprint material deviates from the target position due to the difference between the predetermined air staying time and the actual air leaving time.
  • the supply position of the imprint material is shifted due to the distribution of the distance between the discharge port and the substrate, which may make it difficult to form a pattern with high accuracy.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an imprint apparatus and an imprint method capable of accurately supplying an imprint material.
  • the present invention is an imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, including an ejection port, wherein the imprint material is ejected from the ejection port to form the imprint material on the substrate.
  • measuring means for measuring information on the position of the surface of the substrate in the height direction, and the supplying means includes the discharge port and the discharge port obtained from the measurement result of the measuring means.
  • the method is characterized in that the imprint material is supplied based on information on the distribution of the distance to the substrate.
  • FIG. 1 is a view showing the arrangement of an imprint apparatus according to the embodiment.
  • FIG. 2 is a view showing the configuration of the discharge means.
  • FIG. 3 is a flowchart showing the imprint method according to the first embodiment.
  • FIG. 4 is a view for explaining the position in the height direction of the surface of the substrate.
  • FIG. 5 is a view showing the supply position of the imprint material when the distance between the discharge port and the substrate is constant.
  • FIG. 6 is a view showing the supply position of the imprint material when the distance between the discharge port and the substrate is not constant.
  • FIG. 7 is a view for explaining the method of correcting the supply condition according to the first embodiment.
  • FIG. 8 is a view showing a method of correcting the supply condition according to the first embodiment.
  • FIG. 9 is a diagram for explaining the reference surface.
  • FIG. 10 is a view for explaining the measurement method according to the fifth embodiment.
  • FIG. 11 is a view showing an imaging result according to the fifth embodiment.
  • FIG. 1 is a view showing the arrangement of an imprint apparatus 100 according to the embodiment.
  • the vertical direction (height direction) is taken as the Z axis.
  • two axes orthogonal to each other in a plane perpendicular to the Z axis (in a plane intersecting the height direction) are taken as an X axis and a Y axis.
  • Positional components in the X-axis direction and the Y-axis direction in the XY plane are represented by (X, Y).
  • the imprint material 102 is a photocurable material.
  • the irradiation unit 104 irradiates the substrate 101 with the ultraviolet light 105 to cure the uncured imprint material 102.
  • the material of the mold 103 is a material that transmits ultraviolet light 105 such as quartz.
  • the irradiation unit 104 has a light source 106 for emitting the ultraviolet light 105 and a mirror 107 for bending the optical path of the ultraviolet light 105 in the direction of the substrate 101.
  • the mold 103 has a rectangular outer periphery, and a rectangular pattern portion 103a in which a concavo-convex pattern is formed at the center.
  • a plurality of pattern areas 120 which are to-be-processed areas having substantially the same size as the pattern section 103a, are formed on the substrate 101.
  • the imprint apparatus 100 performs an operation (hereinafter, referred to as a pressing operation) for bringing the imprint material 102 and the mold 103 into contact with each other. Furthermore, a pattern is formed on the substrate 101 by curing the imprint material 102 in a state where the imprint material 102 and the mold 103 are in contact with each other.
  • a pressing operation for bringing the imprint material 102 and the mold 103 into contact with each other. Furthermore, a pattern is formed on the substrate 101 by curing the imprint material 102 in a state where the imprint material 102 and the mold 103 are in contact with each other.
  • a plurality of pattern areas 120 are formed on the substrate 101, and the imprint apparatus 100 forms a transfer pattern of the pattern portion 103a on one pattern area 120 by one pressing operation.
  • One pattern area 120 corresponds to one or more shot areas.
  • the shot area is a unit area of the base layer on which the pattern has already been formed, and is divided and formed by scribe lines (not shown).
  • One shot area is, for example, about 26 mm ⁇ 33 mm in size. It is possible to form one or more chip size patterns desired by the user in one shot area.
  • the chuck 108 holds the mold 103 by vacuum suction or electrostatic force.
  • the drive mechanism 109 moves the mold 103 along with the chuck 108 along the Z-axis direction.
  • the chuck 108 and the drive mechanism 109 have an opening area 110 at the center so that the ultraviolet light 105 reaches the substrate 101.
  • the mold 103 is moved.
  • the imprint apparatus 100 has a substrate stage (moving means) 111 as a moving means for moving the substrate 101 and the ejection port 116 a relative to each other.
  • the substrate stage 111 has a chuck 112 a and a drive mechanism 112 b, and positions the substrate 101 in accordance with an instruction from a control unit 122 described later.
  • the chuck 112 a holds the substrate 101 by vacuum suction or electrostatic force.
  • the driving mechanism 112 b moves along the XY plane in a state where the substrate 101 is held by the chuck 112 a.
  • the position measurement of the substrate 101 is provided on the drive mechanism 112 b.
  • the drive mechanism 112 b is, for example, an air cylinder, a piezo actuator, or the like.
  • the drive mechanism 109 and the drive mechanism 112b may be configured by a plurality of drive systems such as a coarse movement drive system and a fine movement drive system. Further, the drive mechanism 109 may be a mechanism that moves the mold 103 not only in the Z-axis direction but also in the X-axis direction, the Y-axis direction, and the rotational direction around each axis. The drive mechanism 112 b may be a mechanism that moves the substrate 101 not only in the X-axis direction and the Y-axis direction, but also in the other axial directions and in the rotational direction around each axis. The pressing operation and the releasing operation may be performed by moving at least one of the mold 103 and the substrate 101 in the Z-axis direction.
  • a space 114 capable of pressure adjustment is provided in the opening region 110.
  • the pattern portion 103 a is bent in a convex shape in the direction of the substrate 101.
  • air bubbles can be prevented from entering between the mold 103 and the imprint material 102, and the imprint material 102 can be filled up to every corner of the pattern portion 103a.
  • FIG. 2 is a view of the discharge means (supply means) 115 as viewed from the -Z direction.
  • a plurality of nozzles 116 are arranged along the Y-axis direction.
  • the ejection means 115 includes the ejection port (supply port) 116 a of the nozzle 116, and the imprint material is ejected from the ejection port 116 a while the substrate stage 111 moves the substrate 101 in a predetermined direction (in the present embodiment, the ⁇ X direction). Eject 102.
  • the ejection means 115 ejects the imprint material 102 for one pattern area 110 in one supply operation.
  • the discharge means 115 fixedly arranged discharges the imprint material 102 by a predetermined amount at predetermined time intervals. Thus, the imprint material 102 is supplied to the pattern area 120 on the substrate 101.
  • the nozzle 116 has a piezo element (not shown) as a discharge mechanism of the nozzle 116, and pushes out the imprint material 102 using the piezoelectric effect.
  • the waveform of the voltage applied to the piezoelectric element (hereinafter referred to as a drive waveform) and the timing of applying the voltage according to the drive waveform are instructed by a control unit 122 described later.
  • the imprint material 102 discharged by the discharge means 115 is the uncured imprint material 102.
  • the ejection velocity corresponds to a value obtained by dividing the integral value of the velocity of the imprint material 102 by the flight time ⁇ t. This is because the difference between the initial velocity given by the ejection means 115 and the velocity immediately after reaching the substrate 101 upon deceleration due to air resistance is corrected, and the velocity of the imprint material 102 during dropping is assumed to be uniform.
  • the measuring unit 117 captures an image of the substrate 101 from above the mold 103, and measures the deviation of the relative position between the plurality of marks 118 formed in the pattern portion 103a and the plurality of marks 119 formed in the pattern area 120. .
  • the imaging unit 121 irradiates the light transmitted through the mold 103 toward the substrate 101, and the imaging device such as a CCD picks up the contact state of the mold 103 and the imprint material 102 by receiving the reflected light from the substrate 101.
  • the imaging unit 121 may have only an imaging function, and the light emitted to the substrate 101 may be emitted from a light source (not shown) different from the imaging unit 121.
  • the measuring unit 126 measures the distance between the measuring unit 126 and each position on the surface of the substrate 101. That is, information on the position of the surface of the substrate 101 in the Z-axis direction (information on the position of the surface of the substrate in the height direction) is measured.
  • the position in the Z-axis direction is hereinafter referred to as the Z position.
  • the measurement unit 126 measures the position of the surface of the substrate 101 in the Z-axis direction.
  • the measurement unit 126 is, for example, a laser interferometer, or a height measurement instrument of an oblique incidence method in which light is obliquely incident on a substrate to detect reflected light.
  • the measuring unit 126 may be another measuring instrument such as a capacitance sensor or an encoder. A plurality of measuring units may be included so that multiple points can be measured simultaneously.
  • the distance between the measurement unit 126 and the substrate 101 is used by the control unit 122 to calculate the distance between the discharge port 116 a and the substrate 101.
  • the control unit (determination unit, correction unit) 122 includes a CPU, a RAM, and a ROM, and the irradiation unit 104, the drive mechanism 109, the substrate stage 111, the ejection unit 115, the measurement unit 117, the imaging unit 121, and the storage unit 123. It is connected via a line. These are totally controlled, and the imprint processing is executed according to a program shown in the flowchart of FIG. 3 described later.
  • the control unit 122 functions as a determination unit, and determines information on the distribution of the distance between the discharge port 116 a and the substrate 101 based on the measurement result of the measurement unit 126.
  • control unit 122 also functions as a correction unit, and corrects the supply condition of the imprint material 102 to the substrate 101 based on the information on the distance between the discharge port 116 a and the substrate 101 determined by the control unit 122 ( adjust).
  • the correction is correction to make the supply position of the imprint material 102 supplied on the substrate 101 approach the ideal supply position.
  • Supply conditions include the moving speed of the substrate stage 111 while the imprint material 102 is supplied onto the substrate 101, the discharge speed of the imprint material 102 from the discharge port 116a, and the discharge of the imprint material 102 from the discharge port 116a. It is at least one of the timings.
  • the storage unit 123 is configured of a hard disk (storage medium) or the like readable by the control unit 122.
  • the program illustrated in the flowchart of FIG. 3, the Z position of each of the measurement unit 126 and the ejection unit 115, the arrangement of the nozzles 116, and the like are stored.
  • the substrate stage 111 is mounted on the base platen 124.
  • the bridge base plate 125 suspends and supports the drive mechanism 109.
  • the information on the distribution of the distance between the discharge port 116 a and the substrate 101 is the distribution of the distance in the height direction between the discharge port 116 a and the target supply position of each of the surfaces of the substrate 101.
  • the supply condition of the imprint material 102 corrected by the control unit 122 is the speed of the substrate stage 111.
  • the deviation of the supply position in the X-axis direction which is the movement direction of the substrate stage 111 during ejection of the imprint material 102, is due to the deviation of the supply position in the Y-axis direction, which is the non-movement direction of the substrate stage 111. It is also suitable when it is easy to shift greatly.
  • the measurement unit 126 measures the position in the height direction of the substrate 101 (S101).
  • the measurement unit 126 representatively measures a plurality of measurement points.
  • the control unit 122 determines the distance between the discharge port 116a and each position on the surface of the substrate 101 (S102).
  • the control unit 122 performs arithmetic processing to complement the distance between the discharge port 116a and the position other than the measurement point based on the measurement result of the measurement unit 126, and an approximate function F (x (x) indicating the distribution of the height of the surface of the substrate 101.
  • Y ask.
  • the measurement points are preferably selected to include the central region and the outer peripheral region of the substrate 101.
  • the central region is an inner region of a circle virtually drawn at a half radius of the radius of the substrate 101.
  • the outer peripheral area is an area on the outer peripheral side than the central area surrounding the central area.
  • FIG. 4A is a view of the substrate 101 viewed from the + Z direction
  • FIG. 4B is a view showing a distribution of positions in the height direction between X positions AA ′ passing the center of the substrate 101.
  • the distribution of positions in the height direction per pattern area 120 is approximated by a linear expression in the X-axis direction.
  • control unit 122 corrects the supply condition so that the supply position of the imprint material 102 to the pattern area 120 becomes the target supply position (S103).
  • the correction of the supply conditions is performed for all the pattern areas 120 on the substrate 101. Details of the process of S103 will be described later.
  • the imprint apparatus 100 supplies the imprint material 102 to the pattern area 120 based on the supply condition after correction using the ejection unit 115 and the substrate stage 111 (S104).
  • the substrate stage 111 moves the substrate 101 to a position facing the mold 103.
  • the drive mechanism 109 lowers the mold 103 to perform a pressing operation (S105).
  • the irradiation unit 104 irradiates the pattern region 120 with the ultraviolet light 105 to cure the imprint material 102 (S106).
  • the drive mechanism 109 raises the mold 103 to perform a mold release operation (S107).
  • control unit 122 determines whether there is a pattern area 120 for which a pattern is to be formed next (S108). If there is a pattern area 120, the processes of S104 to S107 are repeated. If there is no pattern area 120 to form a pattern, the program ends, and the substrate on which the patterns are formed in the plurality of pattern areas 120 is unloaded from the imprint apparatus 100.
  • FIG. 5A shows the inclination of the flat substrate 101. It indicates that the substrate 101 is at a predetermined height H0.
  • the predetermined height is the height of the design when the substrate 101 is placed on the chuck 112.
  • FIG. 5B is a view of the pattern region 120 supplied with the imprint material 102 as viewed from the + Z direction.
  • FIG. 6 (a) is a view showing the inclination of the surface of the substrate 101
  • FIG. 6 (b) shows a state in which the supply position at which the imprint material 102 is supplied deviates only in the X-axis direction. ing.
  • the intersection points 10 of the vertical and horizontal dotted lines arranged at equal intervals are the ideal supply position of the imprint material 102, that is, the target position (target supply position). Black circles indicate the imprint material 102 supplied to the substrate 101.
  • the imprint material 102 is supplied while moving the substrate stage 111 in the ⁇ X direction at a predetermined speed, the imprint material 102 is supplied to the intersection 10 because the distance from the discharge port 116 a to the height H 0 is constant. Ru.
  • the distance to the discharge port 116a decreases at a position higher than the height H0.
  • the discharge means 115 supplies the imprint material 102 while the substrate 101 is moving in the X-axis direction.
  • the airborne time of the imprint material 102 is shortened, so that the substrate 101 is supplied earlier than when the imprint material 102 is supplied to the position of the height H0.
  • the distance to the discharge port 116a becomes large. Therefore, the airborne time of the imprint material 102 becomes long, and therefore, is supplied to the substrate 101 later than when the imprint material 102 is supplied to the position of the height H0.
  • the deviation of the position of the imprint material 102 with respect to the intersection point 10 becomes larger as the position in the height direction of the substrate 101 gets farther from the height H0.
  • the controller 122 corrects the movement speed of the substrate stage 111 to correct the deviation of the supply position with respect to the deviation of the supply position due to the distribution of the substrate 101 in the Z-axis direction with respect to the moving X axis direction of the substrate stage 111 is there.
  • FIG. 7 shows how the imprint material 102 is supplied to the position A of the height H1.
  • the moving speed of the substrate stage 111 before correction is set to V1.
  • the discharge speed of the imprint material 102 is V2.
  • the distance in the Z-axis direction between the discharge port 116a and the position A which is the target position of the height H1 is H1.
  • the discharge means 115 discharges the imprint material 102 when the distance between the X position of the position A at discharge and the X position of the discharge port 116a is L1.
  • the equations (1) and (2) hold.
  • the control unit 122 determines the equation (3) based on the equations (1) and (2).
  • T1 L1 / (V1 + ⁇ V) (1)
  • T2 H1 / V2 (2)
  • ⁇ V (L1 ⁇ V2) / H1-V1 (3)
  • FIG. 8A shows the relationship between the height of each X position of the substrate 101 and the moving speed of the substrate stage 111.
  • control unit 122 supplies the imprint material 102 to the target position where the moving speed when supplying the imprint material 102 to the target position lower than the predetermined height H0 is higher than the predetermined height H0. Make it faster than the moving speed at the time.
  • the controller 122 can supply the imprint material 102 to the target position on the substrate 101 more accurately than in the related art when the distance between the discharge port 116 a and the substrate has a distribution. .
  • the imprint apparatus 100 can form a good pattern with few pattern defects as the pattern of the cured imprint material 102.
  • the measurement unit 126 measures the Z position of the surface of the substrate 101.
  • the information on the distribution of the distance between the discharge port 116 a and the substrate 101 is the distribution of the distance in the height direction between the discharge port 116 a and the target supply position of each of the surfaces of the substrate 101.
  • the supply condition of the imprint material 102 corrected by the control unit 122 is the discharge timing of the imprint material 102.
  • the discharge timing is controlled at the time of the first discharge start and at the time interval (discharge interval) from the last discharge time to the next discharge time.
  • the components not described in the configuration of the imprint apparatus 100 are the same as those in the first embodiment.
  • the present embodiment can also be applied to the case where either the inclination in the X axis direction or the inclination in the Y axis direction in the pattern area 120 is larger.
  • the imprint method according to the embodiment only the process of S103 which is different from the first embodiment will be described.
  • the ejection timing is controlled as shown in FIG. 8B.
  • the height is higher than H0, the imprint material 102 is discharged later than T, and when the height is lower than H0, the imprint material 102 is discharged earlier than T.
  • the discharge timing of the imprint material 102 supplied to the target position whose height is lower than the predetermined height H0 is made earlier than the discharge timing of the imprint material 102 supplied to the target position higher than the predetermined height H0.
  • the control unit 122 controls the time from the discharge of the imprint material 102 supplied to the predetermined height H0 to the next supply of the imprint material 102. Make a correction to T + ⁇ T.
  • the timing of ejection is delayed by ⁇ T shown in equation (4).
  • ⁇ T L1 / V1-H1 / V2 (4)
  • the time from discharging the imprint material 102 discharged toward the position A to discharging the next imprint material may be set to (T + 2 ⁇ ⁇ T). .
  • the controller 122 can supply the imprint material 102 to the target position on the substrate 101 more accurately than in the related art when the distance between the discharge port 116 a and the substrate has a distribution. .
  • the imprint apparatus 100 can form a good pattern with few pattern defects as the pattern of the cured imprint material 102.
  • the information on the distribution of the distance between the discharge port 116 a and the substrate 101 is the distribution of the difference between the height of the reference position and the height of the target position of the imprint material 102.
  • the supply condition of the imprint material 102 corrected by the control unit 122 is the discharge timing of the imprint material 102.
  • the components not described in the configuration of the imprint apparatus 100 are the same as those in the first embodiment. Of the imprint method according to the embodiment, only the process of S103 which is different from the first embodiment will be described.
  • the surface shape of the substrate 101 is measured.
  • the measuring unit 126 outputs information on the surface shape of the substrate 101 as shown in FIG. 9 to the control unit 122.
  • the surface shape is information on the shape of the out-of-plane direction of the substrate 101 (in the present embodiment, the Z-axis direction, the thickness direction of the substrate).
  • the distances between the measurement unit 126 and the surface of the substrate 101 are measured at a plurality of locations on the substrate 101, and the three-dimensional surface shape of the substrate 101 is calculated based on the measurement results.
  • the center of the reference plane 201 is called a reference position.
  • FIG. 9 is a cross-sectional view of the substrate 101 in the X-axis direction, showing the relationship between the reference plane 201 (broken line) and the position of the surface of the substrate 101 (solid line) at each X position.
  • the controller 122 determines the distribution of the difference ⁇ H between the height of the reference position and the height of the target position of the imprint material 102.
  • the target position indicates the difference ⁇ H of the position C (X, Y).
  • the air residence time is shortened by ⁇ H / V2 compared to the reference position.
  • the control unit 122 similarly corrects the discharge timing even when discharging to another target position.
  • control unit 122 causes the discharge timing of the imprint material 102 supplied to the target position lower than the predetermined height to be higher than the discharge timing of the imprint material 102 supplied to the target position higher than the predetermined height. Make corrections to make it faster.
  • the controller 122 can supply the imprint material 102 to the target position on the substrate 101 more accurately than in the related art when the distance between the discharge port 116 a and the substrate has a distribution. .
  • the imprint apparatus 100 can form a good pattern with few pattern defects as the pattern of the cured imprint material 102.
  • the discharge timing to be corrected may not be a time interval.
  • the control unit 122 discharges the time of discharging the imprint material 102 supplied to the target position higher than the predetermined height H0 than the time before correction. Soon.
  • control unit 122 performs correction to make the time to discharge the imprint material 102 supplied to the target position lower than the predetermined height H0 later than the time before correction.
  • the distance between the position (X, Y) of the discharge port 116 a and the position (X, Y) of the target position in the XY plane is large / small. It means to discharge.
  • the imprint material 102 can be accurately supplied to the target position on the substrate 101 by the control unit 122 correcting the supply condition.
  • the information on the distribution of the distance between the discharge port 116 a and the substrate 101 is the distribution of the difference between the height of the reference position and the height of the target position of the imprint material 102.
  • the description of the reference position is the same as that of the third embodiment, so the description will be omitted.
  • the supply condition of the imprint material 102 corrected by the control unit 122 is the discharge speed of the imprint material 102.
  • the components not described in the configuration of the imprint apparatus 100 are the same as those in the first embodiment.
  • the discharge speed is corrected by changing the drive waveform of the voltage applied to the piezo element.
  • the control unit 122 makes the discharge speed of the imprint material 102 supplied to the target position lower than the predetermined height larger than the discharge speed of the imprint material 102 supplied to the target position higher than the predetermined height.
  • the discharge unit 115 discharges the imprint material 102 at the discharge speed V2 while the substrate stage 111 moves in the + X direction by the speed V1.
  • the control unit 122 makes the discharge speed larger than V2.
  • control unit 122 corrects the discharge speed based on the information of the distribution of the distance between the discharge port 116 a and the substrate 101.
  • the imprint apparatus 100 can form the cured pattern of the imprint material 102 with high accuracy.
  • an imaging unit 121 and a control unit 122 are used instead of the measurement unit 126 as a measurement unit that measures the position of the surface of the substrate 101 in the height direction.
  • the imaging unit 121 is used as an imaging unit for imaging the imprint material 102 which is ejected at different timings from the ejection unit 115 and supplied to at least two places of the substrate 101 while the substrate 101 is moving.
  • control unit 122 is used as a calculation unit that calculates the positions of the at least two places by performing image processing on the imaging result of the imaging unit 121.
  • the components not described in the configuration of the imprint apparatus 100 are the same as those in the first embodiment.
  • FIG. 10 (a) is a view of the discharge means 115 and the substrate stage 111 as viewed from the + Z direction
  • FIG. 10 (b) is a view as viewed from the -Y direction
  • FIG. 10 (c) is a view as viewed from the + X direction.
  • the discharge means 115 discharges the imprint material 102 at a discharge speed V2 while the substrate stage 111 moves the substrate 101 in the + X direction at a speed V1.
  • the case where the substrate 101 is inclined in one direction by an angle ⁇ in the rotation component ⁇ Y direction around the Y axis and by an angle ⁇ in the rotation component ⁇ X direction around the X axis will be described.
  • FIG. 10C Two discharge ports 116a and 116b provided at a distance W in the direction (Y-axis direction) perpendicular to the moving direction of the substrate stage 111 are illustrated in FIG. 10C.
  • the ejection means 115 ejects the imprint material 102 simultaneously from the ejection openings 116a and 116b.
  • the discharge port 116a discharges the imprint material 102 once after a predetermined time T has elapsed since the imprint material 102 was discharged first (time T2).
  • the discharge ports 116a discharge at least two places of the substrate 101 at different timings.
  • the imaging unit 121 captures an image of the substrate 101 supplied with the imprint material 102.
  • FIG. 11A illustrates a state in which the imaging unit 121 captures an image of the imprint material 102.
  • the position 311 is the position of the imprint material 102 discharged from the discharge port 116 a at time T1.
  • the position 312 is the position of the imprint material 102 discharged from the discharge port 116 a at time T2.
  • the position 313 is the position of the imprint material 102 discharged from the discharge port 116 a at time T1.
  • the imaging unit 121 performs image processing on the imaging result, and the control unit 122 calculates the positions (X, Y) of the positions 311, 312, and 313.
  • the control unit 122 calculates the angle ⁇ and the angle ⁇ using the information on the calculated positions 311, 312, and 313. A method of calculating the angle ⁇ and the angle ⁇ will be described with reference to FIGS. 11 (a) and 11 (b).
  • the distance between the positions 311 and 312 is L ′.
  • the control unit 122 calculates the angle ⁇ by calculating Equation (10).
  • the control unit 122 calculates the angle ⁇ using the information of the obtained positions 311 and 313.
  • the X position of the position 311 and the X position of the position 312 are separated by a distance D1.
  • the control unit 122 calculates the angle ⁇ by calculating equation (11).
  • tan -1 ⁇ (D1 ⁇ V2 / (V1 / W)) (11)
  • the control unit 122 can calculate the angle ⁇ and the angle ⁇ of the substrate 101.
  • control unit 122 can calculate the shift ⁇ L between the position 312 and the ideal position 320 and calculate the Z position of the position 311.
  • the Z position of each of the positions 312 and 313 is calculated using the positions 312 and 313, the angle ⁇ , and the angle ⁇ .
  • the Z position of the substrate 101 is calculated based on the XY position (position component in a plane intersecting the height direction) of the positions 311, 312, and 313. (decide).
  • the control unit 122 determines information on the distribution of the distance between the discharge port 116 a and the substrate 101 based on the Z positions of the positions 311, 312, and 313, and corrects the supply conditions of the imprint material.
  • the detailed correction method is the same as that of the first embodiment, so the description will be omitted.
  • the imprint material 102 can be supplied to the target position on the substrate 101 more accurately than in the related art. it can.
  • the imprint apparatus 100 can form a good pattern with few pattern defects as the pattern of the cured imprint material 102.
  • both the imaging unit 121 and the control unit 122 are used for the imprint process of the cured imprint material 102, it is possible to suppress an increase in mounting such as the measurement unit 126.
  • the substrate 101 be irradiated with ultraviolet light 105 to cure the imprint material 102 before the position where the imprint material 102 is discharged is measured using the imaging unit 121.
  • the accuracy of the position measurement of the imprint material 102 can be improved.
  • the substrate 101 used for measurement may be the same as the substrate (process wafer) used for imprint processing, or a different substrate (bare wafer) may be used.
  • a dedicated substrate for measurement that is made of a material or processed such that the contact angle of the imprint material 102 becomes large.
  • a substrate coated with a fluorine-based material it is preferable to use a substrate coated with a fluorine-based material.
  • the inclination of each of the plurality of regions of the substrate 101 may be measured by adjusting the time T so as to reduce the distance L.
  • the control unit 122 may calculate the three-dimensional shape of the substrate 101 by performing a complementary operation of measurement results in a plurality of regions.
  • the number of discharge ports 116 a used for measurement is not limited to two.
  • the surface shape of the substrate 101 may be measured over a wide range by using all the discharge ports.
  • only the discharge port 116a may be used when there is no need for measurement.
  • control unit 122 corrects the preset supply conditions to create a new supply condition
  • the present invention is not limited to this.
  • the supply condition may be newly created based on the information on the distribution of the distance between the discharge port 116 a and the substrate 101 obtained using the measurement unit 126 or the imaging unit 121.
  • the moving means for moving the substrate 101 and the discharge port 116 a relative to each other may move the substrate 116 relative to the discharge port 116 a by moving the nozzle 116.
  • the imprint apparatus 100 includes the information on the distribution of the distance between the discharge port 116a and the substrate 101, the supply condition of the imprint material 102 corrected by the control unit 122, and the measurement means described in the above embodiments. You may combine suitably. Even in the imprint apparatus 100 according to the combined embodiment, the imprint material 102 can be accurately supplied to the target position on the substrate 101.
  • the supply conditions for correcting the deviation of the supply position for example, the following conditions may be mentioned.
  • the correction of a plurality of types of supply conditions may be combined to correct at least one of the supply conditions.
  • the correction of the supply conditions by the control unit 122 may apply different correction amounts to the plurality of ejection openings 116 a.
  • the measurement unit 126 may be disposed outside the imprint apparatus 100.
  • the information output from the measurement unit 126 to the control unit 122 may be the surface shape of the substrate 101.
  • the control unit 122 may be installed in the same housing as other components of the imprint apparatus 100, or may be installed outside the housing.
  • control unit 122 may be an aggregate of control boards which are different for each control object, function (function as calculation means, function as determination means, function as correction means, etc.).
  • the substrate 101 Glass, ceramics, metals, semiconductors, imprint materials, and the like are used for the substrate 101, and if necessary, a member of a material different from the substrate may be formed on the surface.
  • the substrate 101 is a silicon wafer, a compound semiconductor wafer, quartz glass or the like.
  • a curable composition (sometimes referred to as an uncured imprint material) which is cured by receiving energy for curing is used.
  • electromagnetic waves, heat, etc. are used as energy for curing.
  • Examples of the electromagnetic wave include light such as infrared light, visible light, and ultraviolet light whose wavelength is selected from the range of 10 nm or more and 1 mm or less.
  • the curable composition is a composition which is cured by irradiation of light or by heating.
  • the photocurable composition which is cured by light contains at least a polymerizable compound and a photopolymerization initiator, and may contain a nonpolymerizable compound or a solvent as required.
  • the non-polymerizable compound is at least one selected from the group consisting of a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, a polymer component and the like.
  • the imprint material 102 may be applied onto the substrate 101 in the form of droplets, or an island or a film formed by connecting a plurality of droplets.
  • the viscosity (the viscosity at 25 ° C.) of the imprint material is, for example, 1 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the pattern of the cured product formed using the imprint apparatus 100 is used permanently on at least a part of various articles or temporarily when manufacturing various articles.
  • the article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold.
  • the electric circuit element include volatile or nonvolatile semiconductor memories such as DRAM, SRAM, flash memory and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA.
  • the mold may, for example, be a mold for imprinting.
  • the pattern of the cured product is used as it is as a component member of at least a part of the article or temporarily used as a resist mask. After etching, ion implantation, or the like is performed in the substrate processing step, the resist mask is removed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

型103とインプリント材102を接触させ、インプリント材102を硬化させることにより基板101上に硬化したインプリント材102のパターンを形成するインプリント装置100に関する発明である。基板101を移動させる移動手段111と、吐出口116aを含み、移動手段111により基板101を移動させている間に吐出口116aからインプリント材102を吐出する吐出手段115と、基板101の表面の高さ方向の位置に関する情報を計測する計測手段126と、計測手段126の計測結果に基づいて吐出口116aと基板101との距離の分布に関する情報を決定する決定手段122と、決定手段122が決定した情報に基づいて、インプリント材102の供給条件を補正する補正手段122と、を有することを特徴とする。

Description

インプリント装置、インプリント方法、および物品の製造方法
 本発明は、インプリント装置、インプリント方法、および物品の製造方法に関する。 
 半導体デバイス等の製造のために基板上に微細なパターンを形成する装置として、インプリント装置が知られている。インプリント装置は、基板上に供給されたインプリント材(例えば光硬化性の組成物)を型と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを形成する装置である。
 特許文献1は、インプリント材を吐出する複数の吐出口の配列方向と矩形の被処理領域の短手方向とが鉛直方向まわりの回転方向に傾いている場合に生じる、インプリント材が供給される位置の目標の供給位置からのずれを補正する方法を開示している。
  具体的には、複数の吐出口の配列方向と、矩形の被処理領域の短手方向との回転方向の角度を計測し、当該回転角度に基づいて、インプリント材を吐出するタイミングやステージの移動方向を補正する旨を開示している。
特開2012-69758号公報
  一般に、基板を移動させながら吐出手段がインプリント材を吐出する場合は、所定の滞空時間を考慮して吐出タイミングを決定している。
  しかし、基板の反りや基板の厚み分布により吐出口と基板との距離に分布があることが多く、このような吐出口と基板との距離の違いに応じて、インプリント材が吐出されてから基板上に供給されるまでの滞空時間がばらついてしまうおそれがある。
 当該所定の滞空時間と実際の滞空時間にずれがあることに起因してインプリント材の供給位置が目標位置からずれてしまう。
  特許文献1は回転角度の補正についての記載はあるが、吐出口と基板との距離が分布をもっている場合の供給位置の補正方法については開示していない。
 よって特許文献1のインプリント装置では、吐出口と基板との距離に分布に起因してインプリント材の供給位置がずれてしまい、精度の良くパターンを形成することが困難となる恐れがある。
 本発明は上記課題に鑑みてなされたものであり、精度良くインプリント材を供給することができるインプリント装置、インプリント方法を提供することを目的とする。
 本発明は、型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、吐出口を含み、前記吐出口から前記インプリント材を吐出して前記基板に前記インプリント材を供給する供給手段と、前記基板の表面の高さ方向の位置に関する情報を計測する計測手段と、を有し、前記供給手段は、前記計測手段の計測結果から得られた前記吐出口と前記基板との距離の分布に関する情報に基づいて前記インプリント材を供給することを特徴とする。
図1は実施形態に係るインプリント装置の構成を示す図である。 図2は吐出手段の構成を示す図である。 図3は第1実施形態に係るインプリント方法を示すフローチャートである。 図4は基板の表面の高さ方向の位置について説明する図である。 図5は吐出口と基板の距離が一定の場合のインプリント材の供給位置を示す図である。 図6は吐出口と基板の距離が一定ではない場合のインプリント材の供給位置を示す図である。 図7は第1実施形態の供給条件の補正方法を説明する図である。 図8は第1実施形態の供給条件の補正方法を示す図である。 図9は基準面について説明する図である。 図10は第5実施形態に係る計測方法を説明する図である。 図11は第5実施形態に係る撮像結果を示す図である。
 [第1実施形態]
(装置構成)
 図1は、実施形態に係るインプリント装置100の構成を示す図である。図1において、鉛直方向(高さ方向)をZ軸とする。さらに、当該Z軸に垂直な平面内(高さ方向と交差する平面内)で互いに直交する2軸をX軸およびY軸としている。XY平面内におけるX軸方向およびY軸方向の位置成分を(X、Y)で表す。
 本実施形態ではインプリント材102は光硬化性の材料である。
 照射部104は紫外線105を基板101に照射し、未硬化状態のインプリント材102を硬化させる。モールド103の材料は、石英などの紫外線105を透過する材料である。 照射部104は紫外線105を出射する光源106と、紫外線105の光路を基板101の方向に折り曲げるミラー107とを有する。
 モールド103は、外周が矩形であり、その中心部には凹凸パターンが形成された矩形のパターン部103aを有する。基板101上にはパターン部103aとほぼ同じ大きさの被処理領域であるパターン領域120が複数形成されている。
 インプリント装置100では、インプリント材102とモールド103とを接触させる動作(以下、押型動作という)を行う。さらに、インプリント材102とモールド103とを接触させた状態でインプリント材102を硬化させることにより基板101上にパターンを形成する。
 基板101には複数のパターン領域120が形成されており、インプリント装置100は1回の押型動作で1つのパターン領域120上にパターン部103aの転写パターンが形成する。
  1つのパターン領域120は、1つ又は複数のショット領域に相当する。ショット領域とは既にパターンを形成し終えた下地層の単位領域であり、スクライブライン(不図示)によって区切られて形成されている。
  1つのショット領域は、例えば、26mm×33mm程度のサイズである。1つのショット領域にはユーザが希望するチップサイズのパターンを1つまたは複数形成することが可能である。
 チャック108は、真空吸着力や静電気力によりモールド103を保持する。駆動機構109は、チャック108と共にモールド103をZ軸方向に沿って移動させる。紫外線105が基板101に到達するように、チャック108および駆動機構109は中央部に開口領域110を有する。モールド103の押型動作およびインプリント材102とモールド103とを引き離す動作(以下、離型動作という)の際に、モールド103を移動させる。
 インプリント装置100は、基板101と吐出口116aとを相対移動させる移動手段として基板ステージ(移動手段)111を有する。基板ステージ111は、チャック112aと駆動機構112bとを有し、後述の制御部122からの指示にしたがって基板101を位置決めする。チャック112aは、基板101を真空吸着力や静電気力により基板101を保持する。駆動機構112bは、チャック112aにより基板101を保持した状態でXY平面内に沿って移動する。基板101の位置計測に使用されるは、駆動機構112b上に設けられている。駆動機構112bは、例えば、エアシリンダやピエゾアクチュエータ等である。
 駆動機構109および駆動機構112bは、粗動駆動系や微動駆動系等、複数の駆動系から構成されていてもよい。また、駆動機構109はZ軸方向だけではなく、X軸方向、Y軸方向、および各軸周りの回転方向へモールド103を移動させる機構であってもよい。駆動機構112bはX軸方向およびY軸方向だけではなく、その他の軸方向、および各軸周りの回転方向へ基板101を移動させる機構であってもよい。押型動作および離型動作は、モールド103および基板101のうち少なくとも一方をZ軸方向に移動させることで行えばよい。
 モールド103の上方に透過部材113を配置することで、開口領域110内に、圧力調整が可能な空間114を設けている。インプリント材102にパターン部103aを接触させる際に、パターン部103aを基板101の方向に凸形状に撓ませる。これにより、モールド103とインプリント材102の間に気泡が入ることを防ぎ、パターン部103aの隅々までインプリント材102を充填させることができる。
 図2は吐出手段(供給手段)115を-Z方向から見た図である。Y軸方向に沿って複数のノズル116が配列されている。吐出手段115は、ノズル116の吐出口(供給口)116aを含み、基板ステージ111が基板101を所定方向(本実施形態では-X方向)に移動させている間に吐出口116aからインプリント材102を吐出する。吐出手段115は、1回の供給動作で1つのパターン領域110分のインプリント材102を吐出する。固定配置された吐出手段115は、インプリント材102を所定の時間間隔で所定量ずつ吐出する。このようにして、基板101上のパターン領域120にインプリント材102を供給する。
 ノズル116はノズル116が有する吐出機構としてピエゾ素子(不図示)を有し、圧電効果を利用してインプリント材102を押し出す。ピエゾ素子に印加する電圧の波形(以下、駆動波形という)や、その駆動波形にしたがって電圧を印加するタイミングは、後述の制御部122によって指示される。なお、吐出手段115によって吐出されるインプリント材102は、未硬化前のインプリント材102である。
 本実施形態および後続の実施形態において、吐出速度は、インプリント材102が滞空中の速度の積分値を、滞空時間Δtで除した値に相当する。吐出手段115より与えられた初速度と空気抵抗を受けて減速し基板101に到達する直前の速度とのずれを補正し、落下中のインプリント材102の速度を等速と仮定したためである。
 計測部117は、モールド103の上方から基板101を撮像し、パターン部103aに形成されている複数のマーク118とパターン領域120に形成されている複数のマーク119との相対位置のずれを計測する。
 撮像部121は、モールド103を透過させた光を基板101に向けて照射し、CCDなどの撮像素子で基板101からの反射光を受光することによりモールド103とインプリント材102の接触状態を撮像する。撮像部121が撮像機能のみを有しており、基板101に照射する光は撮像部121とは異なる光源(不図示)から照射してもよい。押印動作中におけるインプリント材102の広がりを観察することで、パターン部103aと基板101との間へのパーティクルの挟み込みや、パターン部103aへのインプリント材102の充填の様子を撮像する。
 計測部126は、計測部126と基板101の表面の各位置との距離を計測する。すなわち、基板101の表面のZ軸方向の位置に関する情報(基板の表面の高さ方向の位置に関する情報)を計測する。Z軸方向の位置を、以下、Z位置という。本実施形態では計測部126は、基板101の表面のZ軸方向の位置を計測する。
 計測部126は、例えば、レーザ干渉計や、基板に対して斜めに光を入射して反射光を検出する斜入射方式の高さ計測器等である。計測部126は、静電容量センサやエンコーダ等、その他の計測器でもよい。同時に複数点の計測をできるように、複数の計測部を含んでいてもよい。計測部126と基板101の距離は、制御部122による吐出口116aと基板101の距離の算出に用いられる。
 制御部(決定手段、補正手段)122はCPU、RAM、ROMを有しており、照射部104、駆動機構109、基板ステージ111、吐出手段115、計測部117、撮像部121および記憶部123と回線を介して接続されている。これらを統括的に制御して、後述の図3のフローチャートに示すプログラムにしたがってインプリント処理を実行する。
 制御部122は、決定手段として機能し、計測部126の計測結果に基づいて、吐出口116aと基板101との距離の分布に関する情報を決定する。
 さらに、制御部122は、補正手段としても機能し、制御部122によって決定された吐出口116aと基板101の距離に関する情報に基づいて、基板101へのインプリント材102の供給条件を補正する(調整する)。
 当該補正は、基板101上に供給されるインプリント材102の供給位置が理想の供給位置に近づくようにする補正である。供給条件は、基板101上にインプリント材102が供給される間の基板ステージ111の移動速度、吐出口116aからのインプリント材102の吐出速度、および吐出口116aからのインプリント材102の吐出タイミングの少なくとも1つである。
 記憶部123は、制御部122により読み取り可能なハードディスク(記憶媒体)等で構成される。図3のフローチャートに示すプログラム、計測部126と吐出手段115のそれぞれのZ位置、およびノズル116の配置等を記憶している。ベース定盤124には、基板ステージ111が載置される。ブリッジ定盤125により、駆動機構109を吊り下げて支持している。
 (インプリント方法)
  本実施形態に係るインプリント方法について図3に示すフローチャートを用いて説明する。なお、本実施形態において吐出口116aと基板101との距離の分布に関する情報は、吐出口116aと基板101の表面のそれぞれの目標の供給位置との高さ方向の距離の分布である。制御部122が補正するインプリント材102の供給条件は、基板ステージ111の速度である。本実施形態は、インプリント材102を吐出中の基板ステージ111の移動方向であるX軸方向に供給位置のずれが、基板ステージ111の非移動方向であるY軸方向への供給位置のずれよりも大きくずれやすい場合に適している。
 まず、計測部126が基板101の高さ方向の位置を計測する(S101)。計測部126は複数の計測点を代表的に計測する。そして、制御部122が、吐出口116aと基板101の表面の各位置との距離を決定する(S102)。制御部122は、計測部126の計測結果に基づいて吐出口116aと計測点以外の位置との距離を補完する演算処理を行い、基板101の表面の高さの分布を示す近似関数F(x、y)を求める。近似関数は、F(x、y)=ax+by+fで示す1次関数、F(x、y)=ax2+bxy+cy2+dx+ey+fで示す2次関数、あるいはさらに高次の関数であってもよい。
 計測点は基板101の中心領域および外周領域を含むように選択することが好ましい。中心領域とは基板101の半径の、半分の半径で仮想的に描かれる円の内側領域である。外周領域とは、中心領域を取り囲む中心領域よりも外周側の領域である。これにより制御部122が近似関数F(x,y)を精度良く決定することができる。
 計測部126による計測結果について図4を用いて説明する。図4(a)は基板101を+Z方向から見た図、図4(b)は基板101の中心を通るX位置A-A'間の高さ方向の位置の分布を示す図である。1つのパターン領域120あたりの高さ方向の位置の分布は、X軸方向に対して1次式で近似される。
 図3のフローチャートの説明に戻る。次に、制御部122は、パターン領域120へのインプリント材102の供給位置が目標の供給位置になるように供給条件を補正する(S103)。当該供給条件の補正は、基板101上の全てのパターン領域120について行う。S103の工程の詳細は後述する。
 インプリント装置100は、吐出手段115および基板ステージ111を用いて、補正後の供給条件に基づいてパターン領域120にインプリント材102を供給する(S104)。基板ステージ111は基板101をモールド103と対向する位置に移動させる。駆動機構109がモールド103を下降させて、押型動作を行う(S105)。
 モールド103とインプリント材102とを接触させている状態で、照射部104がパターン領域120に紫外線105を照射し、インプリント材102を硬化させる(S106)。インプリント材102の硬化後、駆動機構109がモールド103を上昇させて離型動作を行う(S107)。
  次に、次にパターンを形成すべきパターン領域120があるかどうかを制御部122が判断する(S108)。パターン領域120がある場合は、S104~S107の工程を繰り返す。パターンを形成すべきパターン領域120がない場合は、本プログラムを終了し、複数のパターン領域120にパターンの形成された基板はインプリント装置100から搬出される。
  なお、S103で1つのパターン領域120の分の供給条件の補正しか行わなかった場合は、S108の工程でYesと判断されたあと、S103の工程に戻る。
 S103における供給条件の補正方法について説明する前に、図5(a)(b)により補正を行わなかった場合について説明する。
 図5(a)は、平坦な基板101の傾きを示す図である。基板101が所定の高さH0にあることを示している。所定の高さは、基板101をチャック112に載置した際の設計の高さである。図5(b)はインプリント材102の供給されたパターン領域120を+Z方向から見た図である。
 図6(a)は、基板101の表面の傾きを示す図であり、図6(b)は、X軸方向にのみインプリント材102が供給された供給位置のずれが生じている様子を示している。等間隔で配列された縦横の破線の交点10は、理想的なインプリント材102の供給位置、すなわち目標位置(目標供給位置)である。黒丸は基板101に供給されたインプリント材102を示している。所定の速度で基板ステージ111を-X方向に移動させながらインプリント材102を供給する場合、吐出口116aから高さH0までの距離が一定であるため、交点10にインプリント材102が供給される。
 図4(b)で示した前述の位置B-B'のようにパターン領域120の高さ方向の位置が傾きを有する場合、高さH0より高い位置では吐出口116aとの距離が小さくなる。吐出手段115は、基板101がX軸方向に移動している間にインプリント材102を供給する。よって、インプリント材102の滞空時間が短くなるので、高さH0の位置にインプリント材102を供給する場合よりも早く基板101に供給される。
 反対に、高さH0よりも低い位置では吐出口116aとの距離が大きくなる。したがって、インプリント材102の滞空時間は長くなるので、高さH0の位置にインプリント材102を供給する場合よりも遅く基板101に供給される。
  よって図6(b)に示すように、基板101の高さ方向の位置が高さH0から離れるほど、交点10に対するインプリント材102の位置のずれが大きくなる。
 基板ステージ111の移動するX軸方向に対する基板101のZ軸方向の分布による供給位置のずれに対して、制御部122は基板ステージ111の移動速度を補正して供給位置のずれを補正する方法である。
 図7は、高さH1の位置Aにインプリント材102を供給するときの様子を示している。補正前の基板ステージ111の移動速度をV1とする。インプリント材102の吐出速度はV2である。吐出口116aと高さH1の目標位置である位置AとのZ軸方向の距離をH1である。吐出時の位置AのX位置と吐出口116aのX位置との距離がL1のときに吐出手段115はインプリント材102を吐出する。補正後の基板ステージ111の移動速度をV1+ΔVとするとき、式(1)、(2)が成立する。
  制御部122は、式(1)、(2)より速度の補正量ΔVが式(3)を決定する。
T1=L1/(V1+ΔV)・・・(1)
T2=H1/V2・・・(2)
ΔV=(L1・V2)/H1-V1・・・(3)
  図8(a)は、基板101の各X位置の高さと基板ステージ111の移動速度の関係を示している。
  このように、制御部122は、所定の高さH0よりも低い目標位置にインプリント材102を供給するときの移動速度を所定の高さH0よりも高い目標位置にインプリント材102を供給するときの前記移動速度よりも大きくする。
 制御部122が供給条件を補正することにより、吐出口116aと基板との距離が分布をもっている場合において従来よりも基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
  これにより、インプリント装置100は、硬化したインプリント材102のパターンとしてパターン欠陥の少ない良好なパターンを形成することができる。
 [第2実施形態]
  本実施形態では計測部126は、基板101の表面のZ位置を計測する。本実施形態において吐出口116aと基板101との距離の分布に関する情報は、吐出口116aと基板101の表面のそれぞれの目標の供給位置との高さ方向の距離の分布である。
  制御部122が補正するインプリント材102の供給条件は、インプリント材102の吐出タイミングである。吐出のタイミングを、1回目の吐出開始の時刻と、直前の吐出時刻から次の吐出時刻までの時間間隔(吐出間隔)で制御している場合の実施形態である。インプリント装置100の構成に関し、説明のない部分は第1実施形態と同様である。
 本実施形態は、パターン領域120におけるX軸方向への傾きとY軸方向への傾きとどちらが大きい場合も適用できる。実施形態に係るインプリント方法のうち、第1実施形態とは異なるS103の工程のみ説明する。
 吐出手段115がインプリント材102を吐出間隔Tで周期的に吐出している場合、図8(b)に示すように吐出タイミングを制御する。高さがH0より高い場合はTに対して遅めにインプリント材102を吐出し、高さがH0よりも低い場合はTに対して早めにインプリント材102を吐出する。
  すなわち、高さが所定の高さH0より低い目標位置に供給するインプリント材102の吐出タイミングを、所定の高さH0より高い目標位置に供給するインプリント材102の吐出タイミングよりも早くする。
 所定の高さH0よりも高い目標位置に供給する場合、制御部122は、所定の高さH0の供給するインプリント材102を吐出してから次にインプリント材102を供給するまでの時間をT+ΔTにする補正をする。式(4)に示すΔTだけ吐出のタイミングを遅らせる。
ΔT=L1/V1-H1/V2・・・(4)
 位置Aの次に供給する位置に対しては、位置Aに向けて吐出したインプリント材102を吐出してから次のインプリント材を吐出するまでの時間を(T+2・ΔT)とすればよい。インプリント材102を吐出するごとに吐出タイミングを補正することにより、供給位置のずれを補正することができる。
 制御部122が供給条件を補正することにより、吐出口116aと基板との距離が分布をもっている場合において従来よりも基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
  これにより、インプリント装置100は、硬化したインプリント材102のパターンとしてパターン欠陥の少ない良好なパターンを形成することができる。
 [第3実施形態]
  本実施形態において吐出口116aと基板101との距離の分布に関する情報は、基準位置の高さとインプリント材102の目標位置の高さとの差の分布である。制御部122が補正するインプリント材102の供給条件は、インプリント材102の吐出タイミングである。インプリント装置100の構成に関し、説明のない部分は第1実施形態と同様である。実施形態に係るインプリント方法のうち、第1実施形態とは異なるS103の工程のみ説明する。
 基板101の表面のZ軸方向の位置に関する情報として、基板101の表面形状を計測する。計測部126は、図9に示すような、基板101の表面形状の情報を制御部122に出力する。表面形状は、基板101の面外方向(本実施形態ではZ軸方向、基板の厚み方向)の形状に関する情報である。計測部126と基板101の表面との距離を、基板101条の複数箇所で計測し、計測結果に基づいて基板101の3次元の表面形状を算出する。
 仮想的な平坦な面である基準面201に対する、基板101の表面(計測対象の面、モールド103と対向する面)の各位置の面外方向へのずれに関する情報が得られる。基準面201の中心を基準位置とよぶ。
 図9は基板101のX軸方向の断面図であり、基準面201(破線)と各X位置での基板101の表面の位置(実線)との関係を示す図である。
 制御部122は、基準位置の高さとインプリント材102の目標位置の高さとの差ΔHの分布を決定する。図9では、目標位置が位置C(X,Y)の差ΔHを図示している。吐出手段115からの樹脂の吐出速度をV2とした場合、滞空時間が基準位置に比べてΔH/V2だけ短くなる。
 したがって、吐出タイミングをΔT=ΔH/V2だけ早くするように、制御部122は吐出タイミングを補正すればよい。制御部122は、他の目標位置に吐出する場合も、同様にして吐出タイミングを補正する。
  このようにして、制御部122は、所定の高さよりも低い目標位置に供給するインプリント材102の吐出タイミングを、所定の高さよりも高い目標位置に供給するインプリント材102の吐出タイミングよりも早くするように補正する。
 制御部122が供給条件を補正することにより、吐出口116aと基板との距離が分布をもっている場合において従来よりも基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
  これにより、インプリント装置100は、硬化したインプリント材102のパターンとしてパターン欠陥の少ない良好なパターンを形成することができる。
 なお、第2実施形態および第3実施形態において、補正する吐出タイミングは時間間隔でなくてもよい。インプリント材102を吐出するタイミングを時刻で管理している場合は、制御部122は所定の高さH0よりも高い目標位置に供給するインプリント材102を吐出する時刻を補正前の時刻よりも早める。
  また、制御部122は所定の高さH0よりも低い目標位置に供給するインプリント材102を吐出する時刻を、補正前の時刻よりも遅くする補正をする。
 この場合、吐出タイミングの早い/遅い、は、吐出口116aの位置(X,Y)と目標位置の位置(X、Y)とのXY平面内における距離が大きい/小さい、ときに吐出口116aから吐出することをいう。
  このように吐出タイミングを補正した場合も、制御部122が供給条件を補正することにより、基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
 [第4実施形態]
  本実施形態において吐出口116aと基板101との距離の分布に関する情報は、基準位置の高さとインプリント材102の目標位置の高さとの差の分布である。基準位置の説明は、第3実施形態と同様であるため説明を省略する。制御部122が補正するインプリント材102の供給条件は、インプリント材102の吐出速度である。インプリント装置100の構成に関し、説明のない部分は第1実施形態と同様である。
 ピエゾ素子に印加する電圧の駆動波形を変更することで吐出速度を補正する。制御部122は、所定の高さよりも低い目標位置に供給するインプリント材102の吐出速度を、所定の高さより高い目標位置に供給するインプリント材102の吐出速度よりも大きくする。実施形態に係るインプリント方法のうち、第1実施形態とは異なるS103の工程のみ説明する。
 吐出速度の補正前では、基板ステージ111が+X方向に速度V1移動している間に吐出手段115はインプリント材102を吐出速度V2で吐出する場合を例に説明する。制御部122は、基板101の目標位置の高さが基準位置の高さH0よりも低い場合は、吐出速度をV2よりも大きくする。
  具体的には、目標位置が高さH0よりもΔHだけ低い場合は、インプリント材102が吐出されてから基板101に供給されるまでの滞空時間Δtが=(H0+ΔH)/Vを満たす吐出速度Vに補正する。
 同様にして、制御部122は、基板101の目標位置の高さが高さH0よりも高い場合は吐出速度をV2よりも小さくする。具体的には、目標位置が高さH0よりもΔHだけ高い場合は、Δt=(H0-ΔH)/Vを満たす吐出速度Vに補正する。
 このように、制御部122は、吐出口116aと基板101との距離の分布の情報に基づいて吐出速度を補正する。
  これにより、目標位置に対するインプリント材102の供給位置のずれを低減できる。よって、インプリント装置100は、硬化したインプリント材102のパターンを精度良く形成することができる。
 [第5実施形態]
  第5実施形態では、基板101の表面の高さ方向の位置を計測する計測手段として、計測部126のかわりに、撮像部121および制御部122を使用する。撮像部121を、基板101が移動している間に、吐出手段115より異なるタイミングで吐出され且つ基板101の少なくとも2箇所に供給されたインプリント材102を撮像する撮像手段として使用する。
 さらに、制御部122を、撮像部121の撮像結果を画像処理することによって、当該少なくとも2箇所の位置を算出する算出手段として使用する。インプリント装置100の構成に関し、説明のない部分は第1実施形態と同様である。
  これにより、基板101の表面のZ位置を計測する。
 図10(a)は吐出手段115と基板ステージ111とを+Z方向から見た図、図10(b)は-Y方向から、10図(c)は+X方向から見た図である。
 図10(b)に示す通り、基板ステージ111が基板101を+X方向に速度V1移動させている間に吐出手段115はインプリント材102を吐出速度V2で吐出する。基板101がY軸まわりの回転成分ωY方向に角度θ、X軸まわりの回転成分ωX方向に角度φだけ一方向に傾いている場合について説明する。
  基板ステージ111の移動方向に対して垂直方向(Y軸方向)に距離Wだけ離れて設けられた2つの吐出口116a、116bを図10(c)で図示している。
 角度θ、角度φの求め方について、以下説明する。
  まず、基板ステージ111に基板101を一定速度V1で移動させながら、時刻T1で、吐出手段115は吐出口116a、116bから同時にインプリント材102を吐出する。吐出口116aは、先にインプリント材102を吐出してから所定時間Tが経過した後(時刻T2)にもう一度インプリント材102を吐出する。
  すなわち吐出口116aは、異なるタイミングで基板101の少なくとも2箇所に吐出している。
 撮像部121は、インプリント材102の供給された基板101を撮像する。図11(a)は、撮像部121がインプリント材102を撮像したときの様子を示す。位置311は、時刻T1において吐出口116aから吐出されたインプリント材102の位置である。位置312は、時刻T2において吐出口116aから吐出されたインプリント材102の位置である。位置313は、時刻T1で吐出口116aから吐出されたインプリント材102の位置である。
 次に、撮像部121が撮像結果を画像処理して、制御部122が位置311、312、313の位置(X,Y)を算出する。制御部122は、算出した位置311、312、313の情報を用いて、角度θ、角度φを算出する。角度θ、角度φの算出方法について図11(a)および図11(b)を用いて説明する。
 位置311と位置312の距離はL'である。距離L'は、時間Tの間に速度V1で基板ステージ111が進む距離L=V1・TよりもΔL'=L'-L=L'-V1・Tだけ長くなっている。
  これは、基板101の表面形状が水平面に対して角度θ傾いている分だけ着弾位置の高さに距離Hの差があり、時刻T1で吐出されたインプリント材102の滞空時間tと、時刻T2で吐出されたインプリント材102の滞空時間t2が異なることに起因している。
 滞空時間の差ΔT=t2-t1=H/V2であることから、距離H=(L'-V1・T)・V2/V1が成立する。制御部122は、式(10)を計算することにより、角度θを算出する。
θ=tan-1(H/L')=tan-1{(L'-V1・T)・V2/(V1・L')}・・・(10)
 制御部122は、得られた位置311、313の情報を用いて角度φを算出する。
 位置311のX位置と、位置312のX位置は、距離D1だけ離れている。
  これは、基板101の表面形状が水平面に対して角度φ傾いている分だけ滞空時間が長くなり、滞空時間が長くなった分だけ基板101がX軸方向に移動したことに起因している。D1/V1=W・tan(φ)/V2という関係式が成立する。
  よって制御部122は式(11)を計算することにより角度φを算出する。
φ=tan-1{(D1・V2/(V1/W)} ・・・(11)
 以上のようにして、制御部122は、基板101の角度θ、角度φを算出することができる。
  また、制御部122は、位置312と理想的な位置320とのずれΔLを算出し、位置311のZ位置を算出できる。
  さらに、位置312、313、角度θ、角度φを用いて、位置312、313のそれぞれのZ位置を算出する。
  これにより、位置311、312、313の、XYの位置(高さ方向と交差する平面内における位置成分)に基づいて基板101のZ位置を算出する。(決定する)。
 制御部122は、位置311,312、313のZ位置に基づいて吐出口116aと基板101との距離の分布に関する情報を決定し、インプリント材の供給条件を補正する。詳細な補正する方法は第1実施形態と同様であるため、説明を省略する。
 制御部122が供給条件を補正することにより、吐出口116aと基板101との距離が分布をもっている場合において従来よりも基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
  これにより、インプリント装置100は、硬化したインプリント材102のパターンとしてパターン欠陥の少ない良好なパターンを形成することができる。
  本実施形態の場合、撮像部121も制御部122も、硬化したインプリント材102のインプリント処理に使用されるものなので、計測部126のような実装の増加を抑制することができる。
 撮像部121を用いてインプリント材102の吐出された位置を計測する前に、基板101に紫外線105を照射してインプリント材102を硬化させてしまうことが好ましい。
  制御部122による画像処理の際に、インプリント材102の位置計測の精度を向上させることができる。
 計測に使用する基板101は、インプリント処理に使用する基板(プロセスウエハ)と同じでもよいし、異なる基板(ベアウエハ)を使用してもよい。
 プロセスウエハを使用する場合は、インプリント材102がインプリント処理でパターンを形成する領域を避け、スクライブライン上に供給されるように基板ステージ111の移動条件やインプリント材102の吐出の時間間隔を調整すればよい。
  ベアウエハを使用する場合は、インプリント材102の接触角が大きくなるような材質あるいは加工が施された、計測用の専用基板であることが好ましい。
  例えば、フッ素系材料がコーティングされた基板を用いることが好ましい。
 距離Lが小さくなるように時間Tを調整することにより、基板101の複数の領域ごとの傾きを計測してもよい。制御部122は、複数領域での計測結果の補完演算をして、基板101の3次元形状を算出してもよい。計測に使用する吐出口116aの数は2つに限られない。全ての吐出口を用いて、基板101の表面形状を広範囲に計測してもよい。
  また、例えば角度φが無いことが分かっているばあいなど、計測の必要が無い場合は吐出口116aのみを用いてもよい。
 [その他の実施形態]
  予め設定された供給条件を制御部122が補正して新たな供給条件を作成することを中心に説明したが、本発明はこれに限られない。
  例えば、計測部126又は撮像部121を用いて得られた吐出口116aと基板101との距離の分布に関する情報に基づいて供給条件を新規に作成しても良い。
  基板101と吐出口116aとを相対移動させる移動手段は、ノズル116を移動させて基板101と吐出口116aとを相対移動させてもよい。インプリント装置100は、吐出口116aと基板101との距離の分布に関する情報と、制御部122が補正するインプリント材102の供給条件と、計測手段として、前述の各実施形態で挙げたものを適宜組み合わせてもよい。組み合わせた実施形態に係るインプリント装置100あっても、基板101上の目標位置に対して精度良くインプリント材102を供給することができる。
 供給位置のずれを補正するための供給条件として、例えば次の条件が挙げられる。基板101上にインプリント材102が供給される間の基板ステージ111の移動速度、吐出口116aからのインプリント材102の吐出速度、吐出口116aからのインプリント材102の吐出タイミングである。複数種類の供給条件の補正を組み合わせて、これらの供給条件のうち少なくとも1つの供給条件を補正してもよい。
 制御部122による供給条件の補正は、複数の吐出口116aに対して異なる補正量を適用してもよい。
 実施形態に係るインプリント方法として、計測部126はインプリント装置100外部に配置されていてもよい。この場合、計測部126が制御部122に出力する情報は、基板101の表面形状でもよい。
 制御部122は、インプリント装置100の他の構成要素と共通の筐体内に設置されてもよいし、筐体外に設置されてもよい。
  また、制御部122は、制御対象物や、機能(算出手段としての機能、決定手段としての機能、補正手段としての機能等)毎に異なる制御基板の集合体であってもよい。
 基板101は、ガラス、セラミックス、金属、半導体、インプリント材等が用いられ、必要に応じて、その表面に基板とは別の材料の部材が形成されていてもよい。基板101は、具体的には、シリコンウエハ、化合物半導体ウエハ、石英ガラス等である。
 インプリント材102には、硬化用のエネルギーが与えられることにより硬化する硬化性組成物(未硬化状態のインプリント材を呼ぶこともある)が用いられる。
  硬化用のエネルギーとしては、電磁波、熱等が用いられる。
  電磁波としては、例えば、その波長が10nm以上1mm以下の範囲から選択される、赤外線、可視光線、紫外線などの光である。
 硬化性組成物は、光の照射により、あるいは、加熱により硬化する組成物である。このうち、光により硬化する光硬化性組成物は、重合性化合物と光重合開始剤とを少なくとも含有し、必要に応じて非重合性化合物または溶剤を含有してもよい。
  非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。
 インプリント材102は、液滴状、或いは複数の液滴が繋がってできた島状又は膜状となって基板101上に付与されてもよい。インプリント材の粘度(25℃における粘度)は、例えば、1mPa・s以上100mPa・s以下である。
 [物品製造への適用]
 インプリント装置100を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。
 物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
 硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。
  本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2015年11月30日提出の日本国特許出願特願2015-234318を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 100 インプリント装置
 101 基板
 102 インプリント材
 103 型
 115 吐出手段(供給手段)
 116a 吐出口
 122 制御部(決定手段、補正手段)
 126 計測部(計測手段)

Claims (11)

  1.   型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、
      吐出口を含み、前記吐出口から前記インプリント材を吐出して前記基板に前記インプリント材を供給する供給手段と、
     前記基板の表面の高さ方向の位置に関する情報を計測する計測手段と、を有し、
     前記供給手段は、前記計測手段の計測結果から得られた前記吐出口と前記基板との距離の分布に関する情報に基づいて前記インプリント材を供給することを特徴とするインプリント装置。
  2.   前記基板と前記吐出口とを相対移動させる移動手段を有し、
      前記計測手段は、前記移動手段が前記基板と吐出口とを相対移動させている間に、
      前記吐出口から異なるタイミングで吐出され且つ前記基板の少なくとも2箇所に供給された前記インプリント材を撮像する撮像手段と、
      前記撮像手段の撮像結果を画像処理することによって、
      前記少なくとも2箇所の前記高さ方向と交差する平面内における位置成分に基づいて前記吐出口と前記基板と前記少なくとも2箇所のそれぞれとの距離を算出する算出手段と、を有することを特徴とする請求項1に記載のインプリント装置。
  3.  前記供給手段は前記吐出口と前記基板との距離の分布に関する情報に基づいて前記インプリント材を供給するときの前記供給条件は、
      前記基板の少なくとも2箇所に前記インプリント材を供給する間の前記基板と前記吐出口との相対移動の速度と、前記吐出口からの前記インプリント材の吐出速度と、前記吐出口からの前記インプリント材の吐出タイミングと、の少なくとも1つであることを特徴とする請求項1又は2に記載のインプリント装置。
  4.   前記吐出口と前記基板との距離の分布に関する情報に基づいて、
      前記供給手段の前記インプリント材の供給条件を補正する補正手段を有し、
      前記供給手段は、前記補正手段が補正した供給条件で前記インプリント材を供給することを特徴とする請求項3に記載のインプリント装置。
  5.   前記供給条件は前記吐出タイミングであって、
     前記補正手段は、所定の高さよりも低い目標供給位置に供給する前記インプリント材の
    吐出タイミングを、
      前記所定の高さよりも高い目標供給位置に供給する前記インプリント材の吐出タイミングよりも早くすることを特徴とする請求項4に記載のインプリント装置。
  6.  前記供給条件は前記吐出速度であって、
      前記補正手段は、所定の高さよりも低い目標供給位置に供給する前記インプリント材の吐出速度を、
      前記所定の高さより高い目標供給位置に供給する前記インプリント材の吐出速度よりも小さくすることを特徴とする請求項4に記載のインプリント装置。
  7.  前記供給条件は前記基板と前記吐出口との相対移動の速度であって、
      前記補正手段は、所定の高さよりも低い目標供給位置に前記インプリント材を供給するときの前記移動速度を前記所定の高さよりも高い目標供給位置に前記インプリント材を供給するときの前記移動速度よりも大きくすることを特徴とする請求項4に記載のインプリント装置。
  8.  前記吐出口と前記基板との距離の分布に関する情報は、
      基準位置の高さと前記インプリント材の目標供給位置の高さとの差の分布であることを特徴とする請求項1乃至7のいずれか1項に記載のインプリント装置。
  9.  前記吐出口と前記基板との距離の分布に関する情報は、
      前記吐出口から前記インプリント材の目標供給位置までの高さ方向の距離の分布であることを特徴とする請求項1乃至7のいずれか1項に記載のインプリント装置。
  10.   型を用いて基板上にインプリント材のパターンを形成するインプリント方法であって、
      前記基板の表面の高さ方向の位置に関する情報を計測する工程と、
     前記計測する工程での計測結果から得られた、前記基板に供給するインプリント材を
    吐出する吐出口と前記基板との距離の分布に関する情報に基づいて、
      前記インプリント材の供給条件を決定する工程と、
     前記決定する工程で決定された前記供給条件に基づいて前記基板に前記インプリント材を供給する工程と、を有することを特徴とするインプリント方法。
  11.   請求項1乃至請求項9のいずれか1項に記載のインプリント装置を用いて基板にパター
    ンを形成する工程と、
      前記工程の後に前記基板を加工する工程と、を含むことを特徴とする物品の製造方法。
PCT/JP2016/084601 2015-11-30 2016-11-22 インプリント装置、インプリント方法、および物品の製造方法 WO2017094563A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187018568A KR102102754B1 (ko) 2015-11-30 2016-11-22 임프린트 장치, 임프린트 방법 및 물품의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-234318 2015-11-30
JP2015234318A JP6590667B2 (ja) 2015-11-30 2015-11-30 インプリント装置、インプリント方法、および物品の製造方法

Publications (1)

Publication Number Publication Date
WO2017094563A1 true WO2017094563A1 (ja) 2017-06-08

Family

ID=58797304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084601 WO2017094563A1 (ja) 2015-11-30 2016-11-22 インプリント装置、インプリント方法、および物品の製造方法

Country Status (4)

Country Link
JP (1) JP6590667B2 (ja)
KR (1) KR102102754B1 (ja)
TW (1) TWI647089B (ja)
WO (1) WO2017094563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858493A4 (en) * 2018-11-07 2022-08-03 Omron Corporation COATING DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015134B2 (ja) * 2017-10-12 2022-02-02 キヤノン株式会社 インプリント装置、インプリント方法、情報処理装置、生成方法、プログラム及び物品の製造方法
JP7257817B2 (ja) * 2019-03-04 2023-04-14 キヤノン株式会社 インプリント装置、および物品の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296783A (ja) * 2006-05-01 2007-11-15 Canon Inc 加工装置及び方法、並びに、デバイス製造方法
JP2010080632A (ja) * 2008-09-25 2010-04-08 Canon Inc インプリント装置およびインプリント方法
JP2011128396A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 成形用スタンパー、反射防止フィルムの製造方法及び反射防止フィルム
JP2011151092A (ja) * 2010-01-19 2011-08-04 Canon Inc インプリント装置、および物品の製造方法
JP2012069758A (ja) * 2010-09-24 2012-04-05 Toshiba Corp 滴下制御方法および滴下制御装置
JP2012190877A (ja) * 2011-03-09 2012-10-04 Fujifilm Corp ナノインプリント方法およびそれに用いられるナノインプリント装置
JP2013065624A (ja) * 2011-09-15 2013-04-11 Fujifilm Corp インクジェットヘッドの吐出量補正方法、吐出量補正装置、及び機能性インク配置装置並びにナノインプリントシステム
JP2013179219A (ja) * 2012-02-29 2013-09-09 Toshiba Corp パターン形成装置及び半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163499A (ja) * 1992-11-19 1994-06-10 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH0943424A (ja) * 1995-08-01 1997-02-14 Canon Inc カラーフィルタの製造方法及び製造装置
JP4541560B2 (ja) * 1999-02-08 2010-09-08 キヤノン株式会社 電子デバイス、電子源及び画像形成装置の製造方法
JP4934927B2 (ja) * 2001-08-20 2012-05-23 コニカミノルタホールディングス株式会社 インクジェット記録装置
JP4819577B2 (ja) * 2006-05-31 2011-11-24 キヤノン株式会社 パターン転写方法およびパターン転写装置
US20100102471A1 (en) * 2008-10-24 2010-04-29 Molecular Imprints, Inc. Fluid transport and dispensing
JP2011062590A (ja) * 2009-09-15 2011-03-31 Seiko Epson Corp 吐出方法及び液滴吐出装置
JP5335717B2 (ja) * 2010-03-16 2013-11-06 富士フイルム株式会社 レジスト組成物配置装置及びパターン形成体の製造方法
JP5214683B2 (ja) * 2010-08-31 2013-06-19 株式会社東芝 インプリントレシピ作成装置及び方法並びにインプリント装置及び方法
JP6083203B2 (ja) * 2012-11-19 2017-02-22 大日本印刷株式会社 インプリント樹脂滴下位置決定方法、インプリント方法及び半導体装置製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296783A (ja) * 2006-05-01 2007-11-15 Canon Inc 加工装置及び方法、並びに、デバイス製造方法
JP2010080632A (ja) * 2008-09-25 2010-04-08 Canon Inc インプリント装置およびインプリント方法
JP2011128396A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 成形用スタンパー、反射防止フィルムの製造方法及び反射防止フィルム
JP2011151092A (ja) * 2010-01-19 2011-08-04 Canon Inc インプリント装置、および物品の製造方法
JP2012069758A (ja) * 2010-09-24 2012-04-05 Toshiba Corp 滴下制御方法および滴下制御装置
JP2012190877A (ja) * 2011-03-09 2012-10-04 Fujifilm Corp ナノインプリント方法およびそれに用いられるナノインプリント装置
JP2013065624A (ja) * 2011-09-15 2013-04-11 Fujifilm Corp インクジェットヘッドの吐出量補正方法、吐出量補正装置、及び機能性インク配置装置並びにナノインプリントシステム
JP2013179219A (ja) * 2012-02-29 2013-09-09 Toshiba Corp パターン形成装置及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858493A4 (en) * 2018-11-07 2022-08-03 Omron Corporation COATING DEVICE
US11596971B2 (en) 2018-11-07 2023-03-07 Omron Corporation Coating apparatus

Also Published As

Publication number Publication date
TWI647089B (zh) 2019-01-11
JP6590667B2 (ja) 2019-10-16
TW201733773A (zh) 2017-10-01
KR20180087399A (ko) 2018-08-01
KR102102754B1 (ko) 2020-04-21
JP2017103313A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
US11413793B2 (en) Imprint apparatus, imprint method, and method for manufacturing product
WO2017094563A1 (ja) インプリント装置、インプリント方法、および物品の製造方法
JP7134055B2 (ja) 成形装置、および物品の製造方法
KR102274347B1 (ko) 리소그래피 장치 및 물품의 제조 방법
JP2019216143A (ja) 型を用いて基板上の組成物を成形する成形装置、および物品の製造方法
US11526090B2 (en) Imprint apparatus and method of manufacturing article
US20210187797A1 (en) Imprint apparatus, imprint method, and method of manufacturing article
KR102537179B1 (ko) 임프린트 장치, 임프린트 방법 및 물품의 제조 방법
JP6548560B2 (ja) インプリント装置、計測方法、インプリント方法、および物品の製造方法
JP2019004074A (ja) インプリント装置および物品製造方法
TWI631599B (zh) 壓印裝置,測量方法,壓印方法,及物品製造方法
US11573487B2 (en) Imprint apparatus, imprinting method, and method of manufacturing article
JP6552392B2 (ja) インプリント装置、計測方法、インプリント方法、および物品の製造方法
US11664225B2 (en) Imprint apparatus, and product manufacturing method
JP7441037B2 (ja) インプリント装置、情報処理装置、インプリント方法及び物品の製造方法
JP7362429B2 (ja) 成形装置、成形方法、および物品の製造方法
JP2019067917A (ja) インプリント装置、インプリント方法および物品の製造方法
JP7289895B2 (ja) インプリント装置、インプリント方法、および、物品の製造方法
KR20230040894A (ko) 액체 토출 장치, 액체 토출 방법, 막 형성 장치, 및 물품 제조 방법
JP2022190891A (ja) 液体吐出装置、液体吐出方法、成形装置及び物品の製造方法
JP2019079877A (ja) インプリント装置、物品の製造方法、決定方法、情報処理装置及びプログラム
KR20230068314A (ko) 임프린트 장치 및 물품 제조 방법
JP2019016656A (ja) インプリント装置、および物品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018568

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16870500

Country of ref document: EP

Kind code of ref document: A1