WO2017094423A1 - 制御装置、制御方法、制御プログラム - Google Patents

制御装置、制御方法、制御プログラム Download PDF

Info

Publication number
WO2017094423A1
WO2017094423A1 PCT/JP2016/082293 JP2016082293W WO2017094423A1 WO 2017094423 A1 WO2017094423 A1 WO 2017094423A1 JP 2016082293 W JP2016082293 W JP 2016082293W WO 2017094423 A1 WO2017094423 A1 WO 2017094423A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
axis
delay time
response delay
command
Prior art date
Application number
PCT/JP2016/082293
Other languages
English (en)
French (fr)
Inventor
宏次 森野
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201680046364.0A priority Critical patent/CN107924198B/zh
Priority to EP16870363.5A priority patent/EP3385813A4/en
Priority to US15/750,832 priority patent/US10118294B2/en
Publication of WO2017094423A1 publication Critical patent/WO2017094423A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/50Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41192Compensation for different response times, delay of axis

Definitions

  • the present invention relates to a control device, a control method, and a control program.
  • a control device that controls the operation of a robot calculates, as a servo delay time, a difference between a target trajectory with respect to a command value and an actual motion trajectory for each axis, and uses the shortest servo delay time as a reference time.
  • the above method has a problem that the calculation of the compensation torque based on the servo delay time for each axis and the reference time and the calculation of the command value reflecting the compensation torque are complicated.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to realize a control device capable of suppressing a locus deviation caused by a variation in response delay time between a plurality of axes (a plurality of servo motors). There is.
  • This control device is a control device that gives instructions to a plurality of servo drivers corresponding to a plurality of servo motors, and is based on a servo driver corresponding to a reference servo motor having a maximum response delay time among the plurality of servo motors.
  • the command timing to the other servo driver is set such that the response delay time of the reference servo motor and the response delay time of the servo motor corresponding to the other servo driver are higher than the command timing to the reference servo driver. It is characterized by delaying by the difference.
  • Embodiments of the present invention will be described with reference to FIGS. The following description will be made on the assumption that the synchronization group has a three-axis (X-axis, Y-axis, Z-axis) configuration as shown in FIG. 1, but the synchronization group of the present embodiment only needs to have two or more axes.
  • the X-axis servo driver that receives a command from the control device controls the X-axis servo motor, and the workpiece Wx moves in the X-axis direction by the X-axis servo motor. (Operation information of the X-axis servomotor is fed back to the X-axis servo driver).
  • the Y-axis servo driver that has received a command from the control device controls the Y-axis servo motor, and the workpiece Wy is moved in the Y-axis direction by the Y-axis servo motor (the operation information of the Y-axis servo motor is This is fed back to the Y-axis servo driver).
  • the Z-axis servo driver that has received a command from the control device controls the Z-axis servo motor, and the workpiece Wz moves in the Z-axis direction by the Z-axis servo motor (the operation information of the Z-axis servo motor is (Feedback to Z-axis servo driver).
  • the response delay time of the X-axis servo driver (hereinafter referred to as servo driver SDx) is represented by Rx
  • the response delay time of the Y-axis servo driver (hereinafter referred to as servo driver SDy) is represented by Ry, Z
  • the response delay time of the axis servo driver (hereinafter referred to as servo driver SDz) is Rz and the position command arrives at time t with respect to the servo driver SDx, servo driver SDy and servo driver SDz
  • the three servo motors responded to different points in time, and traced the locus deviated from the target locus as shown in FIG. It will be.
  • position commands to the servo driver SDx, the servo driver SDy, and the servo driver SDz are timed as shown in FIG. Staggered.
  • the servo motor SMz having the maximum response delay time is used as a reference servo motor, and the servo motor SMx (reference servo motor) is set to respond in response to the response time T of the servo motor SMz.
  • the Px position command to the servo driver SDx is delayed by dx from the Pz position command to the servo driver SDz, and the servo driver SDy.
  • the Py position command is delayed by dy from the Pz position command to the servo driver SDz.
  • the inventor is shown in FIG. 6 (b) when the acceleration changes (plus and minus changes). It has been found that it is effective to correct the shaded portion for the locus deviation caused by the positional deviation (including the change in direction). Specifically, the command position is corrected by an amount corresponding to (1/2) ⁇ square of response delay time ⁇ acceleration (predicted acceleration) corresponding to the shaded area.
  • the control device includes a processor having functional modules as shown in FIG.
  • the functional modules included in the processor include a prediction synchronization calculation unit, a command position generation unit, an X axis position correction unit, a Y axis position correction unit, a Z axis position correction unit, an X axis command unit, a Y axis command unit, and a Z axis command unit. It is.
  • the predicted synchronization calculation unit reads servo parameters from the servo driver SDx, servo driver SDy, and servo driver SDz, and includes an X-axis response delay time, a Y-axis response delay time, a Z-axis response delay time, and a reference response delay time.
  • a predicted position synchronization correction parameter is calculated.
  • the X-axis response delay time (Rx in FIGS. 3 and 4) is the reciprocal of the position loop gain, which is one of the servo parameters of the servo driver SDx, and the Y-axis response delay time (Ry in FIGS. 3 and 4).
  • the Z-axis response delay time (Rz in FIGS. 3 and 4) is a position loop which is one of the servo parameters of the servo driver SDz.
  • the reciprocal of the gain is used, and the reference response delay time is the maximum value of Rx, Ry, and Rz.
  • the command position generation unit generates an X-axis command position, a Y-axis command position, and a Z-axis command position based on the target locus, inputs the X-axis command position to the X-axis position correction unit, and calculates the Y-axis command position. Input to the Y-axis position correction unit, and input the Z-axis command position to the Z-axis position correction unit.
  • the X-axis position correction unit corrects the X-axis command position (correction regarding the difference between the axes of the response delay time and correction regarding the position deviation caused by the acceleration change) based on the predicted position synchronization correction parameter. Performs a position command to the servo driver SDx based on the corrected X-axis command position.
  • the Y-axis position correction unit performs correction of the Y-axis command position (correction regarding the difference between the axes of the response delay time and correction regarding the position deviation caused by the acceleration change) based on the predicted position synchronization correction parameter. Performs a position command to the servo driver SDy based on the corrected Y-axis command position.
  • the Z-axis position correction unit corrects the Z-axis command position (correction regarding the difference between the axes of the response delay time and correction regarding the position deviation caused by the acceleration change) based on the predicted position synchronization correction parameter. Performs a position command to the servo driver SDz based on the corrected Z-axis command position.
  • the servo driver SDx includes an X-axis position controller that receives a position command from the control device, an X-axis speed controller that receives an output from the X-axis position controller, and an X-axis speed controller.
  • X-axis current control unit (X-axis torque control unit) that receives the output of the servo motor SMx is driven by the output of the X-axis current control unit, and the output of the encoder of the servo motor SMx is the X-axis position Feedback is provided to the control unit, the X-axis speed control unit, and the X-axis current control unit.
  • the X-axis position control unit outputs a position loop gain to the control device
  • the X-axis speed control unit outputs a speed loop gain to the control device.
  • the servo driver SDy also receives a Y-axis position control unit that receives a position command from the control device, a Y-axis speed control unit that receives an output from the Y-axis position control unit, and a Y-axis that receives an output from the Y-axis speed control unit.
  • a shaft current control unit Y-axis torque control unit
  • the rotation unit of the servo motor SMy is driven by the output of the Y-axis current control unit
  • the output of the encoder of the servo motor SMy is the Y-axis position control unit, Y-axis This is fed back to the speed controller and the Y-axis current controller.
  • the Y-axis position control unit outputs a position loop gain to the control device
  • the Y-axis speed control unit outputs a speed loop gain to the control device.
  • the servo driver SDz receives a position command from the control device, a Z-axis position controller that receives an output from the Z-axis position controller, and a Z-axis that receives an output from the Z-axis speed controller.
  • a shaft current control unit Z-axis torque control unit
  • the rotation unit of the servo motor SMz is driven by the output of the Z-axis current control unit, and the output of the encoder of the servo motor SMz is the Z-axis position control unit, Z-axis This is fed back to the speed controller and the Z-axis current controller.
  • the Z-axis position control unit outputs a position loop gain to the control device
  • the Z-axis speed control unit outputs a speed loop gain to the control device.
  • the processor of the control device executes steps S1 to S8 in FIG. 10, for example, by executing a control program according to the present embodiment.
  • step S1 the position loop gain of each axis (in a preset synchronization group) is acquired from the servo driver, the response delay time of each axis is calculated in step S2, and the response delay of each axis is calculated in step S3.
  • step S4 the maximum response delay time is calculated in step S4.
  • step S5 the difference between each axis response delay time and the maximum response delay time is calculated. Correction for delaying the position by the difference calculated for each axis is performed, and in step S7, the correction relating to the position deviation caused by the change in acceleration with respect to the result of step S6, specifically, the position generated in proportion to the acceleration. The deviation is corrected, and in step S8, a position command is issued to the corresponding servo driver based on the corrected command position obtained in step S7.
  • the deviation from the target trajectory is suppressed as shown in FIG. 11 by performing the correction related to the difference between the axes of the response delay time and the correction related to the position deviation when the acceleration changes.
  • Xcp (t) X (t ⁇ (Rs ⁇ Rx)) ⁇ (1/2) ⁇ Rx 2 ⁇ Ax Equation 1
  • td Communication delay time (common between axes)
  • Rs reference response delay time (maximum value of Rx, Ry, Rz)
  • Xpp (t) X (t ⁇ (Rs + td)) ⁇ Xap (t) Equation 2
  • the acceleration Ax of the first term of Equation 1 the result obtained by (d 2 x / dt 2 ) (t ⁇ (Rs ⁇ Rx)) is used as a first order with the reciprocal Rx of the position loop gain as the first order lag time constant.
  • the delay calculation is performed, and the result of the first-order delay calculation using 1 / (2 ⁇ ⁇ speed loop gain) as the first-order delay time constant is used as the acceleration Ax.
  • the correction related to the difference between the axes of the response delay time is realized by the first term of the following formula 3, and the correction related to the positional deviation at the time of acceleration change is expressed by the following formula. This can be realized by the second term of 3.
  • Ycp (t) Y (t ⁇ (Rs ⁇ Ry)) ⁇ 1/2 ⁇ Ry 2 ⁇ Ay Equation 3
  • td Communication delay time (common between axes)
  • Rs reference response delay time (maximum value of Rx, Ry, Rz)
  • Ypp (t) Y (t ⁇ (Rs + td)) ⁇ Yap (t)
  • Ypp (t) Predicted position Yap (t): Actual position (feedback position) when Ycp (t) is given
  • the acceleration Ay in the second term of Equation 3 the result obtained by (d 2 y / dt 2 ) (t ⁇ (Rs ⁇ Ry)) is used as a first-order lag time constant with the reciprocal Ry of the position loop gain.
  • the delay calculation is performed, and the result of the first-order delay calculation using 1 / (2 ⁇ ⁇ speed loop gain) as the first-order delay time constant is used as the acceleration Ay.
  • the correction related to the difference between the axes of the response delay time is realized by the first term of the following formula 5, and the correction related to the positional deviation when the acceleration changes This can be realized by the second term of 5.
  • Zcp (t) Z (t ⁇ (Rs ⁇ Rz)) ⁇ 1/2 ⁇ Rz 2 ⁇ Az Equation 5
  • td Communication delay time (common between axes)
  • Rs reference response delay time (maximum value of Rx, Ry, Rz)
  • Zpp (t) Z (t ⁇ (Rs + td)) ⁇ Zap (t)
  • the acceleration Az in the second term of Equation 5 the result obtained by (d 2 z / dt 2 ) (t ⁇ (Rs ⁇ Rz)) is used as a first-order lag time constant with the reciprocal Rz of the position loop gain.
  • the delay calculation is performed, and the result of the first-order delay calculation using 1 / (2 ⁇ ⁇ speed loop gain) as the first-order delay time constant is used as the acceleration Az.
  • Each functional module of the control device may be realized by software using a CPU (Central Processing Unit), or may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like.
  • CPU Central Processing Unit
  • IC chip integrated circuit
  • the control device is a CPU that executes instructions of a control program that is software that implements each function, a ROM (Read Only Memory) in which the control program and various data are recorded so as to be readable by the computer (or CPU) or A storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for developing a control program, and the like are provided.
  • a computer or CPU reads a control program from a recording medium and executes it.
  • a recording medium a “non-temporary tangible medium” such as a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • control program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the control program.
  • a transmission medium such as a communication network or a broadcast wave
  • this embodiment can also be realized in the form of a data signal embedded in a carrier wave in which the control program is embodied by electronic transmission.
  • This control device is a control device that gives instructions to a plurality of servo drivers corresponding to a plurality of servo motors, and is based on a servo driver corresponding to a reference servo motor having a maximum response delay time among the plurality of servo motors.
  • the command timing to the other servo driver is set such that the response delay time of the reference servo motor and the response delay time of the servo motor corresponding to the other servo driver are higher than the command timing to the reference servo driver. It is characterized by delaying by the difference.
  • the command may be a position command based on a target locus.
  • the response delay time of each servo motor can be configured to be represented by the reciprocal of the position loop gain of the corresponding servo driver.
  • This control device may be configured to issue a position command so that an amount of correction proportional to the acceleration is added when the acceleration of each servo motor changes.
  • This control method is a control method for instructing a plurality of servo drivers corresponding to a plurality of servo motors to cause the plurality of servo motors to respond, a first step for obtaining a response delay time of each servo motor, and a response
  • the reciprocal of the position loop gain of each servo driver may be compared in the second step.
  • This control program causes a processor to execute the first to third steps.
  • This recording medium is a computer-readable recording medium in which the control program is recorded.
  • the present invention is not limited to the above-described embodiment, and those obtained by appropriately modifying the above-described embodiment based on common general technical knowledge or combinations thereof are also included in the embodiment of the present invention.
  • SDx servo driver (X axis) SDy Servo Driver (Y axis) SDz Servo driver (Z axis) SMx Servo motor (X axis) SMy servo motor (Y axis) SMz Servo motor (Z axis) Rx Response delay time (X axis) Ry Response delay time (Y axis) Rz Response delay time (Z axis)

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

複数軸(複数のサーボモータ)間の応答遅れ時間のばらつきに起因する軌跡ずれを抑制しうる制御装置を実現する。複数のサーボモータに対応する複数のサーボドライバに指令を行う制御装置であって、前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの指令タイミングを、前記基準サーボドライバへの指令タイミングよりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせる。

Description

制御装置、制御方法、制御プログラム
 本発明は、制御装置、制御方法、制御プログラムに関する。
 特許文献1には、ロボットの動作を制御する制御装置が、軸毎に指令値に対する目標軌跡と実際の動作軌跡との差をサーボ遅れ時間として計算し、最短のサーボ遅れ時間を基準時間とし、軸毎のサーボ遅れ時間と前記基準時間とに基づいて軸毎の補償トルクを計算し、軸毎の補償トルクが反映された指令値を各サーボに出力してロボットの動作を制御する手法が開示されている。
特開2009-151527号公報(2009年7月9日公開)
 前記手法では、軸毎のサーボ遅れ時間と前記基準時間とに基づく補償トルクの計算、並びに補償トルクが反映された指令値の算出が煩雑になるという問題があった。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、複数軸(複数のサーボモータ)間の応答遅れ時間のばらつきに起因する軌跡ずれを抑制しうる制御装置を実現することにある。
 本制御装置は、複数のサーボモータに対応する複数のサーボドライバに指令を行う制御装置であって、前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの指令タイミングを、前記基準サーボドライバへの指令タイミングよりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせることを特徴とする。
 本制御装置によれば、複数のサーボモータ間の応答遅れ時間のばらつきに起因する軌跡ずれを抑制することができる。
複数軸構成を示す模式図である。 軸間応答遅れ時間差に起因する軌跡ずれの例を説明する参考図である。 軸間応答遅れ時間差に起因する軌跡ずれの原理を説明する参考図である。 本制御装置の位置指令を説明する説明図である。 加速度変化時の位置偏差に起因する軌跡ずれの例を説明する参考図である。 加速度変化時の位置偏差に起因する軌跡ずれを抑制する原理を説明する説明図である。 加速度変化時の位置偏差に起因する軌跡ずれを抑制する手法を説明する説明図である。 本制御装置の機能モジュールを示す模式図である。 本実施形態にかかる各サーボドライバの構成例を示す模式図である。 本制御装置の処理工程を示すフローチャートである。 本実施形態の効果を示す軌跡図である。
 本発明の実施形態を図1~図11を用いて説明する。以下では図1のような3軸(X軸、Y軸、Z軸)構成の同期グループを前提に説明するが、本実施形態の同期グループは2軸以上の構成であればよい。
 図1のような3軸構成では、例えば、制御装置からの指令を受けたX軸用サーボドライバがX軸用サーボモータを制御し、X軸用サーボモータによってワークWxがX軸方向に移動する(X軸用サーボモータの動作情報はX軸用サーボドライバにフィードバックされる)。また、制御装置からの指令を受けたY軸用サーボドライバがY軸用サーボモータを制御し、Y軸用サーボモータによってワークWyがY軸方向に移動する(Y軸用サーボモータの動作情報はY軸用サーボドライバにフィードバックされる)。また、制御装置からの指令を受けたZ軸用サーボドライバがZ軸用サーボモータを制御し、Z軸用サーボモータによってワークWzがZ軸方向に移動する(Z軸用サーボモータの動作情報はZ軸用サーボドライバにフィードバックされる)。
 〔応答遅れ時間の軸間差に起因する軌跡ずれの抑制〕
 一般に、X軸用サーボドライバ、Y軸用サーボドライバおよびZ軸用サーボドライバへの指令は同期しているが、指令を受けてから対応するサーボモータが応答するまでの時間(応答遅れ時間)は軸間でばらついている。
 例えば、Y軸系では応答遅れがほとんどなく(小さく)、Z軸系で応答遅れが大きい場合、図2のように、Y軸系では指令速度とフィードバック速度とがほぼ一致するのに対して、Z軸系では指令速度とフィードバック速度とが時間的にずれるため、コーナ軌跡においてZ軸方向の立ち上がりが遅れ、目標よりも外回りの軌跡となってしまう。
 すなわち、図3(a)のように、X軸用サーボドライバ(以下、サーボドライバSDx)の応答遅れ時間をRx、Y軸用サーボドライバ(以下、サーボドライバSDy)の応答遅れ時間をRy、Z軸用サーボドライバ(以下、サーボドライバSDz)の応答遅れ時間をRzとし、サーボドライバSDx、サーボドライバSDyおよびサーボドライバSDzに対して時刻tに同期して位置指令が到達した場合に、サーボモータSMxの応答時刻がTx(=t+Rx)、応答遅れ時間が最小のサーボモータSMyの応答時刻がTy(=t+Ry)、応答遅れ時間最大のサーボモータSMzの応答時刻がTz(=t+Rz)となって、3つのサーボモータが時間的にばらばらに応答し、図3(b)に示されるように目標軌跡からずれた軌跡をたどることになる。
 そこで、本実施形態では、応答遅れ時間の軸間差に起因する軌跡ずれを抑制するため、図4(a)のように、サーボドライバSDx、サーボドライバSDyおよびサーボドライバSDzへの位置指令を時間的にずらして行う。
 具体的には、応答遅れ時間最大のサーボモータSMzを基準サーボモータとし、サーボモータSMzの応答時刻Tに同期してサーボモータSMxおよびサーボモータSMyを応答させるべく、サーボモータSMz(基準サーボモータ)を制御するサーボドライバSDz(基準サーボドライバ)への指令時刻tzに対して、サーボドライバSDxへの指令時刻txを、dx(基準サーボモータSMzとサーボモータSMxとの応答遅れ時間の差=Rz-Rx)だけ遅らせ、サーボドライバSDyへの指令時刻txを、dy(基準サーボモータSMzとサーボモータSMyとの応答遅れ時間の差=Rz-Ry)だけ遅らせる。
 例えば、ある時刻の目標位置座標が(Px,Py,Pz)であれば、サーボドライバSDxへのPxの位置指令を、サーボドライバSDzへのPzの位置指令よりもdxだけ遅らせ、サーボドライバSDyへのPyの位置指令を、サーボドライバSDzへのPzの位置指令よりもdyだけ遅らせる。これにより、図4(b)に示されるように目標軌跡に近い軌跡とすることができる。
 〔加速度変化時の位置偏差に起因する軌跡ずれの抑制〕
 前記の手法によって軸間の応答タイミングは揃うが、各軸の応答遅れ自体は存在する。このため、図5のように、X軸用のサーボドライバへの速度指令が小⇒大となり、Y軸用のサーボドライバへの速度指令が大⇒小となる場合、X軸の位置偏差(指令位置とフィードバック位置の差)が時間的に増加する一方、Y軸の位置偏差(指令位置とフィードバック位置の差)は時間的に減少し、図5に示されるように目標軌跡に対して内回りの軌跡をたどることがある。
 発明者は、図6(a)のように、指令速度とフィードバック速度とが応答遅れ時間だけずれているモデルにおいては、図6(b)のように、加速度変化時(プラス方向の変化とマイナス方向の変化を含む)の位置偏差に起因する軌跡ずれに対して、網掛け部分の補正を行うことが有効であることを見出した。具体的には、網掛け部分の面積にあたる、(1/2)×応答遅れ時間の2乗×加速度(予測加速度)に該当する量だけ、指令位置の補正を行う。
 こうすれば、図7(a)のように折り返し軌跡であって、フィードバック位置が折り返し点に到達していなかった場合でも、前記の指令位置の補正によって、図7(b)のようにフィードバック位置が折り返し点に到達するようになる。
 〔制御装置のプロセッサの機能モジュール〕
 本実施形態にかかる制御装置は、図8のような機能モジュールをもつプロセッサを備える。プロセッサが備える機能モジュールは、予測同期計算部、指令位置生成部、X軸位置補正部、Y軸位置補正部、Z軸位置補正部、X軸指令部、Y軸指令部、およびZ軸指令部である。
 予測同期計算部は、サーボドライバSDx、サーボドライバSDy、およびサーボドライバSDzからサーボパラメータを読み見出し、X軸応答遅れ時間、Y軸応答遅れ時間、Z軸応答遅れ時間、および基準応答遅れ時間を含む予測位置同期補正パラメータを算出する。
 ここでは、X軸応答遅れ時間(図3・図4のRx)は、サーボドライバSDxのサーボパラメータの1つである位置ループゲインの逆数とし、Y軸応答遅れ時間(図3・図4のRy)は、サーボドライバSDyのサーボパラメータの1つである位置ループゲインの逆数とし、Z軸応答遅れ時間(図3・図4のRz)は、サーボドライバSDzのサーボパラメータの1つである位置ループゲインの逆数とし、基準応答遅れ時間を、Rx、Ry、およびRzの最大値とする。
 指令位置生成部は、目標軌跡に基づいて、X軸指令位置、Y軸指令位置、およびZ軸指令位置を生成し、X軸指令位置をX軸位置補正部に入力し、Y軸指令位置をY軸位置補正部に入力し、Z軸指令位置をZ軸位置補正部に入力する。
 X軸位置補正部は、予測位置同期補正パラメータに基づいて、X軸指令位置の補正(応答遅れ時間の軸間差に関する補正、および加速度変化により生じる位置偏差に関する補正)を行い、X軸指令部は、補正後のX軸指令位置に基づいてサーボドライバSDxへの位置指令を行う。
 Y軸位置補正部は、予測位置同期補正パラメータに基づいて、Y軸指令位置の補正(応答遅れ時間の軸間差に関する補正、および加速度変化により生じる位置偏差に関する補正)を行い、Y軸指令部は、補正後のY軸指令位置に基づいてサーボドライバSDyへの位置指令を行う。
 Z軸位置補正部は、予測位置同期補正パラメータに基づいて、Z軸指令位置の補正(応答遅れ時間の軸間差に関する補正、および加速度変化により生じる位置偏差に関する補正)を行い、Z軸指令部は、補正後のZ軸指令位置に基づいてサーボドライバSDzへの位置指令を行う。
 図9に示すように、サーボドライバSDxは、制御装置からの位置指令を受けるX軸位置制御部と、X軸位置制御部からの出力を受けるX軸速度制御部と、X軸速度制御部からの出力を受けるX軸電流制御部(X軸トルク制御部)とを含み、X軸電流制御部の出力によってサーボモータSMxの回転部が駆動し、サーボモータSMxのエンコーダの出力が、X軸位置制御部、X軸速度制御部、およびX軸電流制御部にフィードバックされる。X軸位置制御部は制御装置に位置ループゲインを出力し、X軸速度制御部は制御装置に速度ループゲインを出力する。
 また、サーボドライバSDyは、制御装置からの位置指令を受けるY軸位置制御部と、Y軸位置制御部からの出力を受けるY軸速度制御部と、Y軸速度制御部からの出力を受けるY軸電流制御部(Y軸トルク制御部)とを含み、Y軸電流制御部の出力によってサーボモータSMyの回転部が駆動し、サーボモータSMyのエンコーダの出力が、Y軸位置制御部、Y軸速度制御部、およびY軸電流制御部にフィードバックされる。Y軸位置制御部は制御装置に位置ループゲインを出力し、Y軸速度制御部は制御装置に速度ループゲインを出力する。
 また、サーボドライバSDzは、制御装置からの位置指令を受けるZ軸位置制御部と、Z軸位置制御部からの出力を受けるZ軸速度制御部と、Z軸速度制御部からの出力を受けるZ軸電流制御部(Z軸トルク制御部)とを含み、Z軸電流制御部の出力によってサーボモータSMzの回転部が駆動し、サーボモータSMzのエンコーダの出力が、Z軸位置制御部、Z軸速度制御部、およびZ軸電流制御部にフィードバックされる。Z軸位置制御部は制御装置に位置ループゲインを出力し、Z軸速度制御部は制御装置に速度ループゲインを出力する。
 制御装置のプロセッサは、例えば、本実施形態にかかる制御プログラムを実行することで、図10のステップS1~S8を実行する。
 すなわち、ステップS1で、(あらかじめ設定された同期グループの)各軸の位置ループゲインをサーボドライバから取得し、ステップS2で、各軸の応答遅れ時間を算出し、ステップS3で各軸の応答遅れ時間を互いに比較し、ステップS4で、応答遅れ時間のうち、最大応答遅れ時間を算出し、ステップS5で、各軸応答遅れ時間と最大応答遅れ時間との差分を算出し、ステップS6で、指令位置に対し、各軸につき算出された差分だけ遅らせる補正を行い、ステップS7で、ステップS6の結果に対して、加速度変化により生じる位置偏差に関する補正、具体的には、加速度に比例して生じる位置偏差の補正を行い、ステップS8で、ステップS7で得られた補正後の指令位置に基づいて対応するサーボドライバに位置指令を行う。
 前述のように、応答遅れ時間の軸間差に関する補正、および加速度変化時の位置偏差に関する補正を行うことで、図11のように目標軌跡に対するずれが抑制されることがわかる。
 〔位置補正部における処理例〕
 図8のX軸補正部や図10のステップS7では、応答遅れ時間の軸間差に関する補正が下記式Axの第1項によって実現され、および加速度変化時の位置偏差に関する補正が下記式Axの第2項によって実現可能である。
 Xcp(t)=X(t-(Rs-Rx))-(1/2)×Rx×Ax・・・式1
X(t):目標位置(目標軌跡)
Xcp(t):サーボドライバSDxに与える指令位置
Rx:X軸の応答遅れ時間(逆数がその位置ループゲイン)
Ax:X軸の加速度(予測加速度)
td:通信遅れ時間(軸間で共通)
Rs:基準応答遅れ時間(Rx、Ry、Rzの最大値)
 この式1によって、式2の効果を得ることができる。
Xpp(t)=X(t-(Rs+td))≒Xap(t)・・・式2
Xpp(t):予測位置
Xap(t):Xcp(t)を与えたときの実位置(フィードバック位置)
 ここでは、式1第2項の加速度Axとして、(dx/dt)(t-(Rs-Rx))で求められる結果に、位置ループゲインの逆数Rxを一次遅れ時定数とする一次遅れ演算を行い、さらに、1/(2π×速度ループゲイン)を一次遅れ時定数とする一次遅れ演算を行った結果を加速度Axとして使用する。
 また、図8のY軸補正部や図10のステップS7では、応答遅れ時間の軸間差に関する補正が下記式3の第1項によって実現され、および加速度変化時の位置偏差に関する補正が下記式3の第2項によって実現可能である。
 Ycp(t)=Y(t-(Rs-Ry))-1/2×Ry×Ay・・・式3
Y(t):目標位置(目標軌跡)
Ycp(t):サーボドライバSDyに与える指令位置
Ry:Y軸の応答遅れ時間(逆数がその位置ループゲイン)
Ay:Y軸の加速度(予測加速度)
td:通信遅れ時間(軸間で共通)
Rs:基準応答遅れ時間(Rx、Ry、Rzの最大値)
 この式3によって、式4の効果を得ることができる。
Ypp(t)=Y(t-(Rs+td))≒Yap(t)・・・式4
Ypp(t):予測位置
Yap(t):Ycp(t)を与えたときの実位置(フィードバック位置)
 ここでは、式3第2項の加速度Ayとして、(dy/dt)(t-(Rs-Ry))で求められる結果に、位置ループゲインの逆数Ryを一次遅れ時定数とする一次遅れ演算を行い、さらに、1/(2π×速度ループゲイン)を一次遅れ時定数とする一次遅れ演算を行った結果を加速度Ayとして使用する。
 また、図8のZ軸補正部や図10のステップS7では、応答遅れ時間の軸間差に関する補正が下記式5の第1項によって実現され、および加速度変化時の位置偏差に関する補正が下記式5の第2項によって実現可能である。
 Zcp(t)=Z(t-(Rs-Rz))-1/2×Rz×Az・・・式5
Z(t):目標位置(目標軌跡)
Zcp(t):サーボドライバSDzに与える指令位置
Rz:Z軸の応答遅れ時間(逆数がその位置ループゲイン)
Az:Z軸の加速度(予測加速度)
td:通信遅れ時間(軸間で共通)
Rs:基準応答遅れ時間(Rx、Ry、Rzの最大値)
 この式5によって、式6の効果を得ることができる。
Zpp(t)=Z(t-(Rs+td))≒Zap(t)・・・式6
Zpp(t):予測位置
Zap(t):Zcp(t)を与えたときの実位置(フィードバック位置)
 ここでは、式5第2項の加速度Azとして、(dz/dt)(t-(Rs-Rz))で求められる結果に、位置ループゲインの逆数Rzを一次遅れ時定数とする一次遅れ演算を行い、さらに、1/(2π×速度ループゲイン)を一次遅れ時定数とする一次遅れ演算を行った結果を加速度Azとして使用する。
 〔ソフトウェアによる実現例〕
 制御装置の各機能モジュールは、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよいし、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよい。
 前者の場合、制御装置は、各機能を実現するソフトウェアである制御プログラムの命令を実行するCPU、制御プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、制御プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が制御プログラムを記録媒体から読み取って実行することにより、本実施形態の目的が達成される。記録媒体としては、「一時的でない有形の媒体」、例えば、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、制御プログラムは、これを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介してコンピュータに供給されてもよい。なお、本実施形態は、制御プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本制御装置は、複数のサーボモータに対応する複数のサーボドライバに指令を行う制御装置であって、前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの指令タイミングを、前記基準サーボドライバへの指令タイミングよりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせることを特徴とする。
 前記構成によれば、前記複数のサーボモータの応答タイミングが揃うため、複数軸(複数のサーボモータ)間の応答遅れ時間のばらつきに起因する軌跡ずれを抑制することができる。
 本制御装置では、前記指令は、目標軌跡に基づいた位置指令である構成とすることもできる。
 本制御装置では、各サーボモータの応答遅れ時間は、対応するサーボドライバの位置ループゲインの逆数で示される構成とすることもできる。
 本制御装置では、各サーボモータの加速度変化時に、加速度に比例する量の補正が加わるように位置指令を行う構成とすることもできる。
 前記構成によれば、加速度変化時の位置偏差に起因する軌跡ずれの抑制が可能となる。
 本制御方法は、複数のサーボモータに対応する複数のサーボドライバに指令を行い、前記複数のサーボモータを応答させる制御方法であって、各サーボモータの応答遅れ時間を得る第1ステップと、応答遅れ時間を比較する第2ステップと、前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの位置指令を、前記基準サーボドライバへの位置指令よりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせて行う第3ステップとを含むことを特徴とする。
 前記方法によれば、前記複数のサーボモータの応答タイミングが揃うため、複数軸(複数のサーボモータ)間の応答遅れ時間のばらつきに起因する軌跡ずれを抑制することができる。
 本制御方法では、前記第2ステップでは、各サーボドライバの位置ループゲインの逆数を比較してもよい。
 本制御プログラムは、前記第1~第3ステップをプロセッサに実行させることを特徴とする。
 本記録媒体は、前記制御プログラムを記録したコンピュータ読み取り可能な記録媒体である。
  本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。
 SDx サーボドライバ(X軸)
 SDy サーボドライバ(Y軸)
 SDz サーボドライバ(Z軸)
 SMx サーボモータ(X軸)
 SMy サーボモータ(Y軸)
 SMz サーボモータ(Z軸)
 Rx 応答遅れ時間(X軸)
 Ry 応答遅れ時間(Y軸)
 Rz 応答遅れ時間(Z軸)

Claims (8)

  1.  複数のサーボモータに対応する複数のサーボドライバに指令を行う制御装置であって、
     前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの指令タイミングを、前記基準サーボドライバへの指令タイミングよりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせることを特徴とする制御装置。
  2.  前記指令は、目標軌跡に基づいた位置指令であることを特徴とする請求項1記載の制御装置。
  3.  各サーボモータの応答遅れ時間は、対応するサーボドライバの位置ループゲインの逆数で示されることを特徴とする請求項2記載の制御装置。
  4.  各サーボモータの加速度変化時に、加速度に比例する量の補正が加わるように位置指令を行うことを特徴とする請求項2記載の制御装置。
  5.  複数のサーボモータに対応する複数のサーボドライバに指令を行い、前記複数のサーボモータを応答させる制御方法であって、
     各サーボモータの応答遅れ時間を得る第1ステップと、
     応答遅れ時間を比較する第2ステップと、
     前記複数のサーボモータのうち応答遅れ時間が最大である基準サーボモータに対応するサーボドライバを基準サーボドライバとして、他のサーボドライバへの位置指令を、前記基準サーボドライバへの位置指令よりも、前記基準サーボモータの応答遅れ時間と前記他のサーボドライバに対応するサーボモータの応答遅れ時間との差だけ遅らせて行う第3ステップとを含むことを特徴とする制御方法。
  6.  前記第2ステップでは、各サーボドライバから読み出した位置ループゲインの逆数を比較することを特徴とする請求項5記載の制御方法。
  7.  請求項5または6記載の第1~第3ステップをプロセッサに実行させることを特徴とする制御プログラム。
  8.  請求項7記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2016/082293 2015-11-30 2016-10-31 制御装置、制御方法、制御プログラム WO2017094423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680046364.0A CN107924198B (zh) 2015-11-30 2016-10-31 控制装置、控制方法、非暂时记录介质
EP16870363.5A EP3385813A4 (en) 2015-11-30 2016-10-31 CONTROL DEVICE, CONTROL METHOD, AND CONTROL PROGRAM
US15/750,832 US10118294B2 (en) 2015-11-30 2016-10-31 Control device, control method and non-transitory recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-234142 2015-11-30
JP2015234142A JP6551199B2 (ja) 2015-11-30 2015-11-30 制御装置、制御方法、制御プログラム

Publications (1)

Publication Number Publication Date
WO2017094423A1 true WO2017094423A1 (ja) 2017-06-08

Family

ID=58797119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082293 WO2017094423A1 (ja) 2015-11-30 2016-10-31 制御装置、制御方法、制御プログラム

Country Status (5)

Country Link
US (1) US10118294B2 (ja)
EP (1) EP3385813A4 (ja)
JP (1) JP6551199B2 (ja)
CN (1) CN107924198B (ja)
WO (1) WO2017094423A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674743B (zh) * 2018-09-17 2019-10-11 士林電機廠股份有限公司 同動機構的伺服驅動器控制系統
JP6845197B2 (ja) * 2018-09-27 2021-03-17 ファナック株式会社 サーボ制御装置
CN109361330A (zh) * 2018-10-18 2019-02-19 东莞市旭展自动化科技有限公司 一种基于总线的伺服电机同步控制方法
JP6849713B2 (ja) * 2019-02-13 2021-03-24 オムロン株式会社 制御装置、制御方法、制御プログラム、及び記録媒体
CN111421543B (zh) * 2020-04-07 2021-09-28 慧灵科技(深圳)有限公司 机械臂的控制方法、装置、系统及存储介质
JP7040567B2 (ja) 2020-08-18 2022-03-23 オムロン株式会社 制御装置、制御装置の制御方法、情報処理プログラム、および記録媒体
JP7052840B2 (ja) 2020-08-18 2022-04-12 オムロン株式会社 位置特定装置、位置特定装置の制御方法、情報処理プログラム、および記録媒体
CN116501020B (zh) * 2023-05-10 2023-11-03 上海铼钠克数控科技有限公司 伺服匹配性检测方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652408A (en) * 1979-09-28 1981-05-11 Shin Meiwa Ind Co Ltd Automatic position control unit
JPS6123213A (ja) * 1984-07-10 1986-01-31 Kobe Steel Ltd ロボツトの制御装置
JPH0420103U (ja) * 1990-06-12 1992-02-20
JPH0916229A (ja) * 1995-06-29 1997-01-17 Shin Meiwa Ind Co Ltd 産業用ロボット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676394A (en) * 1979-11-16 1981-06-23 Fujikoshi Kk Positioning device for industrial robot
US4409650A (en) * 1981-03-04 1983-10-11 Shin Meiwa Industry Co., Ltd. Automatic position controlling apparatus
JPS59194206A (ja) * 1983-04-20 1984-11-05 Fanuc Ltd 数値制御におけるサ−ボ系の遅れ誤差補正制御方式
JPH0420103A (ja) 1990-05-15 1992-01-23 Matsushita Electric Works Ltd 平面アンテナ
JP4992702B2 (ja) 2007-12-20 2012-08-08 株式会社デンソーウェーブ ロボットの動作制御装置及びその動作制御方法
JP5366840B2 (ja) * 2010-01-14 2013-12-11 三菱電機株式会社 軌跡制御装置
CN104751864A (zh) * 2015-03-09 2015-07-01 广东欧珀移动通信有限公司 一种多播放设备的控制方法、相关设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652408A (en) * 1979-09-28 1981-05-11 Shin Meiwa Ind Co Ltd Automatic position control unit
JPS6123213A (ja) * 1984-07-10 1986-01-31 Kobe Steel Ltd ロボツトの制御装置
JPH0420103U (ja) * 1990-06-12 1992-02-20
JPH0916229A (ja) * 1995-06-29 1997-01-17 Shin Meiwa Ind Co Ltd 産業用ロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385813A4 *

Also Published As

Publication number Publication date
JP2017102616A (ja) 2017-06-08
US10118294B2 (en) 2018-11-06
CN107924198B (zh) 2021-05-14
EP3385813A1 (en) 2018-10-10
CN107924198A (zh) 2018-04-17
US20180229365A1 (en) 2018-08-16
EP3385813A4 (en) 2019-11-20
JP6551199B2 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2017094423A1 (ja) 制御装置、制御方法、制御プログラム
CN108356823B (zh) 具有学习控制功能的控制系统以及控制方法
US11000949B2 (en) Robot for controlling learning in view of operation in production line, and method of controlling the same
US9678500B2 (en) Machining program creating device numerical control device, machining system, machining program creating method, numerical control method, and machining program
US10386794B2 (en) Control device, storage medium, and control system by creating internal model of control target
US20180264650A1 (en) Controller, control system, and control method
US20180164788A1 (en) Production system, controller, and control method
JP5897648B2 (ja) 同期制御中に位置制御のゲインを切換える機能を有する数値制御装置
JP2017102617A (ja) 補正装置、補正装置の制御方法、情報処理プログラム、および記録媒体
JPH11305839A (ja) 複数のサーボモータの制御方法
WO2013140679A1 (ja) 軌跡制御装置
JP2018151889A (ja) 処理装置、パラメータ調整方法、及びパラメータ調整プログラム
JP6627999B2 (ja) 制御装置、制御方法、制御プログラム
US9622201B2 (en) Synchronization of control device
JP2017102693A (ja) 制御装置および制御方法、制御装置を用いたコンピュータプログラム
JP5832382B2 (ja) 数値制御装置
JP6407478B1 (ja) 電子カムパターン生成方法および電子カムパターン生成装置
JP5875740B1 (ja) 数値制御装置
JP7124696B2 (ja) 同期制御装置、同期制御システム、同期制御方法及びシミュレーション装置
CN106877771B (zh) 控制装置以及控制方法
JP6849713B2 (ja) 制御装置、制御方法、制御プログラム、及び記録媒体
CN111546329A (zh) 一种多关节机器人伺服增益一致性控制方法
US20200061831A1 (en) Control system
JP2006227719A (ja) モーションコントロールシステム
JP2006011631A (ja) サーボ制御システムおよびサーボ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE