WO2017092712A1 - 一种生产高纯纳米三氧化钼的装置及方法 - Google Patents

一种生产高纯纳米三氧化钼的装置及方法 Download PDF

Info

Publication number
WO2017092712A1
WO2017092712A1 PCT/CN2016/108351 CN2016108351W WO2017092712A1 WO 2017092712 A1 WO2017092712 A1 WO 2017092712A1 CN 2016108351 W CN2016108351 W CN 2016108351W WO 2017092712 A1 WO2017092712 A1 WO 2017092712A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum trioxide
vent tube
producing high
pipe
disposed
Prior art date
Application number
PCT/CN2016/108351
Other languages
English (en)
French (fr)
Inventor
陈方吾
孙正
陈镇
陈洛丞
但懿
陈宏波
曾庆兵
Original Assignee
湖北中澳纳米材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中澳纳米材料技术有限公司 filed Critical 湖北中澳纳米材料技术有限公司
Priority to DE112016005509.9T priority Critical patent/DE112016005509T5/de
Priority to JP2018548265A priority patent/JP6667658B2/ja
Priority to GB1808931.8A priority patent/GB2559305B/en
Publication of WO2017092712A1 publication Critical patent/WO2017092712A1/zh
Priority to US15/996,490 priority patent/US10745290B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/08Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/09Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D2099/0085Accessories
    • F27D2099/0086Filters, e.g. for molten metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/905Refractory metal-extracting means

Definitions

  • the present invention relates to an apparatus and method for producing high purity nano molybdenum trioxide.
  • molybdenum trioxide is generally prepared by calcining ammonium molybdate, or the molybdenum concentrate is chemically leached with an acid-base high pressure, and the molybdate is separated to obtain high-purity molybdenum trioxide. .
  • the molybdenum trioxide prepared by the above method cannot be solved very high due to problems such as coarse particles, agglomerated state and low purity of molybdenum trioxide.
  • Highly active molybdenum trioxide is used in the field of catalysts. It not only has specific requirements for the impurity and particle size distribution of molybdenum trioxide, but also has specific requirements for the reaction characteristics of molybdenum trioxide in solution.
  • US4551313 discloses a rapid sublimation method of molybdenum trioxide containing slag components (silicon, aluminum and heavy metals), which only solves the separation of molybdenum trioxide from impurities and improves the purity of molybdenum trioxide with a particle size above the micron level.
  • US6468497 discloses a method for producing nanometer molybdenum trioxide, the core of which is to obtain a strip-shaped nano-scale trioxide having a length of about 80 to 90 nm and a diameter of about 20 to 30 nm by quenching molybdenum trioxide with liquid nitrogen (48 ° C). molybdenum.
  • the above method obviously can produce nano-scale molybdenum trioxide, but the problem is that the production cost is high, the product is difficult to realize large-scale industrial application promotion, the other product is needle, and the special resistance in special industries such as advanced lubricating oil Grinding agent requires nanometer molybdenum trioxide to be spherical shape. Therefore, it is especially important to design a nanometer-scale molybdenum trioxide device which can be automated, continuous, low equipment investment, simple and easy to operate, safe and reliable, and low in product cost.
  • the invention provides a device for producing high-purity nano-molybdenum trioxide, which adopts sublimation molybdenum trioxide to finally obtain nano-scale molybdenum trioxide, and the recovery method is reliable and pollution-free, and the recovery efficiency is high.
  • a device for producing high-purity nanometer molybdenum trioxide comprising a raw material bin 1, a feeder 2, a sublimation furnace 7, a first vent pipe 24, a second vent pipe 25, a spray device 23, and a filter assembly 12, the raw material warehouse 1 is connected to the feeder 2, the feeder 2 is connected to the lower side of the sublimation furnace 7, and the upper side of the sublimation furnace 7 is connected to the first vent pipe 24 arranged horizontally, and the end of the first vent pipe 24 is vertically connected a second vent pipe 25, the second vent pipe 25 is connected to the recycler 13, a finished silo 11 is disposed below the recoverer 13, and a filter assembly is disposed in the collector 13 in communication with the second vent pipe 25 12, the first vent pipe 24 and the second vent pipe 25 are connected to a spray device 23, the spray device 23 is connected to the dispersant interface 21 and the compressed air interface 22, the spray device 23 nozzle direction and the second pass
  • the axis of the air tube 25 is coaxial; the first vent tube 24 is provided with a clean air
  • a stirring shaft 20 is horizontally arranged in the first vent pipe 24, and the end of the stirring shaft 20 is connected to a rotating electric machine 18, and the rotating electric machine 18 is mounted on a driving rod of the propulsion motor 19, and the propulsion motor 19 pushes the rotating electric machine 18 at The linear direction of the first vent tube 24 moves back and forth.
  • the recovery unit 13 is connected to the water jet pump 15 through one end of the pipe, and the other end of the pipe is disposed in the filter assembly 12, and the water jet pump 15 is connected to the deionized water tank 16, which is connected to the water through a circulation line.
  • the jet pump 15 is provided with a circulation pump 17 on the circulation line.
  • a first valve 26 is disposed on the pipeline between the recoverer 13 and the water jet pump 15, and a compressed air interface 14 is disposed between the first valve 26 and the recoverer 13, and the compressed air interface 14
  • a second valve 27 is provided thereon.
  • the filter assembly 12 includes a sealing body composed of a sealing metal hollow intercepting film 2, and the metal intercepting film 2 is coated with a high temperature resistant filter cloth 1 to form an interlayer, the metal intercepting film 2 and high temperature resistance.
  • Nano-molybdenum trioxide 3 is placed in the interlayer between the filter cloths 1, and the inside of the metal intercepting film 2 is connected to the compressed air interface 14 with the second valve 27 through a pipe.
  • the bottom 6 of the sublimation furnace 7 is inclined, the end at the junction of the feeder 2 is higher, and the lower end of the furnace bottom 6 is provided with a liquid discharge port 8.
  • a compressed air interface 9 is disposed on a lower side of the sublimation furnace 7.
  • the side wall of the sublimation furnace 7 is provided with a peephole 3, which is in the same horizontal line as the first vent pipe 24.
  • a method for producing high-purity nanometer molybdenum trioxide, using pure molybdenum trioxide as raw material feeding raw materials into the sublimation furnace 7 through the feeder 2, and controlling the temperature of the sublimation furnace 7 at 1100 to 1160 ° C to sublimate the raw materials, and opening the propulsion motor 19.
  • the rotating electric machine 18 is provided with clean air having a water content of less than 30% from 10 to 18 ° C from the clean air inlet 10 to ensure that the temperature of the first vent pipe 24 is 75 to 85 ° C, and the spray device 23 is sprayed to spray the spray with the dispersant.
  • the raw materials are sprayed into the recycler and collected, and the air is filtered through the filter to remove the raw materials into the deionized water tank 16.
  • the compressed air interface 9 on the lower side of the sublimation furnace 7 has a compressed air water content of less than 30% to supplement the air, and the sublimation amount of the molybdenum trioxide is increased, the air temperature is 15 to 18 ° C, the humidity is 28 to 35%, and the pressure is 0.75 ⁇ 0.8Mpa.
  • the nano-scale molybdenum trioxide obtained in the present scheme has a spherical shape: a particle size of ⁇ 100 nm, a sphericity of ⁇ 0.92, and a specific surface area of ⁇ 40 m 2 /g.
  • the pure molybdenum trioxide referred to in the present invention is represented by high-purity molybdenum trioxide prepared by thermal decomposition of molybdic acid, ammonium molybdate, pure molybdenum powder or other methods, and the total amount of impurities is ⁇ 0.02% by weight.
  • the ordinary iron plate of the sublimation furnace of the invention is an outer casing, the inner lining is excellent refractory brick, the heating element is a silicon-molybdenum U-shaped rod, the temperature control computer is controlled, and the continuous operation can be more than 2000 hours, and the vulnerable components are actively replaced periodically.
  • the bottom molybdenum trioxide bath is discharged once a year.
  • the heating power is turned off, the liquid discharge port 8 is opened, and the liquid molybdenum trioxide (containing high melting point or other impurities) is cooled to be used as a ferromolybdenum. Due to the obvious reasonable structure and design, it is superior to all existing reported furnace configurations, and the disadvantage is that the overall airtightness of the furnace is ideal, which is solved by sublimation and negative pressure operation.
  • the rotating motor and the propulsion motor are evenly frequency-modulated motors, and the driving working elements enable the cooling air to be mixed with molybdenum trioxide gas (containing a small amount of air) as soon as possible to achieve the purpose of instantaneous cooling, thereby realizing the nanocrystallization of molybdenum trioxide powder.
  • the dispersing agent is added in the low temperature section of the process to achieve the uniform distribution effect of the dispersing agent, and the anti-polymerization effect is further improved.
  • the vacuum pumping amount ensures the removal of sublimation molybdenum trioxide, the addition of cooling air, the demand for the transportation of the whole material of the system, and the nano-level molybdenum trioxide leakage of the intercepting unit is also deionized.
  • the circulating pool absorbs and recovers molybdenum element once a year with a special resin. Due to the overall negative pressure operation of the system, the environment is friendly and the recovery rate is high.
  • the product realizes nanometer-size and spheroidal shape: the invention adopts the treatment of low-cost air quenching to prepare nano-scale molybdenum trioxide, and the product has a particle size of ⁇ 100, a specific surface area of ⁇ 40 m2/g, and a sphericity of ⁇ 0.92.
  • the invention has the beneficial effects that the nano-scale molybdenum trioxide is obtained by sublimating molybdenum trioxide, and the recycling method is reliable and pollution-free, and the recycling efficiency is high.
  • Figure 1 is a schematic view of the structure of the present invention.
  • a device for producing high-purity nanometer molybdenum trioxide includes a raw material storage tank 1, a feeder 2, a sublimation furnace 7, a first vent pipe 24, a second vent pipe 25, a spray device 23, and a filter assembly 12.
  • the raw material silo 1 is connected to the feeder 2, and the feeder 2 is connected to the lower side of the sublimation furnace 7, and the upper side of the sublimation furnace 7 is connected to a horizontally disposed first vent pipe 24, the first vent pipe 24
  • the end communicates with a second vent tube 25 arranged vertically, the second vent tube 25 is connected to a recycler 13, a finished silo 11 is disposed below the recoverer 13, and the recycler 13 is connected to the second vent tube 25
  • a filter assembly 12 is disposed, and a spray device 23 is disposed at the junction of the first vent pipe 24 and the second vent pipe 25, and the spray device 23 is connected to a dispersant interface 21 and a compressed air interface 22, and the nozzle of the spray device 23
  • the direction is coaxial with the axis of the second vent tube 25; the first vent tube 24 is provided with a clean air inlet 10.
  • the stirring device 20 is horizontally arranged in the first vent pipe 24, the end of the stirring device 20 is connected to the rotating electric machine 18, the rotating electric machine 18 is mounted on the driving rod of the reciprocating motor 19, and the reciprocating motor 19 pushes the rotating electric machine 18 at the A linear direction of the vent tube 24 moves back and forth to ensure that the molybdenum trioxide is agglomerated in the first vent tube 24 in a powder form.
  • the recovery unit 13 is connected to the water jet pump 15 through one end of the pipe, and the other end of the pipe is disposed in the filter assembly 12, and the water jet pump 15 is connected to the deionized water tank 16, which is connected to the water jet pump 15 through a circulation line, and circulates a circulation pump 17 is disposed on the pipeline; a first valve 26 is disposed on the pipeline between the recovery device 13 and the water injection pump 15, and a compressed air interface 14 is disposed between the first valve 26 and the recovery device 13 A second valve 27 is provided on the compressed air interface 14.
  • the filter assembly 12 includes a sealing body composed of a sealed metal intercepting net, the metal intercepting film is coated with a layer of high temperature resistant filter cloth to form an interlayer, and the nano layer is placed in the interlayer between the metal intercepting film and the high temperature resistant filter.
  • Molybdenum oxide the interior of which is connected to the compressed air interface 14 with the second valve 27 by a pipe.
  • the spray device 23 ejects the molybdenum trioxide which ejects the powder from the mist-formed raw material with the dispersant, and enters the recycler.
  • the filter assembly 12 filters the molybdenum trioxide and collects it into the finished silo 11. Air enters the water jet pump 15 from the pipeline and is spray dissolved, and partially infiltrated molybdenum trioxide dissolves into the deionized water tank 16. After a certain period of production, the first valve 26 is closed, the second valve 27 is opened, compressed air is introduced, and the compressed air enters into the hollow of the metal intercepting membrane of the filter assembly 12, and the molybdenum monoxide attached to the high temperature filter cloth is attached. Blowing off, entering the finished silo 11, the filter assembly can be reused.
  • the bottom 6 of the sublimation furnace 7 is inclined, and the end at the junction of the feeder 2 is higher.
  • the lower end of the furnace bottom 6 is provided with a liquid discharge port 8, and the lower side of the sublimation furnace 7 is provided.
  • the sublimation furnace 7 is provided with a silicon molybdenum rod 4 and a temperature-controlled thermal resistance 5, which can adjust the temperature in the furnace for real-time detection and automatic control.
  • a peephole 3 is provided on the side wall of the sublimation furnace 7, and the peephole 3 is at the same horizontal line as the first vent pipe 24, so that the conditions in the sublimator furnace 7 and the first vent pipe 24 are conveniently observed.
  • a method for producing high-purity nanometer molybdenum trioxide, using pure molybdenum trioxide as raw material feeding raw materials into the sublimation furnace 7 through the feeder 2, and controlling the temperature of the sublimation furnace 7 at 1100 to 1160 ° C to sublimate the raw materials, and opening the propulsion motor 19.
  • the rotating electric machine 18 is provided with clean air having a water content of less than 30% from 10 to 18 ° C from the clean air inlet 10 to ensure that the temperature of the first vent pipe 24 is 75 to 85 ° C, and the spray device 23 is sprayed to spray the spray with the dispersant.
  • the raw material is sprayed into the recovery device for filtration, and the air is filtered through the filter to filter the raw material into the deionized water pool 16.
  • the compressed air interface 9 on the lower side of the sublimation furnace 7 is supplied with a compressed air water content of less than 30% to supplement the air.
  • Increase the sublimation amount of molybdenum trioxide the air temperature is 15 to 18 ° C, the humidity is 28 to 35%, and the pressure is 0.75 to 0.8 Mpa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

提供一种生产高纯纳米三氧化钼的装置和方法,装置包括原料仓(1)、喂料机(2)、升华炉(7)、第一通气管(24)、第二通气管(25)、喷雾装置(23)和过滤组件(12),原料仓(1)连通喂料机(2),喂料机(2)连通至升华炉(7)下侧,升华炉(7)上侧连通水平布置的第一通气管(24),第一通气管(24)末端连通竖直布置的第二通气管(25),第二通气管(25)连通至回收器(13),回收器(13)下方设置成品料仓(11),回收器(13)内与第二通气管(25)连通处设有过滤组件(12),第一通气管(24)与第二通气管(25)连接处设置喷雾装置(23),喷雾装置(23)连接分散剂接口(21)和压缩空气接口(22),喷雾装置(23)的喷嘴方向与第二通气管(25)的轴线同轴;第一通气管(24)上设有洁净空气入口(10)。升华的三氧化钼用洁净去湿的空气冷却最终得到纳米级的三氧化钼,回收方式可靠无污染,效率高。

Description

一种生产高纯纳米三氧化钼的装置及方法 技术领域
本发明涉及一种生产高纯纳米三氧化钼的装置及方法。
背景技术
工业上一般用锻烧钼酸铵的方法制取三氧化钼,或是利用化学法将钼精矿用酸碱高压加氧浸出,分离杂质制取钼酸盐,分解制取高纯三氧化钼。随着材料科学与应用技术的不断发展,上述方法制得的三氧化钼由于颗粒粗、呈团聚状态而且三氧化钼的纯度不高等问题都不能得到很高的解决。高活性三氧化钼应用在催化剂领域,不仅对三氧化钼的杂质、粒度分布有具体要求,而且对三氧化钼在溶液中的反应特性也有特定要求。
US4551313公开了一种含渣成分(硅、铝及重金属)的三氧化钼的快速升华方法,只解决了三氧化钼与杂质分离,提高了三氧化钼的纯度,其粒度在微米级以上。
US6468497公开了一种纳米三氧化钼的生产方法,其核心是将三氧化钼用液氮骤冷(48℃),获得的约长80~90nm、直径约20~30nm的条状纳米级三氧化钼。
上述方法显然可以制得纳米级三氧化钼,但存在的问题是:生产成本高,其产品难以实现大规模工业应用推广,另产品为针状物,在特种行业如高级润滑油中的特种耐磨剂,要求纳米三氧化钼为球形状,因此设计一种能够自动化、连续化、设备投资低、工艺操作简便、安全可靠、产品成本低的纳米级三氧化钼的装置和方法尤为重要。
发明内容
本发明提出一种生产高纯纳米三氧化钼的装置,采用升华三氧化钼的方式最终得到纳米级的三氧化钼,而且回收方式可靠无污染,回收效率高。
本发明的技术方案是这样实现的:
一种生产高纯纳米三氧化钼的装置,包括原料仓1、喂料机2、升华炉7、第一通气管24、第二通气管25、喷雾装置23和过滤组件12,所述原料仓1连通喂料机2,所述喂料机2连通至升华炉7下侧,所述升华炉7上侧连通水平布置的第一通气管24,所述第一通气管24末端连通竖直布置的第二通气管25,所述第二通气管25连通至回收器13,所述回收器13下方设置成品料仓11,所述回收器13内与第二通气管25连通处设有过滤组件12,所述第一通气管24与第二通气管25连接处设置喷雾装置23,所述喷雾装置23连接分散剂接口21和压缩空气接口22,所述喷雾装置23的喷嘴方向与第二通气管25的轴线同轴;所述第一通气管24上设有洁净空气入口10。
进一步地,所述第一通气管24内水平布置搅拌轴20,所述搅拌轴20末端连接至旋转电机18,旋转电机18安装在推进电机19的驱动杆上,推进电机19推动旋转电机18在第一通气管24所在的直线方向来回运动。
进一步地,所述回收器13通过管道一端连接至水喷射泵15,管道另一端设置于过滤组件12内,水喷射泵15连接至去离子水池16,所述离子水池通过循环管路连接至水喷射泵15,循环管路上设有循环泵17。
进一步地,所述回收器13与水喷射泵15之间的管道上设有第一阀门26,所述第一阀门26与回收器13之间设有压缩空气接口14,所述压缩空气接口14上设有第二阀门27。
进一步地,所述过滤组件12包括密封空心状的金属拦截膜2组成的密封体,所述金属拦截膜2外包覆一层耐高温滤布1形成夹层,所述金属拦截膜拜2和耐高温滤布1之间的夹层内放置纳米三氧化钼3,所述金属拦截膜2的内部通过管道连接至带第二阀门27的压缩空气接口14。
进一步地,所述升华炉7的炉底6呈倾斜状,处于喂料机2连接处的一端较高,炉底6的较低的一端设有排液口8。
进一步地,所述升华炉7下方侧面设有压缩空气接口9。
进一步地,所述升华炉7侧壁上设有窥视孔3,所述窥视孔3与第一通气管24处于同一水平线。
一种生产高纯纳米三氧化钼的方法,以纯三氧化钼为原料,通过喂料机2将原料送入升华炉7内,升华炉7温度控制在1100~1160℃将原料升华,开启推进电机19、旋转电机18,从洁净空气入口10通入10~18℃含水量小于30%的洁净空气,保证第一通气管24温度在75~85℃,开启喷雾装置23喷出带分散剂的喷雾,将原料喷入至回收器过滤后收集,空气经过过滤器过滤掉原料进入到去离子水池16。
进一步地,升华炉7下侧的压缩空气接口9通入的压缩空气水含量小于30%以补充空气,增加三氧化钼的升华量,空气温度15~18℃,湿度28~35%,压力为0.75~0.8Mpa。
本方案中所得的纳米级三氧化钼为球形:粒度≤100nm,球形度≥0.92,比表面积≥40㎡/g。
本发明所称纯三氧化钼,表示为用钼酸、钼酸铵热分解、纯钼粉氧化或其它方法制得的高纯三氧化钼,杂质总量≤0.02%(重量)。
本发明产生的有益效果为:
1)升华炉运行可靠。
本发明升华炉用普通铁板为外壳,内衬优耐火砖,加热元件为硅钼U型棒,温度控制电脑调控,可连续运行2000小时以上,定期主动更换易损元件。底部三氧化钼溶池每年排一次,计划停机时关闭加热电源,开启排液口8,排出液态三氧化钼(含有高熔点或比重大的其它杂质)砂箱冷却,作钼铁外销。由于明显的合理结构和设计,优于现有的所有报道的加热炉构造,缺点是炉体整体密闭性的理想,由于升华负压运行,解决了此瑕疵。
2)旋转电机、推进电机均匀为调频电机,其带动的工作元件使冷却空气尽快与三氧化钼气体(含少量空气)混合达到瞬间冷却的目的,实现三氧化钼粉体纳米化。
3)拦截回收产品的部件分多组,定时将其中一组关真空阀,开启吹扫空 气阀吹扫。设手动自动联锁,自动控制时用脉冲控制仪自控。依次每组轮换吹扫回收产品。
4)工艺过程低温段加分散剂,达到分散剂均匀分布效果,进一步提高防聚合效果。
5)去离子水喷射真空单元,其真空抽气量确保升华三氧化钼移走,冷却空气的加入,系统整体物料的输送的需求,同时将拦截单元微量泄漏的纳米级三氧化钼回收,去离子循环水池每年用专用树脂吸附回收一次钼元素。由于系统整体负压运行,环境友好,回收率高。
6)实现自动化、规模化生产:由于本发明各单元冷却实现了自动化控制(或电脑),这样只要原料斗有料,产成品罐收集满移走换新罐,实现了大规模连续生产过程,具有各种现有升华法制取纳米级三氧化钼的不可比的优越性。此法一条生产线年产纳米级三氧化钼50吨左右。
7)产品实现粒度纳米化、外形球形化:本发明采用经处理产廉价空气骤冷制备纳米级三氧化钼,其产品粒度≤100,比表面积≥40㎡/g,球形度≥0.92。
本发明产生的有益效果为:采用升华三氧化钼的方式最终得到近似球形的纳米级的三氧化钼,而且回收方式可靠无污染,回收效率高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示一种生产高纯纳米三氧化钼的装置,包括原料仓1、喂料机2、升华炉7、第一通气管24、第二通气管25、喷雾装置23和过滤组件12,所述原料仓1连通喂料机2,所述喂料机2连通至升华炉7下侧,所述升华炉7上侧连通水平布置的第一通气管24,所述第一通气管24末端连通竖直布置的第二通气管25,所述第二通气管25连通至回收器13,所述回收器13下方设置成品料仓11,所述回收器13内与第二通气管25连通处设有过滤组件12,所述第一通气管24与第二通气管25连接处设置喷雾装置23,所述喷雾装置23连接分散剂接口21和压缩空气接口22,所述喷雾装置23的喷嘴方向与第二通气管25的轴线同轴;所述第一通气管24上设有洁净空气入口10。
本实施例中第一通气管24内水平布置搅拌装置20,所述搅拌装置20末端连接至旋转电机18,旋转电机18安装在往复电机19的驱动杆上,往复电机19推动旋转电机18在第一通气管24所在的直线方向来回运动,保证三氧化钼在第一通气管24防结块呈粉末状。
回收器13通过管道一端连接至水喷射泵15,管道另一端设置于过滤组件12内,水喷射泵15连接至去离子水池16,所述离子水池通过循环管路连接至水喷射泵15,循环管路上设有循环泵17;所述回收器13与水喷射泵15之间的管道上设有第一阀门26,所述第一阀门26与回收器13之间设有压缩空气接口14,所述压缩空气接口14上设有第二阀门27。过滤组件12包括密封空心状的金属拦截网组成的密封体,所述金属拦截膜外包覆一层耐高温滤布形成夹层,所述金属拦截膜和耐高温滤之间的夹层内放置纳米三氧化钼,所述金属拦截膜的内部通过管道连接至带第二阀门27的压缩空气接口14。
该方案中,喷雾装置23喷出带有分散剂的雾状配合原料喷出粉末的三氧化钼,进入到回收器中。过滤组件12将三氧化钼过滤,收集到成品料仓 11,空气从管道进入到水喷射泵15经过喷射溶解,部分渗入的三氧化钼溶解进入到去离子水池16中。在经过一定期间的生产后,关闭第一阀门26,开启第二阀门27,通入压缩空气,压缩空气进入到过滤组件12的金属拦截膜空心中,将依附在高温滤布上的三氧化钼吹落,进入成品料仓11,该过滤组件又可以重新使用。
本实施例中升华炉7的炉底6呈倾斜状,处于喂料机2连接处的一端较高,炉底6的较低的一端设有排液口8,所述升华炉7下方侧面设有压缩空气接口9。同时升华炉7内设有硅钼棒4和温控热电阻5,可以调节炉体内的温度进行实时检测和自动控制。
升华炉7侧壁上设有窥视孔3,所述窥视孔3与第一通气管24处于同一水平线,方便观察升华炉7和第一通气管24内的状况。
一种生产高纯纳米三氧化钼的方法,以纯三氧化钼为原料,通过喂料机2将原料送入升华炉7内,升华炉7温度控制在1100~1160℃将原料升华,开启推进电机19、旋转电机18,从洁净空气入口10通入10~18℃含水量小于30%的洁净空气,保证第一通气管24温度在75~85℃,开启喷雾装置23喷出带分散剂的喷雾,将原料喷入至回收器过滤后收集,空气经过过滤器过滤掉原料进入到去离子水池16,升华炉7下侧的压缩空气接口9通入的压缩空气水含量小于30%,以补充空气,增加三氧化钼的升华量,空气温度15~18℃,湿度28~35%,压力为0.75~0.8Mpa。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种生产高纯纳米三氧化钼的装置,其特征在于,包括原料仓(1)、喂料机(2)、升华炉(7)、第一通气管(24)、第二通气管(25)、喷雾装置(23)和过滤组件(12),所述原料仓(1)连通喂料机(2),所述喂料机(2)连通至升华炉(7)下侧,所述升华炉(7)上侧连通水平布置的第一通气管(24),所述第一通气管(24)末端连通竖直布置的第二通气管(25),所述第二通气管(25)连通至回收器(13),所述回收器(13)下方设置成品料仓(11),所述回收器(13)内与第二通气管(25)连通处设有过滤组件(12),所述第一通气管(24)与第二通气管(25)连接处设置喷雾装置(23),所述喷雾装置(23)连接分散剂接口(21)和压缩空气接口(22),所述喷雾装置(23)的喷嘴方向与第二通气管(25)的轴线同轴;所述第一通气管(24)上设有洁净空气入口(10)。
  2. 如权利要求1所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述第一通气管(24)内水平布置搅拌装置(20),所述搅拌装置(20)末端连接至旋转电机(18),旋转电机(18)安装在推进电机(19)的驱动杆上,推进电机(19)推动旋转电机(18)在第一通气管(24)所在的直线方向来回运动。
  3. 如权利要求1所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述回收器(13)通过管道一端连接至水喷射泵(15),管道另一端设置于过滤组件(12)内,水喷射泵(15)连接至去离子水池(16),所述离子水池通过循环管路连接至水喷射泵(15),循环管路上设有循环泵(17)。
  4. 如权利要求3所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述回收器(13)与水喷射泵(15)之间的管道上设有第一阀门(26),所述第一阀门(26)与回收器(13)之间设有压缩空气接口(14),所述压缩空气接口(14)上设有第二阀门(27)。
  5. 如权利要求4所述的一种生产高纯纳米三氧化钼的装置,其特征在于,过滤组件(12)包括密封空心状的金属拦截膜组成的密封体,所述金属 拦截膜外包覆一层耐高温滤布形成夹层,所述金属拦截膜和耐高温滤布之间的夹层内放置纳米三氧化钼,所述金属拦截膜的内部通过管道连接至带第二阀门(27)的压缩空气接口(14)。
  6. 如权利要求1所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述升华炉(7)的炉底(6)呈倾斜状,处于喂料机(2)连接处的一端较高,炉底(6)的较低的一端设有排液口(8)。
  7. 如权利要求1所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述升华炉(7)下方侧面设有压缩空气接口(9)。
  8. 如权利要求1所述的一种生产高纯纳米三氧化钼的装置,其特征在于,所述升华炉(7)侧壁上设有窥视孔(3),所述窥视孔(3)与第一通气管(24)处于同一水平线。
  9. 一种生产高纯纳米三氧化钼的方法,其特征在于,以纯三氧化钼为原料,通过喂料机(2)将原料送入升华炉(7)内,升华炉(7)温度控制在1100~1160℃将原料升华,开启推进电机(19)、旋转电机(18),从洁净空气入口(10)通入10~18℃含水量小于30%的洁净空气,保证第一通气管(24)温度在75~85℃,开启喷雾装置(23)喷出带分散剂的喷雾,将原料喷入至回收器过滤后收集,空气经过过滤器过滤掉原料进入到去离子水池(16)。
  10. 如权利要求9所述的一种生产高纯纳米三氧化钼的方法,其特征在于,升华炉(7)下侧的压缩空气接口(9)通入的压缩空气水含量小于30%以补充空气,增加三氧化钼的升华量,空气温度15~18℃,湿度28~35%,压力为0.75~0.8Mpa。
PCT/CN2016/108351 2015-12-04 2016-12-02 一种生产高纯纳米三氧化钼的装置及方法 WO2017092712A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016005509.9T DE112016005509T5 (de) 2015-12-04 2016-12-02 Vorrichtung und Verfahren zur Herstellung von hochreinem Nano-Molybdäntrioxid
JP2018548265A JP6667658B2 (ja) 2015-12-04 2016-12-02 高純度ナノ三酸化モリブデンの製造装置及び製造方法
GB1808931.8A GB2559305B (en) 2015-12-04 2016-12-02 Device and method for producing high-purity nano molybdenum trioxide
US15/996,490 US10745290B2 (en) 2015-12-04 2018-06-03 Device and method for producing high-purity nano molybdenum trioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510891877.9A CN105347400B (zh) 2015-12-04 2015-12-04 一种生产高纯纳米三氧化钼的装置及方法
CN201510891877.9 2015-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/996,490 Continuation US10745290B2 (en) 2015-12-04 2018-06-03 Device and method for producing high-purity nano molybdenum trioxide

Publications (1)

Publication Number Publication Date
WO2017092712A1 true WO2017092712A1 (zh) 2017-06-08

Family

ID=55323498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108351 WO2017092712A1 (zh) 2015-12-04 2016-12-02 一种生产高纯纳米三氧化钼的装置及方法

Country Status (6)

Country Link
US (1) US10745290B2 (zh)
JP (1) JP6667658B2 (zh)
CN (1) CN105347400B (zh)
DE (1) DE112016005509T5 (zh)
GB (1) GB2559305B (zh)
WO (1) WO2017092712A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105347400B (zh) 2015-12-04 2016-11-09 湖北中澳纳米材料技术有限公司 一种生产高纯纳米三氧化钼的装置及方法
AU2016370962B2 (en) 2015-12-16 2020-09-24 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
CN105758176B (zh) * 2016-05-04 2017-12-29 湖北中澳纳米材料技术有限公司 一种制备高纯度纳米三氧化钼的装置
CN105819511B (zh) * 2016-05-05 2017-08-15 湖北中澳纳米材料技术有限公司 一种制备纳米级高纯度三氧化钼的装置及其使用方法
CN109884087B (zh) * 2019-04-22 2021-07-13 哈尔滨工业大学 基于二维带状MoO3纳米材料的高灵敏度微波湿度传感器
CN110357159A (zh) * 2019-07-31 2019-10-22 武汉轻工大学 一种制备电子级纳米钼酸钙的装置及方法
WO2021118762A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) * 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111410229A (zh) * 2020-03-31 2020-07-14 陈慧 一种高纯氧化钼的制备方法及装备
JP2023532457A (ja) 2020-06-25 2023-07-28 シックスケー インコーポレイテッド 微細複合合金構造体
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
US20240150195A1 (en) * 2021-03-24 2024-05-09 Dic Corporation Molybdenum compound and production method therefor
JP7188664B1 (ja) * 2021-03-24 2022-12-13 Dic株式会社 三酸化モリブデン粉体及びその製造方法
CN113511680B (zh) * 2021-08-10 2022-11-25 郑州大学 高纯三氧化钼的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038239A1 (en) * 2000-11-09 2002-05-16 Cyprus Amax Minerals Company Method and apparatus for producing nano-particles of molybdenum oxide
CN102159292A (zh) * 2008-08-20 2011-08-17 詹姆斯·G·赫纳特 用于从废催化剂中回收钼的方法和设备
CN102603005A (zh) * 2012-03-07 2012-07-25 洛阳开拓者投资管理有限公司 一种制备纳米三氧化钼的方法
CN202988768U (zh) * 2012-10-12 2013-06-12 嵩县开拓者钼业有限公司 高纯超细三氧化钼生产设备
CN103449523A (zh) * 2012-06-04 2013-12-18 湖北中澳纳米材料技术有限公司 一种提取高纯三氧化钼的制备方法
CN105347400A (zh) * 2015-12-04 2016-02-24 湖北中澳纳米材料技术有限公司 一种生产高纯纳米三氧化钼的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139326A (en) * 1960-01-29 1964-06-30 Baker Chem Co J T Method and apparatus for the production of molybdenum trioxide
US3848050A (en) * 1972-07-05 1974-11-12 E Jemal Process of preparing molybdenum trioxide by sublimation
US4551313A (en) * 1984-02-27 1985-11-05 Amax Inc. Flash sublimation and purification of molybdenum oxide
CH677739A5 (zh) * 1988-05-27 1991-06-28 Asea Brown Boveri
RU2312067C2 (ru) * 2005-07-12 2007-12-10 Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) Способ получения трехокиси молибдена и устройство для его осуществления

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038239A1 (en) * 2000-11-09 2002-05-16 Cyprus Amax Minerals Company Method and apparatus for producing nano-particles of molybdenum oxide
CN102159292A (zh) * 2008-08-20 2011-08-17 詹姆斯·G·赫纳特 用于从废催化剂中回收钼的方法和设备
CN102603005A (zh) * 2012-03-07 2012-07-25 洛阳开拓者投资管理有限公司 一种制备纳米三氧化钼的方法
CN103449523A (zh) * 2012-06-04 2013-12-18 湖北中澳纳米材料技术有限公司 一种提取高纯三氧化钼的制备方法
CN202988768U (zh) * 2012-10-12 2013-06-12 嵩县开拓者钼业有限公司 高纯超细三氧化钼生产设备
CN105347400A (zh) * 2015-12-04 2016-02-24 湖北中澳纳米材料技术有限公司 一种生产高纯纳米三氧化钼的装置及方法

Also Published As

Publication number Publication date
CN105347400A (zh) 2016-02-24
CN105347400B (zh) 2016-11-09
GB2559305A (en) 2018-08-01
GB201808931D0 (en) 2018-07-18
JP6667658B2 (ja) 2020-03-18
US10745290B2 (en) 2020-08-18
JP2019501107A (ja) 2019-01-17
US20180346344A1 (en) 2018-12-06
DE112016005509T5 (de) 2018-09-27
GB2559305B (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2017092712A1 (zh) 一种生产高纯纳米三氧化钼的装置及方法
CN101428348B (zh) 一种水热处理制备球形超细金属粉末的工艺方法
JP6352917B2 (ja) SiOX粉末製造法及びSiOX粉末製造装置
CN102250584A (zh) 气雾化快凝磁性磨料制备设备
CN102603005B (zh) 一种制备纳米三氧化钼的方法
CN101497432B (zh) 溶液雾化氧化制备单一或复合金属氧化物的方法
CN103038159A (zh) 可分离的氧化物微粒或氢氧化物微粒的制造方法
CN101234750A (zh) 一种超细微粒和纳米颗粒的制备方法
CN103341632A (zh) 一种干法制备片状锌粉的工艺
CN107619028B (zh) 五氟化磷高效连续化合成工艺
CN107487781B (zh) 一种红丹生产水法节能造粒工艺
CN112846207B (zh) 一种超细活性锌粉的制备方法
CN115325816B (zh) 一种高纯二氧化钛生产设备及其工艺
CN205170409U (zh) 一种低氧超细二硫化钼的制备系统
CN108017086A (zh) 一种碳酸氧铋-氧化石墨烯纳米复合物的制备方法
CN105935620A (zh) 一种纳米材料的制备装置
CN102897784B (zh) 碳化硼冶炼炉烟气闭路回收工艺及设备
CN108970601A (zh) 一种具有氧化锌/二氧化钛异质结构的光催化涂层及其制备方法和应用
CN112316567B (zh) 一种纳米纤维过滤薄膜及其制备方法和装置
CN115178265A (zh) 一种制备醋酸环己酯加氢催化剂的装置及方法
CN109019668B (zh) 一种热球磨氧化制备超细活性氧化锌粉末的方法
CN206351253U (zh) 一种快速凝固制备微细金属粉末的装置
CN207170959U (zh) 一种多孔转杯离心粒化装置
CN109482453A (zh) 一种汽车外壳的液态陶瓷喷涂制备方法
CN214486780U (zh) 一种冷却造粒装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201808931

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20161202

WWE Wipo information: entry into national phase

Ref document number: 1808931.8

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2018548265

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112016005509

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870022

Country of ref document: EP

Kind code of ref document: A1