WO2017094094A1 - 摺動部材およびすべり軸受 - Google Patents

摺動部材およびすべり軸受 Download PDF

Info

Publication number
WO2017094094A1
WO2017094094A1 PCT/JP2015/083687 JP2015083687W WO2017094094A1 WO 2017094094 A1 WO2017094094 A1 WO 2017094094A1 JP 2015083687 W JP2015083687 W JP 2015083687W WO 2017094094 A1 WO2017094094 A1 WO 2017094094A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
sliding
sliding member
diameter
average
Prior art date
Application number
PCT/JP2015/083687
Other languages
English (en)
French (fr)
Inventor
仁志 和田
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Priority to JP2017518369A priority Critical patent/JP6234637B2/ja
Priority to PCT/JP2015/083687 priority patent/WO2017094094A1/ja
Priority to US15/542,114 priority patent/US10100874B2/en
Priority to CN201580068636.2A priority patent/CN107110210B/zh
Priority to EP15909724.5A priority patent/EP3244081B1/en
Publication of WO2017094094A1 publication Critical patent/WO2017094094A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/18Alloys based on copper with bismuth as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/30Alloys based on one of tin, lead, antimony, bismuth, indium, e.g. materials for providing sliding surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/48Particle sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves

Definitions

  • the present invention relates to a sliding member and a plain bearing in which a mating shaft slides on a sliding surface.
  • Patent Document 1 A sliding member in which a Bi overlay is formed is known (see Patent Document 1).
  • conformability and wear resistance are improved by forming an overlay so that the density of precipitated particles of Bi is 50 to 300 particles / 100 ⁇ m 2 .
  • Patent Document 1 if the Bi precipitated particle density is 50 to 300 particles / 100 ⁇ m 2 , the fatigue resistance (strength) of the overlay can be improved, but the deformation of the overlay becomes difficult and the conformability decreases. There was a problem.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of achieving both conformability and fatigue resistance.
  • a sliding member in which a coating layer having a sliding surface of a mating member is formed on a base layer, the coating layer is formed from the base layer.
  • a soft soft material Is formed of a soft soft material, and on the sliding surface, aggregates of soft materials having an average particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less are aggregated in a lump shape, whereby an aggregate having an average diameter of 3 ⁇ m or more and 30 ⁇ m or less Is formed.
  • the coating strength of the coating layer on the sliding surface can be improved due to the Hall-Petch relationship. Fatigue can be improved. Furthermore, by forming an aggregate in which the crystal grains of the soft material are aggregated in a lump, the conformability can be improved by deformation of the aggregate. That is, fatigue resistance can be improved by fine crystal grains, and at the same time, conformability can be improved by deformation of the aggregate.
  • the average grain size of the crystal grains it is possible to prevent the fatigue resistance from being insufficient by setting the average grain size of the crystal grains to 1 ⁇ m or less. Further, by setting the average diameter of the aggregate to 3 ⁇ m or more, it is possible to prevent the deformation amount of the aggregate from being insufficient. On the other hand, by setting the average diameter of the aggregate to 30 ⁇ m or less, it is possible to prevent the oil film from being properly formed by the coarse aggregate and preventing the seizure resistance from deteriorating. By forming the coating layer so that the product of the average grain size of the crystal grains and the average diameter of the aggregate is 3 or more, good fatigue resistance and conformability can be realized.
  • the soft material may be Bi, Sn, Pb, In, or Sb.
  • Bi, Sn, Pb, In, and Sb all have low hardness (for example, Mohs hardness) and are suitable as soft materials.
  • the effects of the present invention described above are also exhibited in a plain bearing having the characteristics of the present invention.
  • FIG. 2A is a photograph of the sliding surface
  • FIG. 2B is a photograph of the assembly. It is explanatory drawing of a compression test.
  • 4A is a graph showing the pulse current of Bi electroplating
  • FIG. 4B is a graph of the average grain size of Bi crystal grains
  • FIG. 4C is a graph of the average diameter of an aggregate of Bi crystal grains.
  • FIG. 5A is a graph of deformation
  • FIG. 5B is a graph of yield stress.
  • FIG. 1 is a perspective view of a sliding member 1 according to an embodiment of the present invention.
  • the sliding member 1 includes a back metal 10, a lining 11, and an overlay 12.
  • the sliding member 1 is a half-divided metal member obtained by dividing a hollow cylinder into two equal parts in the diameter direction and has a semicircular cross section.
  • the sliding bearing A is formed by combining the two sliding members 1 into a cylindrical shape.
  • the slide bearing A supports a cylindrical mating shaft 2 (engine crankshaft) in a hollow portion formed inside.
  • the outer diameter of the mating shaft 2 is formed slightly smaller than the inner diameter of the slide bearing A.
  • Lubricating oil engine oil
  • the sliding member 1 has a structure in which a back metal 10, a lining 11, and an overlay 12 are laminated in order from the center of curvature. Therefore, the back metal 10 constitutes the outermost layer of the sliding member 1, and the overlay 12 constitutes the innermost layer of the sliding member 1.
  • the back metal 10, the lining 11 and the overlay 12 each have a constant thickness in the circumferential direction.
  • the thickness of the back metal 10 is 1.3 mm
  • the thickness of the lining 11 is 0.2 mm
  • the thickness of the overlay 12 is 20 ⁇ m.
  • the radius of the surface on the curvature center side of the overlay 12 (inner diameter of the sliding member 1) is 40 mm.
  • the inside means the center of curvature of the sliding member 1
  • the outside means the side opposite to the center of curvature of the sliding member 1.
  • the inner surface of the overlay 12 constitutes the sliding surface of the counterpart shaft 2.
  • the back metal 10 is made of steel containing 0.15 wt% C, 0.06 wt% Mn, and the balance being Fe.
  • the back metal 10 should just be formed with the material which can support the load from the other party shaft 2 via the lining 11 and the overlay 12, and does not necessarily need to be formed with steel.
  • the lining 11 is a layer laminated on the inner side of the back metal 10 and constitutes the base layer of the present invention.
  • the lining 11 contains 10 wt% of Sn, 8 wt% of Bi, and the balance consists of Cu and inevitable impurities.
  • Inevitable impurities of the lining 11 are Mg, Ti, B, Pb, Cr and the like, and are impurities mixed in refining or scrap.
  • the content of inevitable impurities is 1.0 wt% or less as a whole.
  • the overlay 12 is a layer laminated on the inner surface of the lining 11 and constitutes the coating layer of the present invention.
  • the overlay 12 is made of Bi and inevitable impurities.
  • the content of inevitable impurities is 1.0 wt% or less.
  • FIG. 2A is a photograph of the inner surface of the overlay 12. As shown in FIG. 2A, a large number of aggregates 12 a are formed on the inner surface of the overlay 12, that is, on the sliding surface of the mating shaft 2.
  • the average diameter which is the average value of the diameters of the aggregates 12a in the direction parallel to the sliding surface, was 14 ⁇ m.
  • FIG. 2B is a photograph of the aggregate 12a.
  • the aggregate 12a is a polycrystal formed by agglomerating a large number of Bi crystal grains.
  • the average grain size of Bi crystal grains on the surface of the aggregate 12a was 0.7 ⁇ m.
  • the amount of deformation of the overlay 12 in the compression test was as good as 2.4 ⁇ m.
  • the amount of deformation of the overlay 12 means the amount of decrease in the thickness of the overlay 12 when the sliding member 1 is compressed by a compression test.
  • the coating strength of the coating layer on the sliding surface can be improved by the Hall-Petch relationship, and fatigue resistance Can be improved.
  • the conformability can be improved by deformation of the aggregate 12a. That is, fatigue resistance can be improved by fine crystal grains, and at the same time, conformability can be improved by deformation of the aggregate 12a.
  • each layer was measured by the following procedure. First, the cross section in the diameter direction of the sliding member 1 was polished with a cross section polisher (IB-09010CP, manufactured by JEOL). Then, the cross-section of the sliding member 1 was photographed with an electron microscope (JSM-6610A, manufactured by JEOL Ltd.) at a magnification of 7000 to obtain image data of an observation image (reflected electron image). Then, the film thickness was measured by analyzing the observation image with an image analyzer (Lusex AP manufactured by Nireco).
  • the average grain size of Bi crystal grains in the overlay 12 was measured by the following procedure. First, an arbitrary observation visual field range (rectangular range of 17 ⁇ m long ⁇ 25 ⁇ m wide) having an area of 425 ⁇ m 2 on the inner surface of the overlay 12 was photographed with an electron microscope (JSM-6610A manufactured by JEOL Ltd.) at a magnification of 5000 times ( Image data of an observation image (reflected electron image) was obtained by vertical viewing. And the particle size of the crystal grain of Bi was measured by performing the section method in an observation image. In this intercept method, the grain size of a crystal grain on the line segment was measured by dividing the length of the line segment by the number of crystal grains through which the line segment formed on the observation image passes. Furthermore, the arithmetic average value (total value / number of line segments) of the grain sizes of the crystal grains measured for each of the plurality of line segments was measured as the average grain size.
  • the average diameter of the Bi aggregate 12a in the overlay 12 was measured by the following procedure. First, an arbitrary observation visual field range (rectangular range of 0.17 mm in length ⁇ 0.25 mm in width) having an area of 0.0425 mm 2 on the inner surface of the overlay 12 is photographed with a magnification of 500 times (vertical view). ) To obtain image data of an observation image. Then, the observation image was input to the image analysis device, and the edge of the image of the aggregate 12a existing in the observation image (the boundary where the brightness, saturation, and hue angle differ by a predetermined value or more) was extracted. Furthermore, the region closed by the edge was extracted from the observation image as an image of the Bi aggregate 12a by the image analysis apparatus.
  • the projected area circle equivalent diameter (measurement parameter: HEYWOOD) was measured with respect to the images of all the Bi aggregates 12a existing in the observation visual field range by the image analysis apparatus.
  • the projected area equivalent circle diameter is the diameter of a circle having an area equal to the projected area of the Bi aggregate 12a, and the diameter of the circle having an area equal to the area of the image of the Bi aggregate 12a is based on the optical magnification. This is the diameter converted to the actual length. Further, the arithmetic average value (total value / number of aggregates) of the projected area equivalent circle diameters of all the aggregates 12a was measured as the average diameter of the Bi aggregates 12a.
  • FIG. 3 is an explanatory diagram of the compression test.
  • a compression test was performed by applying a static load to the half-shaped sliding member 1 placed on a housing H that can be regarded as a substantially rigid body.
  • a semi-cylindrical concave portion having a diameter corresponding to the outer diameter of the sliding member 1 is formed, and the sliding member 1 is placed along the concave portion.
  • a cylindrical mating shaft G having a diameter corresponding to the inner diameter of the sliding member 1 was prepared, and the mating shaft G was placed on the inner surface of the sliding member 1.
  • a static load of 50 kN is applied to the counterpart shaft G by means of an autograph (Shimadzu AG-IS) through the plastic plate T, while the thickness of the sliding member 1 is reduced by the autograph. The amount of deformation was measured.
  • (1-3) Manufacturing method of sliding member First, a flat plate of low carbon steel having the same thickness as the back metal 10 was prepared. Next, the powder of the material which comprises the lining 11 was sprayed on the plane board formed with the low carbon steel. Specifically, Cu powder, Bi powder, and Sn powder were mixed and dispersed on a flat plate of low carbon steel so that the mass ratio of each component in the lining 11 described above was obtained. As long as the mass ratio of each component in the lining 11 can be satisfied, an alloy powder such as Cu—Bi or Cu—Sn may be dispersed on a flat plate of low carbon steel. The particle size of the powder was adjusted to 150 ⁇ m or less using a test sieve (JIS Z8801).
  • the flat plate of low carbon steel and the powder spread on the flat plate were sintered.
  • the sintering temperature was controlled at 700 to 1000 ° C., and sintering was performed in an inert atmosphere. After sintering, it was cooled. When cooling is completed, a Cu alloy layer is formed on the flat plate of low carbon steel. This Cu alloy layer contains soft Bi particles precipitated during cooling.
  • the low carbon steel on which the Cu alloy layer was formed was pressed so that the hollow cylinder was divided into two equal parts in the diameter direction. At this time, press working was performed so that the outer diameter of the low carbon steel coincided with the outer diameter of the sliding member 1.
  • the surface of the Cu alloy layer formed on the back metal 10 was cut.
  • the cutting amount was controlled so that the thickness of the Cu alloy layer formed on the back metal 10 was the same as that of the lining 11.
  • the lining 11 can be formed with the Cu alloy layer after cutting.
  • the cutting was performed by a lathe on which a cutting tool material formed of sintered diamond was set.
  • overlay 12 was formed by laminating Bi as a soft material on the surface of lining 11 by electroplating to a thickness of 12 ⁇ m.
  • the procedure for electroplating Bi was as follows. First, the surface of the lining 11 was degreased by passing an electric current through the surface of the lining 11 in the electrolytic solution. Next, the surface of the lining 11 was washed with water. Furthermore, unnecessary oxides were removed by pickling the surface of the lining 11. Thereafter, the surface of the lining 11 was washed again with water. When the above pretreatment was completed, Bi was electroplated by supplying current to the lining 11 immersed in the plating bath.
  • the conditions for Bi electroplating in the overlay 12 were as follows.
  • the bath composition was a plating bath containing Bi concentration: 10 g / L, organic sulfonic acid: 25-100 g / L, and additive (polyethylene glycol): 0.5-50 g / L.
  • the bath temperature of the plating bath was adjusted to 50 ° C.
  • the current supplied to the lining 11 was a rectangular pulse current with a duty ratio of 50%, and the average current density was 1 A / dm 2 .
  • FIG. 4A is a graph showing the pulse current of Bi electroplating.
  • the horizontal axis of FIG. 4A indicates time, and the vertical axis indicates pulse current (the magnitude of current density).
  • the average particle diameter of the Bi crystal grains and the average diameter of the aggregate 12a of Bi crystal grains are adjusted by changing the pulse width.
  • FIG. 4B is a graph of the average grain size of Bi crystal grains.
  • the horizontal axis in FIG. 4B indicates the pulse width, and the vertical axis indicates the average grain size of the Bi crystal grains.
  • the average grain size of Bi crystal grains can be adjusted by changing the pulse width while keeping the duty ratio and the average current density constant. Specifically, the average grain size of Bi crystal grains can be adjusted to be large by increasing the pulse width.
  • FIG. 4C is a graph of the average diameter of the aggregate of Bi crystal grains.
  • the horizontal axis of FIG. 4C indicates the pulse width, and the vertical axis indicates the average diameter of the aggregate of Bi crystal grains.
  • the average diameter of the aggregate of Bi crystal grains can be adjusted by changing the pulse width while keeping the duty ratio and the average current density constant.
  • the average grain size of Bi crystal grains can be adjusted to be small by increasing the pulse width. In this embodiment, by setting the pulse width to 0.1 milliseconds, the average grain diameter of Bi crystal grains was adjusted to 0.7 ⁇ m, and the average diameter of the aggregate of crystal grains was adjusted to 14 ⁇ m.
  • the sliding member 1 was completed by washing and drying. Furthermore, the sliding bearing A was formed by combining two sliding members 1 in a cylindrical shape.
  • Table 1 shows the results of measuring the deformation amount for each average particle diameter of the Bi crystal and the average diameter of the Bi aggregate 12a in the overlay 12.
  • Sample 1 is a comparative example having a substantially flat sliding surface in which the Bi aggregate 12a does not exist.
  • Samples 1 to 5 having different average grain diameters of Bi crystals and Bi aggregates 12a were produced by the same method as described above. However, the average particle diameter of the Bi crystal was adjusted by adjusting the current density and pulse width in the electroplating of the overlay 12.
  • FIG. 5A is a graph showing the deformation amount for each average diameter of the Bi aggregate 12a. As shown in the figure, it was found that the amount of deformation can be increased rapidly by increasing the average diameter of the aggregate 12a in a region where the average diameter of the Bi aggregate 12a is 10 ⁇ m or less. Further, it was found that a large amount of deformation can be stably obtained in the region where the average diameter of the Bi aggregate 12a is 10 ⁇ m or more. Therefore, in order to obtain the conformability necessary for the sliding bearing A, it has been found that the average diameter of the Bi aggregate 12a is more preferably 10 ⁇ m or more.
  • FIG. 5B is a graph showing the relationship between the average grain size of crystals and the yield stress (quoted: T. G. Nieh, Lawrence Livermore National Lab). As shown in the figure, in the region where the yield stress becomes maximum at a crystal grain size of about 10 to 20 nm and the crystal grain size is larger than the crystal grain size, the average is in accordance with the Hall-Petch relationship. The yield stress decreases as the grain size increases. It was found that by setting the average grain size of Bi crystal to about 0.5 ⁇ m, the yield stress is moderately large and moderate hardness can be obtained as the hardness of the aggregate 12a.
  • the sliding member 1 constituting the sliding bearing A for bearing the crankshaft of the engine has been illustrated.
  • the sliding bearing 1 for other applications may be formed by the sliding member 1 of the present invention.
  • a transmission gear bush, a piston pin bush, a boss bush, or the like may be formed by the sliding member 1 of the present invention.
  • the matrix of the lining 11 is not limited to the Cu alloy, and a matrix material may be selected according to the hardness of the counterpart shaft 2.
  • the soft material may be any material that is softer than the lining 11, and may be any one of Pb, Sn, In, and Sb, for example.
  • 1 sliding member, 2 ... mating shaft, 10 ... back metal, 11 ... lining, 12 ... overlay, 12a ... aggregate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】なじみ性と耐疲労性とを両立できる技術を提供する。 【解決手段】摺動部材およびすべり軸受は、基層上に、相手材の摺動面を有する被覆層が形成された摺動部材およびすべり軸受であり、前記被覆層は、前記基層よりも軟らかい軟質材料で形成され、前記摺動面においては、平均粒径が0.1μm以上かつ1μm以下の前記軟質材料の結晶粒が塊状に集合することにより、平均径が3μm以上かつ30μm以下の集合体が形成される。

Description

摺動部材およびすべり軸受
 本発明は、摺動面にて相手軸が摺動する摺動部材およびすべり軸受に関する。
 Biのオーバーレイを形成した摺動部材が知られている(特許文献1、参照。)。特許文献1において、Biの析出粒子密度が50~300個/100μm2となるようにオーバーレイを形成することにより、なじみ性と耐摩耗性とを向上させている。
特開2003-156045号公報
 しかしながら、特許文献1において、Biの析出粒子密度が50~300個/100μm2とするとオーバーレイの耐疲労性(強度)を向上させることができるものの、オーバーレイの変形が困難となりなじみ性が低下するという問題があった。
 本発明は、前記課題にかんがみてなされたもので、なじみ性と耐疲労性とを両立できる技術を提供することを目的とする。
 前記の目的を達成するため、本発明の摺動部材およびすべり軸受において、基層上に、相手材の摺動面を有する被覆層が形成された摺動部材であって、被覆層は、基層よりも軟らかい軟質材料で形成され、摺動面においては、平均粒径が0.1μm以上かつ1μm以下の軟質材料の結晶粒が塊状に集合することにより、平均径が3μm以上かつ30μm以下の集合体が形成される。
 前記の構成において、軟質材料の結晶粒の平均粒径を0.1μm以上かつ1μm以下とすることによって、Hall-Petchの関係により摺動面における被覆層の被膜強度を向上させることができ、耐疲労性を向上させることができる。さらに、軟質材料の結晶粒が塊状に集合した集合体を形成することにより、集合体の変形によって、なじみ性を向上させることができる。すなわち、微細な結晶粒によって耐疲労性を向上させることができると同時に、集合体の変形によってなじみ性も向上させることができる。
 ここで、結晶粒の平均粒径を1μm以下とすることにより、耐疲労性が不足することを防止できる。また、集合体の平均径を3μm以上とすることにより、集合体の変形量が不足することを防止できる。一方、集合体の平均径を30μm以下とすることにより、粗大な集合体によって油膜が適正に形成されず、耐焼付性が悪化することを防止できる。結晶粒の平均粒径と集合体の平均径の積が3以上となるように被覆層を形成することにより、良好な耐疲労性となじみ性とを実現できる。
 また、軟質材料は、Bi,Sn,Pb,InまたはSbであってもよい。Bi,Sn,Pb,In,Sbは、いずれも硬度(例えばモース硬度)が小さく、軟質材料として好適である。また、以上説明した本発明の効果は、本発明の特徴を備えたすべり軸受においても発揮される。
本発明の実施形態にかかる摺動部材の斜視図である。 図2Aは摺動面の写真、図2Bは集合体の写真である。 圧縮試験の説明図である。 図4AはBiの電気めっきのパルス電流を示すグラフ、図4BはBiの結晶粒の平均粒径のグラフ、図4CはBiの結晶粒の集合体の平均径のグラフである。 図5Aは変形量のグラフ、図5Bは降伏応力のグラフである。
 ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)第1実施形態:
 (1-1)摺動部材の構成:
 (1-2)計測方法:
 (1-3)摺動部材の製造方法:
(2)実験結果:
(3)他の実施形態:
 (1)第1実施形態:
  (1-1)摺動部材の構成:
 図1は、本発明の一実施形態にかかる摺動部材1の斜視図である。摺動部材1は、裏金10とライニング11とオーバーレイ12とを含む。摺動部材1は、中空状の円筒を直径方向に2等分した半割形状の金属部材であり、断面が半円弧状となっている。2個の摺動部材1を円筒状になるように組み合わせることにより、すべり軸受Aが形成される。すべり軸受Aは内部に形成される中空部分にて円柱状の相手軸2(エンジンのクランクシャフト)を軸受けする。相手軸2の外径はすべり軸受Aの内径よりもわずかに小さく形成されている。相手軸2の外周面と、すべり軸受Aの内周面との間に形成される隙間に潤滑油(エンジンオイル)が供給される。その際に、すべり軸受Aの内周面上を相手軸2の外周面が摺動する。
 摺動部材1は、曲率中心から遠い順に、裏金10とライニング11とオーバーレイ12とが順に積層された構造を有する。従って、裏金10が摺動部材1の最外層を構成し、オーバーレイ12が摺動部材1の最内層を構成する。裏金10とライニング11とオーバーレイ12とは、それぞれ円周方向において一定の厚みを有している。裏金10の厚みは1.3mmであり、ライニング11の厚みは0.2mmであり、オーバーレイ12の厚みは20μmである。オーバーレイ12の曲率中心側の表面の半径(摺動部材1の内径)40mmである。以下、内側とは摺動部材1の曲率中心側を意味し、外側とは摺動部材1の曲率中心と反対側を意味することとする。オーバーレイ12の内側の表面は、相手軸2の摺動面を構成する。
 裏金10は、Cを0.15wt%含有し、Mnを0.06wt%含有し、残部がFeからなる鋼で形成されている。なお、裏金10は、ライニング11とオーバーレイ12とを介して相手軸2からの荷重を支持できる材料で形成されればよく、必ずしも鋼で形成されなくてもよい。
 ライニング11は、裏金10の内側に積層された層であり、本発明の基層を構成する。ライニング11は、Snを10wt%含有し、Biを8wt%含有し、残部がCuと不可避不純物とからなる。ライニング11の不可避不純物はMg,Ti,B,Pb,Cr等であり、精錬もしくはスクラップにおいて混入する不純物である。不可避不純物の含有量は、全体で1.0wt%以下である。
 オーバーレイ12は、ライニング11の内側の表面上に積層された層であり、本発明の被覆層を構成する。オーバーレイ12は、Biと不可避不純物とからなる。不可避不純物の含有量は1.0wt%以下である。
 図2Aは、オーバーレイ12の内側の表面の写真である。図2Aに示すように、オーバーレイ12の内側の表面、すなわち相手軸2の摺動面には、塊状の集合体12aが多数形成されている。本実施形態において、摺動面に平行な方向における集合体12aの直径の平均値である平均径は、14μmであった。
 図2Bは、集合体12aの写真である。図2Bに示すように、集合体12aは多数のBiの結晶粒が塊状に集合することにより形成された多結晶体である。本実施形態において、集合体12aの表面におけるBiの結晶粒の平均粒径は0.7μmであった。
 圧縮試験におけるオーバーレイ12の変形量は2.4μmと良好であった。オーバーレイ12の変形量とは、圧縮試験によって摺動部材1を圧縮した際におけるオーバーレイ12の厚みの減少量を意味する。
 以上説明した摺動部材1において、Biの結晶粒の平均粒径を0.7μmとすることによって、Hall-Petchの関係により摺動面における被覆層の被膜強度を向上させることができ、耐疲労性を向上させることができる。さらに、Biの結晶粒が塊状に集合した集合体12aを形成することにより、集合体12aの変形によって、なじみ性を向上させることができる。すなわち、微細な結晶粒によって耐疲労性を向上させることができると同時に、集合体12aの変形によってなじみ性も向上させることができる。
 (1-2)計測方法:
 上述した実施形態において示した各数値を以下の手法によって計測した。摺動部材1の各層を構成する元素の質量は、ICP発光分光分析装置(島津社製ICPS-8100)によって計測した。
 各層の厚みは、以下の手順で計測した。まず、摺動部材1の直径方向の断面をクロスセクションポリッシャ(日本電子製 IB-09010CP)で研磨した。そして、摺動部材1の断面を電子顕微鏡(日本電子製 JSM-6610A)によって7000倍の倍率で撮影することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像を画像解析装置(ニレコ社製 ルーゼックス AP)によって解析することにより膜厚を計測した。
 オーバーレイ12におけるBiの結晶粒の平均粒径を以下の手順によって計測した。まず、オーバーレイ12の内側の表面のうち面積が425μm2となる任意の観察視野範囲(縦17μm×横25μmの矩形範囲)を電子顕微鏡(日本電子製 JSM-6610A)によって5000倍の倍率で撮影(垂直視)することにより、観察画像(反射電子像)の画像データを得た。そして、観察画像において切片法を行うことにより、Biの結晶粒の粒径を計測した。この切片法では、観察画像上に形成した線分が通過する結晶粒の数で、当該線分の長さを除算することにより当該線分上における結晶粒の粒径を計測した。さらに、複数の線分のそれぞれについて計測した結晶粒の粒径の算術平均値(合計値/線分数)を平均粒径として計測した。
 また、オーバーレイ12におけるBiの集合体12aの平均径を以下の手順によって計測した。まず、オーバーレイ12の内側の表面のうち面積が0.0425mm2となる任意の観察視野範囲(縦0.17mm×横0.25mmの矩形範囲)を電子顕微鏡によって500倍の倍率で撮影(垂直視)することにより、観察画像の画像データを得た。そして、観察画像を画像解析装置に入力し、観察画像に存在する集合体12aの像のエッジ(明度や彩度や色相角が所定値以上異なる境界)を抽出した。さらに、画像解析装置によって、エッジによって閉じられた領域をBiの集合体12aの像として観察画像から抽出した。
 そして、画像解析装置によって、観察視野範囲に存在するすべてのBiの集合体12aの像について投影面積円相当径(計測パラメータ:HEYWOOD)を計測した。投影面積円相当径とは、Biの集合体12aの投影面積と等しい面積を有する円の直径であり、Biの集合体12aの像の面積と等しい面積を有する円の直径を光学倍率に基づいて現実の長さに換算した直径である。さらに、すべての集合体12aの投影面積円相当径の算術平均値(合計値/集合体数)をBiの集合体12aの平均径として計測した。なお、投影面積円相当径が1.0μm未満の場合、投影面積円相当径の信頼度や物質の特定の信頼度が低くなるため、Biの集合体12aの平均円相当径等を算出する際に考慮しないこととした。
 オーバーレイ12の変形量は以下の手順によって計測した。図3は、圧縮試験の説明図である。同図に示すように、実質的に剛体とみなせるハウジングH上に載置された半割形状の摺動部材1に静荷重を作用させることによって圧縮試験を行った。ハウジングHには、摺動部材1の外径に対応する径の半円柱状の凹部が形成されており、当該凹部に沿うように摺動部材1を載置した。摺動部材1の内径に対応する径を有する円柱状の相手軸Gが用意され、当該相手軸Gを摺動部材1の内側の表面上に載置した。さらに、プラスティック板Tを介してオートグラフ(島津製作所製 AG-IS)によって50kNの静荷重を相手軸Gに作用させつつ、オートグラフによって、摺動部材1の厚みの減少量を摺動部材1の変形量として計測した。
 (1-3)摺動部材の製造方法:
 まず、裏金10と同じ厚みを有する低炭素鋼の平面板を用意した。
 次に、低炭素鋼で形成された平面板上に、ライニング11を構成する材料の粉末を散布した。具体的に、上述したライニング11における各成分の質量比となるように、Cuの粉末とBiの粉末とSnの粉末とを混合して低炭素鋼の平面板上に散布した。ライニング11における各成分の質量比が満足できればよく、Cu-Bi,Cu-Sn等の合金粉末を低炭素鋼の平面板上に散布してもよい。粉末の粒径は、試験用ふるい(JIS Z8801)によって150μm以下に調整した。
 次に、低炭素鋼の平面板と、当該平面板上に散布した粉末とを焼結した。焼結温度を700~1000℃に制御し、不活性雰囲気中で焼結した。焼結後、冷却した。 冷却が完了すると、低炭素鋼の平面板上にCu合金層が形成される。このCu合金層には、冷却中に析出した軟質のBi粒子が含まれることとなる。
 次に、中空状の円筒を直径方向に2等分した形状となるように、Cu合金層が形成された低炭素鋼をプレス加工した。このとき、低炭素鋼の外径が摺動部材1の外径と一致するようにプレス加工した。
 次に、裏金10上に形成されたCu合金層の表面を切削加工した。このとき、裏金10上に形成されたCu合金層の厚みがライニング11と同一となるように、切削量を制御した。これにより、切削加工後のCu合金層によってライニング11が形成できる。切削加工は、例えば焼結ダイヤモンドで形成された切削工具材をセットした旋盤によって行った。
 次に、ライニング11の表面上に軟質材料としてのBiを電気めっきによって12μmの厚みだけ積層することにより、オーバーレイ12を形成した。Biの電気めっきの手順は以下のとおりとした。まず、電解液中にてライニング11の表面に電流を流すことにより、ライニング11の表面を脱脂した。次に、ライニング11の表面を水洗した。さらに、ライニング11の表面を酸洗することにより、不要な酸化物を除去した。その後、ライニング11の表面を、再度、水洗した。以上の前処理が完了すると、めっき浴に浸漬させたライニング11に電流を供給することによりBiの電気めっきを行った。
 オーバーレイ12におけるBiの電気めっきの条件を以下のとおりとした。Bi濃度:10g/L、有機スルホン酸:25~100g/L、添加剤(ポリエチレングリコール):0.5~50g/Lを含むめっき浴の浴組成とした。めっき浴の浴温度は、50℃に調整した。さらに、ライニング11に供給する電流はデューティー比が50%の矩形パルス電流とし、その平均電流密度を1A/dm2とした。
 図4AはBiの電気めっきのパルス電流を示すグラフである。図4Aの横軸は時刻を示し、縦軸はパルス電流(電流密度の大きさ)を示す。図4Aに示すように、電流が流れる期間t1の長さ(パルス幅)と、電流が流れない期間t2の長さと、の比が1:1(デューティー比=50%)となっている。本実施形態では、パルス幅を変化させることにより、Biの結晶粒の平均粒径と、Biの結晶粒の集合体12aの平均径とを調整した。
 図4BはBiの結晶粒の平均粒径のグラフである。図4Bの横軸はパルス幅を示し、縦軸はBiの結晶粒の平均粒径を示す。同図に示すように、デューティー比と平均電流密度を一定に保ったまま、パルス幅を変化させることにより、Biの結晶粒の平均粒径を調整することができる。具体的に、パルス幅を大きくすることにより、Biの結晶粒の平均粒径を大きくするように調整できる。
 図4CはBiの結晶粒の集合体の平均径のグラフである。図4Cの横軸はパルス幅を示し、縦軸はBiの結晶粒の集合体の平均径を示す。同図に示すように、デューティー比と平均電流密度を一定に保ったまま、パルス幅を変化させることにより、Biの結晶粒の集合体の平均径を調整することができる。具体的に、パルス幅を大きくすることにより、Biの結晶粒の平均粒径を小さくするように調整できる。本実施形態では、パルス幅を0.1ミリ秒とすることにより、Biの結晶粒の平均粒径を0.7μmに調整し、結晶粒の集合体の平均径を14μmに調整した。
 オーバーレイ12を積層した後に、水洗と乾燥を行って摺動部材1を完成させた。さらに2個の摺動部材1を円筒状に組み合わせることにより、すべり軸受Aを形成した。
 (2)実験結果:
Figure JPOXMLDOC01-appb-T000001
 表1は、オーバーレイ12におけるBi結晶の平均粒径とおよびBiの集合体12aの平均径ごとに変形量を計測した結果を示す。試料1はBiの集合体12aが存在しないほぼ平坦な摺動面を有する比較例である。上述した製造方法と同様の方法で、Bi結晶の平均粒径とおよびBiの集合体12aの平均径が異なる試料1~5を製造した。ただし、オーバーレイ12の電気めっきにおける電流密度やパルス幅を調整することにより、Bi結晶の平均粒径を調整した。
 図5Aは、Biの集合体12aの平均径ごとに変形量を示すグラフである。同図に示すように、Biの集合体12aの平均径が10μm以下の領域で集合体12aの平均径を大きくすることにより、急激に変形量を大きくすることができることが分かった。また、Biの集合体12aの平均径が10μm以上の領域では、大きな変形量を安定して得られることが分かった。そのため、すべり軸受Aとして必要ななじみ性を得るために、Biの集合体12aの平均径を10μm以上とすることがより望ましいことが分かった。
 図5Bは、結晶の平均粒径と降伏応力との関係を示すグラフである(引用:T. G. Nieh, Lawrence Livermore National Lab)。同図に示すように、10~20nm程度の結晶粒径にて降伏応力が最大となるとともに、当該結晶粒径よりも結晶粒径が大きくなる領域においては、Hall-Petchの関係に則って平均粒径が大きくなるほど降伏応力が減少していく。Bi結晶の平均粒径を0.5μm程度とすることにより、降伏応力が適度に大きく、集合体12aの硬度として適度な硬度が得られることが分かった。
 (3)他の実施形態:
 前記実施形態においては、エンジンのクランクシャフトを軸受けするすべり軸受Aを構成する摺動部材1を例示したが、本発明の摺動部材1によって他の用途のすべり軸受Aを形成してもよい。例えば、本発明の摺動部材1によってトランスミッション用のギヤブシュやピストンピンブシュ・ボスブシュ等を形成してもよい。また、ライニング11のマトリクスはCu合金に限られず、相手軸2の硬さに応じてマトリクスの材料が選択されればよい。また、軟質材料はライニング11よりも軟らかい材料であればよく、例えばPb,Sn,In,Sbのいずれかであってもよい。
 1…摺動部材、2…相手軸、10…裏金、11…ライニング、12…オーバーレイ、12a…集合体。

Claims (3)

  1.  基層上に、相手材の摺動面を有する被覆層が形成された摺動部材であって、
     前記被覆層は、前記基層よりも軟らかい軟質材料で形成され、
     前記摺動面においては、平均粒径が0.1μm以上かつ1μm以下の前記軟質材料の結晶粒が塊状に集合することにより、平均径が3μm以上かつ30μm以下の集合体が形成される、
    摺動部材。
  2.  前記軟質材料は、Bi、Sn、Pb、InまたはSbである、
    請求項1に記載の摺動部材。
  3.  基層上に、相手材の摺動面を有する被覆層が形成されたすべり軸受であって、
     前記被覆層は、前記基層よりも軟らかい軟質材料で形成され、
     前記摺動面においては、平均粒径が0.1μm以上かつ1μm以下の前記軟質材料の結晶粒が塊状に集合することにより、平均径が3μm以上かつ30μm以下の集合体が形成される、
    すべり軸受。
PCT/JP2015/083687 2015-12-01 2015-12-01 摺動部材およびすべり軸受 WO2017094094A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017518369A JP6234637B2 (ja) 2015-12-01 2015-12-01 摺動部材およびすべり軸受
PCT/JP2015/083687 WO2017094094A1 (ja) 2015-12-01 2015-12-01 摺動部材およびすべり軸受
US15/542,114 US10100874B2 (en) 2015-12-01 2015-12-01 Sliding member and slide bearing
CN201580068636.2A CN107110210B (zh) 2015-12-01 2015-12-01 滑动构件以及滑动轴承
EP15909724.5A EP3244081B1 (en) 2015-12-01 2015-12-01 Sliding member and sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083687 WO2017094094A1 (ja) 2015-12-01 2015-12-01 摺動部材およびすべり軸受

Publications (1)

Publication Number Publication Date
WO2017094094A1 true WO2017094094A1 (ja) 2017-06-08

Family

ID=58796558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083687 WO2017094094A1 (ja) 2015-12-01 2015-12-01 摺動部材およびすべり軸受

Country Status (5)

Country Link
US (1) US10100874B2 (ja)
EP (1) EP3244081B1 (ja)
JP (1) JP6234637B2 (ja)
CN (1) CN107110210B (ja)
WO (1) WO2017094094A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012210A1 (en) 2020-12-09 2022-06-15 Daido Metal Company Ltd. Sliding member and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777594B2 (ja) * 2017-06-21 2020-10-28 大豊工業株式会社 摺動部材およびすべり軸受
JP6731969B2 (ja) 2018-04-11 2020-07-29 大豊工業株式会社 摺動部材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020955A (ja) * 1999-07-08 2001-01-23 Taiho Kogyo Co Ltd すべり軸受
JP2005105354A (ja) * 2003-09-30 2005-04-21 Honda Motor Co Ltd 摺動部材
JP2014196765A (ja) * 2013-03-29 2014-10-16 大豊工業株式会社 摺動部材およびすべり軸受
JP2015203461A (ja) * 2014-04-15 2015-11-16 大豊工業株式会社 摺動部材およびすべり軸受
JP2015227490A (ja) * 2014-06-02 2015-12-17 大豊工業株式会社 摺動部材およびすべり軸受

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156045A (ja) 2001-09-10 2003-05-30 Daido Metal Co Ltd 摺動部材
GB2380772B (en) * 2001-09-10 2004-06-09 Daido Metal Co Sliding member
JP5021536B2 (ja) * 2008-03-25 2012-09-12 大同メタル工業株式会社 すべり軸受
AT509111B1 (de) * 2009-12-10 2011-09-15 Miba Gleitlager Gmbh Gleitschicht
GB2487532A (en) * 2011-01-21 2012-08-01 Mahle Int Gmbh Bearing linings
JP2014196764A (ja) * 2013-03-29 2014-10-16 大豊工業株式会社 摺動部材およびすべり軸受
AT515099B1 (de) * 2014-01-31 2015-06-15 Miba Gleitlager Gmbh Mehrschichtgleitlager

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020955A (ja) * 1999-07-08 2001-01-23 Taiho Kogyo Co Ltd すべり軸受
JP2005105354A (ja) * 2003-09-30 2005-04-21 Honda Motor Co Ltd 摺動部材
JP2014196765A (ja) * 2013-03-29 2014-10-16 大豊工業株式会社 摺動部材およびすべり軸受
JP2015203461A (ja) * 2014-04-15 2015-11-16 大豊工業株式会社 摺動部材およびすべり軸受
JP2015227490A (ja) * 2014-06-02 2015-12-17 大豊工業株式会社 摺動部材およびすべり軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244081A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012210A1 (en) 2020-12-09 2022-06-15 Daido Metal Company Ltd. Sliding member and method for producing same

Also Published As

Publication number Publication date
EP3244081A1 (en) 2017-11-15
CN107110210A (zh) 2017-08-29
JPWO2017094094A1 (ja) 2017-11-30
EP3244081B1 (en) 2019-05-08
US20180258993A1 (en) 2018-09-13
US10100874B2 (en) 2018-10-16
JP6234637B2 (ja) 2017-11-22
EP3244081A4 (en) 2018-06-13
CN107110210B (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019239643A1 (ja) 摺動部材
WO2014157193A1 (ja) 摺動部材およびすべり軸受
JP6234637B2 (ja) 摺動部材およびすべり軸受
US11396910B2 (en) Sliding member and sliding bearing
WO2014157192A1 (ja) 摺動部材およびすべり軸受
CN109429498B (zh) 滑动构件以及滑动轴承
WO2019198285A1 (ja) 摺動部材
WO2015186621A1 (ja) 摺動部材およびすべり軸受
WO2019198369A1 (ja) 摺動部材
JP6321436B2 (ja) 摺動部材およびすべり軸受
JP6091962B2 (ja) 摺動部材およびすべり軸受
JP2019026923A (ja) 摺動部材およびすべり軸受
JP2021008958A (ja) 摺動部材およびすべり軸受
JP6242957B2 (ja) 摺動部材およびすべり軸受
JP2014196764A (ja) 摺動部材およびすべり軸受
JP2020164998A (ja) 摺動部材およびすべり軸受
JP2019019956A (ja) 摺動部材およびすべり軸受

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518369

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015909724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15542114

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE