WO2017092463A1 - 一种双足机器人的步态控制方法和装置 - Google Patents

一种双足机器人的步态控制方法和装置 Download PDF

Info

Publication number
WO2017092463A1
WO2017092463A1 PCT/CN2016/098084 CN2016098084W WO2017092463A1 WO 2017092463 A1 WO2017092463 A1 WO 2017092463A1 CN 2016098084 W CN2016098084 W CN 2016098084W WO 2017092463 A1 WO2017092463 A1 WO 2017092463A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
phase
equal
parameter value
centroid
Prior art date
Application number
PCT/CN2016/098084
Other languages
English (en)
French (fr)
Inventor
苏鹏程
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to JP2017565774A priority Critical patent/JP6501921B2/ja
Priority to KR1020177037108A priority patent/KR101867793B1/ko
Priority to DK16869774.6T priority patent/DK3299923T3/da
Priority to EP16869774.6A priority patent/EP3299923B1/en
Priority to US15/537,117 priority patent/US10031524B2/en
Publication of WO2017092463A1 publication Critical patent/WO2017092463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39208Robot is active, realizes planned trajectory by itself

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a gait control method and apparatus for a biped robot.
  • the biped robot is a robotic system that imitates the structure and motion form of the human leg. It has the motion characteristics of the human leg, and has complex interaction with the ground during the walking process.
  • the biped robot has higher requirements for stability control when walking. Therefore, reasonable gait control is a prerequisite for realizing the dynamic walking of the biped robot.
  • a complete gait of the biped robot includes three stages: start, middle step and stop.
  • the start-up phase and the stop-step phase are very critical parts of gait control, and are related to whether the robot can successfully enter the walking state and end the walking state.
  • the current research on biped robots mainly focuses on the gait control in the middle step, while the gait control in the starting and stopping stages is less studied.
  • the walking phase and the stopping phase are poorly stable in walking, and the walking state cannot be stably entered and the walking state is stably ended.
  • the invention provides a gait control method and device for a biped robot, which solves the problem that the existing biped robot gait control scheme has poor walking stability and can not stably enter the walking state and stably end in the initial stage and the stop stage.
  • the problem of walking status is not stably enter the walking state and stably end in the initial stage and the stop stage.
  • a gait control method for a biped robot including:
  • the first value of each gait control parameter at the beginning of the centroid phase and the second value of the gait control parameter at the end of the middle step phase are obtained;
  • the walking of the biped robot is controlled, so that the motion trajectory of the centroid of the biped robot satisfies the movement trajectories of the centroid in the starting phase, the middle step and the stopping phase, so as to realize the stable walking of the biped robot.
  • a gait control apparatus for a biped robot comprising:
  • the trajectory acquisition unit in the center of mass center is used to select the gait control parameters of the biped robot in the starting phase, the middle step phase and the stopping phase, and obtain the centroid of the biped robot when the zero moment point of the biped robot is located in the stable region The trajectory of the movement in the middle step;
  • a parameter value obtaining unit configured to obtain a first value of each gait control parameter at the beginning of the middle step stage and a second value of each gait control parameter at the end of the middle step stage according to the motion trajectory of the center step phase centroid ;
  • a constraint setting unit configured to set, by using the first value, a first constraint condition that the centroid needs to be satisfied at the end of the start phase, and use the second value to set a second constraint condition that the centroid needs to satisfy at the beginning of the stop phase;
  • centroid start-stop phase trajectory calculation unit configured to calculate motion trajectories of the centroid in the starting phase and the stopping phase respectively based on the first constraint condition and the second constraint condition;
  • the centroid trajectory control unit is used to control the walking of the biped robot, so that the motion trajectory of the center of mass of the biped robot satisfies the motion trajectories of the centroid in the starting phase, the middle step phase and the stopping phase, so as to realize the stable walking of the biped robot.
  • the beneficial effects of the present invention are: the gait control scheme of the biped robot of the embodiment of the present invention, first selecting the gait control parameter of the biped robot, and acquiring the zero force of the biped robot
  • the motion trajectory of the centroid in the middle step and the first value and the second value corresponding to the gait control parameters determine the motion trajectory of the centroid in the starting phase according to the first value, and use the second Numerically calculate the trajectory of the centroid in the stop phase, so that the gait control parameters are used to achieve the continuous connection between the start phase and the stop phase, respectively, and the mid-step phase is limited by the ZMP condition to ensure the stable walking of the robot.
  • the scheme provides a new control scheme for the walking gait of the joints of the legs based on the centroid-based motion trajectory on the basis of ensuring that the robot's centroid satisfies the stable walking.
  • This control scheme can further increase the stability of the walking process. Improve the efficiency of the entire walking process and achieve a stable start and end of the walking process.
  • FIG. 1 is a schematic flow chart of a biped robot gait control method according to an embodiment of the present invention
  • FIG. 2 is a front view of a two-legged model of a biped robot according to an embodiment of the present invention
  • FIG. 3 is a side elevational view of a two-legged model of a biped robot according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a walking position projection of a biped robot according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of the principle of a linear inverted pendulum model
  • FIG. 6 is a front view of a support leg of a biped robot according to an embodiment of the present invention.
  • FIG. 7 is a front view of a swinging leg of a biped robot according to an embodiment of the present invention.
  • Figure 8 is a side elevational view of a biped robot with legs according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a swing angle of a shoulder of a biped robot according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a joint angle control structure of a biped robot according to an embodiment of the present invention.
  • the technical solution of the embodiment of the invention provides a complete gait control scheme for the biped robot to stabilize walking, which can achieve stable starting and stopping more effectively. Moreover, by obtaining the motion trajectory of the middle step stage while satisfying the zero moment point always falling in the stable area, the motion trajectory of the starting, stopping and middle step stages is reasonably connected in position, speed and/or acceleration. To ensure that stability conditions are met in both the start and stop phases.
  • the scheme utilizes the transformation between potential energy and kinetic energy during the movement of the robot, and can quickly start and end the normal walking process in one step, avoiding the need for several stages in the existing solution to reach and end the normal walking state. The problem is to achieve a stable and fast walking of the biped robot.
  • a biped robot gait control method includes the following steps:
  • Step S11 selecting gait control parameters of the biped robot in the starting phase, the middle step phase and the stopping phase, and acquiring the zero moment point of the biped robot (Zero Moment Point, ZMP for short) is located in the stable region, the biped robot The trajectory of the center of mass in the middle step;
  • Step S12 obtaining a first value of each gait control parameter at the beginning of the middle step and a second value of each gait control parameter at the end of the middle step at the center of the middle step according to the motion trajectory of the center step phase;
  • Step S13 using the first value to set a first constraint condition that the centroid needs to be satisfied at the end of the start phase, and using the second value to set a second constraint condition that the centroid needs to satisfy at the beginning of the stop phase;
  • Step S14 calculating motion trajectories of the centroid in the starting phase and the stopping phase respectively based on the first constraint condition and the second constraint condition;
  • Step S15 controlling the walking of the biped robot, so that the motion trajectory of the centroid of the biped robot satisfies the motion trajectories of the centroid in the starting phase, the middle step phase and the stopping phase, thereby realizing the stable walking of the biped robot.
  • the gait control parameters in step S11 include three parameters: position, velocity and acceleration, or the gait control parameters include position and velocity.
  • each parameter of the gait control parameter includes three directional components in the forward, lateral, and vertical directions when the biped robot is walking.
  • the gait control method of the biped robot of the present embodiment controls the trajectory of the centroid of the biped robot in both the starting and stopping phases, and controls the trajectory of the centroid of the biped robot while walking. It satisfies the movement trajectories of the center of mass in the starting phase, the middle step and the stopping phase, and realizes the stable walking of the biped robot. Due to the obtained centroid motion trajectory in the middle step, the stable walking condition is satisfied, and the corresponding calculus parameters determined by the centroid motion trajectory in the middle step are used to control the motion trajectory of the centroid in the starting phase and the stopping phase, and the stability can be ensured. .
  • the method of the embodiment can ensure the stability of the start phase and the stop phase, and at the same time make the start phase better interface with the middle step, the middle step stage and the stop stage.
  • the biped robot is able to walk stably during a complete walk.
  • FIG. 2 is a front view of a two-legged model of a biped robot according to an embodiment of the present invention
  • FIG. 3 is a side view of a two-legged model of a biped robot according to an embodiment of the present invention
  • FIG. 4 is a side view of the present invention.
  • M1 to m7 respectively indicate the mass of the link.
  • the traveling direction of the biped robot is the x-axis (ie, the forward direction), and the lateral direction of the biped robot is the y-axis (such as the right side of the walking), in a direction perpendicular to the ground.
  • the projection of the ankle joint of the support leg of the biped robot on the ground is taken as the coordinate origin, and the horizontal advancing direction is the X axis, and the lateral direction of the walking is the Y axis.
  • XOY plane rectangular coordinate system
  • the new support point is taken as the coordinate origin
  • the horizontal advancing direction is the X axis
  • the lateral direction of the walking is the Y axis
  • the biped robot's own plane rectangular coordinate system (XOY) is constructed
  • the termination state of the previous support point is The initial state
  • the robot has started a new single step, and these single steps are connected to form the continuous walking mode of the robot.
  • the projection of the ankle joint with the right support leg on the ground is taken as the coordinate origin (ie, the O point represents the projection of the biped robot's right leg in the plane rectangular coordinate system, and the O point is predetermined in the Y-axis direction.
  • the point of the distance represents the projection of the left leg of the biped robot in the plane Cartesian coordinate system).
  • the point on the X-axis represents the motion trajectory of the right support leg when the biped robot is walking
  • the point on the left side of the X-axis and at a predetermined distance from the X-axis represents the motion trajectory of the left support leg.
  • the gait control parameters are exemplified for position, velocity and acceleration.
  • the biped robot gait control scheme must consider its stability.
  • ZMP Zero Moment Point
  • ZMP is used as an important basis for the dynamic walking stability of the biped robot.
  • ZMP is the point of action of the combined force of the robot on the sole of the support leg, and at this point the resultant moment is zero in the horizontal direction.
  • the stable area is the projection of the convex area formed by the support feet on the horizontal plane.
  • the middle step is a stable periodic walking phase of the biped robot.
  • a complete single step is divided into a single leg support period (set time T 1 ) and a two-leg support period (set time T 2 ), and the entire middle step stage has Multiple periodic single-leg support periods and two-leg support periods.
  • the linear inverted pendulum model is used to control the trajectory of the centroid to ensure that the robot satisfies the stability condition when walking (ie, the zero moment point ZMP is always located in the stable region).
  • the present invention is not limited to the linear inverted pendulum model, and other models may be used to calculate the motion trajectory of the centroid.
  • the trajectory is used to obtain the value of each gait control parameter at the beginning of the middle step at the center of the middle step, and the centroid is obtained at the end of the middle step.
  • the value of each gait control parameter is taken as the second value; more specifically, the following information is obtained for the biped robot: the position of the centroid in the x-axis direction of the coordinate system at the start of the centroid phase X d (0) ,speed And acceleration Position Y d (0), speed in the y-axis direction And acceleration And the position of the centroid in the x-axis direction of the coordinate system at the end of the middle step, X s (0), speed And acceleration Position Y s (0), speed in the y-axis direction And acceleration If the walking stability is maintained throughout the middle step, the center of mass of the biped robot is set to be constant, that is, the position of the centroid in the z-axis direction is constant, and the velocity and acceleration are
  • the first value and the second value described above are obtained from the calculation result of the linear inverted pendulum model.
  • the construction of the linear inverted pendulum model and the calculation of the linear inverted pendulum model are not the focus of the embodiment of the present invention, and can be implemented by using the prior art solution.
  • the specific algorithm is not described again, and is only briefly described as follows.
  • the robot with the two-leg support period is simplified into a virtual linear inverted pendulum model.
  • FIG. 5 is a schematic diagram of the linear inverted pendulum model principle used in the embodiment, as shown in FIG.
  • the model uses the ZMP point of the robot motion as the virtual pivot point, and the robot centroid 51 as the mass point of the linear inverted pendulum model.
  • the support foot 52 and the support leg 53 are the two support legs of the robot with the two legs supporting period, and the ZMP point is the virtual pivot point of the inverted pendulum , located between the two support feet.
  • the inverted pendulum model is characterized by a constant height of the center of mass and no torque at the bottom of the pendulum. That is, in the middle step stage, the height of the center of gravity of the biped robot is constant, which is a predetermined value Hz.
  • the motion trajectory of the ZMP during the support period of the legs is first planned, and then the motion trajectory of the centroid is solved.
  • the ZMP can be smoothly moved from the previous supporting foot to the later supporting foot, and the continuity of the centroid speed change can be ensured, thereby enhancing the stability of the robot walking movement.
  • ZMP equation x (. 1) of the x coordinate of the ZMP, ZMP equation y (2) for the y-axis coordinates of the ZMP, Hz height centroid in step phase, g is the gravitational acceleration.
  • the equation of motion of the centroid in the x-axis direction and the y-axis direction during the single-leg support period is:
  • the ZMP position x ZMP and y ZMP need to be planned in advance in the support domain composed of the robot's two feet to make it move smoothly in the support domain. And to deal with the constraint relationship between the boundary conditions between the support period of the legs and the support period of the single leg, that is, the boundary between the formulas (1), (2) and the formulas (3), (4) is kept continuous to ensure that they A smooth transition between the two.
  • the trajectories of the centroids in the x-axis direction and the y-axis direction at the start of the two-leg support period in the middle step can be obtained, and the gait control parameters at the start time of the support period of the legs can be obtained.
  • the first value corresponding to position, velocity and acceleration respectively: X d (0), Y d (0)
  • the gait control parameters at the beginning of the one-leg support period respectively: X s (0), Y s (0)
  • the acquired first and second values are then used for centroid trajectory control in the start and stop phases.
  • the starting phase is the transition phase between the robot's static standing state from both feet and the mid-step gait with smooth periodicity. Let this phase be T 1 .
  • the first constraint that the centroid is satisfied at the end of the start phase includes: a first forward constraint (ie, a constraint in the x-axis direction), a first lateral constraint (ie, a constraint in the y-axis direction), and a first vertical constraint.
  • Condition ie constraint in the z-axis direction).
  • the embodiment of the present invention reduces the center of gravity of the robot and converts the potential energy into kinetic energy as much as possible, so that the robot can enter the kinetic energy more quickly.
  • the middle step ie the beneficial effect of starting in one step.
  • the initial velocity of the centroid, as well as the kinetic energy and the potential energy, at the beginning of the intermediate step phase (the middle step of the step is the start of the second leg support period closest to the start phase) Transform the relationship and calculate the height Hz of the center of the biped robot at the end of the starting phase.
  • the approximate distance ⁇ z at which the center of gravity is to be decreased is first estimated by the following formula (5).
  • the initial velocity v 0 0 in the starting phase of the centroid
  • v 1 is the final velocity of the centroid in the starting phase
  • m is the mass of the robot
  • g is the acceleration of gravity
  • the height of the centroid in the middle step is maintained constant, which is equal to the height Hz of the centroid at the end of the starting phase.
  • the constraint of the centroid in the first vertical direction includes: at the beginning of the starting phase, the position parameter value is equal to the initial height of the biped robot centroid, the speed parameter value is equal to 0, and the acceleration parameter value is equal to 0; at the end of the starting phase, the position parameter value is equal to the centroid
  • the height Hz in the vertical direction at the end of the start phase, the speed parameter value is equal to 0, and the acceleration parameter value is equal to zero.
  • Z(t) is the position of the centroid in the z-axis direction
  • t is time
  • Hz 0 is the initial height of the center of mass of the biped robot (ie, the height when t is equal to 0)
  • Hz is the height of the centroid at the end of the starting phase (ie, when t is equal to T1).
  • the height Hz of the centroid at the end of the starting phase in the formula (6) may be determined by the difference between the initial height H z0 of the centroid and the falling distance ⁇ z, or may be a difference from the difference not greater than A value within a predetermined range of values. That is, the specific value of Hz may be equal to the difference obtained by subtracting ⁇ z from H z0 , or may be equal to a value near the difference, which is not limited as long as a better value can be obtained to ensure the stability of walking. It can be understood that the first value of each gait control parameter can take other values near the value on the right side of each equation in equation (6) that are not too small.
  • the polynomial interpolation is used, and according to the first constraint, the trajectory Z(t) of the centroid in the z-axis direction is:
  • a 0 to a 5 are specific parameters, and the corresponding parameter value in the formula (6) is brought into the formula (7) to calculate the trajectory of the centroid in the z-axis direction with time t.
  • the first derivative of equation (7) can be obtained first, and the velocity of the centroid in the Z direction is obtained as follows:
  • the first forward constraint condition satisfied by the centroid includes: at the beginning of the start phase, the values of the position parameter value, the speed parameter value, and the acceleration parameter are all equal to 0; at the end of the start phase, the position parameter value is equal to the position parameter To the first value, the speed parameter value is equal to the forward value of the speed parameter; the value of the acceleration parameter is equal to the forward value of the acceleration parameter, that is, the position, velocity and acceleration of the centroid at the initial moment are both 0, at the end of the starting phase. At the moment, the center of mass is farthest from the support point. If it is guaranteed that the robot can still satisfy the stable condition (ie, the ZMP point is in the support domain), the biped robot is stable throughout the initial stage.
  • the stable condition ie, the ZMP point is in the support domain
  • the embodiment of the present invention sets the position, velocity and acceleration at the end of the starting phase to be the same as the initial position, velocity and acceleration of the two-leg support period in the middle step to ensure the gait between the starting phase and the mid-step gait. Smooth transition. Because the gait control is performed by the linear inverted pendulum model in the middle step, the stability condition is satisfied, so that it can be ensured that the starting condition also satisfies the stability condition. It can be seen that the first constraint that the centroid needs to satisfy in the x-axis direction is as follows:
  • b 0 to b 5 are specific parameters, and the corresponding parameter value in the formula (8) is brought into the formula (9) to calculate the trajectory of the centroid in the x-axis direction with time t.
  • the distance between the two feet of the robot is W.
  • the first lateral constraint condition of the centroid satisfaction includes: at the beginning of the starting phase, the position parameter value is equal to half the distance between the biped robot's feet, the speed parameter value is equal to 0, the acceleration parameter value is equal to 0; and the position parameter is at the end of the starting phase
  • the value is equal to the lateral value of the position parameter
  • the velocity parameter value is equal to the first value of the velocity parameter
  • the acceleration parameter value is equal to the lateral first value of the acceleration parameter; that is, the initial moment of the starting phase, the center of mass is at the middle of the distance of the biped, the velocity Both the acceleration and the acceleration are zero.
  • the centroid At the end of the starting phase, the centroid is farthest from the support point.
  • the position, velocity, and acceleration at the time of setting the y-axis direction are the same as the position, velocity, and acceleration at the beginning of the support period of the middle step.
  • the first constraint that the centroid needs to satisfy in the y-axis direction is as follows:
  • Y(0) with The initial position of the starting phase, the position, velocity and acceleration of the centroid, Y(T 1 ), with The position, velocity and acceleration of the center of mass of the biped robot in the y-axis direction at the end of the starting phase, Y(T 1 ), with The value of the centroid in the y-axis direction at the start of the two-leg support period calculated in the aforementioned mid-stage is Y d (0), speed And acceleration
  • the polynomial interpolation method is used to obtain the trajectory y(t) of the centroid in the y-axis direction according to the constraint condition of the formula (10):
  • c 0 to c 5 are specific parameters, and the corresponding parameter values in the formula (10) are brought into the equation (11) to calculate a trajectory in which the centroid changes with time t in the y-axis direction.
  • the stop phase refers to the process in which the robot gradually reduces the speed from a smooth periodic mid-step gait until the smooth static standing state is restored. Let this phase of time be T 1 .
  • the second constraint that the centroid needs to satisfy includes: a second forward constraint (ie, a constraint in the x-axis direction), a second lateral constraint (ie, a constraint in the y-axis direction), and a second vertical constraint (ie, Constraints in the z-axis direction).
  • the second vertical direction constraint of the centroid includes: at the beginning of the stop phase, the position parameter value is equal to the height Hz in the vertical direction at the end of the start phase, the speed parameter value is equal to 0, and the acceleration parameter value is equal to 0; At the end of the phase, the position parameter value is equal to the initial height of the biped robot's centroid, the velocity parameter value is equal to 0, and the acceleration parameter value is equal to zero. Since the robot is decelerated from the walking speed in the middle step to 0, in order to speed up the stopping process, the energy conversion direction is opposite in the stopping phase and the starting phase.
  • the embodiment of the invention improves the center of gravity of the robot, that is, the height of the center of mass from the middle step.
  • the Hz is increased to the height Hz 0 at the beginning of the start, so that the kinetic energy is converted into potential energy as much as possible, so that the robot can enter the stationary stationary state more quickly (that is, the beneficial effect of stopping in one step).
  • the position, velocity and acceleration of the initial time of the stop phase and the end time of the middle step phase are the same in the z-axis direction. . Therefore, the second constraint condition that the robot centroid should satisfy in the z-axis direction at the start of the stop phase can be obtained as follows:
  • Z(0) with At the initial moment of the step-by-step phase, the position, velocity and acceleration of the centroid in the z-axis direction, Z(T 1 ), with At the end of the step-by-step phase, the position, velocity and acceleration of the center of mass of the biped robot in the z-axis direction, Zc is the height of the centroid at the initial moment of the stop phase (which can be equal to the height Hz of the center of mass in the middle step), Zc 0 is the stage of the double The height of the centroid of the foot robot initially stable and upright (can be equal to the initial height of the centroid of the starting phase, Hz 0 ).
  • the second value of each gait control parameter can also take other values near the value on the right side of each equation in the formula (12) and the deviation is not too large, and is not limited to the equations in the formula (12). The value given on the right side.
  • the polynomial interpolation is used, and according to the constraint condition (12), the trajectory Z(t) of the centroid in the z-axis direction is obtained as follows:
  • a' 0 to a' 5 are specific parameters, and the corresponding parameter values in the formula (12) are brought into the equation (13) to calculate a trajectory in which the centroid changes with time t in the z-axis direction.
  • the second forward constraint of the centroid includes: at the beginning of the stop phase, the position parameter value is equal to the forward value of the position parameter, the velocity parameter value is equal to the forward value of the velocity parameter, and the acceleration parameter value is equal to the acceleration parameter. Forward second value; at the end of the stop phase, the position parameter value and the speed parameter value, the acceleration parameter value are equal to zero.
  • the position, velocity and acceleration of the centroid at the initial moment of the stop phase are the same as the position, velocity and acceleration of the end of the support period of the middle step, respectively, according to the symmetry and continuity, that is, respectively and the middle step
  • the position, velocity and acceleration at the beginning of the single leg support period are the same to ensure a smooth transition between each other and to ensure The stop phase satisfies the stability conditions.
  • the position, velocity and acceleration of the centroid are both zero to restore a stable static erect state. It can be seen that the second constraint that the centroid is satisfied at the beginning of the stop phase is as follows:
  • the position of the center of mass at the start of the stop phase X (0), speed And acceleration The values of the center of mass in the x-axis direction at the start of the single-leg support period are the X s (0) and the velocity. And acceleration At the end of the stop phase, the position of the center of mass X(T 1 ) is equal to 0, speed Equal to 0, acceleration Equal to 0.
  • b' 0 to b' 5 are specific parameters, and the corresponding parameter values in the formula (14) are brought into the equation (15) to calculate the trajectory of the centroid in the x-axis direction with time t.
  • the second lateral constraint of the centroid includes: at the beginning of the stop phase, the position parameter value is equal to the lateral value of the position parameter, the velocity parameter value is equal to the lateral value of the velocity parameter, and the acceleration parameter value is equal to the acceleration parameter The second value is laterally; at the end of the stop phase, the position parameter value is equal to half the distance between the feet of the biped robot, and the speed parameter value and the acceleration parameter value are both equal to zero.
  • the position, velocity and acceleration of the centroid at the start time of the stop phase are the same as the position, velocity and acceleration of the end of the two-leg support period in the middle step, respectively, according to the symmetry and continuity, that is, the separate and the middle step.
  • the position of the center of mass at the start of the stop phase Y (0), speed And acceleration It is equal to the position Y s (0) and velocity of the centroid in the y-axis direction at the start of the single-leg support period calculated in the preceding step.
  • the polynomial interpolation is used, and the y-axis y(t) of the centroid in the y-axis direction is obtained according to the constraint condition of the formula (16):
  • c' 0 to c' 5 are specific parameters, and the corresponding parameter values in the formula (16) are brought to the equation (17) to calculate the trajectory of the centroid in the y-axis direction with time t.
  • the center of mass of the biped robot can be traversed in the middle step, the start phase and the stop phase.
  • the gait control parameters including position, velocity and acceleration
  • the gait control parameters may include position and speed, when the gait
  • the control parameters are position and speed
  • the position parameter and the speed parameter are included in the three directions component of the forward, lateral and vertical directions of the biped robot.
  • Yet another embodiment of the present invention controls the motion of joint points on the legs based on the motion trajectory of the center of mass.
  • the method further comprises: calculating the trajectory of the ankle joint in the starting phase, the middle step and the stopping phase according to the desired moving height of the ankle joint of the biped robot, and utilizing the ankle joint
  • the motion trajectory calculates the desired angular trajectory of the ankle joint at each stage.
  • the trajectory of the knee joint at each stage is calculated;
  • the trajectory of the joint in the starting phase, the middle step and the stopping phase is used to calculate the desired angular trajectory of the knee joint at each stage.
  • the swinging ankle joint must pass through three key points, namely the initial point, the highest point and the end point. According to the position, velocity and acceleration constraints at these three points, similar to the previous one, the polynomial interpolation can be used to find the trajectory of the swinging ankle joint.
  • FIG. 6 is a front view of a biped robot support leg according to an embodiment of the present invention
  • FIG. 7 is a front view of a biped robot swing leg according to an embodiment of the present invention, as shown in FIG. 6 and
  • L c represents the distance from the center of mass of the biped robot to the hip joint
  • L k is the distance from the hip joint to the knee joint
  • L a represents the knee
  • H h in Fig. 6, and H h1 in Fig. 7 indicate the distance from the hip joint to the ankle joint.
  • ⁇ a , ⁇ h , ⁇ k , and ⁇ a1 , ⁇ h1 , and ⁇ k1 are intermediate calculation processes.
  • the auxiliary angle used is calculated.
  • Figure 8 is a side elevational view of a biped robot's legs, similarly, as shown in Figure 8, in a lateral plane (i.e., projection of the robot motion in the yoz plane), centroid (see Figure 8).
  • the black solid circle shown in the figure is half the distance between the feet of the biped robot W/2, the distance between the center of mass and the hip joint is z ch , the distance from the hip joint to the ankle joint is z ce , and the hip joint is relative to the support foot
  • the y coordinate is y ce .
  • the upper body needs to be vertical and the sole of the foot is kept horizontal, which can simplify the front view plane travel to a degree of freedom problem.
  • the angle associated with gait is the rolling of the ankle joint (rotation around the x-axis) and the freedom of rolling of the hip joint.
  • the angles and directions of the two ankle joints are the same, and the angles of the two hip joints are equal, and the direction is opposite to that of the ankle joint.
  • the trajectory of the centroid and the trajectory of the ankle joint can obtain the joint angle of the oscillating leg: the ankle joint angle ⁇ a1 , the knee joint joint angle ⁇ k1 and the hip joint joint angle ⁇ h1 , and the angle with time The trajectory of change.
  • the angles ⁇ and ⁇ ce in FIG. 8 are the left-right angles between the line and the vertical direction of the hip joint and the ankle joint when the robot is walking, and are auxiliary calculation angles.
  • the calculation process of calculating the motion trajectory of the ankle joint in the starting phase, the middle step phase and the stopping phase is: presetting the desired motion height of the ankle joint (for example, , H h ), this height is the highest point of ankle joint motion, the position, velocity and acceleration of the starting point of the ankle joint are all 0, the position, velocity and acceleration of the end point are both 0, and the position of the highest point is H h , speed and acceleration are 0.
  • H h the desired motion height of the ankle joint
  • the constraints of the ankle joint are calculated, and according to the constraint conditions, the motion trajectory of the ankle joint from the starting point to the highest point and the motion trajectory from the highest point to the ending point can be calculated by applying polynomial interpolation.
  • the spatial position of the centroid and the ankle joint at each moment is obtained according to the movement trajectory of the centroid and the ankle joint at each stage during walking
  • the hip joint is obtained according to the geometric center position of the robot and the geometric position of the hip joint.
  • the position and angle of the knee joint are calculated by the triangular geometric relationship, and the knee joint is obtained.
  • the joint angle of the ankle joint, the knee joint, and the hip joint of the biped robot is calculated by a triangular geometric relationship.
  • other algorithms may also be used to complete the above.
  • the calculation process can be performed as long as the desired angle of the biped robot's leg joint and hip joint can be calculated.
  • Other algorithms such as inverse kinematics analysis. Inverse kinematics solves the corresponding joint variables based on the known position and attitude of the end effector.
  • Various calculation schemes for example, analytical methods, geometric methods, geometric analytical methods, and numerical solutions) are provided in the prior art.
  • the prior art solution can realize the desired angular trajectory of the hip joint according to the motion trajectory of the hip joint (that is, the trajectory of the joint angle of the hip joint with time), and the embodiment of the present invention does not limit the inverse kinematics analysis method.
  • how to solve the desired angle trajectory is not the focus of the embodiment of the present invention, and any one of the inverse kinematics analysis may be adopted in the specific implementation, and details are not described herein again.
  • the present embodiment uses polynomial interpolation to calculate the motion trajectory of the centroid, and the respective motion trajectories of the hip joint and the ankle joint.
  • the calculation of the centroid and hip joint and ankle joint motion trajectory in the technical solution of the present invention is not limited to the polynomial of the embodiment. Interpolation. Other calculation methods can also be used.
  • one or more of the hip, ankle and knee joints are selected as control points; when the biped robot is walking, real-time detection
  • the rotation angles of the control points (such as the ankle joint, the knee joint, and the hip joint) are adaptively tracked and controlled by the desired angular trajectories of the ankle joint, the knee joint, and the hip joint at each stage, respectively. Achieve a stable walk of the biped robot.
  • FIG. 10 is a schematic diagram showing a joint angle control structure of a biped robot according to an embodiment of the present invention.
  • ⁇ d is a desired joint angle
  • ⁇ r is an actually detected joint angle
  • k p is a proportional coefficient
  • k d is the rotational moment.
  • the hip joint is taken as an example for illustration.
  • the joint angle (desired angle) required for the gait in each stage is poorly divided by a proportional integral differential PID controller (PID, proportional proportional, integral integration, differential differentiation) or proportional differential PD controller (PD, proportional proportional) And differential differentiation control, outputting the input torque of the hip joint of the biped robot, thereby driving the hip joint motion of the robot to achieve the purpose of stabilizing walking.
  • PID proportional integral differential PID controller
  • PD proportional differential PD controller
  • differential differentiation control outputting the input torque of the hip joint of the biped robot, thereby driving the hip joint motion of the robot to achieve the purpose of stabilizing walking.
  • the solution of the embodiment of the present invention uses the torque control means to the biped robot.
  • the linear coupling system is simplified to a linear multivariable decoupling system.
  • a separate PID or PD controller can be used for each joint of the biped robot, so as to achieve the tracking control of the desired angle of each joint, and finally realize the stable operation of the robot according to the set ga
  • the gait control method further comprises: selecting an angle control parameter of the shoulder swing of the biped robot: angular displacement, angular velocity, and angular acceleration; respectively, swinging the leg according to the start time and the end time of the swinging leg swing in the stepping stage of the biped robot
  • the corresponding angular displacement value, angular velocity value and angular acceleration value of the shoulder joint are required to set the angular constraint condition of the shoulder joint corresponding to the swing leg; according to the angle constraint condition, the polynomial interpolation is used to calculate the expectation of the shoulder joint swing in the step stage Angle trajectory; using the starting moment of the swinging leg swing in the stepping stage of the biped robot, the angular displacement value, the angular velocity value and the angular acceleration value expected
  • ⁇ (0) is the start time of the single-step period in the middle step phase
  • angular displacement of the swing of the right shoulder joint
  • angular velocity Indicates the angular acceleration
  • ⁇ (T) is the end time of the single-step period in the middle step
  • angular displacement of the swing of the right shoulder joint
  • angular velocity Indicates the angular acceleration
  • ⁇ max is the desired maximum swing angle
  • - ⁇ max is the desired minimum swing angle, where the negative sign indicates the direction.
  • the desired angular trajectory of the right shoulder joint swing in the middle step is:
  • d 0 to d 5 in the formula (19) are parameters, and the corresponding parameter values in the formula (18) are brought into the formula (19), and the desired angle trajectory can be calculated.
  • the angle of the left shoulder joint swing is symmetrical with the previous one.
  • the initial value of the shoulder joint swing angle is 0.
  • the final value of the shoulder joint swing angle is 0, and it is connected with the swing angle in the middle step gait to obtain the first angle constraint condition and the second angle.
  • the desired angular trajectory of the shoulder swing angle is similarly available in the start and stop phases.
  • the first angle constraint that the right shoulder joint swing angle satisfies is:
  • the desired angular trajectory of the right shoulder joint swing in the starting phase is:
  • the desired angular trajectory of the right shoulder joint swing at the start of the stop phase is:
  • the angle of the left shoulder joint swing is symmetrical with the previous one.
  • the walking stability and the stopping phase in the existing scheme are poor in stability, which easily leads to the walking instability of the robot and affects the problem of the robot walking.
  • the linear inverted pendulum model is used to control the position of the centroid of the robot (ie, the first value and the second value of each gait control parameter are obtained) to increase the stability of walking.
  • Sexuality avoiding the instability caused by the instantaneous switching of the support legs in the middle step of the cycle walking and the impact on the robot.
  • the first constraint and the second value corresponding to each gait control parameter respectively determine a first constraint condition that the centroid is satisfied in the initial stage and a second constraint that is satisfied in the stop phase, thereby
  • the trajectory of the centroid is controlled to control the walking of the biped robot, so that the trajectory of the centroid of the biped robot satisfies the motion trajectories of the centroid in the starting phase, the middle step and the stopping phase, and realizes the biped robot. Stable walk.
  • the scheme realizes the normal phase walking state in one step in the initial stage, and converts the kinetic energy into potential energy, completes the stopping process in one step in the stopping phase, and makes the starting phase and the stopping phase Continuously connected with the mid-step gait, respectively, to meet the stable walking conditions, and to achieve an efficient and stable start and end of the walking process.
  • the joint angles of the hip, knee and ankle joints of the legs were calculated by the structural characteristics of the robot and the inverse kinematics analysis.
  • the stability of the center of mass during walking is further ensured, and the walking stability of the biped robot is realized.
  • a gait control device for a biped robot comprising:
  • the trajectory acquisition unit in the center of mass center is used to select the gait control parameters of the biped robot in the starting phase, the middle step phase and the stopping phase, and obtain the centroid of the biped robot when the zero moment point of the biped robot is located in the stable region
  • the trajectory of the movement in the middle step is configured to obtain the first value of the gait control parameter at the beginning of the middle step stage and the centroid at the end of the middle step stage according to the trajectory of the centroid of the middle step stage a second value of the gait control parameter;
  • a constraint setting unit configured to set, by using the first value, a first constraint condition that the centroid needs to be satisfied at the end of the start phase, and use the second value to set a first time that the centroid needs to be satisfied at the beginning of the stop phase
  • the centroid start-stop phase trajectory calculation unit is configured to calculate the motion trajectory of the centroid in the start phase and the stop phase respectively based on the first constraint condition and the second constraint condition; the centroid
  • the centroid trajectory control unit includes: an ankle joint trajectory calculation unit, a hip joint trajectory calculation unit, a joint angle calculation unit, and a joint angle control unit; and an ankle joint trajectory calculation unit for using the biped robot ⁇ The desired movement height of the joint, calculating the trajectory of the ankle joint in the starting phase, the middle step and the stopping phase; the hip trajectory calculation unit is used to calculate the biped robot hip joint in the starting phase according to the trajectory of the centroid at each stage Motion trajectory of the middle step and the stop stage; the joint angle calculation unit is used to calculate the hip joint by using the trajectory of the hip joint and the ankle joint at various stages, the structural positional relationship of the legs of the biped robot, and the length of the leg length.
  • the desired angle trajectory of the ankle joint and the knee joint at each stage; the joint angle control unit is used to select one or more of the hip joint, the ankle joint and the knee joint as a control point; when the biped robot is walking, the real-time detection control The corner of the point, using the control point at the above-mentioned stages of the desired angle trajectory pair detection Angle control point adaptively tracking control the trajectory of the center of mass of the robot when the biped walking meet the trajectory of the centroid initial stage, the stage and the stop step in phase.
  • each parameter of the gait control parameter includes three directional components in the forward, lateral, and vertical directions when the biped robot is walking; wherein the gait control parameter includes position and velocity, or Gait control parameters include position, velocity, and acceleration.
  • each parameter of the gait control parameter specifically used for obtaining is included in three directions of forward, lateral and vertical directions when the biped robot is walking. a component; wherein the gait control parameter includes position and velocity, or the gait control parameter includes position, velocity, and acceleration.
  • the centroid start-stop phase trajectory calculation unit is further configured to calculate the centroid of the biped robot according to the initial velocity of the centroid at the beginning of the intermediate step and the transformation relationship between the kinetic energy and the potential energy.
  • the obtained trajectory of the center of the biped robot in the middle step meets the following conditions: the center of mass at the beginning of the middle step and the height of the vertical direction at the end of the middle step are both Hz.
  • the parameter value acquisition module is further configured to select an angle control parameter of the shoulder joint swing of the biped robot: angular displacement, angular velocity, and angular acceleration;
  • the constraint setting unit is further configured to respectively set the swing leg corresponding to the angular displacement value, the angular velocity value and the angular acceleration value of the shoulder joint corresponding to the swing joint according to the start time and the end time of the swinging leg swing in the stepping stage of the biped robot, respectively.
  • the shoulder joint needs to meet the angular constraints;
  • the centroid start-stop phase trajectory calculation unit is also used to calculate the desired angular trajectory of the shoulder joint swing in the step stage according to the angle constraint condition
  • the constraint condition setting unit is also used to swing the leg swing in the step-by-step phase of the biped robot.
  • the centroid start-stop phase trajectory calculation unit is also used to calculate the desired angular trajectory of the shoulder joint swing and the desired angular trajectory of the shoulder joint swing in the starting phase according to the angle first constraint condition and the angle second constraint condition, and using polynomial interpolation
  • the centroid trajectory control unit is also used for detecting the rotation angle of the shoulder joint in real time when the biped robot is walking, and adaptively tracking and controlling the rotation angle of the shoulder joint by using the desired angular trajectory of the shoulder joint at the above stages to realize the biped The stable walk of the robot.
  • the position parameter and the velocity parameter are included in the forward, lateral, and vertical directions when the biped robot is walking.
  • the three directional components; the first constraint that the centroid is satisfied at the end of the starting phase includes: a first forward constraint, a first lateral constraint, and a first vertical constraint;
  • the first forward constraint condition includes: at the beginning of the starting phase, the values of the position parameter value and the speed parameter are both equal to 0; at the end of the starting phase, the position parameter value is equal to the forward value of the position parameter, and the speed parameter value is equal to the speed parameter forward direction.
  • the first value; the first lateral constraint comprises: at the beginning of the starting phase, the position parameter value is equal to half the distance between the biped robot's feet, and the speed parameter value is equal to 0; at the end of the starting phase, the position parameter value is equal to the position parameter side To the first value, the speed parameter value is equal to the velocity parameter laterally to the first value; the first vertical direction constraint comprises: at the beginning of the starting phase, the position parameter value is equal to the initial height of the biped robot centroid, and the velocity parameter value is equal to 0; At the end, the position parameter value is equal to the height Hz of the centroid in the vertical direction at the end of the starting phase, and the speed parameter value is equal to 0; the second constraint condition includes: a second forward constraint condition, a second lateral constraint condition and a second vertical direction constraint Condition; the second forward constraint includes: at the beginning of the stop phase, the position parameter value is equal to the position parameter The second value, the speed parameter value is equal to the forward value of the speed parameter
  • the gait control parameters selected by the trajectory acquisition unit in the center of mass include position, velocity and acceleration
  • the position parameters, velocity parameters and acceleration parameters are included in the three directions of forward, lateral and vertical directions when the biped robot is walking.
  • the first forward constraint includes: position parameter value, speed parameter value, and acceleration at the beginning of the start phase The parameter value is equal to 0; at the end of the starting phase, the position parameter value is equal to the forward value of the position parameter, the speed parameter value is equal to the forward value of the speed parameter, and the acceleration parameter value is equal to the forward value of the acceleration parameter;
  • the constraint conditions include: at the beginning of the starting phase, the position parameter value is half of the distance between the feet of the biped robot, and the speed parameter value and the acceleration parameter value are both equal to 0; at the end of the starting phase, the position parameter value is equal to the position parameter laterally a value, the speed parameter value is equal to the velocity parameter lateral first value, the acceleration parameter value is equal to the acceleration parameter lateral first value; the
  • the height of the direction Hz, the speed parameter value and the acceleration parameter value are both equal to 0; at the end of the stop phase, the position parameter value is equal to the initial height of the biped robot centroid, and the speed parameter value and the acceleration parameter value are both equal to zero.
  • the gait control device of the biped robot in this embodiment corresponds to the gait control method described above. Therefore, the working process of the gait control device of this embodiment can be referred to the corresponding description of the foregoing method part. I won't go into details here.
  • the embodiment of the present invention proposes a more effective control method for the start and stop phases, which can quickly start and end the normal walking process in one step, avoiding the past.
  • Several stages are required in the program to reach and end normal walking.
  • the trajectories calculated by using the inverted pendulum model in the middle step stage are properly connected in the position, velocity and acceleration parameters to ensure that the stability conditions are also satisfied in both the starting and starting phases.
  • the linear inverted pendulum model is planned in both the single-leg and the two-leg support stages to ensure that the robot satisfies the stability condition in both stages and reduces the robot during the support leg switching. The impact caused.

Abstract

一种双足机器人的步态控制方法和装置,该方法包括:选取起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时质心在中步阶段的运动轨迹(S11);得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时的第二数值(S12);利用第一数值设置在起步阶段结束时的第一约束条件,利用第二数值设置在止步阶段开始时的第二约束条件(S13);基于第一和第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹(S14);控制双足机器人的行走,使行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹(S15)。保证了起步、中步和止步步态间的稳定衔接和步行的稳定性。

Description

一种双足机器人的步态控制方法和装置 技术领域
本发明涉及机器人技术领域,具体涉及一种双足机器人的步态控制方法和装置。
背景技术
双足机器人是模仿人腿的结构和运动形式的机器人系统,它具有人腿的运动特性,在行走过程中与地面有着复杂的交互,双足机器人步行时对稳定控制有着更高的要求。因此,合理的步态控制是实现双足机器人仿人稳定动态步行的先决条件。双足机器人一个完整的步态包括起步、中步和止步三个阶段。起步阶段和止步阶段是步态控制中非常关键的部分,关系到机器人能否成功地进入步行状态和结束步行状态。但是,目前双足机器人的研究主要集中于对中步阶段的步态控制,而起步和止步阶段的步态控制研究较少。另外现有技术方案中,起步阶段和止步阶段步行稳定差,不能稳定地进入步行状态及稳定地结束步行状态。
发明内容
本发明提供了一种双足机器人的步态控制方法和装置,以解决现有双足机器人步态控制方案中存在的起步阶段和止步阶段步行稳定差、不能稳定地进入步行状态及稳定地结束步行状态的问题。
根据本发明的一个方面,提供了一种双足机器人的步态控制方法,包括:
选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时,双足机器人的质心在中步阶段的运动轨迹;
根据中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;
利用第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用第二数值设置在止步阶段开始时质心需要满足的第二约束条件;
基于第一约束条件和第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;
控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。
根据本发明的另一个方面,提供了一种双足机器人的步态控制装置,该装置包括:
质心中步阶段轨迹获取单元,用于选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时,双足机器人的质心在中步阶段的运动轨迹;
参数值获取单元,用于根据中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;
约束条件设置单元,用于利用第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用第二数值设置在止步阶段开始时质心需要满足的第二约束条件;
质心起步止步阶段轨迹计算单元,用于基于第一约束条件和第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;
质心轨迹控制单元,用于控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。
本发明的有益效果是:本发明实施例的双足机器人步态控制方案,先选取双足机器人的步态控制参数,并获取双足机器人的零力 矩点ZMP位于稳定区域内时,质心在中步阶段的运动轨迹和各步态控制参数对应的第一数值和第二数值,根据第一数值确定质心在起步阶段的运动轨迹,并利用第二数值计算质心在止步阶段的运动轨迹,从而通过步态控制参数实现起步阶段、止步阶段分别与中步阶段保持连续衔接,且由于中步阶段通过ZMP的条件限定,保证了机器人的稳定步行,则通过步态控制参数对起步、中步及止步阶段合理衔接,使各个阶段都满足稳定步行条件,保证了双足机器人在整体运动阶段的稳定步行。此外,本方案在保证机器人质心满足稳定步行的基础上,基于质心的运动轨迹提供了一种对腿部各关节行走步态的新的控制方案,这种控制方案能够进一步增加步行过程的稳定性,提高整个步行过程的效率,实现步行过程的稳定开始和结束。
附图说明
图1是本发明一个实施例的一种双足机器人步态控制方法的流程示意图;
图2是本发明一个实施例的一种双足机器人九连杆模型前向视图;
图3是本发明一个实施例的一种双足机器人九连杆模型侧向视图;
图4是本发明一个实施例的一种双足机器人行走位置投影示意图;
图5是线性倒立摆模型原理示意图;
图6是本发明一个实施例的一种双足机器人支撑腿前向示意图;
图7是本发明一个实施例的一种双足机器人摆动腿前向示意图;
图8是本发明一个实施例的一种双足机器人双腿侧向示意图;
图9是本发明一个实施例的一种双足机器人肩关节摆动角度示意图;
图10是本发明一个实施例的一种双足机器人关节角度控制结构示意图。
具体实施方式
本发明实施例的技术方案提出了一种双足机器人稳定步行的完整步态控制方案,能够更有效地实现稳定地起步和止步。并且,通过在满足零力矩点始终落在稳定区域内的前提下得到中步阶段的运动轨迹,将起步、止步与中步阶段的运动轨迹在位置、速度和/或加速度上都进行合理地衔接,保证在起步和止步阶段都能满足稳定性条件。另外,本方案利用机器人运动时势能和动能之间的转化,能够在一步之内快速地开始和结束正常的步行过程,避免了现有的方案中需要几个阶段才能达到和结束正常步行状态的问题,实现双足机器人既稳定又快速的行走。
图1是本发明一个实施例的一种双足机器人步态控制方法的流程示意图,参见图1,本实施例中,双足机器人步态控制方法包括如下步骤:
步骤S11,选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点(Zero Moment Point,简称ZMP)位于稳定区域内时,双足机器人的质心在中步阶段的运动轨迹;
步骤S12,根据中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;
步骤S13,利用第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用第二数值设置在止步阶段开始时质心需要满足的第二约束条件;
步骤S14,基于第一约束条件和第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;
步骤S15,控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。
在图1所示的基础上,步骤S11中步态控制参数包括位置、速度和加速度三种参数,或者步态控制参数包括位置和速度两种参数。并且步态控制参数的每个参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量。
由图1所示的方法可知,本实施例的双足机器人步态控制方法对双足机器人的起步和止步阶段质心的运行轨迹都进行控制,通过控制,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。由于获取的中步阶段质心运动轨迹,满足稳定步行条件,因而利用中步阶段质心运动轨迹确定出的步态控制参数的相应数值来控制起步阶段和止步阶段质心的运动轨迹,也能保证稳定性。也就是说,与现有技术相比,本实施例的方法能够保证起步阶段和止步阶段的稳定性,同时使得起步阶段与中步阶段、中步阶段和止步阶段更好地衔接。实现了双足机器人在一个完整的步行过程中都能稳定步行。
以下结合具体的双足机器人模型对本发明实施例的这种双足机器人步态控制方法进行说明。
图2是本发明一个实施例的一种双足机器人九连杆模型前向视图,图3是本发明一个实施例的一种双足机器人九连杆模型侧向视图,图4是本发明一个实施例的一种双足机器人行走位置投影示意图;结合图2至图4,图2中P1~P9分别代表双足机器人的不同部位,例如,P8、P9表示双足机器人的左、右手臂。m1~m7分别表示连杆的质量。在本实施例中,以双足机器人行走的前进方向为x轴(即前向),以双足机器人行走的侧向为y轴(如行走的右侧向),以与地面垂直向上的方向为z轴构建笛卡尔坐标系,如图2和图3所示,采用九根匀质连杆及关节构成的双足机器人简化模型的前向视图(即xoz平面)和侧向视图(即yoz平面),其中,双足机器人的单肩关节有一个前后的摆动自由度,单腿踝关节有前后和左右两个摆动自由度,单腿膝关节有一个前后自由度,髋关节有左右、前后和旋转三个自由度。
此外,在双足机器人每个行走步态中,以双足机器人的支撑腿的踝关节在地面的投影为坐标原点,以水平前进方向为X轴,以行走的侧向方向为Y轴,构建双足机器人自身的平面直角坐标系(XOY)。在双足机器人连续行走的中步阶段内,每个单腿支撑期的终止时刻,摆动腿上连接的脚摆动到合理的位置时,双足机器人的质心就有了新的支撑点。再以该新的支撑点为坐标原点以水平前进方向为X轴,以行走的侧向方向为Y轴,构建双足机器人自身的平面直角坐标系(XOY),前一个支撑点的终止状态为初始状态,从而机器人又开始了一个新的单步,将这些单步连接起来就形成了机器人的连续行走模式。如图4所示,开始以右支撑腿的踝关节在地面的投影为坐标原点(即O点表示双足机器人的右腿在平面直角坐标系中的投影,与O点在Y轴方向相距预定距离的点表示双足机器人的左腿在平面直角坐标系中的投影)。相应的,X轴上的点表示双足机器人行走时右支撑腿的运动轨迹,X轴左边并与X轴相距预定距离的点表示左支撑腿的运动轨迹。
在本发明的一个实施例中,以步态控制参数为位置、速度和加速度进行示例性说明。双足机器人步态控制方案必须考虑其稳定性,本实施例采用零力矩点(Zero Moment Point,简称ZMP)作为双足机器人动态步行稳定性的一个重要依据。ZMP是机器人所受合力作用在支撑腿足底上的作用点,而且在这一点上合力的力矩在水平方向为零。要保证双足机器人的步行稳定,必须保证任意时刻的ZMP在行走过程中始终落在稳定区域内。稳定区域即支撑脚所组成的凸形区域在水平面上的投影。
以下分三个阶段描述在双足机器人一次完整的步行过程中,应用本发明的步态控制方法进行控制的具体实现过程。
(一)中步阶段质心运动轨迹控制
中步阶段是双足机器人平稳的周期性步行阶段,一个完整的单步分为单腿支撑期(设时间为T1)和双腿支撑期(设时间为T2),整个中步阶段有多个周期性出现的单腿支撑期和双腿支撑期。本实施例单腿支撑期和双腿支撑期都采用线性倒立摆模型来控制质心的轨迹,以保证机器人步行时满足稳定性条件(即零力矩点ZMP始终位于稳定区域内)。但本发明不局限于线性倒立摆模型,也可以采用其他模型来计算质心的运动轨迹。
在获取到双足机器人的质心在中步阶段的运动轨迹后,利用这个运动轨迹获得质心在中步阶段起始时各步态控制参数的数值作为第一数值,获得质心在中步阶段结束时各步态控制参数的数值作为第二数值;更具体的,是要获得双足机器人的如下信息:质心在中步阶段起始时,质心在坐标系的x轴方向的位置Xd(0)、速度
Figure PCTCN2016098084-appb-000001
和加速度
Figure PCTCN2016098084-appb-000002
y轴方向的位置Yd(0)、速度
Figure PCTCN2016098084-appb-000003
和加速度
Figure PCTCN2016098084-appb-000004
以及质心在中步阶段结束时,质心在坐标系的x轴方向的位置Xs(0)、速度
Figure PCTCN2016098084-appb-000005
和加速度
Figure PCTCN2016098084-appb-000006
y轴方向的位置Ys(0)、速度
Figure PCTCN2016098084-appb-000007
和加速度
Figure PCTCN2016098084-appb-000008
若在整个中步阶段保持步行稳定性,设定双足机器人的质心高度不变,即质心在z轴方向的位置不变,速度和加速度都等于0,所以z轴方向的运动轨迹可以预先获知。对中步阶段质心高度变化的场景,需要获取中步阶段起始时和结束时质心的高度(即z轴方向的具体数值)。
在本实施例中,上述的第一数值和第二数值是从线性倒立摆模型计算结果中获取的。而构建线性倒立摆模型以及利用线性倒立摆模型计算不是本发明实施例的重点,可以采用现有技术方案来实现,其具体算法不再赘述,仅简要说明如下。为了提高双足机器人步行运动的稳定性,将双腿支撑期的机器人简化为一个虚拟的线性倒立摆模型,图5是本实施例采用的线性倒立摆模型原理示意图,如图5所示,该模型以机器人运动的ZMP点为虚拟支点,以机器人质心51为线性倒立摆模型的质点,支撑脚52、支撑脚53为双腿支撑期机器人的两个支撑脚,ZMP点即倒立摆的虚拟支点,位于两个支撑脚之间。倒立摆模型的特点是质心高度保持不变,摆杆底端不提供力矩。即在中步阶段,双足机器人的质心垂直方向的高度不变,为一预定的值Hz。
本实施例首先规划出双腿支撑期ZMP的运动轨迹,然后求解质心的运动轨迹。这样既能保证ZMP平滑地从先前的支撑脚移动到后来的支撑脚,又能保证质心速度变化的连续性,从而增强了机器人步行运动的稳定性。
如图5所示,在双腿支撑期质心在x轴方向和y轴方向的运动方程为:
Figure PCTCN2016098084-appb-000009
Figure PCTCN2016098084-appb-000010
其中,公式(1)中的xZMP为ZMP的x轴坐标,公式(2)中的yZMP为ZMP的y轴坐标,Hz为质心在中步阶段的高度,g为重力加速度。在双足机器人的单腿支撑期,支撑脚就是ZMP的位置,则xZMP=0,且yZMP=0。单腿支撑期质心在x轴方向和y轴方向的运动方程为:
Figure PCTCN2016098084-appb-000011
Figure PCTCN2016098084-appb-000012
在双腿支撑期,ZMP的位置xZMP和yZMP需要在机器人双足组成的支撑域内预先进行合理的规划,使之在支撑域内平滑地移动。并且要处理好双腿支撑期和单腿支撑期之间的边界条件的约束关系,即公式(1)、(2)和公式(3)、(4)之间的边界保持连续,以保证它们之间能够平稳地过渡。
利用上述公式(1)至(4)可以求得中步阶段双腿支撑期开始时刻的质心在x轴方向和y轴方向的轨迹,并可以求出双腿支撑期开始时刻各步态控制参数,位置、速度和加速度的分别对应的第一数值:Xd(0)、
Figure PCTCN2016098084-appb-000013
Yd(0)、
Figure PCTCN2016098084-appb-000014
以及单腿支撑期开始时刻各步态控制参数,位置、速度和加速度分别对应的第二数值:Xs(0)、
Figure PCTCN2016098084-appb-000015
Ys(0)、
Figure PCTCN2016098084-appb-000016
Figure PCTCN2016098084-appb-000017
然后将获取到的第一数值和第二数值用于起步和止步阶段的质心运动轨迹控制。
(二)起步阶段质心运动轨迹控制
起步阶段是机器人从双脚并齐的静止站立状态开始到具有平稳周期性的中步步态之间的过渡阶段。设该阶段时间为T1。起步阶段结束时质心满足的第一约束条件包括:第一前向约束条件(即x轴方向的约束条件)、第一侧向约束条件(即y轴方向的约束条件)和第一垂直方向约束条件(即z轴方向的约束条件)。
z轴方向质心运动轨迹控制
在起步阶段,由于机器人要从静止加速到步行速度,为了降低系统能耗,根据机械能守恒定律,本发明实施例通过降低机器人的重心,使势能尽可能转化为动能,这样机器人能够更快地进入中步阶段(即实现一步内起步的有益效果)。本实施例中,根据期望达到的中步阶段起始时(这里的中步阶段起始时是指与起步阶段衔接最近的一个双腿支撑期开始时刻)质心的初始速度,以及动能和势能的转化关系,计算双足机器人的质心在起步阶段结束时垂直方向的高度Hz。具体的,通过下面的公式(5)先估计出重心要下降的大概距离Δz。
Figure PCTCN2016098084-appb-000018
其中,质心起步阶段的初始速度v0=0,v1为起步阶段质心的最终速度,也是期望达到的中步阶段起始时质心的初始速度(数值大小可根据实际应用需要进行设定),m为机器人质量,g为重力加速度。
因为在中步阶段采用线性倒立摆模型进行质心运动轨迹计算,所以在中步阶段质心的高度要维持不变,即等于起步阶段结束时刻质心的高度Hz。质心在第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0,加速度参数值等于0;起步阶段结束时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值等于0,加速度参数值等于0。由此可得,起步阶段结束时刻在z轴方向机器人的质心需要满足的第一约束条件如下:
Figure PCTCN2016098084-appb-000019
其中,Z(t)为质心在z轴方向的位置,
Figure PCTCN2016098084-appb-000020
为质心在z轴方向的速度,
Figure PCTCN2016098084-appb-000021
为质心在z轴方向的加速度,t为时间,Hz0为双足机器人质心的初始高度(即t等于0时的高度),Hz为起步阶段结束时刻(即t等于T1时)质心的高度。
需要说明的是,公式(6)中质心在起步阶段结束时刻的高度Hz,可以由质心的初始高度Hz0与下降距离Δz的差值来确定,也可以是一个与该差值的差不大于预定值范围内的一个值。即,Hz的具体数值可以等于Hz0减去Δz得到的差值,也可以等于该差值附近的一个值,对此不作限制,只要能够获取一个较佳的值以保证步行的稳定即可。可以理解,各步态控制参数的第一数值能够取公式(6)中各等式右侧的数值附近的、偏差不太大的其他数值。
得到起步阶段结束时刻质心在z轴方向满足的第一约束条件后,利用多项式插值,根据该第一约束条件可得质心在z轴方向的轨迹Z(t)为:
Z(t)=a0+a1t+a2t2+a3t3+a4t4+a5t5          公式(7)
这里,a0至a5是具体参数,将公式(6)中对应的参数值带入公式(7)中可计算得到质心在z轴方向随时间t变化的轨迹。
实际应用时,为了计算质心在z轴方向随时间t变化的轨迹,可以先对公式(7)求一阶导数,得到质心在Z方向的速度为:
Figure PCTCN2016098084-appb-000022
然后,再对公式(7.1)求一阶导数,可得到质心在Z方向的加速度为:
Figure PCTCN2016098084-appb-000023
将公式(6)中对应的参数值分别代入公式(7),公式(7.1)和公式(7.2),可得到由6个方程组成的方程组,通过解该方程组可得到参数a0,a1,a2,a3,a4,a5,实现通过公式(7)计算得到质心在z轴方向随时间t变化的轨迹。
x轴方向质心运动轨迹
在x轴方向,质心满足的第一前向约束条件包括:起步阶段开始时,位置参数值、速度参数的值和加速度参数的值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值;加速度参数的值等于加速度参数前向第一数值,即质心在初始时刻的位置、速度和加速度都为0,在起步阶段的结束时刻,质心偏离支撑点最远,如果保证此时机器人仍能满足稳定条件(即ZMP点在支撑域内),则整个起步阶段双足机器人都是稳定的。因而本发明实施例设置起步阶段结束时刻的位置、速度和加速度与中步阶段的双腿支撑期的初始位置、速度和加速度相同,以保证起步阶段的步态到中步阶段步态之间的平稳过渡。因为中步阶段利用线性倒立摆模型进行步态控制,是满足稳定性条件的,所以据此可以保证起步阶段也满足稳定性条件。由此可知,质心在x轴方向上需要满足的第一约束条件如下:
Figure PCTCN2016098084-appb-000024
其中,X(0)、
Figure PCTCN2016098084-appb-000025
Figure PCTCN2016098084-appb-000026
分别为起步阶段开始时刻,双足机器人的质心在x轴方向的位置、速度和加速度;X(T1)、
Figure PCTCN2016098084-appb-000027
Figure PCTCN2016098084-appb-000028
为起步阶段结束时刻双足机器人的质心在x轴方向的位置、速度和加速度,X(T1)、
Figure PCTCN2016098084-appb-000029
Figure PCTCN2016098084-appb-000030
的取值为前述中步阶段计算得到的质心在双腿支撑期开始时刻x轴方向的位置Xd(0)、速度
Figure PCTCN2016098084-appb-000031
和加速度
Figure PCTCN2016098084-appb-000032
得到起步阶段结束时刻质心在x轴方向满足的第一约束条件后,利用多项式插值,根据公式(8)可得质心在x轴方向的轨迹X(t)为:
X(t)=b0+b1t+b2t2+b3t3+b4t4+b5t5          公式(9)
这里,b0至b5是具体参数,将公式(8)中对应的参数值带入公式(9)可计算得到质心在x轴方向随时间t变化的轨迹。
y轴方向质心运动轨迹
在本实施例中为便于说明,设机器人双足间的距离为W。质心满足的第一侧向约束条件包括:起步阶段开始时,位置参数值等于双足机器人双足之间距离的一半,速度参数值等于0,加速度参数值等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值,加速度参数值等于加速度参数侧向第一数值;即起步阶段初始时刻,质心在双足距离的中间位置,速度和加速度都为0。在起步阶段的结束时刻质心偏离支撑点最远,本发明实施例中设置y轴方向此时的位置、速度和加速度与中步阶段的双腿支撑期起始时的位置、速度和加速度相同,以保证相互之间的平稳过渡,并保证起步阶段也满足稳定性条件。由此,质心在y轴方向上需要满足的第一约束条件如下:
Figure PCTCN2016098084-appb-000033
其中,Y(0)、
Figure PCTCN2016098084-appb-000034
Figure PCTCN2016098084-appb-000035
分别为起步阶段初始时刻,质心的位置、速度和加速度,Y(T1)、
Figure PCTCN2016098084-appb-000036
Figure PCTCN2016098084-appb-000037
分别为起步阶段结束时刻双足机器人的质心在y轴方向的位置、速度和加速度,Y(T1)、
Figure PCTCN2016098084-appb-000038
Figure PCTCN2016098084-appb-000039
的取值,为前述中步阶段计算出的双腿支撑期起始时质心在y轴方向的位置Yd(0)、速度
Figure PCTCN2016098084-appb-000040
和加速度
Figure PCTCN2016098084-appb-000041
得到起步阶段结束时刻质心在y轴方向满足的第一约束条件后,利用多项式插值方法,根据公式(10)的约束条件可得质心在y轴方向的轨迹y(t)为:
y(t)=c0+c1t+c2t2+c3t3+c4t4+c5t5         公式(11)
这里,c0至c5是具体参数,将公式(10)中对应的参数值带入公式(11)计算得到质心在y轴方向随时间t变化的轨迹。
(三)止步阶段质心运动轨迹控制
止步阶段是指机器人从平稳周期性的中步步态,逐渐降低速度,直至恢复平稳的静止直立状态的过程。设该阶段时间是T1。质心需要满足的第二约束条件包括:第二前向约束条件(即x轴方向的约束条件)、第二侧向约束条件(即y轴方向的约束条件)和第二垂直方向约束条件(即z轴方向的约束条件)。
z轴方向质心运动轨迹
在止步阶段,z轴方向,质心的第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于起步阶段结束时垂直方向的高度Hz,速度参数值等于0,加速度参数值等于0;止步阶段结束时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0,加速度参数值等于0。由于机器人要从中步阶段的步行速度减速直至0,为了加快止步过程,止步阶段和起步阶段能量转换方向相反,根据机械能守恒定律,本发明实施例通过提高机器人的重心,即从中步阶段的质心高度Hz提高到起步开始时的高度Hz0,使动能尽可能转化为势能,使机器人更快地进入平稳静止状态(即实现一步内止步的有益效果)。
在z轴方向,为了实现步行稳定性,本发明实施例设置止步阶段初始时刻的位置、速度和加速度和中步阶段结束时刻(即单腿支撑期起始时)质心的位置、速度和加速度相同。所以可以得到止步阶段开始时刻机器人质心在z轴方向要满足的第二约束条件,如下:
Figure PCTCN2016098084-appb-000042
其中,Z(0)、
Figure PCTCN2016098084-appb-000043
Figure PCTCN2016098084-appb-000044
分别为止步阶段初始时刻,质心在z轴方向的位置、速度和加速度,Z(T1)、
Figure PCTCN2016098084-appb-000045
Figure PCTCN2016098084-appb-000046
分别为止步阶段结束时刻双足机器人的质心在z轴方向的位置、速度和加速度,Zc为在止步阶段初始时刻的质心高度(可以等于中步阶段质心的高度Hz),Zc0为止步阶段双足机器人最初平稳直立状态的质心高度(可以等于起步阶段质心的初始高度Hz0)。需要说明的是,各步态控制参数的第二数值也能够取公式(12)中各等式右侧的数值附近的且偏差不太大的其他数值,不限于公式(12)中各等式右侧举例的数值。
得到止步阶段开始时刻质心在z轴方向满足的第二约束条件后,利用多项式插值,根据约束条件(12)可得质心在z轴方向的轨迹Z(t)为:
Z(t)=a'0+a'1t+a'2t2+a'3t3+a'4t4+a'5t5        公式(13)
这里,a'0至a'5是具体参数,将公式(12)中对应的参数值带入公式(13)计算得到质心在z轴方向随时间t变化的轨迹。
x轴方向质心的运动轨迹
在x轴方向,质心的第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值,加速度参数值等于加速度参数前向第二数值;止步阶段结束时,位置参数值和速度参数值,加速度参数值都等于0。本发明实施例设置质心在止步阶段初始时刻的位置、速度和加速度分别与中步阶段的双腿支撑期结束时刻的位置、速度和加速度相同,根据对称性和连续性,也就是分别和中步阶段单腿支撑期开始时刻的位置、速度和加速度相同,以保证相互之间的平稳过渡,并保证 止步阶段满足稳定性条件。而止步阶段结束时刻质心的位置、速度和加速度都为0,以恢复稳定的静止直立状态。由此可知,质心在止步阶段开始时刻满足的第二约束条件如下:
Figure PCTCN2016098084-appb-000047
其中,止步阶段开始时刻质心的位置X(0)、速度
Figure PCTCN2016098084-appb-000048
和加速度
Figure PCTCN2016098084-appb-000049
的取值分别为前述中步阶段计算出的单腿支撑期开始时刻质心在x轴方向的位置Xs(0)、速度
Figure PCTCN2016098084-appb-000050
和加速度止步阶段结束时刻质心的位置X(T1)等于0、速度
Figure PCTCN2016098084-appb-000052
等于0、加速度
Figure PCTCN2016098084-appb-000053
等于0。
得到x轴方向质心在止步阶段开始时刻满足的第二约束条件后,利用多项式插值,根据公式(14)的约束条件可得质心在x轴方向的轨迹X(t)为:
X(t)=b'0+b'1t+b'2t2+b'3t3+b'4t4+b'5t5          公式(15)
这里,b'0至b'5是具体参数,将公式(14)中对应的参数值带入公式(15)计算得到质心在x轴方向随时间t变化的轨迹。
y轴方向质心的运动轨迹
在y轴方向,质心的第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值,加速度参数值等于加速度参数侧向第二数值,;止步阶段结束时,位置参数值等于双足机器人双足之间距离的一半,速度参数值和加速度参数值都等于0。本实施例设置质心在止步阶段开始时刻的位置、速度和加速度分别与中步阶段的双腿支撑期结束时刻的位置、速度和加速度相同,根据对称性和连续性,也就是分别和中步阶段的单腿支撑期开始时刻的位置、速度和加速度相同,以保证相互之间的平稳过渡,并保证止步阶段满足稳定性条件。止步阶段结束时刻质心位于双足距离的中间位置,而速度和加速度都为0,以恢复稳定的静止直立状态。由此可知,止步阶段开始时刻质心在y轴方向满足的第二约束条件,如下:
Figure PCTCN2016098084-appb-000054
其中,止步阶段开始时刻质心的位置Y(0)、速度
Figure PCTCN2016098084-appb-000055
和加速度
Figure PCTCN2016098084-appb-000056
分别等于前述中步阶段计算出的单腿支撑期开始时刻质心在y轴方向的位置Ys(0)、速度
Figure PCTCN2016098084-appb-000057
和加速度
Figure PCTCN2016098084-appb-000058
在y轴方向,得到质心止步阶段开始时刻满足的第二约束条件后,利用多项式插值,根据公式(16)的约束条件可得质心在y轴方向的轨迹y(t)为:
Y(t)=c'0+c'1t+c'2t2+c'3t3+c'4t4+c'5t5        公式(17)
这里,c'0至c'5是具体参数,将公式(16)中对应的参数值带入到公式(17)计算得到质心在y轴方向随时间t变化的轨迹。
至此,可得双足机器人的质心分别在中步阶段、起步阶段和止步阶段的运动轨迹。
需要说明是的,上述实施例中,以步态控制参数包括位置、速度和加速度进行的示例性说明,而在本发明的其他实施例中,步态控制参数可以包括位置和速度,当步态控制参数为位置和速度时,位置参数和速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;具体的计算过程可参见前述实施例的相关描述,这里不再赘述。
本发明又一实施例基于质心的运动轨迹对双腿上各关节点的运动进行控制。为了进一步实现双足机器人步行的稳定性,该方法还包括:根据双足机器人踝关节的期望运动高度,计算双腿踝关节在起步阶段、中步阶段和止步阶段的运动轨迹,利用踝关节的运动轨迹,计算踝关节在各阶段的期望角度轨迹。以及,根据双足机器人在各个阶段的质心、膝关节和踝关节之间的结构位置关系以及步行时质心和踝关节在各个阶段的运动轨迹,计算得到膝关节在各阶段的运动轨迹;利用膝关节在起步阶段、中步阶段和止步阶段的运动轨迹,计算膝关节在各阶段的期望角度轨迹。
在双足机器人摆动腿摆动的过程中,摆动腿踝关节必须经过三个关键点,即初始点、最高点和终止点。根据在这三个点的位置、速度和加速度约束条件,同前类似,应用多项式插值可以求出摆动腿踝关节的运动轨迹。
具体的,图6是本发明一个实施例的一种双足机器人支撑腿前向示意图,图7是本发明一个实施例的一种双足机器人摆动腿前向示意图,如图6所示和图7所示,在前向平面(即机器人运动时在xoz平面内的投影),Lc表示双足机器人的质心到髋关节的距离,Lk是髋关节到膝关节的距离,La表示膝关节到踝关节的距离,图6中的Hh、图7中的Hh1表示髋关节到踝关节的距离。这些距离以及髋关节、膝关节、踝关节之间的几何关系根据机器人的设计结构可预先得到,由此,根据机器人支撑腿的几何关系并结合质心的运动轨迹、踝关节的运动轨迹得到支撑腿各关节角度:踝关节关节角θa、膝关节关节角θk和髋关节关节角θh,以及角度随时间变化的轨迹。可以理解,图6和图7中的α(即髋关节到踝关节的连线与y轴的夹角)、αa、αh、αk以及αa1、αh1、αk1为中间计算过程用到的辅助计算角度。
图8是本发明一个实施例的一种双足机器人双腿侧向示意图,类似地,如图8所示,在侧向平面(即机器人运动在yoz平面内的投影),质心(参见图8中的示出的黑色实心圆)在双足机器人双足之间距离一半W/2,质心与髋关节的距离为zch,髋关节到踝关节的距离为zce,髋关节相对于支撑脚的y坐标为yce。为使机器人能够稳定行走,上体需保持垂直,脚底保持水平,则可将前视平面行走简化为一自由度问题。和步态有关的角度是踝关节的滚动(绕x轴转动)自由度和髋关节的滚动自由度。两踝关节角度大小、方向一致,两髋关节角度大小相等,方向与踝关节相反。根据腿部几何关系,质心的运动轨迹和踝关节的运动轨迹可以得到摆动腿部各关节角度:踝关节关节角θa1、膝关节关节角θk1和髋关节关节角θh1,以及角度随时间变化的轨迹。可以理解,图8中的角度θ和θce是机器人行走时髋关节与踝关节的连线与垂直方向的左右夹角,是辅助计算角度。
结合图6至图8,根据双足机器人踝关节的期望运动高度,计算踝关节在起步阶段、中步阶段和止步阶段的运动轨迹的计算过程为:预先设定踝关节的期望运动高度(例如,Hh),这一高度是踝关节运动的最高点,则踝关节起始点的位置、速度和加速度都为0,终止点的位置、速度和加速度都为0,最高点的位置为Hh,速度和加速度为0。根据这些数值计算踝关节满足的约束条件,并根据约束条件,应用多项式插值可以计算得到踝关节从起始点到最高点的运动轨迹,以及从最高点到终止点的运动轨迹。本实施例中,还包 括根据步行时质心和踝关节在各个阶段的运动轨迹,得到在每个时刻质心和踝关节所在的空间位置,并根据机器人的质心和髋关节的几何位置关系得到髋关节的空间位置,再根据双足机器人髋关节、膝关节和踝关节之间的结构位置关系,并结合大腿小腿长度等结构参数,利用三角几何关系计算得到膝关节的位置和角度,进而得到膝关节在起步阶段、中步阶段和止步阶段的运动轨迹,并同时得到膝关节在各阶段的期望角度轨迹。
需要说明的是,本发明一个实施例中通过三角几何关系来计算双足机器人腿部踝关节、膝关节和髋关节的关节角度,在本发明的其他实施例中也可以采取其他算法来完成上述计算过程,只要能够计算双足机器人腿部关节以及髋关节的期望角度即可。其他算法例如逆运动学分析。逆运动学是根据已知的末端执行器的位置和姿态,求解相应的关节变量,现有技术中提供了多种计算方案(例如,解析法、几何法、几何解析法和数值解法),通过现有技术方案能够实现根据髋关节的运动轨迹得到髋关节的期望角度轨迹(即髋关节的关节角度随时间变化的轨迹),本发明实施例对逆运动学分析方法不做限制。此外,如何求解期望角度轨迹不是本发明实施例的重点,具体实现时可以采用逆运动学分析中的任何一种方案,这里不再赘述。另外,本实施例利用多项式插值计算质心的运动轨迹,以及髋关节、踝关节各自的运动轨迹,但是,本发明技术方案中质心和髋关节、踝关节运动轨迹的计算不限于本实施例的多项式插值。也可以采用其他能够实现计算方法。在计算得到双腿踝关节、膝关节以及双足机器人髋关节的期望角度轨迹后,选取髋关节、踝关节和膝关节中的一个或多个作为控制点;当双足机器人行走时,实时检测控制点(例如踝关节、膝关节和髋关节)的转角,利用踝关节、膝关节和髋关节在各阶段的期望角度轨迹分别对检测到的髋关节、踝关节的转角进行自适应跟踪控制,实现双足机器人的稳定步行。
图10是本发明一个实施例的一种双足机器人关节角度控制结构示意图,在图10中,θd为期望关节角度,θr为实际检测到的关节角度,kp为比例系数,kd为微分系数,τ为转动力矩。如图10所示,在本实施例中以髋关节为例示意性说明,得到机器人行走各阶段中髋关节的期望角度后,采取力矩控制,直接把检测到的髋关节转角作为反馈,与前述各阶段中的步态所需的关节转角(期望角度)做差后用比例积分微分PID控制器(PID即,比例proportion、积分integration、微分differentiation)或比例微分PD控制器(PD即,比例proportion、微分differentiation)进行控制,输出双足机器人髋关节的输入转矩,从而驱动机器人的髋关节运动,以达到稳定步行的目的,本发明实施例的方案通过力矩控制的手段将双足机器人的非线性耦合系统简化为线性多变量解耦系统。在具体实施时可以对双足机器人的每个关节采用单独的PID或PD控制器,以此实现对各关节的期望角度的跟踪控制,最终实现机器人按设定的步态稳定运行。
需要说明的是,比例积分微分PID控制器或比例微分PD具体工作原理可参见现有技术方案,在此不再赘述。
在本发明的一个实施例中,为了使双足机器人的步态更加拟人化,并增加稳定性,机器人的双臂也要和腿部配合进行前后摆动,并与两腿的交替摆动相对称。因而该步态控制方法还包括:选取双足机器人的肩关节摆动的角度控制参数:角位移、角速度和角加速度;分别根据双足机器人中步阶段摆动腿摆动的开始时刻和结束时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置摆动腿对应的肩关节需要满足的角度约束条件;根据角度约束条件,并利用多项式插值计算中步阶段肩关节摆动的期望角度轨迹;利用双足机器人中步阶段摆动腿摆动的开始时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置起步阶段肩关节需要满足的角度第一约束条件,和止步阶段肩关节需要满足的角度第二约束条件;根据角度第一约束条件、角度第二约束条件,并利用多项式插值计算起步阶段肩关节摆动的期望角度轨迹和止步阶段肩关节摆动的期望角度轨迹;双足机器人行走时,实时检测肩关节的转角,利用肩关节在上述各阶段的期望角度轨迹对检测到肩关节的转角进行自适应跟踪控制,实现双足机器人稳定 步行时双臂和腿部运动配合,更加拟人化。
图9是本发明一个实施例的一种双足机器人肩关节摆动角度示意图,具体的,在中步阶段的一个单步周期T=T1+T2中,如图9所示,假设右腿为摆动腿,则右肩关节91在单步周期的开始时刻和结束时刻分别达到摆动角度的最大值和最小值,可得角度约束条件:
Figure PCTCN2016098084-appb-000059
其中,θ(0)是中步阶段单步周期的开始时刻,右肩关节摆动的角位移,
Figure PCTCN2016098084-appb-000060
表示角速度,
Figure PCTCN2016098084-appb-000061
表示角加速度,θ(T)是中步阶段单步周期的结束时刻,右肩关节摆动的角位移,
Figure PCTCN2016098084-appb-000062
表示角速度,
Figure PCTCN2016098084-appb-000063
表示角加速度。其中,θmax是期望达到的摆动角最大值,-θmax是期望达到的摆动角最小值,这里的负号表示方向。
根据公式(18)的角度约束条件可得中步阶段右肩关节摆动的期望角度轨迹为:
θ(t)=d0+d1t+d2t2+d3t3+d4t4+d5t5           公式(19)
公式(19)中的d0至d5为参数,将公式(18)中对应的参数值带入到公式(19)中,可计算得到期望角度轨迹。
而左肩关节摆动的角度与之前后相对称。
对于起步阶段,肩关节摆动角的初始值为0,对于止步阶段,肩关节摆动角的最终值为0,并要与中步步态中摆动角衔接,获得第一角度约束条件和第二角度约束条件后,类似地可得起步和止步阶段肩关节摆动角的期望角度轨迹。具体的,起步阶段结束时刻,右肩关节摆动角满足的第一角度约束条件为:
Figure PCTCN2016098084-appb-000064
根据公式(20)的第一角度约束条件可得起步阶段右肩关节摆动的期望角度轨迹为:
θ(t)=e0+e1t+e2t2+e3t3+e4t4+e5t5             公式(21)
将公式(20)中的第一角度约束条件中的参数值,带入到公式(21)中,可得在起步阶段右肩关节摆动角随时间变化的轨迹。
止步阶段开始时刻,右肩关节摆动角满足的第二角度约束条件为:
Figure PCTCN2016098084-appb-000065
根据公式(22)的第二角度约束条件可得止步阶段开始时刻右肩关节摆动的期望角度轨迹为:
θ(t)=f0+f1t+f2t2+f3t3+f4t4+f5t5         公式(23)
而左肩关节摆动的角度与之前后相对称。具体的计算过程可以参见前述的中步阶段一个单步周期内角度轨迹部分的说明,这里不再赘述。
通过上述实施例的说明可知,针对现有方案中存在的起步阶段和止步阶段步行稳定差,容易导致机器人步行失稳,影响机器人步行的问题。本发明实施例在双足机器人进入中步步态后,采用线性倒立摆模型对机器人质心位置进行控制(即求出各步态控制参数的第一数值和第二数值),以增加步行的稳定性,避免周期行走的中步阶段支撑腿瞬间切换造成的不稳定和对机器人造成冲击。接着,采用多项式插值,根据各步态控制参数对应的第一数值和第二数值分别确定质心在起步阶段满足的第一约束条件和在止步阶段满足的第二约束条件,从而对双足机器人的起步和止步阶段质心的运行轨迹都进行控制,控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。进一步的,本方案根据机器人势能转化的动能,实现了起步阶段在一步内进入正常的中步步行状态,以及由动能转化为势能,在止步阶段一步内完成止步过程,并且使得起步阶段、止步阶段分别与中步步态连续地衔接,满足稳定步行条件,实现步行过程高效而稳定地开始和结束。在得到起步阶段、中步阶段和止步阶段质心的轨迹后,通过机器人的结构特点以及逆运动学分析计算双腿髋关节、膝关节和踝关节的关节转角。最后,通过对双足机器人各个关节转角的控制,进一步保证行走时质心的稳定,实现双足机器人步行稳定性。
在本发明的另一个实施例中,还提供了一种双足机器人的步态控制装置,该装置包括:
质心中步阶段轨迹获取单元,用于选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时,双足机器人的质心在中步阶段的运动轨迹;参数值获取单元,用于根据中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;约束条件设置单元,用于利用第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用第二数值设置在止步阶段开始时质心需要满足的第二约束条件;质心起步止步阶段轨迹计算单元,用于基于第一约束条件和第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;质心轨迹控制单元,用于控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现双足机器人的稳定步行。
在本发明的一个实施例中,质心轨迹控制单元包括:踝关节轨迹计算单元、髋关节轨迹计算单元、关节角度计算单元和关节角度控制单元;踝关节轨迹计算单元,用于根据双足机器人踝关节的期望运动高度,计算双腿踝关节在起步阶段、中步阶段和止步阶段的运动轨迹;髋关节轨迹计算单元,用于根据质心在各阶段的运动轨迹计算双足机器人髋关节在起步阶段、中步阶段和止步阶段的运动轨迹;关节角度计算单元,用于利用髋关节及踝关节在各阶段的运动轨迹、双足机器人腿部的结构位置关系和腿部长度数值,计算得到髋关节、踝关节、膝关节在各阶段的期望角度轨迹;关节角度控制单元,用于选取髋关节、踝关节和膝关节中的一个或多个作为控制点;当双足机器人行走时,实时检测控制点的转角,利用控制点在上述各阶段的期望角度轨迹对检测到控制点的转角进行自适应跟踪控制,使双足机器人行走时质心的运动轨迹满足质心在起步阶段、中步阶段和止步阶段的各运动轨迹。
在本实施例中,步态控制参数的每个参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;其中,该步态控制参数包括位置和速度,或者该步态控制参数包括位置、速度和加速度。
在本发明的一个实施例中,质心中步阶段轨迹获取单元,具体用于获取的步态控制参数的每个参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;其中,该步态控制参数包括位置和速度,或者该步态控制参数包括位置、速度和加速度。
在本发明的一个实施例中,质心起步止步阶段轨迹计算单元,还用于根据期望达到的中步阶段起始时质心的初始速度,以及动能和势能的转化关系,计算双足机器人的质心在起步阶段结束时垂直方向的高度Hz;
质心中步阶段轨迹获取单元,获取到的双足机器人的质心在中步阶段的运动轨迹满足下列条件:质心在中步阶段起始时以及中步阶段结束时垂直方向的高度均为Hz。
在本发明的一个实施例中,参数值获取模块,还用于选取双足机器人的肩关节摆动的角度控制参数:角位移、角速度和角加速度;
约束条件设置单元,还用于分别根据双足机器人中步阶段摆动腿摆动的开始时刻和结束时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置摆动腿对应的肩关节需要满足的角度约束条件;
质心起步止步阶段轨迹计算单元,还用于根据角度约束条件,并利用多项式插值计算中步阶段肩关节摆动的期望角度轨迹;约束条件设置单元,还用于利用双足机器人中步阶段摆动腿摆动的开始时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置起步阶段肩关节需要满足的角度第一约束条件,和止步阶段肩关节需要满足的角度第二约束条件;质心起步止步阶段轨迹计算单元,还用于根据角度第一约束条件、角度第二约束条件,并利用多项式插值计算起步阶段肩关节摆动的期望角度轨迹和止步阶段肩关节摆动的期望角度轨迹;质心轨迹控制单元,还用于在双足机器人行走时,实时检测肩关节的转角,利用肩关节在上述各阶段的期望角度轨迹对检测到肩关节的转角进行自适应跟踪控制,实现双足机器人的稳定步行。
在本发明的一个实施例中,当质心中步阶段轨迹获取单元选取的步态控制参数为位置和速度时,位置参数和速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;起步阶段结束时质心满足的第一约束条件包括:第一前向约束条件、第一侧向约束条件和第一垂直方向约束条件;
第一前向约束条件包括:起步阶段开始时,位置参数值和速度参数的值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值;第一侧向约束条件包括:起步阶段开始时,位置参数值等于双足机器人双足之间距离的一半,速度参数值等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值;第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0;起步阶段结束时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值等于0;第二约束条件包括:第二前向约束条件、第二侧向约束条件和第二垂直方向约束条件;第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值;止步阶段结束时,位置参数值和速度参数值都等于0;第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值;止步阶段结束时,位置参数值等于双足机器人双足之间距离的一半,速度参数值等于0;第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于起步阶段结束时垂直方向的高度Hz,速度参数值等于0;止步阶段结束时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0;
当质心中步阶段轨迹获取单元选取的步态控制参数包括位置、速度和加速度时,位置参数、速度参数和加速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;第一前向约束条件包括:起步阶段开始时,位置参数值、速度参数值和加速度 参数值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值,加速度参数值等于加速度参数前向第一数值;第一侧向约束条件包括:起步阶段开始时,位置参数值为双足机器人双足之间距离的一半,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值,加速度参数值等于加速度参数侧向第一数值;第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值,加速度参数值等于加速度参数前向第二数值;止步阶段结束时,位置参数值、速度参数值和加速度参数值都等于0;第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值,加速度参数值等于加速度参数侧向第二数值;止步阶段结束时,位置参数值等于双足机器人双足之间距离的一半,速度参数值和速度参数值都等于0;第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;止步阶段结束时,位置参数值等于双足机器人质心的初始高度,速度参数值和加速度参数值都等于0。
需要说明的是,本实施例中双足机器人步态控制装置是和前述的步态控制方法相对应的,因而,本实施例的步态控制装置的工作过程可以参见前述方法部分的相应说明,这里不再赘述。
综上所述,与以往的技术方案相比,本发明实施例提出了一种更有效的起步和止步阶段的控制方法,能够快速地在一步之内开始和结束正常的步行过程,避免了以往方案中需要几个阶段才能达到和结束正常步行状态。并且,通过与中步阶段采用倒立摆模型计算出的轨迹在位置、速度和加速度参数上都进行合理地衔接,保证在起步和起步阶段也都满足稳定性条件。另外,在正常的中步步态中,通过在单腿和双腿支撑阶段都通过线性倒立摆模型进行规划,保证机器人在两个阶段都满足稳定性条件,并降低了支撑腿切换期间对机器人造成的冲击。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (15)

  1. 一种双足机器人的步态控制方法,其中,所述方法包括:
    选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时,所述双足机器人的质心在中步阶段的运动轨迹;
    根据所述中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;
    利用所述第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用所述第二数值设置在止步阶段开始时质心需要满足的第二约束条件;
    基于所述第一约束条件和所述第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;
    控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足所述质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现所述双足机器人的稳定步行。
  2. 根据权利要求1所述的方法,其中,所述控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足所述质心在起步阶段、中步阶段和止步阶段的各运动轨迹包括:
    根据质心在各阶段的运动轨迹计算双足机器人髋关节在起步阶段、中步阶段和止步阶段的运动轨迹;
    根据双足机器人踝关节的期望运动高度,计算双腿踝关节在起步阶段、中步阶段和止步阶段的运动轨迹;
    利用髋关节及踝关节在各阶段的运动轨迹、双足机器人腿部的结构位置关系以及腿部长度数值,计算得到髋关节、踝关节、膝关节在各阶段对应的期望角度轨迹;选取髋关节、踝关节和膝关节中的一个或多个作为控制点;当双足机器人行走时,实时检测所述控制点的转角,利用所述控制点在上述各阶段的期望角度轨迹对检测到控制点的转角进行自适应跟踪控制,使双足机器人行走时质心的运动轨迹满足所述质心在起步阶段、中步阶段和止步阶段的各运动轨迹。
  3. 根据权利要求1所述的方法,其中,所述步态控制参数的每个参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;其中,该步态控制参数包括位置和速度,或者该步态控制参数包括位置、速度和加速度。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    根据期望达到的中步阶段起始时质心的初始速度,以及动能和势能的转化关系,计算双足机器人的质心在起步阶段结束时垂直方向的高度Hz;获取到的所述双足机器人的质心在中步阶段的运动轨迹满足下列条件:所述质心在中步阶段起始时以及中步阶段结束时垂直方向的高度均为Hz。
  5. 根据权利要求4所述的方法,其中,所述根据期望达到的中步阶段起始时质心的初始速度,以及动能和势能的转化关系,计算双足机器人的质心在起步阶段结束时垂直方向的高度Hz包括:
    通过如下公式计算起步阶段结束时质心下降的距离Δz:
    Figure PCTCN2016098084-appb-100001
    其中,v1是期望达到的中步阶段起始时质心的初始速度,v0为起步阶段初始时刻的速度,m为所述双足机器人的质量,g为重力加速度;由质心在垂直方向的初始高度与Δz之间的差值得到质心在起步阶段结束时垂直方向的高度Hz。
  6. 根据权利要求4所述的方法,其中,该方法包括:
    当所述步态控制参数为位置和速度时,位置参数和速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;
    起步阶段结束时质心满足的所述第一约束条件包括:第一前向约束条件、第一侧向约束条件和第一垂直方向约束条件;
    所述第一前向约束条件包括:起步阶段开始时,位置参数值和速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值;
    所述第一侧向约束条件包括:起步阶段开始时,位置参数值等于双足机器人双足之间距离的一半,速度参数值等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值;
    所述第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0;起步阶段结束时,位置参数值等于所述质心在起步阶段结束时垂直方向的高度Hz,速度参数值等于0;
    所述第二约束条件包括:第二前向约束条件、第二侧向约束条件和第二垂直方向约束条件;
    所述第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值;止步阶段结束时,位置参数值和速度参数值都等于0;
    所述第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值;止步阶段结束时,位置参数值等于所述双足机器人双足之间距离的一半,速度参数值等于0;
    所述第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于起步阶段结束时垂直方向的高度Hz,速度参数值等于0;止步阶段结束时,位置参数值等于所述双足机器人质心的初始高度,速度参数值等于0;
    当所述步态控制参数包括位置、速度和加速度时,位置参数、速度参数和加速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;
    所述第一前向约束条件包括:起步阶段开始时,位置参数值、速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值,加速度参数值等于加速度参数前向第一数值;所述第一侧向约束条件包括:起步阶段开始时,位置参数值为双足机器人双足之间距离的一半,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值,加速度参数值等于加速度参数侧向第一数值;所述第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;所述第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值,加速度参数值等于加速度参数前向第二数值;止步阶段结束时,位置参数值、速度参数值和加速度参数值都等于0;所述第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值,加速度参数值等于加速度参数侧向第二数值;止步阶段结束时,位置参数值等于所述双足机器人双足之间距离的一半,速度参数值和速度参数值都等于0;所述第二 垂直方向约束条件包括:止步阶段开始时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;止步阶段结束时,位置参数值等于所述双足机器人质心的初始高度,速度参数值和加速度参数值都等于0。
  7. 根据权利要求1所述的方法,其中,所述基于所述第一约束条件和所述第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹包括:根据所述质心在起步阶段结束时满足的第一约束条件,利用多项式插值计算质心在起步阶段的运动轨迹;根据质心在止步阶段开始时满足的第二约束条件,利用多项式插值计算质心在止步阶段的运动轨迹。
  8. 根据权利要求2所述的方法,其中,所述方法还包括:
    选取双足机器人的肩关节摆动的角度控制参数:角位移、角速度和角加速度;
    分别根据所述双足机器人中步阶段摆动腿摆动的开始时刻和结束时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置摆动腿对应的肩关节需要满足的角度约束条件;
    根据所述角度约束条件,并利用多项式插值计算中步阶段肩关节摆动的期望角度轨迹;
    利用所述双足机器人中步阶段摆动腿摆动的开始时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置起步阶段所述肩关节需要满足的角度第一约束条件,和止步阶段所述肩关节需要满足的角度第二约束条件;
    根据所述角度第一约束条件、所述角度第二约束条件,并利用多项式插值计算起步阶段所述肩关节摆动的期望角度轨迹和止步阶段所述肩关节摆动的期望角度轨迹;
    所述双足机器人行走时,实时检测所述肩关节的转角,利用所述肩关节在上述各阶段的期望角度轨迹对检测到肩关节的转角进行自适应跟踪控制,实现所述双足机器人的稳定步行。
  9. 根据权利要求2所述的方法,其中,所述利用控制点在上述各阶段的期望角度轨迹对检测到控制点的转角进行自适应跟踪控制包括:将机器人行走时实际检测到的每个控制点的转角与该关节对应的期望角度作差,将该差值输入比例积分微分角度控制器或者比例微分角度控制器进行自适应跟踪控制,得到每个关节的输入转矩,从而利用所述输入转矩驱动机器人的各关节运动。
  10. 一种双足机器人的步态控制装置,其中,该装置包括:
    质心中步阶段轨迹获取单元,用于选取双足机器人在起步阶段、中步阶段和止步阶段的步态控制参数,并获取双足机器人的零力矩点位于稳定区域内时,所述双足机器人的质心在中步阶段的运动轨迹;
    参数值获取单元,用于根据所述中步阶段质心的运动轨迹得到质心在中步阶段起始时各步态控制参数的第一数值和质心在中步阶段结束时各步态控制参数的第二数值;
    约束条件设置单元,用于利用所述第一数值设置在起步阶段结束时质心需要满足的第一约束条件,利用所述第二数值设置在止步阶段开始时质心需要满足的第二约束条件;
    质心起步止步阶段轨迹计算单元,用于基于所述第一约束条件和所述第二约束条件分别计算质心在起步阶段和止步阶段的运动轨迹;
    质心轨迹控制单元,用于控制双足机器人的行走,使双足机器人行走时质心的运动轨迹满足所述质心在起步阶段、中步阶段和止步阶段的各运动轨迹,实现所述双足机器人的稳定步行。
  11. 根据权利要求10所述的装置,其中,所述质心轨迹控制单元包括:踝关节轨迹计算模块、髋关节轨迹计算模块、关节角度计算模块和关节角度控制模块;
    所述踝关节轨迹计算模块,用于根据双足机器人踝关节的期望运动高度,计算双腿踝关节在起步阶段、中步阶段和止步阶段的运动轨迹;所述髋关节轨迹计算模块,用于根据质心在各阶段的运动轨迹计算双足机器人髋关节在起步阶段、中步阶段和止步阶段的运动轨迹;所述关节角度计算模块,用于利用髋关节及踝关节在各阶段的运动轨迹、双足机器人腿部的结构位置关系和腿部长度数值,计算得到髋关节、踝关节、膝关节在各阶段的期望角度轨迹;所述关节角度控制模块,用于选取髋关节、踝关节和膝关节中的一个或多个作为控制点;当双足机器人行走时,实时检测所述控制点的转角,利用所述控制点在上述各阶段的期望角度轨迹对检测到控制点的转角进行自适应跟踪控制,使双足机器人行走时质心的运动轨迹满足所述质心在起步阶段、中步阶段和止步阶段的各运动轨迹。
  12. 根据权利要求10所述的装置,其中,所述质心中步阶段轨迹获取单元,获取的步态控制参数的每个参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;其中,该步态控制参数包括位置和速度,或者该步态控制参数包括位置、速度和加速度。
  13. 根据权利要求12所述的装置,其中,所述质心起步止步阶段轨迹计算单元,还用于根据期望达到的中步阶段起始时质心的初始速度,以及动能和势能的转化关系,计算双足机器人的质心在起步阶段结束时垂直方向的高度Hz;所述质心中步阶段轨迹获取单元,获取到的所述双足机器人的质心在中步阶段的运动轨迹满足下列条件:所述质心在中步阶段起始时以及中步阶段结束时垂直方向的高度均为Hz。
  14. 根据权利要求11所述的装置,其中,所述参数值获取模块,还用于选取双足机器人的肩关节摆动的角度控制参数:角位移、角速度和角加速度;
    所述约束条件设置单元,还用于分别根据所述双足机器人中步阶段摆动腿摆动的开始时刻和结束时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置摆动腿对应的肩关节需要满足的角度约束条件;
    所述质心起步止步阶段轨迹计算单元,还用于根据所述角度约束条件,并利用多项式插值计算中步阶段肩关节摆动的期望角度轨迹;
    所述约束条件设置单元,还用于利用所述双足机器人中步阶段摆动腿摆动的开始时刻,摆动腿对应的肩关节期望达到的角位移值、角速度值和角加速度值,设置起步阶段所述肩关节需要满足的角度第一约束条件,和止步阶段所述肩关节需要满足的角度第二约束条件;
    所述质心起步止步阶段轨迹计算单元,还用于根据所述角度第一约束条件、所述角度第二约束条件,并利用多项式插值计算起步阶段所述肩关节摆动的期望角度轨迹和止步阶段所述肩关节摆动的期望角度轨迹;
    所述质心轨迹控制单元,还用于在所述双足机器人行走时,实时检测所述肩关节的转角,利用所述肩关节在上述各阶段的期望角度轨迹对检测到肩关节的转角进行自适应跟踪控制,实现所述双足机器人的稳定步行。
  15. 根据权利要求14所述的装置,其中,当所述质心中步阶段轨迹获取单元选取的所述步态控制参数为位置和速度时,位置参数和速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;
    起步阶段结束时质心满足的所述第一约束条件包括:第一前向约束条件、第一侧向约束条件和第一垂直方向约束条件;所述第一前向约束条件包括:起步阶段开始时,位置参数值和速度参数的值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值;所述第一侧向约束条件包括:起步阶段开始时,位置参数值等于双足机器人双足之间距离的一半,速度参数值等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值;所述第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值等于0;起步阶段结束时,位置参数值等于所述质心在起步阶段结束时垂直方向的高度Hz,速度参数值等于0;
    所述第二约束条件包括:第二前向约束条件、第二侧向约束条件和第二垂直方向约束条件;
    所述第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值;止步阶段结束时,位置参数值和速度参数值都等于0;所述第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值;止步阶段结束时,位置参数值等于所述双足机器人双足之间距离的一半,速度参数值等于0;所述第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于起步阶段结束时垂直方向的高度Hz,速度参数值等于0;止步阶段结束时,位置参数值等于所述双足机器人质心的初始高度,速度参数值等于0;
    当所述质心中步阶段轨迹获取单元选取的所述步态控制参数包括位置、速度和加速度时,位置参数、速度参数和加速度参数都包括在双足机器人行走时前向、侧向和垂直方向的三个方向分量;所述第一前向约束条件包括:起步阶段开始时,位置参数值、速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数前向第一数值,速度参数值等于速度参数前向第一数值,加速度参数值等于加速度参数前向第一数值;所述第一侧向约束条件包括:起步阶段开始时,位置参数值为双足机器人双足之间距离的一半,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于位置参数侧向第一数值,速度参数值等于速度参数侧向第一数值,加速度参数值等于加速度参数侧向第一数值;所述第一垂直方向约束条件包括:起步阶段开始时,位置参数值等于双足机器人质心的初始高度,速度参数值和加速度参数值都等于0;起步阶段结束时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;
    所述第二前向约束条件包括:止步阶段开始时,位置参数值等于位置参数前向第二数值,速度参数值等于速度参数前向第二数值,加速度参数值等于加速度参数前向第二数值;止步阶段结束时,位置参数值、速度参数值和加速度参数值都等于0;
    所述第二侧向约束条件包括:止步阶段开始时,位置参数值等于位置参数侧向第二数值,速度参数值等于速度参数侧向第二数值,加速度参数值等于加速度参数侧向第二数值;止步阶段结束时,位置参数值等于所述双足机器人双足之间距离的一半,速度参数值和速度参数值都等于0;所述第二垂直方向约束条件包括:止步阶段开始时,位置参数值等于质心在起步阶段结束时垂直方向的高度Hz,速度参数值和加速度参数值都等于0;止步阶段结束时,位置参数值等于所述双足机器人质心的初始高度,速度参数值和加速度参数值都等于0。
PCT/CN2016/098084 2015-12-02 2016-09-05 一种双足机器人的步态控制方法和装置 WO2017092463A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017565774A JP6501921B2 (ja) 2015-12-02 2016-09-05 二足ロボットの歩行制御方法及び歩行制御装置
KR1020177037108A KR101867793B1 (ko) 2015-12-02 2016-09-05 이족 로봇의 워킹 제어 방법과 장치
DK16869774.6T DK3299923T3 (da) 2015-12-02 2016-09-05 Fremgangsmåde til at styre gåstilling af tobenet robot og indretning
EP16869774.6A EP3299923B1 (en) 2015-12-02 2016-09-05 Method of controlling walking posture of biped robot and device
US15/537,117 US10031524B2 (en) 2015-12-02 2016-09-05 Method and device for controlling gait of biped robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510874545.X 2015-12-02
CN201510874545.XA CN105511465B (zh) 2015-12-02 2015-12-02 一种双足机器人的步态控制方法和装置

Publications (1)

Publication Number Publication Date
WO2017092463A1 true WO2017092463A1 (zh) 2017-06-08

Family

ID=55719526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098084 WO2017092463A1 (zh) 2015-12-02 2016-09-05 一种双足机器人的步态控制方法和装置

Country Status (7)

Country Link
US (1) US10031524B2 (zh)
EP (1) EP3299923B1 (zh)
JP (1) JP6501921B2 (zh)
KR (1) KR101867793B1 (zh)
CN (1) CN105511465B (zh)
DK (1) DK3299923T3 (zh)
WO (1) WO2017092463A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111419236A (zh) * 2020-03-30 2020-07-17 哈尔滨工业大学 基于惯性传感器的运动模式无关下肢动力学实时解算方法
CN112783043A (zh) * 2020-12-30 2021-05-11 深圳市优必选科技股份有限公司 一种仿人机器人控制方法、装置、计算机设备及存储介质
CN112859856A (zh) * 2021-01-11 2021-05-28 常州工程职业技术学院 一种基于质心高度补偿的仿人机器人步态生成方法
CN113467246A (zh) * 2021-07-16 2021-10-01 浙江大学 一种双足机器人偏摆力矩补偿方法
CN117572877A (zh) * 2024-01-16 2024-02-20 科大讯飞股份有限公司 一种双足机器人步态控制方法、装置、存储介质及设备

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213324B2 (en) * 2014-08-28 2019-02-26 Rehabilitation Institute Of Chicago Minimum jerk swing control for assistive device
US9594377B1 (en) * 2015-05-12 2017-03-14 Google Inc. Auto-height swing adjustment
US9586316B1 (en) * 2015-09-15 2017-03-07 Google Inc. Determination of robotic step path
CN105511465B (zh) 2015-12-02 2017-08-04 歌尔股份有限公司 一种双足机器人的步态控制方法和装置
CN107791261B (zh) * 2016-09-05 2021-10-26 徐州网递智能科技有限公司 机器人及其活动控制方法和装置
CN108345211A (zh) * 2017-01-23 2018-07-31 深圳市祈飞科技有限公司 双足仿人机器人及其非线性步态规划方法以及控制方法
CN109656157A (zh) * 2017-10-12 2019-04-19 北京搜狗科技发展有限公司 一种步态控制方法和装置
CN109955928B (zh) * 2017-12-25 2020-10-16 深圳市优必选科技有限公司 一种双足机器人及其等效轨迹生成方法和装置
CN110053039B (zh) * 2018-01-17 2021-10-29 深圳市优必选科技有限公司 一种机器人行走中重力补偿的方法、装置及机器人
EP3569367B1 (de) 2018-05-17 2022-08-03 Siemens Aktiengesellschaft Rechnergestütztes ermitteln einer bewegung einer vorrichtung
CN109397288B (zh) * 2018-10-18 2020-10-23 航天科工智能机器人有限责任公司 基于个体特征的机器人步态规划方法
WO2020107279A1 (zh) * 2018-11-28 2020-06-04 深圳市优必选科技有限公司 双足机器人及其移动方法、装置和存储介质
CN109870947A (zh) * 2018-12-20 2019-06-11 江苏集萃智能制造技术研究所有限公司 一种小型双足机器人的步态行走规划的控制系统
CN111377004B (zh) * 2018-12-28 2021-11-16 深圳市优必选科技有限公司 一种双足机器人步态控制方法以及双足机器人
CN111376252A (zh) * 2018-12-29 2020-07-07 深圳市优必选科技有限公司 一种运动控制方法、运动控制装置及机器人
CN109709967B (zh) * 2019-01-22 2022-05-31 深圳市幻尔科技有限公司 机器人低运算要求的动态步态的实现方法
CN110262510B (zh) * 2019-07-11 2020-08-28 北京理工大学 一种降低行走能耗的仿人机器人质心轨迹规划方法
CN111098300B (zh) * 2019-12-13 2021-06-04 深圳市优必选科技股份有限公司 一种机器人平衡控制方法、装置、可读存储介质及机器人
CN112975941B (zh) * 2019-12-13 2022-06-24 深圳市优必选科技股份有限公司 机器人控制方法、装置、计算机可读存储介质及机器人
CN113050616A (zh) * 2019-12-27 2021-06-29 深圳市优必选科技股份有限公司 一种双足机器人行走的控制方法及双足机器人
CN113050409B (zh) * 2019-12-28 2023-12-01 深圳市优必选科技股份有限公司 仿人机器人及其控制方法以及计算机可读存储介质
CN113119097B (zh) * 2019-12-30 2022-07-29 深圳市优必选科技股份有限公司 机器人的行走控制方法、装置、机器人和可读存储介质
CN111176342B (zh) * 2020-02-11 2021-03-30 之江实验室 一种双足机器人仿人步态的步行速度调节方法
WO2021208917A1 (zh) * 2020-04-14 2021-10-21 腾讯科技(深圳)有限公司 质心位置确定方法、装置、足式机器人及存储介质
CN112035965B (zh) * 2020-05-28 2023-04-07 西南石油大学 一种足式机器人腿部机构尺寸优化方法
CN111872941B (zh) * 2020-08-06 2021-09-07 深圳市优必选科技股份有限公司 平衡控制方法、装置、仿人机器人及可读存储介质
CN112114589B (zh) * 2020-09-07 2024-02-09 腾讯科技(深圳)有限公司 足式机器人运动控制方法、装置、设备及介质
KR102424506B1 (ko) * 2020-09-15 2022-07-26 한국과학기술연구원 발자국 생성을 통한 휴머노이드 로봇의 균형 복원 방법
CN112180958B (zh) * 2020-09-23 2022-08-19 北航歌尔(潍坊)智能机器人有限公司 机器人及其运动协调方法、控制装置和可读存储介质
CN112256030B (zh) * 2020-10-20 2021-06-15 乐聚(深圳)机器人技术有限公司 机器人的足迹生成方法、装置、机器人及介质
CN112123340B (zh) * 2020-10-21 2021-08-24 乐聚(深圳)机器人技术有限公司 机器人运动控制方法、装置、机器人及存储介质
CN112091984B (zh) * 2020-11-17 2021-04-20 深圳市优必选科技股份有限公司 双足机器人的步态纠偏方法、装置和计算机设备
CN112650234B (zh) * 2020-12-16 2022-05-17 浙江大学 一种双足机器人的路径规划方法
CN112698650A (zh) * 2020-12-16 2021-04-23 深圳市优必选科技股份有限公司 仿人机器人的类人步态控制方法、装置、设备及存储介质
CN112720475B (zh) * 2020-12-22 2023-09-22 深圳市优必选科技股份有限公司 机器人下台阶的轨迹规划方法、装置及机器人
CN112744313B (zh) * 2020-12-24 2022-04-15 深圳市优必选科技股份有限公司 一种机器人状态估计方法、装置、可读存储介质及机器人
CN112757301B (zh) * 2020-12-30 2022-05-03 乐聚(深圳)机器人技术有限公司 机器人抗扰动控制方法、装置、电子设备及存储介质
CN112757299B (zh) * 2020-12-30 2022-03-04 乐聚(深圳)机器人技术有限公司 质心轨迹的获取方法、装置、机器人及存储介质
CN112783175B (zh) * 2021-01-04 2022-09-16 腾讯科技(深圳)有限公司 质心轨迹确定方法、装置、足式机器人、设备及介质
CN113001542B (zh) * 2021-02-21 2022-04-26 深圳市优必选科技股份有限公司 一种机器人轨迹规划方法、装置、可读存储介质及机器人
CN113064433B (zh) * 2021-03-22 2023-08-18 深圳市优必选科技股份有限公司 机器人迈步控制方法、装置、机器人控制设备及存储介质
CN113110484A (zh) * 2021-04-30 2021-07-13 深圳市优必选科技股份有限公司 一种步态轨迹规划方法、装置、可读存储介质及机器人
CN113359792A (zh) * 2021-05-27 2021-09-07 深圳市优必选科技股份有限公司 一种双足机器人控制方法、装置、双足机器人及存储介质
CN113359800A (zh) * 2021-06-30 2021-09-07 深圳市优必选科技股份有限公司 机器人行走控制方法、装置、机器人控制设备及存储介质
CN113524195B (zh) * 2021-08-06 2023-01-20 乐聚(深圳)机器人技术有限公司 机器人落脚位置控制方法、装置、电子设备及存储介质
CN115705048B (zh) * 2021-08-06 2023-11-14 北京小米机器人技术有限公司 足式机器人的控制方法、装置、机器人及存储介质
CN113467484B (zh) * 2021-09-02 2021-12-31 深圳市优必选科技股份有限公司 双足机器人步态控制方法、装置和计算机设备
CN114019957A (zh) * 2021-10-15 2022-02-08 上海电机学院 一种企鹅机器人步态规划方法、系统、设备及存储介质
CN113879421B (zh) * 2021-10-28 2022-07-08 乐聚(深圳)机器人技术有限公司 双足机器人的运动轨迹规划方法、装置、设备及介质
CN114253260B (zh) * 2021-12-08 2023-08-18 深圳市优必选科技股份有限公司 机器人步态规划方法及装置、运动规划设备和存储介质
CN114454981B (zh) * 2021-12-14 2022-11-29 深圳市优必选科技股份有限公司 双足机器人的弹跳运动控制方法、装置及双足机器人
CN114442649B (zh) * 2021-12-22 2024-04-19 之江实验室 一种双足机器人混杂动力学建模和运动规划方法
CN114489104B (zh) * 2022-01-21 2023-11-10 深圳市优必选科技股份有限公司 机器人迈步控制方法及装置、机器人控制设备和存储介质
CN114712170B (zh) * 2022-03-17 2023-10-17 浙大宁波理工学院 一种调控上肢摆动的步态修正系统及方法
CN117590840A (zh) * 2022-08-08 2024-02-23 北京小米机器人技术有限公司 运动控制方法、装置、控制器、介质及机器人
CN116224892B (zh) * 2023-05-08 2023-07-21 之江实验室 一种机器人的控制方法、装置、存储介质及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114243A (ja) * 2002-09-26 2004-04-15 National Institute Of Advanced Industrial & Technology 歩行ロボットの歩行歩容生成装置
US20090271037A1 (en) * 2008-04-29 2009-10-29 Korea Institute Of Science & Technology Method of generating a walking pattern for a humanoid robot
CN101950176A (zh) * 2010-09-02 2011-01-19 北京理工大学 一种机器人自主进行zmp标定的方法
JP2012040644A (ja) * 2010-08-19 2012-03-01 National Institute Of Advanced Industrial Science & Technology 歩行ロボットのzmp制御装置
CN103149933A (zh) * 2013-02-27 2013-06-12 南京邮电大学 基于闭环控制的仿人机器人全向行走方法
CN103770111A (zh) * 2012-10-24 2014-05-07 中国人民解放军第二炮兵工程大学 一种仿人机器人步态规划及合成方法
CN105511465A (zh) * 2015-12-02 2016-04-20 歌尔声学股份有限公司 一种双足机器人的步态控制方法和装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004388A1 (fr) * 1996-07-25 1998-02-05 Honda Giken Kogyo Kabushiki Kaisha Dispositif de reproduction de la demarche pour robot articule muni de jambes
JP3443077B2 (ja) * 1999-09-20 2003-09-02 ソニー株式会社 ロボットの運動パターン生成装置及び運動パターン生成方法、並びにロボット
JP3615702B2 (ja) * 1999-11-25 2005-02-02 ソニー株式会社 脚式移動ロボットの動作制御装置及び動作制御方法、並びに、脚式移動ロボット
JP4480843B2 (ja) * 2000-04-03 2010-06-16 ソニー株式会社 脚式移動ロボット及びその制御方法、並びに、脚式移動ロボット用相対移動測定センサ
JP3634238B2 (ja) * 2000-05-19 2005-03-30 本田技研工業株式会社 脚式移動ロボットの床形状推定装置
US7684896B2 (en) * 2001-06-29 2010-03-23 Honda Motor Co., Ltd. System and method of estimating joint loads using an approach of closed form dynamics
US7319918B2 (en) * 2001-12-28 2008-01-15 Honda Giken Kogyo Kabushiki Kaisha Gait generation device for legged mobile robot
DE60336992D1 (de) * 2002-03-18 2011-06-16 Sony Corp Robotereinrichtung mit steuerverfahren
JP3599244B2 (ja) * 2002-11-06 2004-12-08 ソニー株式会社 ロボット装置、ロボット装置の運動制御装置並びに運動制御方法
JP4548135B2 (ja) * 2005-02-03 2010-09-22 トヨタ自動車株式会社 脚式ロボットとその制御方法
CN101453964B (zh) * 2005-09-01 2013-06-12 奥瑟Hf公司 用于确定地形转换的系统和方法
JP4682791B2 (ja) * 2005-10-12 2011-05-11 ソニー株式会社 操作空間物理量算出装置及び操作空間物理量算出方法、並びにコンピュータ・プログラム
JP4818716B2 (ja) * 2005-12-27 2011-11-16 富士通株式会社 ロボット制御装置
JP4836592B2 (ja) * 2006-02-09 2011-12-14 ソニー株式会社 ロボット装置及びその制御方法
JP4840239B2 (ja) * 2007-04-20 2011-12-21 トヨタ自動車株式会社 脚式移動ロボットの制御方法及び脚式移動ロボット
JP2010017806A (ja) * 2008-07-10 2010-01-28 Yaskawa Electric Corp 脚式歩行ロボットの歩容生成器
KR101493384B1 (ko) * 2008-12-22 2015-02-13 삼성전자 주식회사 로봇 및 그 균형 제어방법
KR101549817B1 (ko) * 2009-01-22 2015-09-04 삼성전자 주식회사 로봇의 보행 제어장치 및 그 방법
FR2947236B1 (fr) * 2009-06-30 2011-07-15 Aldebaran Robotics Procede pour controler la marche d'un robot mobile et robot mettant en oeuvre le procede
JP5392125B2 (ja) * 2010-02-05 2014-01-22 トヨタ自動車株式会社 2脚歩行ロボット及びそのための歩容データ生成方法
KR101953113B1 (ko) * 2011-05-30 2019-03-05 삼성전자주식회사 로봇 및 그 제어방법
US8942848B2 (en) * 2011-07-06 2015-01-27 Florida Institute for Human and Machine Cognition Humanoid robot that can dynamically walk with limited available footholds in the presence of disturbances
JP5803751B2 (ja) * 2012-03-07 2015-11-04 トヨタ自動車株式会社 重心軌道生成装置、その生成方法及びプログラム
JP6026393B2 (ja) * 2013-11-29 2016-11-16 本田技研工業株式会社 移動装置
JP5962679B2 (ja) * 2014-01-20 2016-08-03 トヨタ自動車株式会社 2足歩行ロボット制御方法及び2足歩行ロボット制御システム
US9427868B1 (en) * 2015-02-24 2016-08-30 Disney Enterprises, Inc. Method for developing and controlling a robot to have movements matching an animation character
US9789920B2 (en) * 2015-04-01 2017-10-17 Oregon State University Apparatus and method for energy regulation and leg control for spring-mass walking machine
US10426637B2 (en) * 2015-05-11 2019-10-01 The Hong Kong Polytechnic University Exoskeleton ankle robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114243A (ja) * 2002-09-26 2004-04-15 National Institute Of Advanced Industrial & Technology 歩行ロボットの歩行歩容生成装置
US20090271037A1 (en) * 2008-04-29 2009-10-29 Korea Institute Of Science & Technology Method of generating a walking pattern for a humanoid robot
JP2012040644A (ja) * 2010-08-19 2012-03-01 National Institute Of Advanced Industrial Science & Technology 歩行ロボットのzmp制御装置
CN101950176A (zh) * 2010-09-02 2011-01-19 北京理工大学 一种机器人自主进行zmp标定的方法
CN103770111A (zh) * 2012-10-24 2014-05-07 中国人民解放军第二炮兵工程大学 一种仿人机器人步态规划及合成方法
CN103149933A (zh) * 2013-02-27 2013-06-12 南京邮电大学 基于闭环控制的仿人机器人全向行走方法
CN105511465A (zh) * 2015-12-02 2016-04-20 歌尔声学股份有限公司 一种双足机器人的步态控制方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111419236A (zh) * 2020-03-30 2020-07-17 哈尔滨工业大学 基于惯性传感器的运动模式无关下肢动力学实时解算方法
CN111419236B (zh) * 2020-03-30 2023-05-05 哈尔滨工业大学 基于惯性传感器的运动模式无关下肢动力学实时解算方法
CN112783043A (zh) * 2020-12-30 2021-05-11 深圳市优必选科技股份有限公司 一种仿人机器人控制方法、装置、计算机设备及存储介质
CN112859856A (zh) * 2021-01-11 2021-05-28 常州工程职业技术学院 一种基于质心高度补偿的仿人机器人步态生成方法
CN112859856B (zh) * 2021-01-11 2022-12-09 常州工程职业技术学院 一种基于质心高度补偿的仿人机器人步态生成方法
CN113467246A (zh) * 2021-07-16 2021-10-01 浙江大学 一种双足机器人偏摆力矩补偿方法
CN113467246B (zh) * 2021-07-16 2023-10-20 浙江大学 一种双足机器人偏摆力矩补偿方法
CN117572877A (zh) * 2024-01-16 2024-02-20 科大讯飞股份有限公司 一种双足机器人步态控制方法、装置、存储介质及设备

Also Published As

Publication number Publication date
EP3299923B1 (en) 2020-04-29
CN105511465B (zh) 2017-08-04
KR20180003627A (ko) 2018-01-09
EP3299923A4 (en) 2018-08-22
JP2018527646A (ja) 2018-09-20
US20180004208A1 (en) 2018-01-04
KR101867793B1 (ko) 2018-06-14
JP6501921B2 (ja) 2019-04-17
CN105511465A (zh) 2016-04-20
EP3299923A1 (en) 2018-03-28
DK3299923T3 (da) 2020-05-25
US10031524B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2017092463A1 (zh) 一种双足机器人的步态控制方法和装置
JP4998506B2 (ja) ロボット制御装置、ロボット制御方法、及び脚式ロボット
US8614558B2 (en) Motor control apparatus and motor control method thereof
Gong et al. Bionic quadruped robot dynamic gait control strategy based on twenty degrees of freedom
US20110172824A1 (en) Walking robot and method of controlling the same
CN103149933A (zh) 基于闭环控制的仿人机器人全向行走方法
JP2007296618A (ja) 駆動方法、駆動制御装置及びロボット
Missura et al. Omnidirectional capture steps for bipedal walking
Ma et al. Human-inspired walking via unified pd and impedance control
CN115793683A (zh) 一种重心控制方法、调整机构及足式机器人
JP5639342B2 (ja) ロボット及びその歩行制御方法
Lim et al. Control design to achieve dynamic walking on a bipedal robot with compliance
Zhang et al. Standing push recovery based on LIPM dynamics control for biped humanoid robot
Choudhury et al. Gait generation via the foot placement estimator for 3d bipedal robots
Sriganesh et al. Generating curved path walking gaits for biped robots with deficient degrees of freedom
CN114995476B (zh) 一种步行机器人坡地崎岖地形的步态生成与姿态控制方法
Scholz et al. Fast, robust and versatile humanoid robot locomotion with minimal sensor input
Liu et al. Walking pattern generation involving 3D waist motion for a biped humanoid robot
Kobayashi et al. Quasi-passive dynamic autonomous control to enhance horizontal and turning gait speed control
Abideen et al. An Improved Implementation of Shift Displacement Method on Hardware–Comprehensive Evaluation of Emerging Bi-pedal Techniques
Wu et al. A sensory data tracking approach to bipedal gait compensation control on slope surfaces
d’Apolito Legs’ trajectory generation for a cost-oriented humanoid robot: A symmetrical approach
Jun et al. From concept to realization: designing miniature humanoids for running
Wang et al. RESEARCH ON THE YAW ANGLE CONTROL STRATEGY OF HEXAPOD ROBO WITH TACTILE SENSOR FEEDBACK
Harata et al. Parametric excitation-based inverse bending gait generation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15537117

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565774

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177037108

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE