WO2017094228A1 - 電池、電池パックおよび電子機器 - Google Patents

電池、電池パックおよび電子機器 Download PDF

Info

Publication number
WO2017094228A1
WO2017094228A1 PCT/JP2016/004862 JP2016004862W WO2017094228A1 WO 2017094228 A1 WO2017094228 A1 WO 2017094228A1 JP 2016004862 W JP2016004862 W JP 2016004862W WO 2017094228 A1 WO2017094228 A1 WO 2017094228A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
hole
negative electrode
insulating plate
electrode tab
Prior art date
Application number
PCT/JP2016/004862
Other languages
English (en)
French (fr)
Inventor
浩輔 柳田
範昭 國分
鈴木 和彦
紅 姚
雅文 梅川
寅治 菅野
袖山 国雄
貴幸 竹澤
野口 和則
森 敬郎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017094228A1 publication Critical patent/WO2017094228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to batteries, battery packs, and electronic devices.
  • an insulating plate is generally disposed on an end surface of the electrode body.
  • the shape of the insulating plate for example, the following has been proposed in consideration of battery characteristics.
  • Patent Document 1 at least one of a hole, a notch, and a groove is provided at one or more locations on the insulating plate, and the nonaqueous electrolyte is guided to the battery element by the hole, the notch, and the groove. It has been proposed to do so.
  • a negative electrode current collecting tab is extended from the periphery of the insulating plate to the welding hole, and the diameter of the electrolyte penetration hole existing at a position corresponding to the negative electrode current collecting tab is Lithium ion batteries configured to be smaller than the width of the negative electrode current collecting tab have been proposed. Further, it has been proposed that the aperture ratio in the insulating plate is 24% or more.
  • Patent Document 3 a liquid injection port for injecting an electrolytic solution is provided at the center, symmetrical cutout portions for drawing out the positive electrode lead are provided on both sides, and a pair of punching holes for work are further provided. Insulating plates have been proposed.
  • An object of the present technology is to provide a battery that can improve safety, a battery pack including the battery, and an electronic device.
  • the first technique includes an electrode body having a first hole portion penetrating between both end faces, a battery can having a bottom portion and containing the electrode body, and a first hole portion.
  • An insulating plate provided on an end surface on the bottom side of both end surfaces, a first hole portion and a second hole portion; and a second hole portion provided so as to overlap and a plurality of cutout portions provided on the periphery.
  • the battery is provided with an electrode tab provided between the insulating plate and the bottom so as to overlap the hole, and the second hole is a battery extending to the outside of the electrode tab.
  • the second technology is a battery pack including the battery of the first technology and a control unit that controls the battery.
  • the third technology is an electronic device that includes the battery of the first technology and receives power supply from the battery.
  • the safety of the battery can be improved.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of the nonaqueous electrolyte secondary battery according to the first embodiment of the present technology.
  • FIG. 2A is a plan view showing an example of a can bottom having an arc-shaped groove.
  • 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 2A.
  • FIG. 3A is a plan view showing an example of a shape of the bottom-side insulating plate.
  • FIG. 3B is a plan view illustrating a configuration example of a bottom-side end surface of the electrode body.
  • 4 is an enlarged cross-sectional view of a part of the electrode body shown in FIG.
  • FIG. 5 is a schematic diagram for explaining the flow of generated gas when abnormal heat is applied to the battery.
  • FIG. 5 is a schematic diagram for explaining the flow of generated gas when abnormal heat is applied to the battery.
  • FIG. 6 is a cross-sectional view illustrating a configuration example of the can bottom of the nonaqueous electrolyte secondary battery according to Modification 1 of the first embodiment of the present technology.
  • FIG. 7A is a cross-sectional view illustrating a first configuration example of a can bottom of a nonaqueous electrolyte secondary battery according to Modification 2 of the first embodiment of the present technology.
  • FIG. 7B is a cross-sectional view showing a second configuration example of the can bottom of the nonaqueous electrolyte secondary battery according to Modification 2 of the first embodiment of the present technology.
  • FIG. 8 is a cross-sectional view illustrating a configuration example of the can bottom of the nonaqueous electrolyte secondary battery according to Modification 3 of the first embodiment of the present technology.
  • FIG. 9 is a block diagram illustrating a configuration example of an electronic device according to the second embodiment of the present technology.
  • FIG. 10 is a schematic diagram illustrating a configuration example of the power storage system according to the third embodiment of the present technology.
  • FIG. 11 is a schematic diagram illustrating one configuration of the electric vehicle according to the fourth embodiment of the present technology.
  • 12A, 12B, and 12C are plan views showing the configurations of the batteries of Examples 1, 2, and 3, respectively.
  • 13A, 13B, and 13C are plan views showing the configurations of the batteries of Examples 4, 5, and 6, respectively.
  • 14A, 14B, and 14C are plan views showing the configurations of the batteries of Examples 7, 8, and 9, respectively.
  • 15A, 15B, and 15C are plan views showing the configurations of the batteries of Examples 10, 11, and 12, respectively.
  • 16A and 16B are plan views showing the configurations of the batteries of Examples 13 and 14, respectively.
  • 17A, 17B, and 17C are plan views showing the configurations of the batteries of Comparative Examples 1, 2, and 3, respectively.
  • FIG. 18 is a graph showing the relationship between the aperture ratio Ra, the combustion test pass rate, and the short-circuit occurrence probability.
  • Embodiments of the present technology will be described in the following order. 1. First embodiment (example of cylindrical battery) 2 Second embodiment (example of battery pack and electronic device) 3 Third Embodiment (Example of Power Storage System) 4 Fourth Embodiment (Example of Electric Vehicle)
  • the gas generated on the side of the electrode body is guided along the path of the electrode body side ⁇ battery bottom ⁇ electrode body center hole ⁇ battery top, May be prevented from accumulating on the side surface of the electrode body.
  • the gas induction is inhibited.
  • the diameter of the center hole of the bottom insulating plate is generally set smaller than the inner diameter of the electrode body for battery assembly (transport), the center hole of the electrode body is blocked by the negative electrode tab. Thus, gas induction from the bottom of the battery to the center hole of the electrode body is hindered.
  • gas induction from the side surface of the electrode body to the bottom of the battery is achieved by adopting a configuration in which a plurality of notches are provided on the outer periphery of the insulating plate and a configuration in which the central hole of the insulating plate extends to the outside of the negative electrode tab. It has been found that gas induction from the bottom of the battery to the center hole of the electrode body can be improved.
  • a battery having such a configuration will be described.
  • This battery is, for example, a so-called lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to insertion and extraction of lithium (Li) as an electrode reactant.
  • This battery is called a so-called cylindrical type, and is an electronic element in which a pair of strip-like positive electrode 21 and strip-like negative electrode 22 are laminated and wound via a separator 23 inside a substantially hollow cylindrical battery can 11.
  • the battery can 11 is made of iron (Fe) plated with nickel (Ni), and has one end closed and the other end open.
  • an electrolytic solution as an electrolyte is injected and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23.
  • a pair of insulating plates 12 and 13 are provided perpendicular to the winding peripheral surface so as to sandwich the electrode body 20.
  • a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a thermal resistance element (Positive16Temperature ⁇ Coefficient; PTC element) 16 are provided via a sealing gasket 17. It is attached by caulking. Thereby, the inside of the battery can 11 is sealed.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 discharges the gas from the top side of the battery, for example, when the gas is generated in the battery can 11 in the event of an abnormality, by cleaving.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating, the disk plate 15 ⁇ / b> A is inverted and the battery lid 14 is reversed. And the electrode body 20 are disconnected from each other.
  • the sealing gasket 17 is made of, for example, an insulating material, and the surface is coated with asphalt.
  • the electrode body 20 has a substantially cylindrical shape.
  • the electrode body 20 has a center hole (first hole) 20A penetrating from the center of one end face (top end face) toward the center of the other face (bottom end face).
  • a center pin 24 is inserted into the center hole 20A.
  • the center pin 24 has a cylindrical shape with both ends open. For this reason, the center pin 24 functions as a flow path that guides the gas from the bottom side to the top side when the gas is generated in the battery can 11.
  • a positive electrode tab 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the electrode body 20, and one end of the positive electrode tab 25 is extended from the top side end surface of the electrode body 20.
  • One end of the positive electrode tab 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15.
  • a negative electrode tab 26 made of nickel or the like is connected to the negative electrode 22, and one end of the negative electrode tab 26 extends from the bottom side end surface of the electrode body 20.
  • One end of the negative electrode tab 26 is welded and electrically connected to the battery can 11.
  • the open circuit voltage (that is, the battery voltage) in the fully charged state per pair of the positive electrode 21 and the negative electrode 22 may be 4.2 V or lower, but is higher than 4.2 V, preferably It may be designed to be in the range of 4.4 V to 6.0 V, more preferably 4.4 V to 5.0 V. By increasing the battery voltage, a high energy density can be obtained.
  • the battery can 11, the top-side insulating plate 12, the bottom-side insulating plate 13, the positive electrode 21, the negative electrode 22, the separator 23, and the electrolyte constituting the battery according to the first embodiment will be described in order.
  • the battery can 11 has a can bottom 11Bt as a bottom.
  • the can bottom 11Bt When the can bottom 11Bt is viewed from the vertical direction, the can bottom 11Bt has a circular shape as shown in FIG. 2A.
  • the inner surface of the battery can 11 (hereinafter simply referred to as “the inner surface of the can bottom 11Bt”) has one groove 11Gv as a cleavage valve, as shown in FIGS. 2A and 2B. It is preferable. Since the bottom 11Bt has the groove 11Gv, when the gas pressure at the bottom of the battery rises abnormally, the groove 11Gv in the bottom 11Bt can be cleaved and the gas can escape. Therefore, the safety of the battery can be further improved.
  • the groove 11Gv has an arc shape such as a C shape or an inverted C shape.
  • the center of the arc of the groove 11Gv preferably coincides with the center of the can bottom 11Bt.
  • the arc of the groove 11Gv is preferably concentric with the outer periphery of the can bottom 11Bt.
  • the gas release pressure (cleavage pressure) of the groove 11Gv is preferably higher than the gas release pressure (working pressure) of the safety valve mechanism 15.
  • the groove 11Gv of the can bottom 11Bt is intended to release gas to the outside of the battery when abnormal heat is applied to the battery in an overcharged state or the like. This is because it is necessary to prevent.
  • the gas release pressure of the groove 11Gv is preferably lower than the battery internal pressure at which the sealing portion of the battery in an overcharged state is destroyed. This is because, when abnormal heat is applied to the battery in an overcharged state or the like, the groove 11Gv can be cleaved and the gas can be discharged outside the battery before the battery bursts.
  • the gas release pressure of the groove 11Gv is preferably in the range of 20 kgf / cm 2 or more and 100 kgf / cm 2 or less.
  • the cross-sectional shape of the groove 11Gv is, for example, a substantially polygonal shape, a substantially partial circular shape, a substantially partial elliptical shape, or an indefinite shape, but is not limited thereto.
  • the curvature R etc. may be provided to the top of the polygonal shape.
  • the polygonal shape include a triangular shape, a quadrangular shape such as a trapezoidal shape and a rectangular shape, and a pentagonal shape.
  • the “partial circular shape” is a partial shape of a circular shape, for example, a semicircular shape.
  • the partial elliptical shape is a partial shape of an elliptical shape, for example, a semi-elliptical shape.
  • the bottom surface may be, for example, a flat surface, an uneven surface having a step, a curved surface having undulations, or a composite surface in which two or more of these surfaces are combined.
  • the top-side insulating plate 12 is provided on the top-side end surface of the electrode body 20 so that the main surface of the insulating plate 12 and the top-side end surface of the electrode body 20 face each other.
  • the insulating plate 12 has a disk shape, and its outer diameter is substantially the same as the inner diameter of the battery can 11.
  • the insulating plate 12 has a center hole 12A that penetrates in the thickness direction of the insulating plate 12. The center hole 12A overlaps with the center hole 20A of the electrode body 20 in the assembled battery.
  • the insulating plate 12 may further have one or a plurality of injection holes penetrating in the thickness direction of the insulating plate 12 and allowing the electrolytic solution to be inserted therethrough.
  • the material of the insulating plate 12 include thermoplastic resins such as polypropylene (PP), polyethylene terephthalate (PET), and polyphenylene sulfide (PPS).
  • the bottom-side insulating plate 13 is provided on the bottom-side end surface of the electrode body 20 such that the main surface of the insulating plate 13 and the bottom-side end surface of the electrode body 20 face each other.
  • the insulating plate 13 has a shape in which the outer periphery of the disk is cut out at a plurality of locations.
  • the insulating plate 13 has a hole (second hole portion) 13A that penetrates in the thickness direction of the insulating plate 13 and a plurality of cutout portions 13B provided on the periphery.
  • second hole portion 13A that penetrates in the thickness direction of the insulating plate 13 and a plurality of cutout portions 13B provided on the periphery.
  • one end of the negative electrode tab 26 is interposed between the insulating plate 13 and the can bottom 11Bt so as to overlap the center hole 20A of the electrode body 20 and the hole 13A of the insulating plate 13 in the assembled battery.
  • Examples of the material for the insulating plate 13 include the same materials as those for the insulating plate 12.
  • the notch 13B is for forming a gap as a peripheral opening between the inner peripheral surface of the battery can 11 and the outer periphery of the insulating plate 13.
  • Examples of the shape of the cutout portion 13B include a straight line shape, a curved shape such as a U shape, a bent line shape such as a V shape, or a shape obtained by combining two or more thereof, but is not limited thereto. Absent.
  • the cutout portion 13B functions as a gas guiding path from the side surface of the electrode body 20 to the bottom of the battery when gas is generated on the side surface of the electrode body 20.
  • One of the plurality of cutouts 13B is a lead-out hole for leading out one end of the negative electrode tab 26 extended from the bottom-side end face of the electrode body 20 between the insulating plate 13 and the can bottom 11Bt. But there is.
  • the hole 13A overlaps with the center hole 20A of the electrode body 20 in the assembled battery, and extends from both sides of the negative electrode tab 26 to the outside of the negative electrode tab 26.
  • the hole 13A and the center hole 20A overlap not only in a state where one of the hole 13A and the center hole 20A overlaps the other but also at least a part of the hole 13A and the center hole 20A overlap. It also represents the state.
  • the hole 13A has a center hole 13Aa and two extending holes 13Ab provided on both sides of the center hole 13Aa.
  • the extension hole 13Ab extends from the center hole 13Aa, and the extension hole 13Ab and the center hole 13Aa are connected to each other.
  • the shape of the hole 13A is not particularly limited as long as it is a shape that can be extended from both sides of the negative electrode tab 26 to the outside of the negative electrode tab 26.
  • Shape see FIG. 12A
  • H-shape see FIGS. 12B and 12C
  • U-shape U-shape
  • C-shape V-shape
  • T-shape T-shape
  • Y-shape cross shape
  • polygonal shape such as triangle shape and rhombus shape
  • Circular shape elliptical shape and the like.
  • the center hole 13Aa overlaps with the center hole 20A of the electrode body 20 in the assembled battery and is covered with the negative electrode tab 26.
  • the overlapping of the center holes 13Aa and 20A represents not only a state in which one of the center holes 13Aa and 20A includes the other but also a state in which at least a part of the center holes 13Aa and 20A overlaps. It is.
  • at least a part of the extended hole 13Ab protrudes from the long side of the negative electrode tab 26 without being covered by the negative electrode tab 26 in the assembled battery.
  • the portion protruding from the negative electrode tab 26 is referred to as a central opening 13Ac.
  • the extension hole 13Ab serves as a guide path for inducing gas guided to the bottom of the battery through the notch 13B from the bottom to the center hole 13Aa when gas is generated on the side surface of the electrode body 20. Function.
  • the portion of the extending hole 13Ab that does not overlap with the negative electrode tab 26, that is, the portion that constitutes the central opening 13Ac is wider than the portion that overlaps with the negative electrode tab 26. This is because gas inductivity from the bottom of the battery to the center hole 13Aa of the insulating plate 13 can be promoted.
  • the shape of the central opening 13Ac is not particularly limited, but, for example, a semi-oval shape (see FIG. 12A), a partial circular shape such as a bow shape or a semi-circular shape (see FIG. 12B), or a rectangular shape And polygonal shapes (see FIG. 12C), semi-elliptical shapes, and indefinite shapes.
  • the opening ratio Ra of the insulating plate 13 in a state where the negative electrode tab 26 is provided on the hole 13A is preferably 22.8% or less, more preferably 4.7% or more and 22.8% or less, and even more preferably 7. It is 9% or more and 22.8% or less.
  • the aperture ratio Ra is 22.8% or less, the bottom end face of the electrode body 20 and the can bottom 11Bt can be formed even when an impact is applied to the battery in an overcharged state or the like (for example, an impact caused by dropping the battery). Short circuit due to electrical contact can be suppressed.
  • the aperture ratio Ra is 4.7% or more, the gas inductivity from the side surface of the electrode body 20 to the center hole 20A through the battery bottom can be improved. Therefore, it is possible to further suppress battery rupture when abnormal heat is applied in an overcharged state or the like.
  • each area is an area when viewed from a direction perpendicular to the bottom side end face of the electrode body 20.
  • the virtual circle 13C means the outer shape of the insulating plate 13 when it is assumed that the notch 13B is not provided.
  • the virtual circle 13 ⁇ / b> C is a circumscribed circle that circumscribes the top of the insulating plate 13.
  • the opening ratio of the central opening 13Ac (opening ratio of the hole 13A when the negative electrode tab 26 is provided on the hole 13A) Rb is preferably 5% or less, more preferably 1% or more and 5% or less.
  • the aperture ratio Rb is 5% or less, the bottom end face of the electrode body 20 and the can bottom 11Bt are electrically connected even when an impact (for example, impact caused by dropping of the battery) is applied to the battery in an overcharged state. It is possible to suppress a short circuit due to contact with the surface.
  • the aperture ratio Rb is 1% or more, gas inductivity from the bottom of the battery to the center hole 20A of the electrode body 20 can be improved. Therefore, it is possible to further suppress battery rupture when abnormal heat is applied in an overcharged state or the like.
  • the plurality of cutout portions 13B are preferably provided at the peripheral edge of the insulating plate 13 at a constant or substantially constant interval, and more preferably provided over the entire peripheral edge of the insulating plate 13. It is even more preferable that the gaps are provided at regular intervals or almost regular intervals over the entire periphery of the thirteen. It is possible to suppress the heating position and the position of the cutout portion 13B from separating in the circumferential direction of the electrode body 20, and it is possible to suppress a decrease in gas inductivity due to the cutout portion 13B. Therefore, it is possible to further suppress battery rupture when abnormal heat is applied in an overcharged state or the like.
  • the outer periphery of the insulating plate 13 and the inner peripheral surface of the battery can 11 are kept in contact so that the insulating plate 13 does not move in the battery can 11 due to impact or vibration. If the contact is not maintained in this way, for example, the insulating plate 13 moves during battery assembly, and the insulating plate 13 is bitten by the welding rod during welding of the negative electrode tab 26 and the can bottom 11Bt, and welding is performed. Defects may occur. From the viewpoint of suppressing the movement of the insulating plate 13 as described above, the number of the notch portions 13B is preferably three or five.
  • a welding rod can be inserted into the center hole 20A of the electrode body 20, and one end of the negative electrode tab 26 and the can bottom 11Bt can be welded.
  • the notch 13B as the peripheral opening is provided so as not to overlap the tip of the negative electrode tab 26 led out between the insulating plate 13 and the can bottom 11Bt. It is because it can suppress that the front-end
  • the notch 13 ⁇ / b> B as the peripheral opening is provided at a position that does not face the tip of the negative electrode tab 26. In the battery assembly process, even when one end portion of the negative electrode tab 26 is extended from the bottom side end surface of the electrode body 20 longer than the specified length, the tip of the negative electrode tab 26 is prevented from overlapping the notch portion 13B. Because it can.
  • the positive electrode 21 has, for example, a structure in which a positive electrode active material layer 21B is provided on both surfaces of a positive electrode current collector 21A. Although not shown, the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B includes, for example, a positive electrode active material capable of inserting and extracting lithium (Li) that is an electrode reactant.
  • the positive electrode active material layer 21B may further contain an additive as necessary. As the additive, for example, at least one of a conductive agent and a binder can be used.
  • lithium-containing compounds such as lithium oxide, lithium phosphorus oxide, lithium sulfide, or an intercalation compound containing lithium are suitable, and two or more of these may be used in combination.
  • a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable.
  • examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt structure shown in Formula (A) and a lithium composite phosphate having an olivine structure shown in Formula (B). Can be mentioned.
  • the lithium-containing compound includes at least one member selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe) as a transition metal element.
  • a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), formula (D), or formula (E), and a spinel type compound represented by the formula (F).
  • LiNi 0.50 Co 0.20 Mn 0.30 O 2 Li a CoO 2 (A ⁇ 1), Li b NiO 2 (b ⁇ 1), Li c1 Ni c2 Co 1-c2 O 2 (c1 ⁇ 1, 0 ⁇ c2 ⁇ 1), Li d Mn 2 O 4 (d ⁇ 1) or Li e FePO 4 (e ⁇ 1).
  • M1 represents at least one element selected from Group 2 to Group 15 excluding nickel (Ni) and manganese (Mn).
  • X represents Group 16 other than oxygen (O)) It represents at least one of elements and elements of group 17.
  • p, q, y, and z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0.20 and 0 ⁇ z ⁇ 0.2.
  • M2 represents at least one element selected from Group 2 to Group 15.
  • a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range.
  • M3 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W) F
  • g, h, j and k are 0.8 ⁇ f ⁇ 1.2, 0 ⁇ g ⁇ 0.5, 0 ⁇ h ⁇ 0.5, g + h ⁇ 1, ⁇ 0.1 ⁇ j. ⁇ 0.2, 0 ⁇ k ⁇ 0.1
  • the composition of lithium varies depending on the state of charge and discharge, and the value of f represents the value in the complete discharge state.
  • M4 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr ), Iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W).
  • M, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ 0.1.
  • M5 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr ), Iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W).
  • R, s, t, and u are in a range of 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, and 0 ⁇ u ⁇ 0.1. (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of r represents a value in a fully discharged state.)
  • M6 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr ), Iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W).
  • V, w, x, and y are in the range of 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, and 0 ⁇ y ⁇ 0.1. (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of v represents the value in a fully discharged state.)
  • Li z M7PO 4 (However, in formula (G), M7 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti ), Vanadium (V), niobium (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W) and zirconium (Zr) Z represents a value in a range of 0.9 ⁇ z ⁇ 1.1, wherein the composition of lithium varies depending on the state of charge and discharge, and the value of z is a value in a fully discharged state. Represents.)
  • the lithium-containing compound containing nickel (Ni) those having a Ni content of 80% or more are preferable. This is because a high battery capacity can be obtained when the Ni content is 80% or more.
  • the battery capacity increases as described above, but the gas generation amount (oxygen release amount) of the positive electrode 21 is very large when abnormal heat is applied. Become.
  • the battery according to the first embodiment exhibits a particularly excellent safety improvement effect when such an electrode with a large amount of gas generation is used.
  • the lithium-containing compound having a Ni content of 80% or more is preferably a positive electrode material represented by the formula (H).
  • Li v Ni w M8 x M9 y O z (H) (Where 0 ⁇ v ⁇ 2, w + x + y ⁇ 1, 0.8 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 3, and M8 and M9 are , Co (cobalt), Fe (iron), Mn (manganese), Cu (copper), Zn (zinc), Al (aluminum), Cr (chromium), V (vanadium), Ti (titanium), Mg (magnesium) , At least one selected from Zr (zirconium).)
  • positive electrode materials capable of inserting and extracting lithium include inorganic compounds not containing lithium, such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS.
  • the positive electrode material capable of inserting and extracting lithium may be other than the above.
  • the positive electrode material illustrated above may be mixed 2 or more types by arbitrary combinations.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive agent examples include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination.
  • a metal material or a conductive polymer material may be used as long as it is a conductive material.
  • the negative electrode 22 has, for example, a structure in which a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A. Although not shown, the negative electrode active material layer 22B may be provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode active material layer 22B contains one or more negative electrode active materials capable of inserting and extracting lithium as a negative electrode active material.
  • the negative electrode active material layer 22B may further contain an additive such as a binder as necessary.
  • the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is larger than the electrochemical equivalent of the positive electrode 21, and the negative electrode 22 is in the middle of charging. Lithium metal is not deposited.
  • Examples of the negative electrode material capable of occluding and releasing lithium include materials capable of occluding and releasing lithium and containing at least one of a metal element and a metalloid element as a constituent element.
  • the negative electrode 22 containing such a negative electrode material is referred to as an alloy-based negative electrode. This is because a high energy density can be obtained by using such a material. In particular, the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included.
  • Some of the structures include a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them.
  • metal elements or metalloid elements constituting the negative electrode material examples include magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), and germanium (Ge). ), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) ) Or platinum (Pt). These may be crystalline or amorphous.
  • the negative electrode material a material containing a 4B group metal element or a semimetal element in the short-period type periodic table as a constituent element is preferable, and at least one of silicon (Si) and tin (Sn) is particularly preferable. It is included as an element. This is because silicon (Si) and tin (Sn) have a large ability to occlude and release lithium (Li), and a high energy density can be obtained.
  • tin (Sn) As an alloy of tin (Sn), for example, as a second constituent element other than tin (Sn), silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr) The thing containing at least 1 sort is mentioned.
  • Si As an alloy of silicon (Si), for example, as a second constituent element other than silicon (Si), tin (Sn), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr).
  • Si silicon
  • Si tin
  • Ni nickel
  • Cu copper
  • iron (Fe) cobalt
  • Mn manganese
  • Zn zinc
  • indium (In) silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr).
  • Cr chromium
  • tin (Sn) compound or silicon (Si) compound examples include those containing oxygen (O) or carbon (C). In addition to tin (Sn) or silicon (Si), the above-described compounds are used. Two constituent elements may be included. Specific examples of the tin (Sn) compound include silicon oxide represented by SiO v (0.2 ⁇ v ⁇ 1.4).
  • Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber or activated carbon.
  • graphite it is preferable to use spheroidized natural graphite or substantially spherical artificial graphite.
  • artificial graphite artificial graphite obtained by graphitizing mesocarbon microbeads (MCMB) or artificial graphite obtained by graphitizing and pulverizing a coke raw material is preferable.
  • Examples of the coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent characteristics can be obtained.
  • those having a low charge / discharge potential specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • Examples of the negative electrode material capable of inserting and extracting lithium further include other metal compounds or polymer materials.
  • Examples of other metal compounds include oxides such as MnO 2 , V 2 O 5 , and V 6 O 13 , sulfides such as NiS and MoS, and lithium nitrides such as LiN 3 , and polymer materials include polyacetylene. , Polyaniline or polypyrrole.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, a porous film made of synthetic resin made of polytetrafluoroethylene, polypropylene, polyethylene, or the like, or a porous film made of ceramic, and these two or more kinds of porous films are laminated. It may be a structure. Among these, a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C. or higher and 160 ° C. or lower and is excellent in electrochemical stability.
  • Polypropylene is also preferable.
  • any resin having chemical stability can be used by copolymerizing or blending with polyethylene or polypropylene.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics.
  • cyclic carbonates such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be improved.
  • the solvent in addition to these cyclic carbonates, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate. This is because high ionic conductivity can be obtained.
  • the solvent preferably further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
  • examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
  • a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
  • lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
  • Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
  • lithium ions when charged, for example, lithium ions are released from the positive electrode active material layer 21B and inserted into the negative electrode active material layer 22B through the electrolytic solution.
  • lithium ions when discharging is performed, for example, lithium ions are released from the negative electrode active material layer 22B and inserted into the positive electrode active material layer 21B through the electrolytic solution.
  • the gas that has flowed in passes through the center hole 20A of the electrode body 20 toward the top side of the battery and reaches the top side via the center hole 12A of the insulating plate 12.
  • the gas that has reached the top side cleaves the safety valve mechanism 15 and is discharged to the outside of the battery via the cleaved safety valve mechanism 15.
  • the groove 11Gv has the following action. That is, when there is abnormal gas generation that cannot be sufficiently dealt with only by gas induction from the bottom of the battery through the hole 13A to the center hole 20A of the electrode body 20, and when the gas pressure on the bottom side rises abnormally, The groove 11Gv is cleaved, and the gas is discharged to the outside from the cleaved bottom 11Bt.
  • a first positive electrode active material, a second positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is mixed with N-methyl-2-
  • a paste-like positive electrode mixture slurry is prepared by dispersing in a solvent such as pyrrolidone (NMP).
  • NMP pyrrolidone
  • this positive electrode mixture slurry is applied to the positive electrode current collector 21 ⁇ / b> A, the solvent is dried, and the positive electrode active material layer 21 ⁇ / b> B is formed by compression molding with a roll press or the like, thereby forming the positive electrode 21.
  • a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry Is made.
  • the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and the negative electrode active material layer 22B is formed by compression molding using a roll press or the like, and the negative electrode 22 is manufactured.
  • the positive electrode tab 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode tab 26 is attached to the negative electrode current collector 22A by welding or the like.
  • the positive electrode 21 and the negative electrode 22 are wound through the separator 23.
  • tip part of the positive electrode tab 25 to the safety valve mechanism 15 is welded to the battery can 11, and the wound positive electrode 21 and the negative electrode 22 are made into a pair of insulating plates 12 and 13. It is housed inside the sandwiched battery can 11.
  • the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23.
  • the battery lid 14, the safety valve mechanism 15, and the PTC element 16 are fixed to the opening end of the battery can 11 by caulking through a sealing gasket 17. Thereby, the secondary battery shown in FIG. 1 is obtained.
  • the hole 13 ⁇ / b> A of the bottom-side insulating plate 13 extends to the outside of the negative electrode tab 26, and a plurality of notches 13 ⁇ / b> B are provided on the periphery of the bottom-side insulating plate 13. It has been.
  • the gas generated on the side surface of the electrode body 20 is efficiently guided in the route from the side surface of the electrode body 20 ⁇ the bottom of the battery ⁇ the central hole 20 ⁇ / b> A of the electrode body 20 ⁇ the top of the battery. Accumulation on the side surface of 20 can be suppressed. Therefore, when abnormal heat is applied to the battery in an overcharged state or the like, the battery can be prevented from bursting, so that the safety of the battery can be improved.
  • the aperture ratio Ra of the insulating plate 13 in the state where the negative electrode tab 26 is provided on the hole 13A is 22.8% or less, even when an impact is applied to the battery in an overcharged state, It can suppress that the bottom side end surface of the electrode body 20 and the can bottom 11Bt electrically contact and short-circuit. Therefore, the safety of the battery can be further improved.
  • the inner surface of the can bottom 11Bt may have two or more grooves 11Gv on the same circumference as shown in FIG. This circle has a concentric relationship with the outer shape of the can bottom 11Bt.
  • the groove 11Gv has an arc shape.
  • the number of grooves 11Gv is not particularly limited as long as it is two or more, and examples thereof include two or more and five or less.
  • both surfaces of the can bottom 11Bt even if the surface that is the outside of the battery can 11 (hereinafter simply referred to as “the outer surface of the can bottom 11Bt”) has an arc-shaped groove 11Gv as shown in FIG. 7A. Good. Further, both the inner side surface and the outer side surface of the can bottom 11Bt may have an arc-shaped groove 11Gv as shown in FIG. 7B. However, from the viewpoint of suppressing the corrosion of the groove 11Gv due to the outside air, it is preferable that the groove 11Gv is provided on the inner surface of the can bottom 11Bt as in the first embodiment.
  • FIG. 7B shows an example in which the grooves 11Gv provided on the inner side surface and the outer side surface are provided so as to overlap in the thickness direction of the can bottom 11Bt, but the grooves 11Gv provided on the inner side surface and the outer side surface are shown. However, they may be provided so as not to overlap in the thickness direction of the can bottom 11Bt but to be shifted in the in-plane direction of the can bottom 11Bt.
  • the battery may further include a filter 28 provided on one main surface of the insulating plate 13.
  • the filter 28 is provided, for example, on the main surface on the side facing the can bottom 11 ⁇ / b> Bt out of both main surfaces of the insulating plate 13.
  • a filter 27 provided on one main surface of the insulating plate 12 may be further provided.
  • the filter 28 is provided, for example, on the main surface on the side facing the battery lid 14 of both main surfaces of the insulating plate 12.
  • the filters 27 and 28 are non-woven fabrics made of fibers such as polyester, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT). Only one of the insulating plates 12 and 13 may include a filter.
  • the insulating plate 13 has two extending holes 13Ab and two central openings 13Ac are formed around the negative electrode tab 26 .
  • the number of central openings 13Ac is not limited to this.
  • the insulating plate 13 may have one or three or more extending holes 13Ab, and one or three or more central openings 13Ac may be formed around the negative electrode tab 26.
  • Second Embodiment> a battery pack and an electronic device including the battery according to the first embodiment will be described.
  • the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
  • the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
  • the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
  • the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
  • the electronic device 400 for example, a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistant: PDA), a display device (LCD, EL display, electronic paper, etc.), imaging, etc.
  • Devices eg digital still cameras, digital video cameras, etc.
  • audio equipment eg portable audio players
  • game machines cordless phones, e-books, electronic dictionaries, radio, headphones, navigation systems, memory cards, pacemakers, hearing aids, Electric tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
  • the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
  • FIG. 9 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
  • the secondary battery 301a the battery according to the first embodiment is used.
  • the charging / discharging circuit 302 is a control unit that controls charging / discharging of the assembled battery 301. Specifically, during charging, the charging / discharging circuit 302 controls charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charging / discharging circuit 302 controls the discharging of the electronic device 400.
  • the battery pack 300 includes the assembled battery 301 including a plurality of secondary batteries 301 a has been described as an example. However, the battery pack 300 is replaced with one assembled battery 301. You may employ
  • a power storage system including the battery according to the first embodiment in a power storage device will be described.
  • This power storage system may be anything as long as it uses power, and includes a simple power device.
  • This power system includes, for example, a smart grid, a home energy management system (HEMS), a vehicle, and the like, and can also store electricity.
  • HEMS home energy management system
  • This power storage system 100 is a residential power storage system, from a centralized power system 102 such as a thermal power generation 102a, a nuclear power generation 102b, and a hydropower generation 102c through a power network 109, an information network 112, a smart meter 107, a power hub 108, etc. Electric power is supplied to the power storage device 103. At the same time, power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104. The electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103. The same power storage system can be used not only for the house 101 but also for buildings.
  • the house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, a power hub 108, and a sensor 111 that acquires various information.
  • Each device is connected by a power network 109 and an information network 112.
  • a solar cell, a fuel cell, or the like is used as the home power generation device 104, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
  • the power consuming device 105 is a refrigerator 105a, an air conditioner 105b, a television receiver 105c, a bath 105d, or the like.
  • the electric power consumption device 105 includes an electric vehicle 106.
  • the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, an electric motorcycle 106c, or the like.
  • the power storage device 103 includes the battery according to the first embodiment.
  • the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather state, the state of a person, and the like can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
  • the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
  • the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses a physical layer of IEEE (Institute of Electrical and Electronics Electronics) 802.15.4. IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 110 is connected to an external server 113.
  • the server 113 may be managed by any one of the house 101, the power company, and the service provider.
  • the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device in the home (for example, a television receiver) or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
  • a display function such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
  • the control device 110 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 103 in this example.
  • the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. It has a function. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • the power generated by the home power generation device 104 is supplied to the power storage device 103.
  • the power generated by the home power generation device 104 can be stored. Therefore, even if the generated power of the home power generation device 104 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
  • control device 110 is stored in the power storage device 103 .
  • control device 110 may be stored in the smart meter 107 or may be configured independently.
  • the power storage system 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the hybrid vehicle 200 is a hybrid vehicle that employs a series hybrid system.
  • the series hybrid system is a vehicle that runs on the power driving force conversion device 203 using electric power generated by a generator that is driven by an engine or electric power that is temporarily stored in a battery.
  • the hybrid vehicle 200 includes an engine 201, a generator 202, a power driving force conversion device 203, driving wheels 204a, driving wheels 204b, wheels 205a, wheels 205b, a battery 208, a vehicle control device 209, various sensors 210, and a charging port 211. Is installed.
  • the battery 208 the battery according to the first embodiment is used.
  • Hybrid vehicle 200 travels using electric power / driving force conversion device 203 as a power source.
  • An example of the power driving force conversion device 203 is a motor.
  • the electric power / driving force converter 203 is operated by the electric power of the battery 208, and the rotational force of the electric power / driving force converter 203 is transmitted to the driving wheels 204a and 204b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force converter 203 can be applied to either an AC motor or a DC motor.
  • the various sensors 210 control the engine speed via the vehicle control device 209 and control the opening (throttle opening) of a throttle valve (not shown).
  • the various sensors 210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 201 is transmitted to the generator 202, and the electric power generated by the generator 202 by the rotational force can be stored in the battery 208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 203, and the regenerative electric power generated by the power driving force conversion device 203 by this rotational force is used as the battery 208. Accumulated in.
  • the battery 208 is connected to an external power source of the hybrid vehicle 200 via the charging port 211, so that it is possible to receive power from the external power source using the charging port 211 as an input port and store the received power. is there.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
  • the series hybrid vehicle that runs on the motor using the electric power generated by the generator that is driven by the engine or the electric power that is temporarily stored in the battery has been described as an example.
  • the present technology is also effective for a parallel hybrid vehicle that uses both engine and motor outputs as drive sources and switches between the three modes of running with only the engine, running with only the motor, and running with the engine and motor. Applicable.
  • the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • the positive electrode 21 was produced as follows. First, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at a molar ratio of 0.5: 1, and then calcined in air at 900 ° C. for 5 hours, whereby lithium as a positive electrode active material. A cobalt composite oxide (LiCoO 2 ) was obtained.
  • the mixture was dispersed in N-methyl-2-pyrrolidone to obtain a paste-like positive electrode mixture slurry.
  • the positive electrode active material layer 21B is formed by compression molding with a roll press machine. Formed.
  • the positive electrode tab 25 made of aluminum was welded to one end of the positive electrode current collector 21A.
  • the negative electrode 22 was produced as follows. First, 97 parts by mass of artificial graphite powder as a negative electrode active material and 3 parts by mass of polyvinylidene fluoride as a binder were mixed to form a negative electrode mixture, which was then dispersed in N-methyl-2-pyrrolidone to obtain a paste. A negative electrode mixture slurry was obtained. Next, the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 22A made of a strip-shaped copper foil (15 ⁇ m thick), dried, and then compression molded with a roll press to form the negative electrode active material layer 22B. Formed. Next, a negative electrode tab 26 made of nickel was attached to one end of the negative electrode current collector 22A.
  • the battery was assembled as follows. First, the positive electrode 21 and the negative electrode 22 obtained as described above are laminated in the order of the negative electrode 22, the separator 23, the positive electrode 21, and the separator 23 through the separator 23 made of a microporous polyethylene stretched film having a thickness of 23 ⁇ m. A jelly roll type wound electrode body 20 was obtained by winding a large number of turns.
  • a bottom-side insulating plate 13 having the structure shown in Table 1 and FIGS. 12A to 17C was prepared.
  • a top-side insulating plate 12 having a central hole 12A was prepared.
  • the wound electrode body 20 is sandwiched between the prepared pair of insulating plates 12 and 13, the negative electrode tab 26 is welded to the battery can 11, and the positive electrode tab 25 is welded to the safety valve mechanism 15.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 as an electrolyte salt to a concentration of 1 mol / dm 3 in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 1.
  • the battery can 11 is caulked through the insulating sealing gasket 17, so that the safety valve mechanism 15, the PTC element 16.
  • the battery lid 14 was fixed to produce a cylindrical battery having an outer diameter (diameter) of 18.20 mm and a height of 65 mm.
  • This battery is designed so that the amount of the positive electrode active material and the amount of the negative electrode active material are adjusted so that the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.2 V, which will be described later.
  • the evaluation was performed at 4.4 V (overcharged state exceeding the normal use range voltage).
  • the battery can 11 is the same as the first, fourth, fifth, eighth, twelfth and thirteenth and comparative examples 1 and 2, except that a C-shaped (arc-shaped) groove 11Gv is provided on the can bottom 11Bt. A battery was produced.
  • Table 1 shows the test results of the batteries of Examples 1 to 14 and Comparative Examples 1 to 3.
  • Table 2 shows the evaluation results of the batteries of Examples 1, 1A, 4, 4A, 5, 5A, 8, 8A, 12, 12A, 13, 13A and Comparative Examples 1, 1A, 2, 2A.
  • Table 1 shows the following.
  • the batteries (Examples 1 to 14) provided with the bottom-side insulating plate 13 provided with a plurality of cutout portions 13B on the periphery and the holes 13A extending to the outside of the negative electrode tab 26, the holes 33A are covered by the negative electrode tab 26.
  • the battery (Comparative Example 1) provided with the bottom-side insulating plate 33 and the batteries (Comparative Examples 2 and 3) provided with the insulating plates 34 and 35 provided with only one notch 13B on the periphery.
  • the batteries (Examples 1 to 11 and 14) having an aperture ratio Ra of 22.8% or less, both a high combustion test pass rate and a drop test pass rate can be achieved.
  • the battery (Example 8) in which the tip of the negative electrode tab 26 and the notch (peripheral opening) 13B do not overlap with each other at the bottom 11Bt of the can bottom 11Bt has a tip and a notch (periphery opening) of the negative electrode tab 26 at the can bottom 11Bt.
  • the battery (Example 7) with which 13B overlaps it has a high combustion test pass rate.
  • a battery further including a battery can 11 having a plurality of notches 13B on the periphery and a hole 11A having a groove 11Gv in the can bottom 11Bt in addition to the bottom insulating plate 13 in which the hole 13A extends to the outside of the negative electrode tab 26.
  • the insulating plate 13 having the above configuration, it has a high combustion test pass rate as compared with a battery not having the battery can 11 having the above configuration.
  • the present technology is applied to the lithium ion secondary battery.
  • the present technology can also be applied to a secondary battery other than the lithium ion secondary battery and a primary battery. It is.
  • the present technology is particularly effective when applied to a lithium ion secondary battery.
  • the present technology can also employ the following configurations.
  • An electrode body having a first hole penetrating between both end faces;
  • a battery can having a bottom and containing the electrode body;
  • An insulating plate having a second hole portion provided to overlap the first hole portion and a plurality of cutout portions provided on a peripheral edge, and provided on an end surface on the bottom side of the both end surfaces;
  • An electrode tab provided between the insulating plate and the bottom so as to overlap the first hole and the second hole;
  • the second hole is a battery extending to the outside of the electrode tab.
  • a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to (18), wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  • the battery according to any one of (1) to (11) is provided, An electric power system that receives supply of electric power from the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

電池は、両端面間を貫通する第1孔部を有する電極体と、底部を有し、電極体を収容する電池缶と、第1孔部と重なるように設けられた第2孔部と、周縁に設けられた複数の切り欠き部とを有し、両端面のうち底部側の端面に設けられた絶縁板と、第1孔部および第2孔部と重なるように絶縁板と底部との間に設けられた電極タブとを備える。第2孔部は、電極タブの外側まで広がっている。

Description

電池、電池パックおよび電子機器
 本技術は、電池、電池パックおよび電子機器に関する。
 電極体を電池缶に収容する構成の電池では、電極体の端面に絶縁板を配置するのが一般的である。絶縁板の形状としては、電池特性を考慮して、例えば以下のものが提案されている。
 特許文献1では、孔部、切り欠き部、溝部のうちの何れか一つ以上を絶縁板の一箇所以上に設け、これら孔部、切り欠き部、溝部によって非水電解液を電池素子に導くようにすることが提案されている。
 特許文献2では、絶縁板の周縁から溶接用開孔に至るまで負極集電タブが延設されており、この負極集電タブに対応する位置に存在する電解液浸透用開孔の直径が、負極集電タブの幅よりも小さくなるように構成されているリチウムイオン電池が提案されている。また、絶縁板における開口率を24%以上にすることが提案されている。
 特許文献3では、中央に電解液を注入するための注液口を設け、この両側に正極リードを引き出すための対称形の切り欠き部を設け、さらに作業用の一対の打ち抜き穴を設けた上部絶縁板が提案されている。
特開2004-111105号公報 特開2000-277094号公報 特開2002-231314号公報
 本技術の目的は、安全性を向上できる電池、それを備える電池パックおよび電子機器を提供することにある。
 上述の課題を解決するために、第1の技術は、両端面間を貫通する第1孔部を有する電極体と、底部を有し、電極体を収容する電池缶と、第1孔部と重なるように設けられた第2孔部と、周縁に設けられた複数の切り欠き部とを有し、両端面のうち底部側の端面に設けられた絶縁板と、第1孔部および第2孔部と重なるように絶縁板と底部との間に設けられた電極タブとを備え、第2孔部は、電極タブの外側まで広がっている電池である。
 第2の技術は、第1の技術の電池と、電池を制御する制御部とを備える電池パックである。
 第3の技術は、第1の技術の電池を備え、電池から電力の供給を受ける電子機器である。
 以上説明したように、本技術によれば、電池の安全性を向上できる。
図1は、本技術の第1の実施形態に係る非水電解質二次電池の一構成例を示す断面図である。 図2Aは、円弧状の溝を有する缶底の例を示す平面図である。図2Bは、図2AのIIB-IIB線に沿った断面図である。 図3Aは、ボトム側の絶縁板の一形状例を示す平面図である。図3Bは、電極体のボトム側端面の一構成例を示す平面図である。 図4は、図1に示した電極体の一部を拡大して表す断面図である。 図5は、電池に対して異常な熱が加えられたときの発生ガスの流れを説明するための概略図である。 図6は、本技術の第1の実施形態の変形例1に係る非水電解質二次電池の缶底の一構成例を示す断面図である。 図7Aは、本技術の第1の実施形態の変形例2に係る非水電解質二次電池の缶底の第1の構成例を示す断面図である。図7Bは、本技術の第1の実施形態の変形例2に係る非水電解質二次電池の缶底の第2の構成例を示す断面図である。 図8は、本技術の第1の実施形態の変形例3に係る非水電解質二次電池の缶底の一構成例を示す断面図である。 図9は、本技術の第2の実施形態に係る電子機器の一構成例を示すブロック図である。 図10は、本技術の第3の実施形態に係る蓄電システムの一構成例を示す概略図である。 図11は、本技術の第4の実施形態に係る電動車両の一構成を示す概略図である。 図12A、図12B、図12Cはそれぞれ、実施例1、2、3の電池の構成を示す平面図である。 図13A、図13B、図13Cはそれぞれ、実施例4、5、6の電池の構成を示す平面図である。 図14A、図14B、図14Cはそれぞれ、実施例7、8、9の電池の構成を示す平面図である。 図15A、図15B、図15Cはそれぞれ、実施例10、11、12の電池の構成を示す平面図である。 図16A、図16Bはそれぞれ、実施例13、14の電池の構成を示す平面図である。 図17A、図17B、図17Cはそれぞれ、比較例1、2、3の電池の構成を示す平面図である。 図18は、開口率Raと燃焼試験合格率およびショート発生確率との関係を示すグラフである。
 本技術の実施形態について以下の順序で説明する。
1.第1の実施形態(円筒型電池の例)
2 第2の実施形態(電池パックおよび電子機器の例)
3 第3の実施形態(蓄電システムの例)
4 第4の実施形態(電動車両の例)
<1 第1の実施形態>
[概要]
 近年、円筒型の非水二次電池(以下単に「電池」という。)の高容量化および高出力化に伴い、電池に対して異常な熱が加えられたときに電極から発生するガス量が増加している。また、高容量化および高出力化に伴い、電極体の内径が小径化されているため、電池のトップへのガス逃げ性が低下している。このため、高容量および高出力の電池では、過充電状態などにおいて異常な熱が加えられたときに、電池側面にてガス圧力が異常に高まり、電池側面が破裂するおそれがある。なお、本明細書において、電池の両端部のうち缶底側を「ボトム」といい、それとは反対側を「トップ」という。
 上述のような電池破裂を抑制するためには、電極体の側面に発生したガスを、電極体の側面⇒電池のボトム⇒電極体の中心孔⇒電池のトップの順路で誘導して、発生ガスが電極体の側面に溜まることを抑制するようにすればよい。しかしながら、本発明者らの知見によれば、電池缶の内周面とボトム側絶縁板の外周との間に隙間が殆どないのが一般的であるため、電極体の側面から電池のボトムへのガス誘導が阻害されている。また、ボトム側絶縁板の中心孔の径は、電池の組立上(搬送上)、電極体の内径より小さく設定されるのが一般的であるため、電極体の中心孔が負極タブで閉塞されて、電池のボトムから電極体の中心孔へのガス誘導が阻害されている。
 そこで、本発明者らは、上記のガス誘導の阻害を解消すべく鋭意検討を行った。その結果、絶縁板の外周に複数の切り欠き部を設ける構成と、絶縁板の中心孔を負極タブの外側まで広げる構成とを採用することで、電極体の側面から電池のボトムへのガス誘導と、電池のボトムから電極体の中心孔へのガス誘導とを改善できることを見出すに至った。以下では、このような構成を有する電池について説明する。
[電池の構成]
 以下、図1を参照しながら、本技術の第1の実施形態に係る電池の一構成例について説明する。この電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。この電池はいわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層し巻回された電子素子としての電極体20を有している。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ設けられている。
 電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、封口ガスケット17を介してかしめられることにより取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、異常時に電池缶11内でガスが発生した場合に開裂などして、ガスを電池のトップ側から排出する。また、安全弁機構15は、電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と電極体20との電気的接続を切断するようになっている。封口ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
 電極体20は、略円柱状を有している。電極体20は、その一方の端面(トップ側端面)の中心から他方の他面(ボトム側端面)の中心に向けて貫通する中心孔(第1孔部)20Aを有している。この中心孔20Aにセンターピン24が挿入されている。センターピン24は、両端が開放された筒状を有している。このため、センターピン24は、電池缶11内でガスが発生した場合に、ガスをボトム側からトップ側に誘導する流路として機能する。
 電極体20の正極21にはアルミニウム(Al)などよりなる正極タブ25が接続されており、正極タブ25の一端部は電極体20のトップ側端面から出されている。この正極タブ25の一端部は、安全弁機構15に溶接されることにより電池蓋14と電気的に接続されている。一方、負極22にはニッケルなどよりなる負極タブ26が接続され、負極タブ26の一端部は電極体20のボトム側端面から出されている。この負極タブ26の一端部は、電池缶11に溶接され電気的に接続されている。
 第1の実施形態に係る電池では、一対の正極21および負極22当たりの完全充電状態における開回路電圧(すなわち電池電圧)は、4.2V以下でもよいが、4.2Vよりも高く、好ましくは4.4V以上6.0V以下、より好ましくは4.4V以上5.0V以下の範囲内になるように設計されていてもよい。電池電圧を高くすることにより、高いエネルギー密度を得ることができる。
 以下、第1の実施形態に係る電池を構成する、電池缶11、トップ側の絶縁板12、ボトム側の絶縁板13、正極21、負極22、セパレータ23、および電解液について順次説明する。
(電池缶)
 電池缶11は、底部としての缶底11Btを有している。缶底11Btは、当該缶底11Btを垂直な方向から見ると、図2Aに示すように円形状を有している。缶底11Btの両面のうち電池缶11の内側となる面(以下単に「缶底11Btの内側面」という。)は、図2A、図2Bに示すように、開裂弁として1つの溝11Gvを有していることが好ましい。缶底11Btが溝11Gvを有することで、電池のボトムのガス圧力が異常に上昇した場合に、缶底11Btの溝11Gvが開裂し、ガスを外に逃がすことができる。したがって、電池の安全性を更に向上することができる。
 溝11Gvは、C字状または逆C字状などの円弧状を有している。溝11Gvの円弧の中心は、缶底11Btの中心と一致していることが好ましい。すなわち、溝11Gvの円弧は、缶底11Btの外周と同心状であることが好ましい。
 溝11Gvのガス開放圧(開裂圧)は、安全弁機構15のガス開放圧(作動圧)より高いことが好ましい。缶底11Btの溝11Gvは、過充電状態などの電池に対して異常な熱が加えられたときにガスを電池の外部へ逃がすことを目的としているため、通常使用時においては溝11Gvの開裂を防ぐ必要があるためである。溝11Gvのガス開放圧は、過充電状態などの電池の封口部が破壊される電池内圧よりも低いことが好ましい。過充電状態などの電池に対して異常な熱が加えられたときに、電池が破裂する前に溝11Gvを開裂させてガスを電池の外部に排出することができるからである。具体的には、溝11Gvのガス開放圧は、20kgf/cm2以上100kgf/cm2以下の範囲であることが好ましい。
 溝11Gvの断面形状は、例えば、ほぼ多角形状、ほぼ部分円形状、ほぼ部分楕円形状、または不定形状であるが、これに限定されるものではない。多角形状の頂部には、曲率Rなどが付与されていてもよい。多角形状としては、例えば、三角形状、台形状や長方形状などの四角形状、五角形状などが挙げられる。ここで、“部分円形状”とは、円形状の一部の形状であり、例えば半円形状である。部分楕円形状とは、楕円形状の一部の形状であり、例えば半楕円形状である。溝11Gvが底面を有する場合、その底面は、例えば、平坦面、段差を有する凹凸面、うねりを有する曲面、またはそれらの面が2以上組み合わされた複合面であってもよい。
(トップ側の絶縁板)
 トップ側の絶縁板12は、当該絶縁板12の主面と電極体20のトップ側端面とが対向するようにして、電極体20のトップ側端面に設けられている。絶縁板12は、円盤状を有し、その外径は電池缶11の内径とほぼ同一である。絶縁板12は、当該絶縁板12の厚さ方向に貫通する中心孔12Aを有している。中心孔12Aは、組み立てられた電池内において電極体20の中心孔20Aと重なる。中心孔12Aは、電極体20の側面にてガスが発生した際には、電極体20の側面から電池のボトムを介して電極体20の中心孔20Aに流れ込んだガスを、中心孔20Aから電池のトップに誘導するための誘導路として機能する。絶縁板12は、当該絶縁板12の厚さ方向に貫通し、電解液を挿通可能な1または複数の注入孔をさらに有していてもよい。絶縁板12の材料としては、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)などの熱可塑性樹脂が挙げられる。
(ボトム側の絶縁板)
 ボトム側の絶縁板13は、当該絶縁板13の主面と電極体20のボトム側端面とが対向するようにして、電極体20のボトム側端面に設けられている。絶縁板13は、図3Aに示すように、円盤の外周を複数箇所切り欠いた形状を有している。具体的には、絶縁板13は、当該絶縁板13の厚さ方向に貫通する孔(第2孔部)13Aと、周縁に設けられた複数の切り欠き部13Bとを有している。負極タブ26の一端部は、図3Bに示すように、組み立てられた電池内において電極体20の中心孔20Aおよび絶縁板13の孔13Aと重なるように絶縁板13と缶底11Btとの間に設けられ、缶底11Btに電気的に接続されている。絶縁板13の材料としては、絶縁板12と同様の材料が挙げられる。
 切り欠き部13Bは、電池缶11の内周面と絶縁板13の外周との間に、周縁開口部としての隙間を形成するためのものである。切り欠き部13Bの形状としては、例えば、直線状、U字状などの曲線状、V字状などの折線状またはそれらを2以上組み合わせた形状などが挙がられるが、これに限定されるものではない。切り欠き部13Bは、電極体20の側面にてガスが発生した際には、電極体20の側面から電池のボトムへのガス誘導路として機能する。また、複数の切り欠き部13Bのうちの1つは、電極体20のボトム側端面から出された負極タブ26の一端部を絶縁板13と缶底11Btとの間に導出するための導出孔でもある。
 孔13Aは、組み立てられた電池内において電極体20の中心孔20Aと重なると共に、負極タブ26の両辺の側から負極タブ26の外側まで広がっている。ここで、孔13Aと中心孔20Aとが重なるとは、孔13Aおよび中心孔20Aのうち一方が他方を包含するように重なり合う状態のみならず、孔13Aと中心孔20Aとの少なくとも一部が重なり合う状態をも表すものである。具体的には、孔13Aは、中心孔13Aaとこの中心孔13Aaの両側に設けられた2つの延設孔13Abとを有している。延設孔13Abは中心孔13Aaから延設されており、延設孔13Abと中心孔13Aaとはつながっている。孔13Aは、電極体20の側面にてガスが発生した際には、切り欠き部13Bを介して電池のボトムに誘導されたガスを、ボトムから電極体20の中心孔20Aに誘導するため誘導路として機能する。
 孔13Aの形状は、負極タブ26の両辺の側から負極タブ26の外側まで広がることが可能な形状であればよく特に限定されるものではないが、例示するならば、I字状などの細長状(図12A参照)、H字状(図12B、図12C参照)、U字状、C字状、V字状、T字状、Y字状、十字状、三角形状や菱形状など多角形状、円形状、楕円形状などが挙げられる。
 中心孔13Aaは、組み立てられた電池内において電極体20の中心孔20Aと重なると共に、負極タブ26により覆われる。ここで、中心孔13Aa、20Aが重なるとは、中心孔13Aa、20Aのうち一方が他方を包含するように重なり合う状態のみならず、中心孔13Aa、20Aの少なくとも一部が重なり合う状態をも表すものである。一方、延設孔13Abの少なくとも一部は、組み立てられた電池内において負極タブ26により覆われずに負極タブ26の長辺側からはみ出す。本明細書では、このように負極タブ26からはみ出した部分を中央開口部13Acという。延設孔13Abは、電極体20の側面にてガスが発生した際には、切り欠き部13Bを介して電池のボトムに誘導されたガスを、ボトムから中心孔13Aaに誘導するため誘導路として機能する。
 延設孔13Abのうち負極タブ26と重ならない部分、すなわち中央開口部13Acを構成する部分は、負極タブ26と重なる部分よりも幅が広がっていることが好ましい。電池のボトムから絶縁板13の中心孔13Aaへのガス誘導性を促進することができるからである。中央開口部13Acの形状は特に限定されるものではないが、例示するならば、半長円状(図12A参照)、弓形状や半円形状などの部分円形状(図12B参照)、矩形状などの多角形状(図12C参照)、半楕円形状、不定形状などが挙げられる。
 負極タブ26が孔13A上に設けられた状態における絶縁板13の開口率Raは、好ましくは22.8%以下、より好ましくは4.7%以上22.8%以下、更により好ましくは7.9%以上22.8%以下である。開口率Raが22.8%以下であると、過充電状態などの電池に衝撃(例えば電池の落下による衝撃)が加えられたときにも、電極体20のボトム側端面と缶底11Btとが電気的に接触してショートすることを抑制できる。開口率Raが4.7%以上であると、電極体20の側面から電池のボトムを介して中心孔20Aへのガス誘導性を向上できる。したがって、過充電状態などにて異常な熱が加えられたときにおける電池の破裂を更に抑制できる。
 ここで、開口率Raは、以下の式により求められる値である。
 開口率Ra=(((2つの中央開口部13Acの面積SAの合計)+(複数の切り欠き部13Bの面積SBの合計))/(仮想円13Cの面積))×100[%]
 但し、各面積は、電極体20のボトム側端面に垂直な方向からみたとき面積である。また、仮想円13Cは、切り欠き部13Bが設けられていないと仮定したときの絶縁板13の外形を意味する。通常、仮想円13Cは、絶縁板13の頂部に外接する外接円となる。
 中央開口部13Acの開口率(負極タブ26が孔13A上に設けられた状態における孔13Aの開口率)Rbは、好ましくは5%以下、より好ましくは1%以上5%以下である。開口率Rbが5%以下であると、過充電状態などの電池に衝撃(例えば電池の落下による衝撃)が加えられたときにも、電極体20のボトム側端面と缶底11Btとが電気的に接触してショートすることを抑制できる。開口率Rbが1%以上であると、電池のボトムから電極体20の中心孔20Aへのガス誘導性を向上できる。したがって、過充電状態などにて異常な熱が加えられたときにおける電池の破裂を更に抑制できる。
 ここで、中央開口部13Acの開口率Rbは、以下の式により求められる値である。
 中央開口部13Acの開口率Rb=((2つの中央開口部13Acの面積SAの合計)/(仮想円13Cの面積))×100[%]
 複数の切り欠き部13Bは、絶縁板13の周縁に一定またはほぼ一定の間隔で設けられていることが好ましく、絶縁板13の周縁の全体に渡って設けられていることがより好ましく、絶縁板13の周縁の全体に渡って一定またはほぼ一定の間隔で設けられていることが更により好ましい。加熱位置と切り欠き部13Bの位置とが電極体20の周方向において離れてしまうことを抑制して、切り欠き部13Bによるガス誘導性の低下を抑制することができる。したがって、過充電状態などにて異常な熱が加えられたときにおける電池の破裂を更に抑制できる。
 絶縁板13が衝撃や振動などにより電池缶11内にて移動しないように、絶縁板13の外周と電池缶11の内周面とが接触を保っていることが好ましい。このように接触が保たれていないと、例えば電池の組み立ての際に絶縁板13が移動してしまい、負極タブ26と缶底11Btとの溶接時に絶縁板13が溶接棒に噛み込まれ、溶接不良が発生するおそれがある。上述のような絶縁板13の移動を抑制する観点からすると、切り欠き部13Bの個数は、3個または5個が好ましい。
 切り欠き部13Bを介して絶縁板13と缶底11Btとの間に導出された負極タブ26の一端部は、孔13Aを超える位置まで伸びている。このような位置まで延びていることで、電極体20の中心孔20Aに溶接棒を差し込み、負極タブ26の一端部と缶底11Btとを溶接することができる。
 周縁開口部としての切り欠き部13Bは、絶縁板13と缶底11Btとの間に導出された負極タブ26の先端部と重ならないように設けられていることが好ましい。負極タブ26の先端部が、切り欠き部13Bを介して電極体20のボトム側端面と接触することを抑制できるからである。
 周縁開口部としての切り欠き部13Bは、負極タブ26の先端部と対向しない位置に設けられていることが好ましい。電池の組み立て工程において、負極タブ26の一端部が電極体20のボトム側端面から規定長さよりも長く出されてしまった場合にも、負極タブ26の先端が切り欠き部13Bと重なることを抑制できるからである。
(正極)
 正極21は、図4に示すように、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、電極反応物質であるリチウム(Li)を吸蔵および放出することが可能な正極活物質を含んでいる。正極活物質層21Bは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
(正極活物質)
 正極活物質としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられ、具体的には、LiNi0.50Co0.20Mn0.302、LiaCoO2(a≒1)、LibNiO2(b≒1)、Lic1Nic2Co1-c22(c1≒1,0<c2<1)、LidMn24(d≒1)あるいはLieFePO4(e≒1)などがある。
 LipNi(1-q-r)MnqM1r(2-y)z ・・・(A)
(但し、式(A)中、M1は、ニッケル(Ni)、マンガン(Mn)を除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素(O)以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
 LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
 LifMn(1-g-h)NigM3h(2-j)k ・・・(C)
(但し、式(C)中、M3は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
 LimNi(1-n)M4n(2-p)q ・・・(D)
(但し、式(D)中、M4は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
 LirCo(1-s)M5s(2-t)u ・・・(E)
(但し、式(E)中、M5は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
 LivMn2-wM6wxy ・・・(F)
(但し、式(F)中、M6は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
 LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
 ニッケル(Ni)を含むリチウム含有化合物としては、Ni含有量が80%以上であるものが好ましい。Ni含有量が80%以上であると、高い電池容量が得られるからである。このような高いNi含有量のリチウム含有化合物を用いると、上述のように電池容量が高くなる反面、異常な熱が加えられたときに正極21のガス発生量(酸素放出量)が非常に大きくなる。第1の実施形態に係る電池では、このようなガス発生量が多い電極を用いた場合に特に優れた安全性向上の効果が発現する。
 Ni含有量が80%以上であるリチウム含有化合物としては、式(H)に示した正極材料が好ましい。
 LivNiwM8xM9yz ・・・(H)
(式中、0<v<2、w+x+y≦1、0.8≦w≦1、0≦x≦0.2、0≦y≦0.2、0<z<3であり、M8およびM9は、Co(コバルト)、Fe(鉄)、Mn(マンガン)、Cu(銅)、Zn(亜鉛)、Al(アルミニウム)、Cr(クロム)、V(バナジウム)、Ti(チタン)、Mg(マグネシウム)、Zr(ジルコニウム)から選択される少なくとも1種以上である。)
 リチウムを吸蔵および放出することが可能な正極材料としては、これらの他にも、MnO2、V25、V613、NiS、MoSなどのリチウムを含まない無機化合物も挙げられる。
 リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記で例示した正極材料は、任意の組み合わせで2種以上混合されてもよい。
(結着剤)
 結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(導電剤)
 導電剤としては、例えば、黒鉛、カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。
(負極)
 負極22は、図4に示すように、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。負極活物質層22Bは、必要に応じて結着剤などの添加剤をさらに含んでいてもよい。
 なお、第1の実施形態に係る電池では、リチウムを吸蔵および放出することが可能な負極材料の電気化学当量が、正極21の電気化学当量よりも大きくなっており、充電の途中において負極22にリチウム金属が析出しないようになっている。
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、リチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料が挙げられる。ここでは、このような負極材料を含む負極22を合金系負極と称する。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
 この負極材料を構成する金属元素あるいは半金属元素としては、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 中でも、この負極材料としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、特に好ましいのはケイ素(Si)およびスズ(Sn)の少なくとも一方を構成元素として含むものである。ケイ素(Si)およびスズ(Sn)は、リチウム(Li)を吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。
 スズ(Sn)の合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。ケイ素(Si)の合金としては、例えば、ケイ素(Si)以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。
 スズ(Sn)の化合物あるいはケイ素(Si)の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズ(Sn)またはケイ素(Si)に加えて、上述した第2の構成元素を含んでいてもよい。スズ(Sn)の化合物の具体例としては、SiOv(0.2<v<1.4)で表される酸化ケイ素が挙げられる。
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料も挙げられる。黒鉛としては、球形化処理などを施した天然黒鉛、略球状の人造黒鉛を用いることが好ましい。人造黒鉛としては、メソカーボンマイクロビーズ(MCMB)を黒鉛化した人造黒鉛、またはコークス原料を黒鉛化、粉砕した人造黒鉛が好ましい。コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。また、高分子材料としてはポリアセチレンあるいはポリピロールなどがある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れた特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 リチウムを吸蔵および放出することが可能な負極材料としては、更に、他の金属化合物あるいは高分子材料が挙げられる。他の金属化合物としては、MnO2、V25、V613などの酸化物、NiS、MoSなどの硫化物、あるいはLiN3などのリチウム窒化物が挙げられ、高分子材料としてはポリアセチレン、ポリアニリンあるいはポリピロールなどが挙げられる。
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどよりなる合成樹脂製の多孔質膜、またはセラミック製の多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。また、ポリプロピレンも好ましく、他にも、化学的安定性を備えた樹脂であればポリエチレンあるいはポリプロピレンと共重合させたり、またはブレンド化することで用いることができる。
(電解液)
 セパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
 溶媒としては、炭酸エチレンあるいは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
 溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 溶媒としては、さらにまた、2,4-ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
 これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどが挙げられる。
 なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[発生ガスの流れ]
 図5を参照して、上述の構成を有する電池の外周面に対して異常な熱が加えられたときの発生ガスの流れについて説明する。まず、外部から電池の外周面に対して異常な熱が加えられると、加熱部やその周辺などの電極からガスが発生し、発生したガスは電極体20の外周面と電池缶11の内周面との間の隙間に流れ出る。この隙間に流れ出たガスは、切り欠き部13Bを介して電池のボトム側に一旦回り込んだ後、絶縁板13の孔13A(より具体的には延設孔13Abおよび中心孔13Aa)を介して電極体20の中心孔20Aに流れ入る。その後、流れ入ったガスは、電極体20の中心孔20Aを電池のトップ側に向かい、絶縁板12の中心孔12Aを介してトップ側に到達する。トップ側に到達したガスが安全弁機構15を開裂し、開裂した安全弁機構15を介して電池の外部に排出される。
 缶底11Btが溝11Gvを有している場合には、この溝11Gvは次のような作用を有する。すなわち、孔13Aを介する電池のボトムから電極体20の中心孔20Aへのガス誘導のみでは十分に対応できないような異常なガス発生があり、ボトム側のガス圧力が異常に上昇した場合には、溝11Gvが開裂し、開裂した缶底11Btからガスが外に排出される。
[電池の製造方法]
 次に、本技術の第1の実施形態に係る電池の製造方法の一例について説明する。
 まず、例えば、第1の正極活物質と、第2の正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)などの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより正極活物質層21Bを形成し、正極21を形成する。
 また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより負極活物質層22Bを形成し、負極22を作製する。
 次に、正極集電体21Aに正極タブ25を溶接などにより取り付けるとともに、負極集電体22Aに負極タブ26を溶接などにより取り付ける。次に、正極21と負極22とをセパレータ23を介して巻回する。次に、正極タブ25の先端部を安全弁機構15に溶接するとともに、負極タブ26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。次に、正極21および負極22を電池缶11の内部に収納したのち、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。次に、電池缶11の開口端部に電池蓋14、安全弁機構15およびPTC素子16を封口ガスケット17を介してかしめることにより固定する。これにより、図1に示した二次電池が得られる。
[効果]
 第1の実施形態に係る電池では、ボトム側の絶縁板13の孔13Aが負極タブ26の外側まで延設されていると共に、ボトム側の絶縁板13の周縁に複数の切り欠き部13Bが設けられている。これにより、電極体20の側面に発生したガスを、電極体20の側面⇒電池のボトム⇒電極体20の中心孔20A⇒電池のトップの順路で効率的に誘導して、発生ガスが電極体20の側面に溜まることを抑制することができる。したがって、過充電状態などの電池に対して異常な熱が加えられたときに、電池が破裂することを抑制できるので、電池の安全性を向上できる。
 また、負極タブ26が孔13A上に設けられた状態における絶縁板13の開口率Raが22.8%以下である場合には、過充電状態などの電池に衝撃が加えられたときにも、電極体20のボトム側端面と缶底11Btとが電気的に接触してショートすることを抑制できる。したがって、電池の安全性を更に向上できる。
[変形例]
(変形例1)
 缶底11Btの内側面が、図6に示すように、2つ以上の溝11Gvを同一の円周上に有していてもよい。この円は、缶底11Btの外形と同心円の関係にある。溝11Gvは、円弧状を有している。溝11Gvの数は、2つ以上であればよく特に限定されるものではないが、例えば2つ以上5つ以下が挙げられる。
(変形例2)
 缶底11Btの両面のうち、電池缶11の外側となる面(以下単に「缶底11Btの外側面」という。)が、図7Aに示すように、円弧状の溝11Gvを有していてもよい。また、缶底11Btの内側面および外側面の両方が、図7Bに示すように、円弧状の溝11Gvを有していてもよい。但し、外気による溝11Gvの腐食を抑制する観点からすると、第1の実施形態におけるように缶底11Btの内側面に溝11Gvが設けられていることが好ましい。
 図7Bでは、内側面および外側面に設けられた溝11Gvが、缶底11Btの厚さ方向に重なって設けられている例が示されているが、内側面および外側面に設けられた溝11Gvが、缶底11Btの厚さ方向に重ならず、缶底11Btの面内方向にずれて設けられていてもよい。
(変形例3)
 電池は、図8に示すように、絶縁板13の一方の主面に設けられたフィルタ28をさらに備えるようにしてもよい。フィルタ28は、例えば絶縁板13の両主面のうち缶底11Btと対向する側の主面に設けられている。このようにフィルタ28を備えることで、負極タブ26と缶底11Btとの溶接の際に生じた金属粉が、電解液の注入時に電極体20に侵入するのを阻止して内部短絡を抑制できる。また、電池缶11内における電極体20の移動を抑制して、耐衝撃性や耐振動性などを向上することができる。
 また、絶縁板12の一方の主面に設けられたフィルタ27をさらに備えるようにしてもよい。フィルタ28は、例えば絶縁板12の両主面のうち電池蓋14と対向する側の主面に設けられている。このようにフィルタ27を備えることで、電解液の注入時に金属粉などの異物が電極体20に侵入するのを阻止して内部短絡を抑制できる。また、電池缶11内における電極体20の移動を抑制して、耐衝撃性や耐振動性を向上することができる。
 フィルタ27、28は、ポリエステル、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)などの繊維からなる不織布である。なお、絶縁板12、13のうちの一方のみがフィルタを備えるようにしてもよい。
(変形例4)
 上述の第1の実施形態では、絶縁板13が2つの延設孔13Abを有し、負極タブ26の周囲に2つの中央開口部13Acが構成される例について説明したが、延設孔13Abおよび中央開口部13Acの数はこれに限定されるものではない。絶縁板13が1つまたは3つ以上の延設孔13Abを有し、負極タブ26の周囲に1つまたは3つ以上の中央開口部13Acが構成されるようにしてもよい。但し、安全性向上の観点からすると、絶縁板13が2つ以上の延設孔13Abを有し、負極タブ26の周囲に2つ以上の中央開口部13Acが構成されていることが好ましい。
(変形例5)
 上述の第1の実施形態では、電池がセンターピン24を有する構成について説明したが、電池がセンターピン24を有さない構成であってもよい。このような構成の電池でも、上述の第1の実施形態に係る電池と同様に安全性を向上する効果が得られる。
<2.第2の実施形態>
 第2の実施形態では、第1の実施形態に係る電池を備える電池パックおよび電子機器について説明する。
[電池パックおよび電子機器の構成]
 以下、図9を参照して、本技術の第2の実施形態に係る電池パック300および電子機器400の一構成例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
 電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォンなど)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD、ELディスプレイ、電子ペーパなど)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラなど)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機などが挙げられるが、これに限定されるものでなない。
(電子回路)
 電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部などを備え、電子機器400の全体を制御する。
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図9では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第1の実施形態に係る電池が用いられる。
 充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
[変形例]
 上述の第2の実施形態では、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合を例として説明したが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。
<3.第3の実施形態>
 第3の実施形態では、第1の実施形態に係る電池を蓄電装置に備える蓄電システムについて説明する。この蓄電システムは、およそ電力を使用するものである限り、どのようなものであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両など含み、蓄電も可能である。
[蓄電システムの構成]
 以下、図10を参照して、第3の実施形態に係る蓄電システム(電力システム)100の構成例について説明する。この蓄電システム100は、住宅用の蓄電システムであり、火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108などを介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104などの独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅101には、家庭内発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、パワーハブ108、各種情報を取得するセンサ111が設けられている。各装置は、電力網109および情報網112によって接続されている。家庭内発電装置104として、太陽電池、燃料電池などが利用され、発電した電力が電力消費装置105および/または蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置105b、テレビジョン受信機105c、風呂105dなどである。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cなどである。
 蓄電装置103は、第1の実施形態に係る電池を備えている。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つまたは複数の組み合わせであってもよい。
 各種のセンサ111は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサなどである。各種のセンサ111により取得された情報は、制御装置110に送信される。センサ111からの情報によって、気象の状態、人の状態などが把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報を、インターネットを介して外部の電力会社などに送信することができる。
 パワーハブ108によって、電力線の分岐、直流交流変換などの処理がなされる。制御装置110と接続される情報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)などの通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fiなどの無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、およびサービスプロバイダーのいずれかによって管理されていてもよい。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信してもよいが、家庭外の装置(たとえば、携帯電話機など)から送受信してもよい。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)などに、表示されてもよい。
 各部を制御する制御装置110は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)などで構成され、この例では、蓄電装置103に格納されている。制御装置110は、蓄電装置103、家庭内発電装置104、電力消費装置105、各種のセンサ111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能などを備えていてもよい。
 以上のように、電力が火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102のみならず、家庭内発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されてもよいし、単独で構成されていてもよい。さらに、蓄電システム100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
<4.第4の実施形態>
 第4の実施形態では、第1の実施形態に係る電池を備える電動車両について説明する。
[電動車両の構成]
 図11を参照して、本技術の第4の実施形態に係る電動車両の一構成について説明する。このハイブリッド車両200は、シリーズハイブリッドシステムを採用するハイブリッド車両である。シリーズハイブリッドシステムは、エンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置203で走行する車である。
 このハイブリッド車両200には、エンジン201、発電機202、電力駆動力変換装置203、駆動輪204a、駆動輪204b、車輪205a、車輪205b、バッテリー208、車両制御装置209、各種センサ210、充電口211が搭載されている。バッテリー208としては、第1の実施形態に係る電池が用いられる。
 ハイブリッド車両200は、電力駆動力変換装置203を動力源として走行する。電力駆動力変換装置203の一例は、モータである。バッテリー208の電力によって電力駆動力変換装置203が作動し、この電力駆動力変換装置203の回転力が駆動輪204a、204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置203が交流モータでも直流モータでも適用可能である。各種センサ210は、車両制御装置209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン201の回転力は発電機202に伝えられ、その回転力によって発電機202により生成された電力をバッテリー208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両200が減速すると、その減速時の抵抗力が電力駆動力変換装置203に回転力として加わり、この回転力によって電力駆動力変換装置203により生成された回生電力がバッテリー208に蓄積される。
 バッテリー208は、充電口211を介してハイブリッド車両200の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていてもよい。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、またはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力をいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本技術は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。なお、本実施例においては、上述の第1の実施形態およびその変形例と対応する部分には同一の符号を付す。
[実施例1~14、比較例1~3]
(正極の作製工程)
 正極21を次にようにして作製した。まず、炭酸リチウム(Li2CO3)と炭酸コバルト(CoCO3)とを0.5:1のモル比で混合したのち、空気中において900℃で5時間焼成することにより、正極活物質としてリチウムコバルト複合酸化物(LiCoO2)を得た。次に、上述のようにして得られたリチウムコバルト複合酸化物91質量部と、導電剤としてグラファイト6質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合することにより正極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。次に、帯状のアルミニウム箔(12μm厚)からなる正極集電体21Aの両面に正極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、正極活物質層21Bを形成した。次に、正極集電体21Aの一端に、アルミニウム製の正極タブ25を溶接して取り付けた。
(負極の作製工程)
 負極22を次のようにして作製した。まず、負極活物質として人造黒鉛粉末97質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合して負極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の負極合剤スラリーとした。次に、帯状の銅箔(15μm厚)からなる負極集電体22Aの両面に負極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、負極活物質層22Bを形成した。次に、負極集電体22Aの一端に、ニッケル製の負極タブ26を取り付けた。
(電池の組み立て工程)
 電池を次のようにして組み立てた。まず、上述のようにして得られた正極21と負極22とを厚み23μmの微多孔性ポリエチレン延伸フィルムよりなるセパレータ23を介して、負極22、セパレータ23、正極21、セパレータ23の順に積層し、多数回巻回することによりジェリーロール型の巻回電極体20を得た。
 次に、ボトム側の絶縁板13として表1、図12A~図17Cに示す構成を有するものを準備した。また、トップ側の絶縁板12として中心孔12Aを有するものを準備した。次に、準備した一対の絶縁板12、13で巻回電極体20を挟み、負極タブ26を電池缶11に溶接すると共に、正極タブ25を安全弁機構15に溶接して、巻回電極体20を電池缶11の内部に収納した。次に、エチレンカーボネートとメチルエチルカーボネートとを1:1の体積比で混合した溶媒に、電解質塩としてLiPF6を1mol/dm3の濃度になるように溶解して非水電解液を調製した。
 最後に、上述の巻回電極体20が収容された電池缶11内に、電解液を注入した後、絶縁封口ガスケット17を介して電池缶11をかしめることにより、安全弁機構15、PTC素子16および電池蓋14を固定し、外径(直径)18.20mm、高さ65mmの円筒型の電池を作製した。なお、この電池は、正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.2Vになるように設計されたものであるが、後述する試験では4.4V(通常の使用範囲電圧を超える過充電状態)にして評価を行なった。
[実施例1A、4A、5A、8A、12A、13A、比較例1A、2A]
 電池缶11としてC字状(円弧状)の溝11Gvが缶底11Btに設けられているものを用いる以外は実施例1、4、5、8、12、13、比較例1、2と同様にして電池を作製した。
(評価)
 上述のようにして得られた電池について、以下の電池燃焼試験および電池落下試験を行った。なお、これらの試験は公的な試験に準拠するものである。
(電池燃焼試験)
 まず、電池を開回路電圧4.4Vの過充電状態に充電した。次に、充電した電池の中央部をバーナーで燃焼させて、破裂しなかった電池の個数を求めた。次に、以下の式から電池燃焼試験の合格率を求めた。
(電池燃焼試験の合格率)=((破裂しなかった電池の個数)/(燃焼試験を行った電池の個数))×100[%]
 次に、求めた電池燃焼試験の合格率を用いて、以下の基準で電池を評価した。
 ◎:90%以上100%以下
 ○:70%以上90%未満
 △:50%以上70%未満
 ×:0%以上50%未満
 但し、電池燃焼試験の評価結果において、上記記号“◎”、“○”、“△”、“×”はそれぞれ、評価結果として“最良”、“非常に良好”、“良好”、“悪い”を意味する。
(電池落下試験)
 まず、電池を開回路電圧4.4Vの過充電状態に充電した。次に、充電した電池を高さ10mから30回落下させて、巻回電極体のボトム側端面と電池缶の缶底とがショートした電池の個数を求めた。次に、以下の式からショート発生確率を求めた。
(ショート発生確率)=((ショートした電池の個数)/(落下試験を行った電池の個数))×100[%]
 次に、求めたショート発生確率を用いて、以下の基準で電池を評価した。
 ○:0%
 △:0%を超え1%未満
 ×:1%以上
 但し、電池落下試験の評価結果において、上記記号“○”、“△”、“×”はそれぞれ、評価結果として“非常に良好”、“良好”、“悪い”を意味する。
 表1は、実施例1~14、比較例1~3の電池の試験結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表2は、実施例1、1A、4、4A、5、5A、8、8A、12、12A、13、13A、比較例1、1A、2、2Aの電池の評価結果を示す。
 表1から以下のことがわかる。
 周縁に複数の切り欠き部13Bが設けられ、孔13Aが負極タブ26の外側まで広がっているボトム側の絶縁板13を備える電池(実施例1~14)は、孔33Aが負極タブ26により覆われているボトム側の絶縁板33を備える電池(比較例1)および周縁に1つの切り欠き部13Bしか設けられていない絶縁板34、35を備える電池(比較例2、3)に比べて高い燃焼試験合格率を有している。
 開口率Raが22.8%以下である電池(実施例1~11、14)では、高い燃焼試験合格率と落下試験合格率とを両立できる。一方、開口率Raが22.8%を超える電池(実施例12、13)では、高い燃焼試験合格率は得られるが、高い落下試験合格率は得られない。
 隣接する切り欠き部13Bの間隔が均等(一定)であるボトム側の絶縁板13を有する電池(実施例1、5)は、隣接する切り欠き部13Bの間隔が均等(一定)でないボトム側の絶縁板13を有する電池(実施例11、6)に比べて高い燃焼試験合格率を有している。
 缶底11Btにおいて負極タブ26の先端と切り欠き部(周縁開口部)13Bとが重なっていない電池(実施例8)は、缶底11Btにおいて負極タブ26の先端と切り欠き部(周縁開口部)13Bとが重なっている電池(実施例7)に比べて高い燃焼試験合格率を有している。
 表2および図18から以下のことがわかる。
 周縁に複数の切り欠き部13Bが設けられ、孔13Aが負極タブ26の外側まで広がっているボトム側の絶縁板13に加えて、缶底11Btに溝11Gvを有する電池缶11を更に備える電池は、上記構成の絶縁板13を備えるが、上記構成の電池缶11を備えてない電池に比べて、高い燃焼試験合格率を有している。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、上述の実施形態では、リチウムイオン二次電池に対して本技術を適用した例について説明したが、本技術はリチウムイオン二次電池以外の二次電池、および一次電池に対しても適用可能である。但し、本技術はリチウムイオン二次電池に適用することが特に有効である。
 また、本技術は以下の構成を採用することもできる。
(1)
 両端面間を貫通する第1孔部を有する電極体と、
 底部を有し、前記電極体を収容する電池缶と、
 前記第1孔部と重なるように設けられた第2孔部と、周縁に設けられた複数の切り欠き部とを有し、前記両端面のうち前記底部側の端面に設けられた絶縁板と、
 前記第1孔部および前記第2孔部と重なるように前記絶縁板と前記底部との間に設けられた電極タブと
 を備え、
 前記第2孔部は、前記電極タブの外側まで広がっている電池。
(2)
 隣接する前記複数の切り欠き部間の間隔は、一定またはほぼ一定である(1)に記載の電池。
(3)
 前記複数の切り欠き部は、前記周縁の全体に渡って設けられている(1)または(2)に記載の電池。
(4)
 前記切り欠き部は、前記電極タブの先端部と対向しない位置に設けられている(1)から(3)のいずれかに記載の電池。
(5)
 前記切り欠き部は、前記電極タブの先端部と重ならないよう設けられている(1)から(4)のいずれかに記載の電池。
(6)
 前記第2孔部は、前記電極タブの両辺の側から前記電極タブの外側まで広がっている(1)から(5)のいずれかに記載の電池。
(7)
 前記電極タブが前記第2孔部上に設けられた状態における前記絶縁板の開口率は、22.8%以下である(1)から(6)のいずれかに電池。
(8)
 前記電極タブが前記第2孔部上に設けられた状態における前記絶縁板の開口率は、4.7%以上22.8%以下である(1)から(6)のいずれかに記載の電池。
(9)
 前記電極タブが前記第2孔部上に設けられた状態における前記第2孔部の開口率は、5%以下である(1)から(8)のいずれかに記載の電池。
(10)
 前記電極タブが前記第2孔部上に設けられた状態における前記第2孔部の開口率は、1%以上5%以下である(1)から(8)のいずれかに記載の電池。
(11)
 前記底部は、溝を有する(1)から(10)のいずれかに記載の電池。
(12)
 (1)から(11)のいずれかに記載の電池と、
 前記電池を制御する制御部と
 を備える電池パック。
(13)
 (1)から(11)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電子機器。
(14)
 (1)から(11)のいずれかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
 を備える電動車両。
(15)
 (1)から(11)のいずれかに記載の電池を備え、
 前記電池に接続される電子機器に電力を供給する蓄電装置。
(16)
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う(18)に記載の蓄電装置。
(17)
 (1)から(11)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電力システム。
 11 電池缶
 11Bt  缶底(底部)
 11Gv  溝
 12、13 絶縁板
 13A  孔(第2孔部)
 13Aa  中心孔
 13Ab  延設孔
 13Ac  中央開口部
 14 電池蓋
 15 安全弁機構
 15A ディスク板
 16 熱感抵抗素子
 17 ガスケット
 20 電極体
 20A  中心孔(第1孔部)
 21 正極
 21A 正極集電体
 21B 正極活物質層
 22 負極
 22A 負極集電体
 22B 負極活物質層
 23 セパレータ
 24 センターピン
 25 正極タブ
 26 負極タブ

Claims (13)

  1.  両端面間を貫通する第1孔部を有する電極体と、
     底部を有し、前記電極体を収容する電池缶と、
     前記第1孔部と重なるように設けられた第2孔部と、周縁に設けられた複数の切り欠き部とを有し、前記両端面のうち前記底部側の端面に設けられた絶縁板と、
     前記第1孔部および前記第2孔部と重なるように前記絶縁板と前記底部との間に設けられた電極タブと
     を備え、
     前記第2孔部は、前記電極タブの外側まで広がっている電池。
  2.  隣接する前記複数の切り欠き部間の間隔は、一定またはほぼ一定である請求項1に記載の電池。
  3.  前記複数の切り欠き部は、前記周縁の全体に渡って設けられている請求項1に記載の電池。
  4.  前記切り欠き部は、前記電極タブの先端部と対向しない位置に設けられている請求項1に記載の電池。
  5.  前記切り欠き部は、前記電極タブの先端部と重ならないよう設けられている請求項1に記載の電池。
  6.  前記第2孔部は、前記電極タブの両辺の側から前記電極タブの外側まで広がっている請求項1に記載の電池。
  7.  前記電極タブが前記第2孔部上に設けられた状態における前記絶縁板の開口率は、22.8%以下である請求項1に電池。
  8.  前記電極タブが前記第2孔部上に設けられた状態における前記絶縁板の開口率は、4.7%以上22.8%以下である請求項1に記載の電池。
  9.  前記電極タブが前記第2孔部上に設けられた状態における前記第2孔部の開口率は、5%以下である請求項1に記載の電池。
  10.  前記電極タブが前記第2孔部上に設けられた状態における前記第2孔部の開口率は、1%以上5%以下である請求項1に記載の電池。
  11.  前記底部は、溝を有する請求項1に記載の電池。
  12.  請求項1に記載の電池と、
     前記電池を制御する制御部と
     を備える電池パック。
  13.  請求項1に記載の電池を備え、
     前記電池から電力の供給を受ける電子機器。
PCT/JP2016/004862 2015-11-30 2016-11-10 電池、電池パックおよび電子機器 WO2017094228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015233737A JP6823925B2 (ja) 2015-11-30 2015-11-30 電池、電池パックおよび電子機器
JP2015-233737 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094228A1 true WO2017094228A1 (ja) 2017-06-08

Family

ID=58796738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004862 WO2017094228A1 (ja) 2015-11-30 2016-11-10 電池、電池パックおよび電子機器

Country Status (2)

Country Link
JP (1) JP6823925B2 (ja)
WO (1) WO2017094228A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166546A1 (ja) * 2020-02-17 2021-08-26 株式会社村田製作所 二次電池、電子機器及び電動工具
US20220013833A1 (en) * 2019-02-01 2022-01-13 Lg Energy Solution, Ltd. Secondary Battery
CN114223079A (zh) * 2019-08-14 2022-03-22 株式会社村田制作所 二次电池、电池组、电子设备、电动工具以及电动车辆
US11437652B2 (en) * 2016-09-30 2022-09-06 Sanyo Electric Co., Ltd. Method of manufacturing square secondary battery
WO2023197161A1 (zh) * 2022-04-12 2023-10-19 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
US12009534B2 (en) * 2019-02-01 2024-06-11 Lg Energy Solution, Ltd. Secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070573B2 (ja) 2017-08-25 2022-05-18 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP7136943B2 (ja) * 2021-01-20 2022-09-13 本田技研工業株式会社 固体電池
WO2023120499A1 (ja) * 2021-12-24 2023-06-29 パナソニックエナジー株式会社 円筒形電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465944Y1 (ja) * 1966-02-12 1971-03-03
JPS63112761U (ja) * 1987-01-16 1988-07-20
JPH09283111A (ja) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd 電 池
JP2004111105A (ja) * 2002-09-13 2004-04-08 Sony Corp 非水電解液電池
JP2015156307A (ja) * 2014-02-20 2015-08-27 ソニー株式会社 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648807B2 (ja) * 1995-10-18 2005-05-18 Fdk株式会社 防爆型電気素子
JP2014072050A (ja) * 2012-09-28 2014-04-21 Sanyo Electric Co Ltd 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465944Y1 (ja) * 1966-02-12 1971-03-03
JPS63112761U (ja) * 1987-01-16 1988-07-20
JPH09283111A (ja) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd 電 池
JP2004111105A (ja) * 2002-09-13 2004-04-08 Sony Corp 非水電解液電池
JP2015156307A (ja) * 2014-02-20 2015-08-27 ソニー株式会社 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437652B2 (en) * 2016-09-30 2022-09-06 Sanyo Electric Co., Ltd. Method of manufacturing square secondary battery
US11715846B2 (en) 2016-09-30 2023-08-01 Sanyo Electric Co., Ltd. Method of manufacturing square secondary battery
US20220013833A1 (en) * 2019-02-01 2022-01-13 Lg Energy Solution, Ltd. Secondary Battery
US12009534B2 (en) * 2019-02-01 2024-06-11 Lg Energy Solution, Ltd. Secondary battery
CN114223079A (zh) * 2019-08-14 2022-03-22 株式会社村田制作所 二次电池、电池组、电子设备、电动工具以及电动车辆
CN114223079B (zh) * 2019-08-14 2024-05-28 株式会社村田制作所 二次电池、电池组、电子设备、电动工具以及电动车辆
WO2021166546A1 (ja) * 2020-02-17 2021-08-26 株式会社村田製作所 二次電池、電子機器及び電動工具
JP7380825B2 (ja) 2020-02-17 2023-11-15 株式会社村田製作所 二次電池、電子機器及び電動工具
WO2023197161A1 (zh) * 2022-04-12 2023-10-19 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Also Published As

Publication number Publication date
JP2017103029A (ja) 2017-06-08
JP6823925B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6155605B2 (ja) リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US9412997B2 (en) Battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system
JP5915804B2 (ja) 二次電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2017094228A1 (ja) 電池、電池パックおよび電子機器
JP6569735B2 (ja) 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2016017077A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6729575B2 (ja) 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015079624A1 (ja) 電極および電池
JP5915806B2 (ja) 二次電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
US11038193B2 (en) Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2017104117A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10541389B2 (en) Battery, battery pack, electronic device, electric vehicle, electric storage device and electric power system
JP2016033903A (ja) 正極活物質、正極および電池
JP2013222503A (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018042777A1 (ja) 電池、蓄電装置および電動車両
WO2017195480A1 (ja) フィルム外装型電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6554978B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2019039363A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015156307A (ja) 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870171

Country of ref document: EP

Kind code of ref document: A1