WO2017094158A1 - 空調システム及び空調制御サーバ - Google Patents

空調システム及び空調制御サーバ Download PDF

Info

Publication number
WO2017094158A1
WO2017094158A1 PCT/JP2015/083950 JP2015083950W WO2017094158A1 WO 2017094158 A1 WO2017094158 A1 WO 2017094158A1 JP 2015083950 W JP2015083950 W JP 2015083950W WO 2017094158 A1 WO2017094158 A1 WO 2017094158A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
exhaust
air
air conditioning
system device
Prior art date
Application number
PCT/JP2015/083950
Other languages
English (en)
French (fr)
Inventor
貴則 京屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/083950 priority Critical patent/WO2017094158A1/ja
Priority to CN201580084486.4A priority patent/CN108351114B/zh
Priority to JP2016526246A priority patent/JP6075512B1/ja
Priority to TW104141662A priority patent/TW201721060A/zh
Publication of WO2017094158A1 publication Critical patent/WO2017094158A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioning system and an air conditioning control server that control indoor air conditioning.
  • Patent Document 1 describes a configuration in which the temperature state of the heat source is detected and the exhaust is operated based on the detection value input to the server.
  • the generated heat can be eliminated by exhaust, there is a problem that the cool air supplied by the cooling when exhausting is excessively exhausted and energy loss occurs.
  • a large amount of electric power is required for air supply for cooling, and throwing out cool air to be used for air conditioning out of the closed system is an energy loss. Therefore, it has been a problem to exhaust only unnecessary heat without exhausting cold air.
  • the amount of heat generated by the heat source in the building may not be constant. For example, in a production facility such as a furnace, the amount of heat generated by a production load changes from moment to moment, and the amount of generated heat is small at the start of operation, but continues to generate heat for a while after the operation is stopped.
  • the present invention has been made in order to solve the above-described problems, and can avoid a state in which the cool air supplied by the cooling air is excessively exhausted, and can obtain an energy saving effect higher than that of the prior art.
  • the purpose is to obtain.
  • the air conditioning system includes a cold air supply system device that supplies air cooler than indoor air from the outside of the building, an exhaust system device that exhausts indoor air of the building to the outdoors, and the building A data collecting device for detecting the outdoor and indoor temperatures of the air and collecting the detected outdoor and indoor temperatures, the cold air supply device based on the outdoor and indoor temperatures collected by the data collecting device, and And an air conditioning control server that controls whether to operate both of the exhaust system devices, only one of them, or both.
  • the air conditioning system of the present invention it is possible to avoid a state where the cold air supplied by the cold air supply system device is excessively exhausted by the exhaust system device, and it is possible to obtain an energy saving effect higher than that of the prior art.
  • FIG. 1 is a system configuration diagram of an exhaust / air supply cooperative air conditioning system 100 according to Embodiment 1.
  • FIG. 1 is a configuration diagram of an exhaust air supply device 200 according to Embodiment 1.
  • FIG. The hardware block diagram of the air-conditioning control server 400 which concerns on Embodiment 1.
  • FIG. 3 is a flowchart showing an operation of the exhaust / air supply cooperative air conditioning system 100 according to the first embodiment.
  • FIG. 3 is an initial setting example of threshold values of the exhaust system device 220 and the cold air supply system device 210 according to Embodiment 1.
  • FIG. 6 is an example of initial setting of threshold values of exhaust system device 220 and cold air supply system device 210 according to Embodiment 2.
  • FIG. The relationship between the power consumption of the cold air supply system apparatus 210 which concerns on Embodiment 3, and the exhaust strength of the exhaust system apparatus 220, and the relationship between the power consumption of the exhaust system apparatus 220, and the amount of exhaust gas.
  • FIG. FIG. 6 is a configuration diagram of a power monitor I / F 201 according to Embodiment 3.
  • Embodiment 1 An air conditioning system according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a system configuration diagram of an exhaust / air supply cooperative air conditioning system 100 which is an air conditioning system of the present invention.
  • the exhaust air supply cooperative air conditioning system 100 used in a closed space such as a building includes an exhaust air supply device 200, a data collection device 300, and an air conditioning control server 400.
  • a general temperature monitor 310 is easy to install and is used to convert temperature into an electrical signal and transmit data to the air conditioning control server 400.
  • the temperature monitor 310 that is a detector that detects the temperature is classified into a heat source temperature monitor 311, an outside air temperature monitor 312, and a closed system temperature monitor 313, which will be described later.
  • the air conditioning control server 400 includes an air supply / exhaust control device 410 and a database 420.
  • FIG. 2 shows the configuration of the exhaust air supply device 200.
  • the exhaust air supply device 200 includes an exhaust air supply control I / F 202 which is an interface (hereinafter abbreviated as I / F) connected to the data collection device 300 and the air conditioning control server 400.
  • the exhaust air supply control I / F 202 mediates between the air conditioning control server 400, the cold air supply system device 210, the exhaust system device 220, and the outside air supply system device 230, and the cold air supply system device 210, the exhaust system device 220, and the outside air supply. This is an I / F used to control the air system device 230.
  • the cold air supply system device 210 supplies cold air, has a function corresponding to a general cooling device, and can be controlled from the air conditioning control server 400 by the exhaust air supply control I / F 202.
  • the exhaust system device 220 includes an exhaust fan 221 and an exhaust valve drive device 222 that can be controlled from the outside, respectively, and is installed at a boundary between the drive of the exhaust fan 221 and the space of the closed system and the outside air. Thermal exhaust is performed by opening and closing the exhaust valve. When the exhaust valve can be driven by the exhaust fan 221, the exhaust valve driving device 222 can be omitted.
  • the external air supply system device 230 is similar to the exhaust system device 220 in that it supplies external air corresponding to the volume exhausted by the exhaust system device 220 by opening and closing the supply valve drive device 231 installed at the boundary between the closed system space and the outside air. It is a device that cares. When the outside air temperature is high, mixing of the outside air can be avoided by controlling the exhaust valve driving device 222 and the air supply valve driving device 231. Note that the outside air supply system device 230 operates in conjunction with the operation of the exhaust system device 220.
  • FIG. 3 shows a hardware configuration of the air conditioning control server 400, and the air conditioning control server 400 includes an air supply / exhaust control device 410 and a database 420.
  • the air supply / exhaust control device 410 includes a processor 401, a memory 402, a control I / F 403, a sensor I / F 404, an input I / F 405, and a display unit I / F 406.
  • the processor 401 is a CPU (Central Processing Unit), for example.
  • the processor 401 is connected to other hardware devices via a bus or the like, and controls those hardware devices.
  • the processor 401 reads the program 421 from the database 420 and executes the program 421 developed in the memory 402.
  • the control I / F 403 is an I / F for controlling the cold air supply system device 210, the exhaust system device 220, and the outside air supply system device 230 via the exhaust air supply control I / F 202.
  • the sensor I / F 404 is an I / F for collecting data of the data collection device 300.
  • An input I / F 405 is an I / F of an input device such as a keyboard or a mouse.
  • a display unit I / F 406 is an I / F with a display device such as a display.
  • the database 420 is a device that stores data necessary for control and setting values for control as a file 422.
  • FIG. 4 shows an example in which the exhaust / air supply cooperative air conditioning system 100 according to the present invention is applied in a factory environment.
  • the factory has a control room 502 in which a building 501 and an air conditioning control server 400 are installed.
  • the building 501 and the control room 502 may be in the same place.
  • the cold air supply system device 210 cools the inside of the building 501.
  • the exhaust system device 220 exhausts the high-temperature air with an exhaust hood installed immediately above the manufacturing device 503.
  • the manufacturing apparatus 503 is an apparatus installed not for the purpose of heating the building 501 but for the purpose of manufacturing, and generates heat during operation.
  • a cover that covers the manufacturing apparatus 503 may be provided.
  • the outside air supply device 230 takes in outside air corresponding to the volume exhausted by the exhaust system device 220 into the building 501.
  • the temperature monitor 310 is classified into a heat source temperature monitor 311, an outside air temperature monitor 312, and a closed system internal temperature monitor 313.
  • the heat source temperature monitor 311 is installed in the vicinity of the device to be monitored, for example, at an arbitrary location between the exhaust hood and the heat source installed just above the heat source.
  • the outside air temperature monitor 312 is installed, for example, in a place in contact with outside air in the vicinity of the outside air supply system device 230 and monitors the outdoor temperature of the building 501.
  • the closed system temperature monitor 313 is installed in the vicinity of the place where the worker in the building 501 is present, and monitors the indoor temperature of the building 501.
  • the air conditioning control server 400 is for controlling the air supply / exhaust air conditioner so as to exhaust high temperature air and not cool air based on the collected data.
  • FIG. 5 is a flowchart showing the operation of the exhaust / air supply cooperative air conditioning system 100.
  • This operation is performed in the air conditioning control server 400 using the temperature data collected by the data collection device 300, and the cold air supply system device 210, the exhaust system device 220, and the outside air via the exhaust air supply control I / F 202. It is executed by the air supply system device 230.
  • the administrator inputs initial temperature settings to the air conditioning control server 400 (S101). For example, in a factory where workers are present, a value such as 25 degrees is input.
  • a threshold value calculation method according to the initial setting is determined in advance, and this initial temperature setting value is used for calculation of the threshold value.
  • the threshold values used in the exhaust / air supply cooperative air conditioning system 100 are a threshold value for operating the exhaust system device 220, a threshold value for stopping the exhaust system device 220, and a threshold value for operating the cold air supply system device 210. This is a threshold value for stopping the cold air supply system device 210.
  • each threshold value is automatically set based on the threshold value calculation method using the initial temperature setting value (S200).
  • the set value in S101 is compared with the outside air temperature (S102).
  • the cold air supply system device 210 is operated (S103). If the outside air temperature is lower than the set value in S101, it is determined whether or not the closed system temperature is lower than the set value in S101 (S250). If the closed system temperature is lower than the set value in S101, Then, the exhaust air supply device 200 is maintained in a stopped state (S251). If the temperature of the closed system is too low for the operator, heating may be introduced. When the closed system temperature is higher than the set value of S101 (S250), the exhaust system device 220 is operated (S300). At this time, the outside air supply system device 230 also operates in conjunction. That is, cooling using cold outside air becomes possible.
  • the operation of the exhaust system device 220 is continued (S303).
  • the cold air supply system device 210 is operated (S302).
  • the operation of the cold air supply system device 210 is maintained (S306).
  • the cool air supply system apparatus 210 is stopped because the cool air is exhausted excessively (S305). Thereafter, the process returns to S102.
  • the cold air supply system device 210 When the outside air temperature is higher than the set value in S101 based on the information on the outside air temperature collected by the temperature monitor 310 (S102), the cold air supply system device 210 is operated (S103).
  • the heat source temperature monitor 311 compares the temperature near the heat source to be collected with an operating threshold value (S104), and if the temperature near the heat source to be collected is lower than the operating threshold value, the exhaust system device 220 is maintained in a stopped state. (S106). If the temperature near the heat source to be collected is higher than the operating threshold value, the exhaust system device 220 is operated (S105).
  • the monitoring of the heat source temperature is continued, and when the state higher than the exhaust system device 220 stop threshold continues (S107), the operation of the exhaust system device 220 is maintained (S109). If the exhaust system device 220 continues to be lower than the stop threshold value, the exhaust system device 220 is stopped because it is exhausted to the cold air (S108). Thereafter, the process returns to S102 and the determination is repeated.
  • both the cold air supply system device 210 and the exhaust system device 220 operate when the outside air temperature is higher than the set value in S101 (S102) when the temperature near the heat source to be collected is higher than the operation threshold value ( S105), or the outside air temperature is lower than the set value of S101 (S102), the closed system temperature is higher than the set value of S101 (S250), and the temperature of the heat source using the heat source temperature monitor 311 is activated. It is limited to the case where it is higher than the threshold (S301).
  • the exhaust system device 220 When the outside air temperature monitored by the outside air temperature monitor 312 is higher than the set value of S101 (S102), and the temperature near the heat source monitored by the heat source temperature monitor 311 is lower than the operating threshold value (S106), the exhaust system device 220 operates. Without this, only the cold air supply system device 210 operates. As a result, it is possible to avoid a state in which the exhaust system 220 exhausts the cool air from the cool air supply system apparatus 210 as it is. In this manner, the air conditioning control server 400 monitors the outdoor temperature of the building 501 and the temperature of the heat source in the building 501 and collects the monitored temperature based on the temperature collected by the data collection device 300. By controlling the operation and stop of the system device 210 and the exhaust system device 220 in a coordinated manner, it is possible to avoid a state where the exhaust system device 220 exhausts the cold air from the cold air supply system device 210 as it is.
  • FIG. 6 shows an initial setting example of the operation threshold value and stop threshold value of the exhaust system device 220, and the operation threshold value and stop threshold value of the cold air supply system device 210.
  • Initial threshold setting (S200) will be described using an example of initial setting.
  • the outside air temperature is higher than the set value in S101 (YES in S102), for example, when the outside air temperature is 30 degrees in summer and the input value in S102 is 25 degrees, the cold air supply system device 210 is in an operating state. .
  • the exhaust system device 220 operates when the heat source temperature exceeds 26 degrees, and stops when it falls below 24 degrees.
  • the outside air temperature is higher than the set value in S101 (NO in S102), for example, if the outside air temperature is 10 degrees in winter, the input value in S102 is 25 degrees, and the closed system temperature is 30 degrees, exhaust according to S300
  • the system device 220 is in an operating state.
  • S301 when the heat source temperature is higher than the operating threshold value 26 degrees of the cold air supply system device 210, the cold air supply system device 210 is operated (S302).
  • the operation threshold value and the stop threshold value are set as S101 set temperature +1 and S101 set temperature ⁇ 1, respectively, but +1 and ⁇ 1 can be arbitrarily set and are optimized by the air conditioning manager. .
  • the air conditioning control server 400 uses the sensor information and the threshold value to control the cold air supply system device 210 and the exhaust system device 220 in cooperation with each other. be able to. As a result, it is possible to reduce the state in which the cold air from the cold air supply system device 210 is exhausted as it is by the exhaust system device 220, and it is possible to obtain a high energy saving effect by avoiding excessive exhaust of cold air.
  • air conditioning is always managed by the air conditioning control server 400, it is not necessary to change the server of the air conditioning system even when the equipment of the exhaust air supply device 200 is changed. Thus, it is possible to obtain an air conditioning system that can easily change the exhaust equipment in an environment where the equipment layout changes.
  • the exhaust air supply cooperative air conditioning system 100 that is the air conditioning system described in the first embodiment is a cold air supply system that supplies air cooler than the indoor air from the outside of the building 501 to the indoor.
  • the data collection device 300 monitors the indoor temperature of the building 501 and collects the monitored indoor temperature
  • the air conditioning control server 400 includes the data collection device 300.
  • the indoor temperature collected in step 1 it is possible to control whether to operate both the cold air supply system device 210 and the exhaust system device 220, only one of them, or both.
  • the exhaust system device 220 can be operated when necessary depending on the indoor temperature of the building 501, and the energy saving effect of the air conditioning system described in this embodiment can be further enhanced.
  • the air conditioning control server 400 sets thresholds for determining the operation and stop of the cold air supply system device 210 and the exhaust system device 220, and the cool air is based on the threshold values. It is characterized by controlling whether both the air supply system device 210 and the exhaust system device 220 are operated, only one is operated, or both are stopped. Further, when the outdoor temperature collected by the data collection device 300 is higher than a preset threshold value, the cold air supply system device 210 is operated, and the indoor temperature collected by the data collection device 300 is determined in advance. The exhaust system apparatus 220 is operated when the specified standard is satisfied. With this configuration, by setting an appropriate threshold value, it is possible to enhance the energy saving effect of the air conditioning system described in the present embodiment.
  • the air conditioning control server 400 described in the first embodiment is based on the outdoor and indoor temperatures of the building 501 detected by the temperature monitor 310 that is a temperature detector. Controls whether to operate both the cool air supply system device 210 that supplies cold air and the exhaust system device 220 that exhausts the indoor air of the building 501 to the outdoors, or to operate only one of them or to stop both It is characterized by doing. With this configuration, it is possible to avoid a state in which the cold air from the cold air supply system device 210 is excessively exhausted by the exhaust system device 220, and it is possible to obtain a higher energy saving effect than in the prior art.
  • Embodiment 2 the operation of the exhaust system device 220 is in two states of operation and stop, whereas in the present embodiment, an embodiment provided with the exhaust system device 220 capable of varying the exhaust intensity will be described.
  • the exhaust strength may be one in which the exhaust fan 221 can be set at a level such as strong / medium / weak / stop, or the strength can be changed linearly.
  • FIG. 7 shows an example of threshold setting when the exhaust system device 220 and the cold air supply system device 210 can be set in four levels of strong, medium, weak and stopped. In this case, in the operation of FIG. 5, the strength at the time of operation changes depending on the temperature to be monitored and the threshold value, but the flowchart is not changed. According to the second embodiment, temperature fluctuation is less, that is, control with high comfort and energy saving effect, and weak driving with higher energy saving effect is possible when the exhaust fine is an inverter device.
  • the air conditioning control server 400 sets an intensity threshold value representing a driving intensity threshold value that determines the driving intensity values when the cold air supply system device 210 and the exhaust system device 220 are operated.
  • a plurality of settings are set, and drive strengths during operation of the cold air supply system device 210 and the exhaust system device 220 are controlled based on the plurality of strength threshold values.
  • Embodiment 3 the strength of the exhaust system device 220 is variable.
  • the air conditioning control server 400 learns how much exhaust strength has the highest energy saving effect. A mode in which each threshold value is automatically set will be described.
  • FIG. 8 shows the relationship between the power consumption of the cool air supply system 210 and the exhaust intensity of the exhaust system 220 (solid line) and the relationship between the power consumption of the exhaust system 220 and the exhaust amount when the outside air temperature is high as in the summer ( (Broken line).
  • the power consumption of the cold air supply system device 210 is minimized at the exhaust intensity B
  • the power consumption of the entire exhaust air supply device 200 is the power consumption (Wa) of the cold air supply system device 210 and the power consumption of the exhaust system device 220. Since it is determined by the sum of (Wv), the exhaust intensity A that minimizes the sum of Wa and Wv is optimal.
  • the third embodiment includes the power monitor shown in FIG. 9 and the power monitor I / F kit 201 shown in FIG.
  • the power monitor is a general power monitoring device, and is installed on a monitoring target device or a distribution board that supplies power to the monitoring target device, and collects the amount of power.
  • the purpose of the power monitor I / F 201 is to mediate between the power monitor that collects the power consumption data of the monitoring device and the monitoring device, and may be installed in the monitoring target device. You may install in the thing similar to the switchboard which supplies electric power to object apparatus.
  • the air conditioning control server 400 automatically sets each threshold value that minimizes the total amount of power of each device, and a high energy saving effect is obtained.
  • the data collection device 300 monitors the power consumption of the cold air supply system device 210 and the exhaust system device 220 and collects the monitored power consumption.
  • the air conditioning control server 400 determines whether to operate both the cold air supply system apparatus 210 and the exhaust system apparatus 220 based on the power consumption collected by the data collection apparatus 300, or to operate both of them. It is characterized by controlling. With this configuration, an operating environment with low power consumption can be set, and an air conditioning system with a high power saving effect can be realized.
  • the data collection device 300 monitors the power consumption of the cold air supply system device 210 and the exhaust system device 220, collects the monitored power consumption, and performs air conditioning control.
  • the server 400 is characterized in that the threshold is set so that the total power consumption of the cold air supply system device 210 and the exhaust system device 220 is reduced based on the power consumption collected by the data collection device 300. With this configuration, a threshold value for reducing the total power consumption can be set, and an air conditioning system with a high power saving effect can be realized.
  • the threshold value of the exhaust system device 220 is set by using the temperature of the heat source temperature monitor 311. For example, when priority is given to the environment of the worker in the factory, the closed system is used. The closed system temperature monitor 313 installed near the operator is used. In the fourth embodiment, it is possible to ensure both the comfort of the operator's temperature environment and the energy saving operation of the exhaust air supply device 200.
  • the exhaust / air supply cooperative air conditioning system 100 that is the air conditioning system described in the fourth embodiment includes a cold air supply system device 210 that supplies air cooler than the indoor air from the outside of the building 501 to the indoor, and the building 501.
  • the air conditioning control server 400 controls whether to operate both the cold air supply system device 210 and the exhaust system device 220, only one of them, or both of them to stop based on the outdoor and indoor temperatures collected at And.
  • the above-mentioned “indoor temperature of the building 501” includes the building 501 in addition to the temperature monitored by the closed system temperature monitor 313. The temperature of the heat source inside is also included.
  • 100: Exhaust air supply cooperative air conditioning system 200: Exhaust air supply device, 202: Exhaust air supply control I / F, 210: Cold air supply system device, 220: Exhaust system device, 221: Exhaust fan, 222: Exhaust valve drive Device: 230: outside air supply system device, 231: supply valve drive device, 300: data collection device, 310: temperature monitor, 311: heat source temperature monitor, 312: outside air temperature monitor, 313: closed system temperature monitor, 320 : Power monitor, 400: Air conditioning control server, 401: Processor, 402: Memory, 403: Control I / F, 404: Sensor I / F IV, 405: Input I / F, 406: Display I / F, 410: Supply Air exhaust control device, 420: database, 421: program, 422: file, 501: building, 502: control room, 503: manufacturing equipment

Abstract

この発明に係る空調システムは、建屋の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置と、前記建屋の屋内の空気を屋外に排気する排気系装置と、前記建屋の屋外及び屋内の温度をモニタするとともに、前記モニタされた屋外及び屋内の温度を収集するデータ収集装置と、前記データ収集装置で収集された屋外及び屋内の温度に基づき、前記冷気給気系装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバと、を備えたことを特徴とする。この構成によって、冷気給気系装置によって給気される冷気が排気系装置によって過剰に排気される状態を回避でき、従来技術よりも高い省エネルギー効果を得ることができる。

Description

空調システム及び空調制御サーバ
 この発明は、屋内の空調を制御する空調システム及び空調制御サーバに関する。
 従来の発熱機器のような熱源を有する建屋内に代表される閉鎖系の空間の空調を管理する空調システムでは、冷房のみによる冷却、又は発熱機器が発生する熱の強制排気、又は冷房と排気の組み合わせを用いた手法が用いられている。発生する熱による閉鎖系内の温度上昇への対策として、冷房のみによって空調管理する場合よりも、排気用ファンを用いて熱を閉鎖系の外へ排気する方が、一般的に消費電力を低くできる。そのため、例えば、特許文献1では熱源の温度状態を検出し、サーバに入力した検出値により排気を稼働させる構成が記載されている。このような熱源を内包する閉鎖系空間の空調を排気および冷房設備を利用して制御する従来の空調システムでは、恒常的に排気ファンを稼働させたり、熱源の動作状況や温度を検出し、排気ファンの稼働と停止を制御することで、省エネルギー効果を得る手法が採用されている。
特開2004-53175号公報.
 従来の空調システムでは、発生熱の排除を排気により可能にしているものの、排気を行う際に冷房が給気する冷気も過剰に排気し、エネルギーロスが発生する課題があった。冷房の給気には多大な電力が必要であり、空調に活用されるべき冷気を閉鎖系の外へ捨ててしまうことはエネルギーロスとなる。従って、冷気を排気することなく不要な熱のみを排気することが課題であった。
 また、建屋内の熱源が発生する熱量が一定でない場合もある。例えば、炉のような生産設備では、生産負荷により発生する熱量が時々刻々と変化し、稼働開始時は発生熱量が少ないが、稼働停止後しばらくは熱を発生し続ける。このような環境では、排気と給気を両立して稼働させる空調管理が複雑となり、冷気の排気が弱すぎる状態や冷気を過剰に排気する状態を把握することが困難となる課題がある。
 また、排気を行う場合、外気の給気が同時に行われるが、従来の空調システムでは、季節や時間により変化する外気温度の影響が考慮されていない。従って、外気温度の影響を考慮した排気及び給気制御の向上が課題である。
 また、工場のように設備レイアウトの変更が発生する環境では、排気設備の変更が容易な空調システムを得ることが課題となる。
 本発明は、上記のような課題を解決するためになされたもので、冷房が給気する冷気が過剰に排気される状態を回避でき、従来技術よりも高い省エネルギー効果を得ることができる空調システムを得ることを目的とする。
 この発明に係る空調システムは、建屋の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置と、前記建屋の屋内の空気を屋外に排気する排気系装置と、前記建屋の屋外及び屋内の温度を検出するとともに、前記検出された屋外及び屋内の温度を収集するデータ収集装置と、前記データ収集装置で収集された屋外及び屋内の温度に基づき、前記冷気給気装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバと、を備えたことを特徴とする。
この発明の空調システムによれば、冷気給気系装置によって給気される冷気が排気系装置によって過剰に排気される状態を回避でき、従来技術よりも高い省エネルギー効果を得ることができる。
実施の形態1に係る排気給気連携空調システム100のシステム構成図。 実施の形態1に係る排気給気装置200の構成図。 実施の形態1に係る空調制御サーバ400のハードウエア構成図。 実施の形態1に係る排気給気連携空調システム100を工場で適用した例。 実施の形態1に係る排気給気連携空調システム100の動作を示すフローチャート。 実施の形態1に係る排気系装置220及び冷気給気系装置210のしきい値の初期設定例。 実施の形態2に係る排気系装置220及び冷気給気系装置210のしきい値の初期設定例。 実施の形態3に係る冷気給気系装置210の消費電力と排気系装置220の排気強度の関係及び、排気系装置220の消費電力と排気量の関係。 実施の形態3に係る排気給気連携空調システム100のシステム構成図。 実施の形態3に係る電力モニタI/F201の構成図。
実施の形態1.
 この発明の実施の形態1に係る空調システムについて説明する。
 図1はこの発明の空調システムである排気給気連携空調システム100のシステム構成図である。建屋などの閉鎖系の空間で用いられる排気給気連携空調システム100は、排気給気装置200、データ収集装置300、および空調制御サーバ400を備える。一般的な温度モニタ310は設置が容易で、温度を電気信号に変換して空調制御サーバ400にデータを送信するためのものである。温度を検出する検出器である温度モニタ310は、後に説明するが、熱源温度モニタ311、外気温度モニタ312、および閉鎖系内温度モニタ313に分類される。また、空調制御サーバ400は給気排気制御装置410とデータベース420を備える。
 図2は排気給気装置200の構成を示す。排気給気装置200には、データ収集装置300、および空調制御サーバ400と接続されるインターフェース(以後は、I/Fと略す)である排気給気制御I/F202が含まれる。排気給気制御I/F202は、空調制御サーバ400と冷気給気系装置210、排気系装置220、外気給気系装置230を仲介し、冷気給気系装置210、排気系装置220、外気給気系装置230の制御に用いるI/Fである。冷気給気系装置210は、冷気を供給するものであり、一般的な冷房機器に相当する機能を有し、排気給気制御I/F202により空調制御サーバ400から制御が可能となっている。排気系装置220は、それぞれ外部からの稼働制御が可能な排気ファン221、および排気弁駆動装置222を有し、排気ファン221の駆動と閉鎖系の空間と外気との境界に設置する一般的な排気弁の開閉とにより熱排気を行う。排気ファン221により排気弁の駆動が可能な場合は、排気弁駆動装置222を省略することも可能である。外気給気系装置230は、排気系装置220と同じく閉鎖系の空間と外気との境界に設置する給気弁駆動装置231の開閉により、排気系装置220が排気する体積に相当する外気の給気を行う装置である。なお、外気温が高い場合には、排気弁駆動装置222および給気弁駆動装置231を制御することにより、外気混入を回避することもできる。なお、外気給気系装置230は、排気系装置220の稼働に連動して稼働するものとする。
図3は空調制御サーバ400のハードウエア構成を示すものであり、空調制御サーバ400は給気排気制御装置410とデータベース420を備える。また、給気排気制御装置410は、プロセッサ401、メモリ402、制御I/F403、センサI/F404、入力I/F405、表示部I/F406を備える。プロセッサ401は、例えばCPU(Central・Processing・Unit)である。
プロセッサ401はバス等を介して他のハードウェアデバイスと接続され、それらのハードウェアデバイスを制御する。プロセッサ401は、データベース420からプログラム421を読み出し、メモリ402に展開したプログラム421を実行する。制御I/F403は、排気給気制御I/F202を介して冷気給気系装置210、排気系装置220、外気給気系装置230を制御するためのI/Fである。センサI/F404は、データ収集装置300のデータを収集するためのI/Fである。入力I/F405は、キーボードやマウス等の入力装置のI/Fである。表示部I/F406は、ディスプレイ等の表示装置とのI/Fである。データベース420は、制御に必要なデータや制御のための設定値をファイル422として格納する装置である。
 図4に本発明による排気給気連携空調システム100を工場の環境で適用した例を示す。工場には、建屋501と空調制御サーバ400を設置する制御室502がある。建屋501と制御室502は同じ場所にあってもよい。冷気給気系装置210は建屋501内部を冷却する。排気系装置220は、製造装置503直上に設置された排気フードで高温空気を排気する。ここで、製造装置503は、建屋501を温める目的ではなく、製造目的に設置された装置であり、稼働時には熱を発生する。なお、製造装置503が熱を側面等から出す場合は、製造装置503を覆う覆いを設置してもよい。外気系給気装置230は、排気系装置220が排気する体積に相当する外気を建屋501に取り込む。温度モニタ310は、熱源温度モニタ311、外気温度モニタ312、および閉鎖系内温度モニタ313に分類される。熱源温度モニタ311は監視対象機器近傍、たとえば熱源直上に設置する排気フードと熱源間の任意の場所に設置する。外気温度モニタ312は、例えば外気給気系装置230近傍の外気と接する場所に設置され、建屋501の屋外の温度をモニタする。閉鎖系内温度モニタ313は、建屋501内の作業員が居る場所近傍に設置され、建屋501の屋内の温度をモニタする。空調制御サーバ400は、収集したデータをもとに、高温空気を排気し、冷気を排気しないように給気排気の空調装置の制御を行うためのものである。
 次に、排気給気連携空調システム100の動作について説明する。図5に排気給気連携空調システム100の動作を示すフローチャートを示す。この動作は、データ収集装置300で収集された温度データを用いて空調制御サーバ400内で行われ、排気給気制御I/F202を介して、冷気給気系装置210、排気系装置220、外気給気系装置230で実行される。まず、管理者は空調制御サーバ400に初期温度設定を入力する(S101)。例えば、作業員が居る工場内の場合、25度といった値を入力することとなる。空調管理サーバ400は、あらかじめ初期設定に従ったしきい値算出方法が決められており、しきい値の算出にはこの初期温度設定値を用いる。排気給気連携空調システム100に用いるしきい値とは即ち、排気系機器220を稼働させるしきい値、排気系機器220を停止させるしきい値、冷気給気系装置210を稼働させるしきい値、冷気給気系装置210を停止させるしきい値である。このようにして、初期温度設定値を用いて、しきい値算出方法に基づき各しきい値を自動的に設定する(S200)。次に、温度モニタ310が収集する外気温の情報に基づき、S101の設定値と外気温を比較する(S102)。外気温の方がS101の設定値よりも高い場合は、冷気給気系装置210を稼働させる(S103)。外気温の方がS101の設定値よりも低い場合は、閉鎖系温度がS101の設定値よりも低いか否かを判定し(S250)、閉鎖系温度がS101の設定値よりも低い場合には、排気給気装置200の停止状態を維持する(S251)。作業者にとって閉鎖系の温度が低すぎる場合には、暖房を導入してもよい。閉鎖系温度がS101の設定値よりも高い場合は(S250)、排気系装置220を稼働させる(S300)。この時、外気給気系装置230も連動して稼働する。つまり、冷たい外気を利用した冷却が可能となる。さらに、熱源温度モニタ311を用いた熱源の温度が冷気給気系装置210の稼働しきい値より低い場合は(S301)、排気系装置220の稼働を継続する(S303)。熱源温度モニタ311を用いた熱源の温度が冷気給気系装置210の稼働しきい値より高い場合は(S301)、冷気給気系装置210を稼働させる(S302)。次に、熱源温度モニタ311を用いた熱源の温度が冷気給気系装置210の停止しきい値より高い場合は(S304)、冷気給気系装置210の稼働を維持する(S306)。熱源の温度が停止しきい値より低い場合は(S304)、冷気を過剰に排気しているため、冷気給気系装置210を停止させる(S305)。以後は、S102の判定に戻る。
 なお、温度モニタ310が収集する外気温の情報に基づき、外気温の方がS101の設定値よりも高い場合(S102)は、冷気給気系装置210を稼働させたが(S103)、さらに、熱源温度モニタ311は収集する熱源近傍の温度と稼働しきい値の比較を行い(S104)、収集する熱源近傍の温度が稼働しきい値よりも低い場合は排気系装置220を停止の状態に維持する(S106)。収集する熱源近傍の温度が稼働しきい値よりも高い場合は、排気系装置220を稼働させる(S105)。熱源温度のモニタを継続し、排気系装置220停止しきい値より高い状態が続く場合は(S107)、排気系装置220の稼働を維持する(S109)。排気系装置220停止しきい値より低い状態が続く場合は、冷気まで排気している状態となるため、排気系装置220を停止させる(S108)。以後は、S102に戻り判定を繰り返す。
 この制御では、冷気給気系装置210と排気系装置220がともに稼働するのは、外気温がS101の設定値より高く(S102)収集する熱源近傍の温度が稼働しきい値よりも高い場合(S105)、又は、外気温がS101の設定値より低く(S102)閉鎖系温度がS101の設定値より高く(S250)熱源温度モニタ311を用いた熱源の温度が冷気給気系装置210の稼働しきい値より高い場合(S301)に限られる。すなわち、
外気温度モニタ312でモニタされた外気温がS101の設定値より高く(S102)熱源温度モニタ311でモニタされた熱源近傍の温度が稼働しきい値より低い場合(S106)、排気系装置220は動作せずに冷気給気系装置210のみが動作する。その結果、冷気給気系装置210からの冷気を排気系装置220がそのまま排気してしまう状態を回避することができる。このように、建屋501の屋外の温度及び建屋501内にある熱源の温度をモニタし、モニタされた温度を収集するデータ収集装置300で収集された温度に基づき、空調制御サーバ400が冷気給気系装置210と排気系装置220の稼働と停止を連携して制御することにより、冷気給気系装置210からの冷気を排気系装置220がそのまま排気してしまう状態を回避することができる。
 図6に排気系装置220の稼働しきい値、停止しきい値、冷気給気系装置210の稼働しきい値、停止しきい値の初期設定例を示す。初期しきい値設定(S200)について、初期設定の一例を用いて説明する。外気温の方がS101の設定値よりも高い場合(S102においてYES)、例えば夏季で外気温が30度でありS102の入力値が25度の場合、冷気給気系装置210は稼働状態となる。また、排気系装置220は熱源温度が26度を超える場合に稼働し、24度を下回る場合に停止する。外気温の方がS101の設定値よりも高い場合(S102においてNO)、例えば冬季で外気温が10度、S102の入力値が25度、閉鎖系の温度が30度の場合は、S300に従い排気系装置220は稼働状態にある。次に、S301において、熱源温度が冷気給気系装置210の稼働しきい値26度より高い場合、冷気給気系装置210が稼働する(S302)。熱源温度が24度を下回った場合は、冷気給気系装置210を停止させる。ここでは、稼働しきい値、停止しきい値をそれぞれS101設定温度+1、S101設定温度-1として設定したが、+1および-1は任意設定可能であり、空調管理者が最適化するものとする。
 このように、実施の形態1では、センサ情報としきい値を利用して空調制御サーバ400が制御することにより、冷気給気系装置210と排気系装置220の稼働と停止を連携して制御することができる。その結果、冷気給気系装置210からの冷気が排気系装置220によってそのまま排気される状態を低減することができ、冷気の過剰な排気を回避することで高い省エネルギー効果を得ることができる。
 また、実施の形態1では、空調制御サーバ400で常に空調の管理が行われるため、排気給気装置200の設備に変更が生じた場合にも、空調システムのサーバを変更する必要はなく、工場のように設備レイアウトの変更が発生する環境において、排気設備の変更を容易に行うことのできる空調システムを得ることができる。
 これまでに示したように、実施の形態1に記載の空調システムである排気給気連携空調システム100は、建屋501の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置210と、建屋501の屋内の空気を屋外に排気する排気系装置220と、建屋501の屋外の温度及び前記建屋内にある熱源の温度をモニタするとともに、前記モニタされた屋外及び熱源の温度を収集するデータ収集装置300と、データ収集装置300で収集された屋外及び熱源の温度に基づき、冷気給気系装置210及び排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバ400と、を備えたことを特徴とする。この構成により、冷気給気系装置210からの冷気が排気系装置220によって過剰に排気される状態を回避でき、本実施の形態に記載の空調システムによって、従来技術よりも高い省エネルギー効果を得ることができる。また、排気と給気を両立して稼働させる空調管理を適切に行うことができ、冷気の排気が弱すぎる状態や冷気を過剰に排気する状態を防ぐことができる。加えて、外気温度の影響を考慮した排気及び給気制御の向上が可能となる。
 また、実施の形態1に記載の空調システムにおいて、データ収集装置300は、建屋501の屋内の温度をモニタするとともに、このモニタされた屋内の温度を収集し、空調制御サーバ400はデータ収集装置300で収集された屋内の温度を用いて、冷気給気系装置210及び排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御することを特徴とする。この構成によって、建屋501の屋内の温度によって、必要な時に排気系装置220を稼働することができ、本実施の形態に記載の空調システムの省エネルギー効果をさらに高めることが可能となる。
 また、実施の形態1に記載の空調システムでは、空調制御サーバ400は冷気給気系装置210及び排気系装置220の稼働及び停止を決定するしきい値を設定し、このしきい値に基づき冷気給気系装置210及び排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御することを特徴とする。また、データ収集装置300で収集された屋外の温度があらかじめ設定されたしきい値より高い場合に冷気給気系装置210を稼働するとともに、データ収集装置300で収集された屋内の温度があらかじめ定められた基準を満たす場合に排気系装置220を稼働することを特徴とする。この構成により、適切なしきい値を設定することで、本実施の形態に記載の空調システムの省エネルギー効果を高めることが可能となる。
 また、実施の形態1に記載の空調制御サーバ400は、温度検出器である温度モニタ310により検出された建屋501の屋外及び屋内の温度に基づき、建屋501の屋外から屋内に屋内501の空気より冷たい空気を給気する冷気給気系装置210と建屋501の屋内の空気を屋外に排気する排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御することを特徴とする。この構成により、冷気給気系装置210からの冷気が排気系装置220によって過剰に排気される状態を回避でき、従来技術よりも高い省エネルギー効果を得ることができる。
実施の形態2.
 実施の形態1では、排気系装置220の運転を、稼働と停止の2つの状態としたのに対し、本実施の形態では排気強度を可変とできる排気系装置220を備えた形態を説明する。
 排気強度は、排気ファン221を強・中・弱・停止のようにレベルの設定が可能なものでもよいし、あるいはリニアに強度を変更できるものでもよい。図7に排気系装置220、および冷気給気系装置210の強度を強・中・弱・停止の4段階で設定可能な場合のしきい値設定例を示す。この場合、図5の動作において、モニタする温度としきい値との判定により稼働時の強度が変化するが、フローチャートに変更はない。実施の形態2によれば、より温度変動が少なく、つまり快適性や省エネ効果の高い制御や、排気ファインがインバーター機器の場合はより省エネルギー効果の高い弱駆動が可能となる。
 このように、実施の形態2では、空調制御サーバ400は冷気給気系装置210及び排気系装置220の稼働時の駆動強度を決定する駆動時の強度のしきい値を表す強度しきい値を複数設定し、この複数の強度しきい値に基づき冷気給気系装置210及び排気系装置220の稼働時の駆動強度を制御することを特徴とする。この構成により、温度変動が少なく、つまり快適性や省エネ効果の高い制御や、排気ファインがインバーター機器の場合はより省エネルギー効果の高い弱駆動が可能となる。
実施の形態3.
 実施の形態2では排気系装置220の強度を可変としたのに対し、本実施の形態ではどの程度の排気強度が最も省エネルギー効果が高いのかを空調制御サーバ400が学習し、空調制御サーバ400が各しきい値を自動設定する形態を説明する。
 図8に夏季のような外気温が高い場合における冷気給気系装置210の消費電力と排気系装置220の排気強度の関係(実線)及び、排気系装置220の消費電力と排気量の関係(破線)を示す。排気強度Bで冷気給気系装置210の消費電力は最小となるが、排気給気装置200全体の消費電力は、冷気給気系装置210の消費電力(Wa)と排気系装置220の消費電力(Wv)の総和で決まるため、WaとWvの和が最小となる排気強度Aが最適となる。実施の形態3では、図9に示す電力モニタ、および図10に示す電力モニタI/F 201を有する。電力モニタは、一般的な電力モニタ装置であり、監視対象機器もしくは監視対象機器に電力を供給する配電盤等に設置し電力量を収集するものである。電力モニタI/F 201の目的は、監視機器の消費電力量データ収集を行う電力モニタと監視機器を仲介するもとを目的とするものであり、監視対象機器に設置してもよいし、監視対象機器に電力を供給する配電盤に類するものに設置してもよい。実施の形態3により、各装置の電力量の総和が最小となる各しきい値を空調制御サーバ400が自動設定し、高い省エネルギー効果が得られる。
 このように、実施の形態3に記載の空調システムでは、データ収集装置300は、冷気給気系装置210及び排気系装置220の消費電力をモニタするとともに、このモニタされた消費電力を収集し、空調制御サーバ400はデータ収集装置300で収集された消費電力に基づき、冷気給気系装置210及び排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御することを特徴とする。この構成によって、消費電力が小さくなる動作環境を設定することができ、省電力効果の高い空調システムを実現することができる。
 また、実施の形態3に記載の空調システムでは、データ収集装置300は、冷気給気系装置210及び排気系装置220の消費電力をモニタするとともに、このモニタされた消費電力を収集し、空調制御サーバ400は、データ収集装置300で収集された消費電力に基づき、冷気給気系装置210及び排気系装置220の総消費電力が低くなるようにしきい値を設定することを特徴とする。この構成により、総消費電力が小さくなるしきい値を設定することができ、省電力効果の高い空調システムを実現することができる。
実施の形態4.
 実施の形態1、2および3では、排気系装置220のしきい値を、熱源温度モニタ311の温度を用いて設定していたが、例えば工場における作業者の環境を優先させる場合は、閉鎖系で作業者近傍に設置する閉鎖系温度モニタ313を用いる。実施の形態4では、作業者の温度環境の快適性確保と、排気給気装置200の省エネルギー運転の両立が可能となる。
 従って、実施の形態4に記載の空調システムである排気給気連携空調システム100は、建屋501の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置210と、建屋501の屋内の空気を屋外に排気する排気系装置220と、建屋501の屋外及び屋内の温度をモニタするとともに、前記モニタされた屋外及び屋内の温度を収集するデータ収集装置300と、データ収集装置300で収集された屋外及び屋内の温度に基づき、冷気給気系装置210及び排気系装置220の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバ400と、を備えたことを特徴とする。この構成により、冷気給気系装置210からの冷気が排気系装置220によって過剰に排気される状態を回避でき、従来技術よりも高い省エネルギー効果を得ることができる。なお、建屋501内にある熱源も屋内の温度であることには変わりはないので、上記の「建屋501の屋内の温度」には閉鎖系温度モニタ313でモニタされる温度の他に、建屋501内にある熱源の温度も含まれる。
100:排気給気連携空調システム、200:排気給気装置、202:排気給気制御I/F、210:冷気給気系装置、220:排気系装置、221:排気ファン、222:排気弁駆動装置、230:外気給気系装置、231:給気弁駆動装置、300:データ収集装置、310:温度モニタ、311:熱源温度モニタ、312:外気温度モニタ、313:閉鎖系内温度モニタ、320:電力モニタ、400:空調制御サーバ、401:プロセッサ、402:メモリ、403:制御I/F、404:センサI/F 、405:入力I/F、406:表示部I/F、410:給気排気制御装置、420:データベース、421:プログラム、422:ファイル、501:建屋、502:制御室、503:製造機器

Claims (8)

  1.  建屋の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置と、
    前記建屋の屋内の空気を屋外に排気する排気系装置と、
    前記建屋の屋外及び屋内の温度を検出するとともに、前記検出された屋外及び屋内の温度を収集するデータ収集装置と、
    前記データ収集装置で収集された屋外及び屋内の温度に基づき、前記冷気給気系装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバと、
    を備えたことを特徴とする空調システム。
  2.  前記データ収集装置は、前記建屋内にある熱源の温度を検出するとともに、前記検出された熱源の温度を収集し、
    前記空調制御サーバは前記データ収集装置で収集された熱源の温度を用いて、前記冷気給気装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する
    ことを特徴とする請求項1に記載の空調システム。
  3.  前記空調制御サーバは前記冷気給気装置及び前記排気系装置の稼働及び停止を決定するしきい値を設定し、前記しきい値に基づき前記冷気給気装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する
    ことを特徴とする請求項1または請求項2に記載の空調システム。
  4.  前記空調制御サーバは前記冷気給気装置及び前記排気系装置の稼働時の駆動強度を決定する複数の強度しきい値を設定し、前記複数の強度しきい値に基づき前記冷気給気装置及び前記排気系装置の稼働時の駆動強度を制御する
    ことを特徴とする請求項3に記載の空調システム。
  5.  前記データ収集装置は、前記冷気給気装置及び前記排気系装置の消費電力を検出するとともに、前記検出された消費電力を収集し、
     前記空調制御サーバは前記データ収集装置で収集された消費電力に基づき、前記冷気給気装置及び前記排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する
    ことを特徴とする請求項1乃至4のいずれか1項に記載の空調システム。
  6.  前記データ収集装置は、前記冷気給気装置及び前記排気系装置の消費電力を検出するとともに、前記検出された消費電力を収集し、
     前記空調制御サーバは、前記データ収集装置で収集された消費電力に基づき、前記冷気給気装置及び前記排気系装置の総消費電力が低くなるように前記しきい値を設定する
    ことを特徴とする請求項3に記載の空調システム。
  7.  建屋の屋外から屋内に該屋内の空気より冷たい空気を給気する冷気給気系装置と、
    前記建屋の屋内の空気を屋外に排気する排気系装置と、
    前記建屋の屋外及び屋内の温度を検出するとともに、前記検出された屋外及び屋内の温度を収集するデータ収集装置とを備え、
    前記データ収集装置で収集された屋外の温度があらかじめ設定されたしきい値より高い場合に前記冷気給気系装置を稼働するとともに、前記データ収集装置で収集された屋内の温度があらかじめ定められた基準を満たす場合に前記排気系装置を稼働する
    ことを特徴とする空調システム。
  8.  温度検出器により検出された建屋の屋外及び屋内の温度に基づき、前記建屋の屋外から屋内に前記屋内の空気より冷たい空気を給気する冷気給気系装置と前記建屋の屋内の空気を屋外に排気する排気系装置の双方を稼働するか、一方のみを稼働するか、双方を停止するか、を制御する空調制御サーバ。
PCT/JP2015/083950 2015-12-03 2015-12-03 空調システム及び空調制御サーバ WO2017094158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/083950 WO2017094158A1 (ja) 2015-12-03 2015-12-03 空調システム及び空調制御サーバ
CN201580084486.4A CN108351114B (zh) 2015-12-03 2015-12-03 空调系统及空调控制服务器
JP2016526246A JP6075512B1 (ja) 2015-12-03 2015-12-03 空調システム及び空調制御サーバ
TW104141662A TW201721060A (zh) 2015-12-03 2015-12-11 空調系統及空調控制伺服器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083950 WO2017094158A1 (ja) 2015-12-03 2015-12-03 空調システム及び空調制御サーバ

Publications (1)

Publication Number Publication Date
WO2017094158A1 true WO2017094158A1 (ja) 2017-06-08

Family

ID=57981483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083950 WO2017094158A1 (ja) 2015-12-03 2015-12-03 空調システム及び空調制御サーバ

Country Status (4)

Country Link
JP (1) JP6075512B1 (ja)
CN (1) CN108351114B (ja)
TW (1) TW201721060A (ja)
WO (1) WO2017094158A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253575B (zh) * 2018-01-18 2020-03-31 上海市城市建设设计研究总院(集团)有限公司 空调箱电机烧毁故障的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439561A (ja) * 1990-06-05 1992-02-10 Toshiba Corp 空気調和機
JPH06307703A (ja) * 1993-04-22 1994-11-01 ▲桜▼井精技株式会社 分散型空調システム及びその制御方法
JPH10274425A (ja) * 1997-03-31 1998-10-13 Daikin Ind Ltd 換気機能付き空気調和機及びその空気調和機を用いた換気空調システム
JP2004101116A (ja) * 2002-09-11 2004-04-02 Toshiba Kyaria Kk 空気調和機
JP2006200818A (ja) * 2005-01-20 2006-08-03 Daikin Ind Ltd 厨房換気空調システム、厨房換気空調方法および厨房換気空調制御装置
JP2010117084A (ja) * 2008-11-13 2010-05-27 Daikin Ind Ltd 空気調和装置・換気装置連動システム
JP2012077948A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd コントローラおよび空調処理システム
JP2014059124A (ja) * 2012-09-19 2014-04-03 Azbil Corp 空調制御システムおよび空調制御方法
JP2014211285A (ja) * 2013-04-19 2014-11-13 ミサワホーム株式会社 室内空調システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560142A (en) * 1978-10-26 1980-05-07 Matsushita Electric Ind Co Ltd Safety device for heater
JPH10325589A (ja) * 1997-05-22 1998-12-08 Daikin Ind Ltd 熱回収型空気調和装置
JP2001116309A (ja) * 1999-10-12 2001-04-27 Daikin Ind Ltd 換気空調システム
JP2004053175A (ja) * 2002-07-22 2004-02-19 Sony Corp 発熱機器の熱処理装置、排熱管、熱処理装置を備えた建物、発熱機器の熱処理装置用プログラム、並びに発熱機器の熱処理装置用プログラム記録媒体
JP4432467B2 (ja) * 2003-11-18 2010-03-17 ダイキン工業株式会社 換気制御装置
JP3656965B1 (ja) * 2004-03-26 2005-06-08 株式会社ジェイヂィコーポレーション 換気装置
JP2009144964A (ja) * 2007-12-13 2009-07-02 Panasonic Corp レンジフード
CN102853505A (zh) * 2011-06-29 2013-01-02 上海地面通信息网络有限公司 一种应用于idc机房的节能排风系统
JP5665781B2 (ja) * 2012-02-23 2015-02-04 三菱電機株式会社 空気調和システム
JP5648119B1 (ja) * 2013-08-13 2015-01-07 木村工機株式会社 外気冷房機能付空調機
CN104930673A (zh) * 2014-03-18 2015-09-23 昆山科技大学 结合换气风扇的节能空调系统及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439561A (ja) * 1990-06-05 1992-02-10 Toshiba Corp 空気調和機
JPH06307703A (ja) * 1993-04-22 1994-11-01 ▲桜▼井精技株式会社 分散型空調システム及びその制御方法
JPH10274425A (ja) * 1997-03-31 1998-10-13 Daikin Ind Ltd 換気機能付き空気調和機及びその空気調和機を用いた換気空調システム
JP2004101116A (ja) * 2002-09-11 2004-04-02 Toshiba Kyaria Kk 空気調和機
JP2006200818A (ja) * 2005-01-20 2006-08-03 Daikin Ind Ltd 厨房換気空調システム、厨房換気空調方法および厨房換気空調制御装置
JP2010117084A (ja) * 2008-11-13 2010-05-27 Daikin Ind Ltd 空気調和装置・換気装置連動システム
JP2012077948A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd コントローラおよび空調処理システム
JP2014059124A (ja) * 2012-09-19 2014-04-03 Azbil Corp 空調制御システムおよび空調制御方法
JP2014211285A (ja) * 2013-04-19 2014-11-13 ミサワホーム株式会社 室内空調システム

Also Published As

Publication number Publication date
CN108351114B (zh) 2020-09-08
JPWO2017094158A1 (ja) 2017-11-30
CN108351114A (zh) 2018-07-31
TW201721060A (zh) 2017-06-16
JP6075512B1 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
EP2761383B1 (en) Heating, ventilation, and air conditioning management system and method
CN106288241A (zh) 一种空调室内机的风机控制方法及基站空调
CN104769515A (zh) 用于危险场所外壳的可编程温度控制器
WO2021233468A1 (zh) 吸风式空调器的控制方法
WO2021233463A1 (zh) 吸风式空调器的控制方法
CN105423512A (zh) 电控模块的散热控制装置、空调器及其控制方法
CN105157182A (zh) 基站热源智能管理节能系统
CN104713204B (zh) 空调机组及控制方法
JP6075512B1 (ja) 空調システム及び空調制御サーバ
KR20180121213A (ko) 건물 에너지 효율 등급과 연계한 부하 예측 기반 빌딩 제어 장치
WO2019100716A1 (zh) 一种机柜、机柜的运行控制方法和装置
CN105091248A (zh) 机房空调控制系统
CN203586488U (zh) 空调机组
JP5730689B2 (ja) 空調運転制御システム
CN104864546A (zh) 组合式空调机组的控制方法、控制器及空调机组
CN111244577A (zh) 数据中心余热回收补偿蓄电池室温度的调温系统及方法
CN109855264A (zh) 辅助电加热装置失效控制方法、装置、空调器及存储介质
KR101415768B1 (ko) 전력 절감을 위한 피크 제어 방법
CN114585247A (zh) 一种基于ai分析的数据机房节能控制方法
KR20150050730A (ko) 실내 co2 농도 조절 및 절전 운전을 위한 건물의 공조 제어 방법
CN103034309A (zh) 一种预先制冷系统
JP2006105571A (ja) 空調機の運転制御装置
JPH0544980A (ja) 空気調和機の制御方法
TWI580909B (zh) 具節能運行機制的機具用空調設備
JP2000154931A (ja) 空気調和機の給気温度設定値演算装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016526246

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909788

Country of ref document: EP

Kind code of ref document: A1