WO2020107279A1 - 双足机器人及其移动方法、装置和存储介质 - Google Patents

双足机器人及其移动方法、装置和存储介质 Download PDF

Info

Publication number
WO2020107279A1
WO2020107279A1 PCT/CN2018/117987 CN2018117987W WO2020107279A1 WO 2020107279 A1 WO2020107279 A1 WO 2020107279A1 CN 2018117987 W CN2018117987 W CN 2018117987W WO 2020107279 A1 WO2020107279 A1 WO 2020107279A1
Authority
WO
WIPO (PCT)
Prior art keywords
biped robot
robot
biped
trajectory
movement trajectory
Prior art date
Application number
PCT/CN2018/117987
Other languages
English (en)
French (fr)
Inventor
熊友军
陈春玉
刘益彰
葛利刚
谢铮
庞建新
Original Assignee
深圳市优必选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技有限公司 filed Critical 深圳市优必选科技有限公司
Priority to PCT/CN2018/117987 priority Critical patent/WO2020107279A1/zh
Priority to US16/753,408 priority patent/US11550335B2/en
Publication of WO2020107279A1 publication Critical patent/WO2020107279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the invention relates to the technical field of robots, in particular to a method, device and storage medium for a biped robot with its movement.
  • the main purpose of the present invention is to provide a method for controlling the movement of a biped robot according to the actual movement trajectory of the robot.
  • the invention provides a method for moving a biped robot, including the steps of:
  • the target angles ⁇ lb and ⁇ rb of the motors of the two legs of the biped robot are calculated, and each leg of the biped robot is formed by multiple motors connected in series;
  • Each motor of two legs of the biped robot is controlled to move to an angle corresponding to ⁇ lb and ⁇ rb .
  • the step of obtaining the actual movement trajectory X d_new of the biped robot includes:
  • the actual movement trajectory of the biped robot is calculated.
  • the step of calculating the force information of the biped robot based on the force data and the angle data includes:
  • the force information of the biped robot is calculated, and the F b represents the force information of the biped robot.
  • the step of calculating the actual movement trajectory of the biped robot based on the force information and the attribute information of the biped robot includes:
  • the change trajectory of the center of mass is calculated
  • the trajectory of the change of the center of mass is added to the planned trajectory of the biped robot to obtain the actual trajectory of the biped robot.
  • the step of calculating the target joint angles ⁇ lb and ⁇ rb of the two legs of the biped robot according to the actual movement trajectory includes:
  • the actual movement trajectory is input to the body centroid position in inverse kinematics, and the ⁇ lb and ⁇ rb are calculated.
  • each leg of the bipedal body robot includes 6 motors.
  • This application also proposes a mobile device for a biped robot, including:
  • the acquisition module is used to obtain the actual movement trajectory X d_new of the biped robot
  • the calculation module is used to calculate the target angles ⁇ lb and ⁇ rb of the motors of the two legs of the biped robot according to the actual movement trajectory, each leg of the biped robot is sequentially composed of multiple motors Formed in series;
  • the control module is used to control the motors of the two legs of the biped robot to move to the angles corresponding to ⁇ lb and ⁇ rb .
  • the present application also proposes a biped robot including a memory and a processor, where the memory stores a computer program, and when the processor executes the computer program, the steps of any of the above methods are implemented.
  • the present application also provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any one of the above methods are implemented.
  • the biped robot of the present application calculates the difference between the motion trajectory of the biped robot and the actual motion trajectory according to the force on the sole of the biped robot and the joint angle of the legs.
  • the controller collects the force of the biped robot itself. It can accurately calculate the external force of the biped robot without collecting external signals, so that it can quickly change the trajectory according to the external force received by the biped robot.
  • the biped robot is prevented from hitting other objects or people, and the biped robot can safely interact with the outside world.
  • FIG. 1 is a schematic flowchart of a method for moving a biped robot according to an embodiment of the application
  • step S1 is a schematic flowchart of step S1 in the method for moving a biped robot according to an embodiment of the present application
  • step S13 is a schematic flowchart of step S13 of the method for moving a biped robot according to an embodiment of the present application
  • FIG. 4 is a schematic block diagram of a structure of a mobile device of a biped robot according to an embodiment of the present application.
  • this application proposes a method for moving a biped robot, including the following steps:
  • each leg of the biped robot is formed by a plurality of motors connected in series;
  • the biped robot will generate a movement trajectory according to the position of its center of gravity during the movement, and there will be a predetermined planned movement trajectory X d according to the task performed, that is, the movement route of the robot is The fixed movement track set according to the instruction.
  • the movement trajectory of the biped robot will change, resulting in a new movement trajectory, that is, the actual movement trajectory, use X d_new To represent.
  • the controller of the biped robot obtains the actual movement trajectory.
  • the steps for obtaining the actual movement trajectory X d_new of the biped robot proposed in this application include:
  • the two soles of the biped robot are each equipped with a six-dimensional sensor for detecting the six-dimensional force of the sole, and the six-dimensional forces of the two soles are detected as F l and F r respectively .
  • Six-dimensional force represents the pressure and torque force in three directions received in three-dimensional space
  • six-dimensional force F l [F lx F ly F lz ⁇ lx ⁇ lx ⁇ lx ] T
  • F r [F rx F ry F rz ⁇ rx ⁇ rx ⁇ rx ] T
  • F l represents the six-dimensional force on the left sole
  • F r represents the six-dimensional force on the right sole.
  • the legs of the biped robot are formed by the serial connection of several motors.
  • the controller controls the motors to rotate to a specified angle to control the biped robot to walk.
  • the rotor of each motor can rotate 360 degrees, and the rotor of each motor is at a different angle to indicate that the legs of the robot are in different states.
  • the controller detects the angles of the six motors on each leg to obtain two matrices, which are the angle ⁇ la of the six motors on the left leg and the angle ⁇ ra of the six motors on the right leg.
  • the controller then calculates the Jacobian matrices of ⁇ la and ⁇ ra respectively to obtain the matrices J l and J r . Then enter F l , F r , J l , J r into the formula In the calculation, F b is calculated.
  • F b represents the body force information of the biped robot.
  • the controller according to the body force information of the biped robot, and then according to the mass M of the biped robot and the damping coefficient B and the stiffness coefficient K set by the flexible control, the attributes of the biped robot itself can be The actual trajectory of the biped robot is calculated.
  • the actual movement locus of the method of calculating biped robot comprising the steps of:
  • S113 Calculate the acceleration of the biped robot according to the force information and the body mass of the biped robot;
  • the change X of the centroid position of the biped robot is calculated.
  • X refers to the change in the position of the center of mass of the biped robot
  • S is the Laplace operator.
  • the change of the centroid trajectory in the frequency domain is converted to the calculation in the time domain, and the inverse Laplace transform is used to obtain the centroid trajectory X(t) in the time domain.
  • step S2 after the controller obtains the actual motion trajectory of the biped robot, it is input to the body centroid position in inverse kinematics to obtain the target angle of each motor of the two legs of the biped robot, which are the left leg Six motor angles ⁇ lb and six motor angles ⁇ rb of the right leg.
  • the specific calculation formula is as follows:
  • the controller simultaneously controls the movement of each motor of the leg to the corresponding target angle according to the angles corresponding to the two motor angles ⁇ lb and ⁇ rb to complete the movement of the biped robot.
  • the moving method of the biped robot of the present application calculates the difference between the motion trajectory of the biped robot and the actual motion trajectory according to the force on the sole of the foot of the biped robot and the joint angle of the legs to realize real-time movement of the robot Closed-loop control.
  • the controller collects the force of the biped robot itself. It can accurately calculate the external force of the biped robot without collecting external signals, so that it can quickly change the trajectory according to the external force received by the biped robot.
  • the biped robot is prevented from hitting other objects or people, and the biped robot can safely interact with the outside world.
  • This application also proposes a mobile device for a biped robot, including:
  • Acquisition module 1 for acquiring the actual movement trajectory X d_new of the biped robot
  • the calculation module 2 is used to calculate the target angles ⁇ lb and ⁇ rb of the motors of the two legs of the biped robot according to the actual movement trajectory, each leg of the biped robot is composed of multiple motors Formed in series;
  • the control module 3 is used to control the motors of the two legs of the biped robot to move to the angles corresponding to ⁇ lb and ⁇ rb .
  • the biped robot after receiving the instruction, the biped robot will generate a movement trajectory according to the position of its center of gravity during the movement, and there will be a predetermined planned movement trajectory X d according to the task performed, that is, the movement route of the robot is based on the instruction And set a fixed movement track.
  • the movement trajectory of the biped robot will change, resulting in a new movement trajectory, that is, the actual movement trajectory, use X d_new To represent.
  • the controller of the biped robot obtains the actual movement trajectory.
  • the controller After the controller obtains the actual motion trajectory of the biped robot, it is input to the body centroid position in inverse kinematics to obtain the target angle of each motor of the two legs of the biped robot, which are the six motor angles of the left leg ⁇ lb And the six motor angles ⁇ rb of the right leg.
  • the specific calculation formula is as follows:
  • the controller simultaneously controls the movement of each motor of the leg to the corresponding target angle to complete the movement of the biped robot.
  • the mobile device of the biped robot of the present application calculates the difference between the motion trajectory of the biped robot and the actual motion trajectory according to the force on the sole of the foot of the biped robot and the joint angle of the legs to realize real-time movement of the robot Closed-loop control.
  • the controller collects the force of the biped robot itself. It can accurately calculate the external force of the biped robot without collecting external signals, so that it can quickly change the trajectory according to the external force received by the biped robot.
  • the biped robot is prevented from hitting other objects or people, and the biped robot can safely interact with the outside world.
  • the present application also proposes a biped robot including a processor, a memory, a network interface, and a database connected by a system bus.
  • the processor designed by the biped robot is used to provide computing and control capabilities.
  • the memory of the biped robot includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the memory device provides an environment for operating systems and computer programs in non-volatile storage media.
  • the database of the computer device is used to store data such as the motor angle of the biped robot.
  • the network interface of the biped robot is used to communicate with external terminals through a network connection. When the biped robot is executed by the processor, a method for moving the biped robot is realized.
  • the above-mentioned processor executes the steps of the above-mentioned biped robot moving method: acquiring the actual movement trajectory X d_new of the biped robot; according to the actual movement trajectory, the target angle ⁇ lb of each motor of the two legs of the biped robot is calculated And ⁇ rb , each leg of the biped robot is formed in series by a plurality of motors; each motor of the two legs of the biped robot is controlled to move to the angle corresponding to the ⁇ lb and ⁇ rb .
  • the processor executes the step of acquiring the actual movement trajectory X d_new of the biped robot, which includes: collecting force data of the six-dimensional sensor of each sole of the biped robot, and each Angle data of the motor on one leg; based on the force data and the angle data, calculate the force information of the biped robot; based on the force information and attribute information of the biped robot, calculate The actual movement trajectory of the biped robot.
  • the processor executes the step of calculating the force information of the biped robot based on the force data and the angle data, including: generating two pieces of force data from each sole Matrices F l and F r generate two matrices ⁇ la and ⁇ ra based on the angle data of each leg respectively; according to the matrices ⁇ la and ⁇ ra , calculate the two leg Jacobian matrices to obtain the matrix J l And J r ; according to the formula The force information of the biped robot is calculated, and the F b represents the force information of the biped robot.
  • the processor executes the step of calculating the actual movement trajectory of the biped robot according to the force information and the attribute information of the biped robot, including: according to the force information and the The body mass, damping coefficient and stiffness coefficient of the biped robot calculate the change of the position of the center of mass of the biped robot; the change of the position of the center of mass is calculated by Laplace transform to obtain the change trajectory of the center of mass; the change trajectory of the center of mass Adding the planned trajectory of the biped robot to obtain the actual trajectory of the biped robot.
  • the processor executes the step of calculating the target joint angles ⁇ lb and ⁇ rb of the two legs of the biped robot according to the actual movement trajectory, including: inputting the actual movement trajectory to the inverse For the position of the center of mass of the body in kinematics, the ⁇ lb and ⁇ rb are calculated.
  • the biped robot of the present application calculates the difference between the trajectory of the biped robot and the actual trajectory according to the force on the sole of the biped robot and the joint angle of the legs to realize the movement of the robot Real-time closed-loop control.
  • the controller collects the force of the biped robot itself. It can accurately calculate the external force of the biped robot without collecting external signals, which can quickly change the movement trajectory according to the external force received by the biped robot.
  • the biped robot is prevented from hitting other objects or people, and the biped robot can safely interact with the outside world.
  • An embodiment of the present application also provides a computer storage medium on which a computer program is stored.
  • a method for selecting a supplier based on data analysis is implemented, specifically: acquiring the actual movement trajectory of a biped robot X d_new ; based on the actual movement trajectory, the target angles ⁇ lb and ⁇ rb of the motors of the two legs of the biped robot are calculated, and each leg of the biped robot is formed in series by multiple motors ; Control the motors of the two legs of the biped robot to move to the angles corresponding to ⁇ lb and ⁇ rb .
  • the processor executes the step of acquiring the actual movement trajectory X d_new of the biped robot, which includes: collecting force data of the six-dimensional sensor of each sole of the biped robot, and each Angle data of the motor on one leg; based on the force data and the angle data, calculate the force information of the biped robot; based on the force information and attribute information of the biped robot, calculate The actual movement trajectory of the biped robot.
  • the processor executes the step of calculating the force information of the biped robot based on the force data and the angle data, including: generating two pieces of force data from each sole Matrices F l and F r generate two matrices ⁇ la and ⁇ ra based on the angle data of each leg respectively; according to the matrices ⁇ la and ⁇ ra , calculate the two leg Jacobian matrices to obtain the matrix J l And J r ; according to the formula The force information of the biped robot is calculated, and the F b represents the force information of the biped robot.
  • the processor executes the step of calculating the actual movement trajectory of the biped robot according to the force information and the attribute information of the biped robot, including: according to the force information and the The body mass, damping coefficient and stiffness coefficient of the biped robot calculate the change of the position of the center of mass of the biped robot; the change of the position of the center of mass is calculated by Laplace transform to obtain the change trajectory of the center of mass; Adding the planned trajectory of the biped robot to obtain the actual trajectory of the biped robot.
  • the processor executes the step of calculating the target joint angles ⁇ lb and ⁇ rb of the two legs of the biped robot according to the actual movement trajectory, including: inputting the actual movement trajectory to the inverse For the position of the center of mass of the body in kinematics, the ⁇ lb and ⁇ rb are calculated.
  • the computer storage medium of the present application calculates the difference between the motion trajectory of the biped robot and the actual motion trajectory according to the force on the sole of the foot of the biped robot and the joint angle of the legs to realize the movement of the robot Real-time closed-loop control.
  • the controller collects the force of the biped robot itself. It can accurately calculate the external force of the biped robot without collecting external signals, so that it can quickly change the trajectory according to the external force received by the biped robot.
  • the biped robot is prevented from hitting other objects or people, and the biped robot can safely interact with the outside world.

Abstract

一种双足机器人及其移动方法、装置和存储介质,其中方法包括:根据双足机器人的实际移动轨迹来计算腿部的各个电机的运动状态,并控制各电机转动到对应的运动状态。该方法可以使双足机器人根据接收到的实时的外界反馈实现对双足机器人的柔性控制。

Description

双足机器人及其移动方法、装置和存储介质 技术领域
本发明涉及到机器人技术领域,特别是涉及到一种双足机器人以其移动方法、装置和存储介质。
背景技术
双足机器人在运动过程中,与人或外界环境之间存在交互问题。当双足机器人在执行任务,行走过程中遇到障碍物时,机器人继续行走会撞到障碍物,这样的行走不是非常智能。目前有机器人会通过设置距离传感器来检测行走周围是否有障碍物来控制机器人的自主行走,但是由于距离传感器的检测距离的精准度低而且距离传感器的检测范围小,不能很准确的计算障碍物对机器人行走的实际影响。另外,在人机协作的环境中,如果人的行走突然碰撞到机器人,会将机器人撞倒,从而使机器人发生损坏,也对人的安全产生一定的影响。因此,有必要提出一种新的双足机器人的移动方法。
技术问题
本发明的主要目的为提供一种根据机器人的实际移动轨迹来控制双足机器人的移动方法。
技术解决方案
本发明提出一种双足机器人的移动方法,包括步骤:
获取双足机器人的实际移动轨迹X d_new
根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
进一步地,所述获取双足机器人的实际移动轨迹X d_new的步骤,包括:
采集双足机器人的每一个足底的六维传感器的力数据,以及所述双足机器人的每一条腿部上的电机的角数据;
根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息;
根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹。
进一步地,所述根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息的步骤,包括:
分别根据每个足底的力数据部生成两个矩阵F l和F r,分别根据每个腿部的角数据生成两个矩阵θ la和θ ra
根据所述矩阵θ la和θ ra,分别计算两条腿部雅克比矩阵,得到矩阵J l和J r
根据公式
Figure PCTCN2018117987-appb-000001
计算得到所述双足机器人的受力信息,所述F b表示所述双足机器人的受力信息。
进一步地,所述根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹的步骤,包括:
根据所述受力信息以及所述双足机器人的本体质量计算所述双足机器人的加速度;
根据所述双足机器人的加速度以及双足机器人的移动速度,计算得到质心变化轨迹;
将所述质心变化轨迹加上所述双足机器人的规划运动轨迹,得到所述双足机器人的实际移动轨迹。
进一步地,所述根据所述实际移动轨迹,计算得到双足机器人的两个腿部的目标关节角θ lb和θ rb的步骤,包括:
将所述实际移动轨迹输入到逆运动学中的本体质心位置,计算得到所述θ lb和θ rb
进一步地,所述双足本体机器人的每一个腿部上各包括6个电机。
本申请还提出一种双足机器人的移动装置,包括:
获取模块,用于获取双足机器人的实际移动轨迹X d_new
计算模块,用于根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
控制模块,用于控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
本申请还提出一种双足机器人,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述方法的步骤。
本申请还提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法的步骤。
有益效果
本申请的双足机器人及其移动方法、装置和存储介质,根据双足机器人的足底的受力情况以及腿部的关节角度,计算出双足机器人的运动轨迹与实际运动轨迹的差异,来对机器人的移动实现实时闭环控制。控制器采集的是双足机器人自身的受力情况,不需要采集外部的信号即可以准确的计算出双足机器人的受外力的情况,从而可以迅速的根据双足机器人受到的外力改变移动轨迹,避免双足机器人撞到其他物体或人,实现双足机器人与外界安全交互。
附图说明
图1为本申请一实施例的双足机器人的移动方法的流程示意图;
图2为本申请一实施例的双足机器人的移动方法中步骤S1的流程示意图;
图3为本申请一实施例的上述双足机器人的移动方法的步骤S13的流程示意图;
图4为本申请一实施例的双足机器人的移动装置的结构示意框图。
本发明的最佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本申请提出一种双足机器人的移动方法,包括如下步骤:
S1、获取双足机器人的实际移动轨迹X d_new
S2、根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
S3、控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
如上述步骤S1所述,双足机器人接收到指令后,在移动过程中根据其重心的位置,会产生移动轨迹,根据执行的任务会有既定的规划运动轨迹X d,即机器人的移动路线是根据指令而设置的固定的移动轨迹。当机器人在移动过程中,受到外界的阻力时,比如突然有人走过来与双足机器人发生碰撞,导致双足机器人的移动轨迹会发生变化,产生新的移动轨迹,即实际移动轨迹,用X d_new来表示。双足机器人的控制器获取到实际移动轨迹。
参照图2,本申请提出的获取双足机器人的实际移动轨迹X d_new的步骤,包括:
S11、采集双足机器人的每一个足底的六维传感器的力数据,以及所述双足机器人的每一条腿部上的电机的角数据;
S12、根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息;
S13、根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹。
如上述步骤S101所述,双足机器人的两个脚底各安装有一个六维传感器,用于检测脚底的六维力,检测到两个脚底的六维力分别为F l和F r。六维力分别表示在三维空间中受到的三个方向的压力和扭矩力,六维力F l=[F lx F lyF lzτ lxτ lxτ lx] T和F r=[F rx F ryF rzτ rxτ rxτ rx] T,其中F l表示左脚底的六维力,F r表示右脚底的六维力。双足机器人的腿部是由若干个电机串连形成,在一具体实施例中,每条腿上各有六个电机,控制器控制各电机转动到指定的角度来控制双足机器人行走。每个电机的转子均可以旋转360度,各个电机的转子处于不同的角度表示机器人的腿部处于不同的状态。控制器检测每条腿上的六个电机的角度,得到两个矩阵,分别是左腿上的六个电机的角度θ la和右腿上的六个电机角度θ ra。两条腿六个电机的角度自上而下分别为θ la=[θ l1 θ l2 θ l3 θ l4 θ l5 θ l6] T和θ ra=[θ r1 θ r2 θ r3 θ r4 θ r5 θ r6] T
如上述步骤S102所述,控制器然后分别计算θ la和θ ra的雅克比矩阵,得到矩阵J l和J r。再将F l、F r、J l、J r输入到公式
Figure PCTCN2018117987-appb-000002
中,计算得到F b。F b表示双足机器人的本体受力信息。
如上述步骤S103所述,控制器根据双足机器人的本体受力信息,再根据双足机器人自身的质量M以及柔性控制设置的阻尼系数B以及刚度系数K等双足机器人自身的属性,即可以计算出双足机器人的实际移动轨迹。
参照图3,在一个具体实施例中,根据双足机器人的受力信息F b以及双足机器人的属性,计算双足机器人的实际移动轨迹的方法,包括如下步骤:
S113、根据所述受力信息以及所述双足机器人的本体质量计算所述双足机器人的加速度;
S123、根据所述双足机器人的加速度以及双足机器人的移动速度,计算得到质心变化轨迹;
S133、将所述质心变化轨迹加上所述双足机器人的规划运动轨迹,得到所述双足机器人的实际移动轨迹。
在本实施例中,计算得到受力信息F b之后,根据牛顿第二定律,计算双足机器人的加速度,具体的计算公式为:a(t)=F b/M。然后根据公式
Figure PCTCN2018117987-appb-000003
计算得出双足机器人的质心变化轨迹X(t),最后将双足机器人的质心变化轨迹X(t)加上双足机器人自身的规划运动轨迹X d,即可得到双足机器人的实际运动轨迹。
在另一计算X(t)的实施例中,计算得到受力信息F b之后,再从存储器中调用出机器人的属性信息,本体质量M、阻尼系数B、刚度系数K,根据这四个数据,采用阻抗算法,根据公式
Figure PCTCN2018117987-appb-000004
计算得到双足机器人的质心位置变化量X。上述公式中,X是指双足机器人的质心位置变化量,S是拉普拉斯算子。
根据如下公式:
Figure PCTCN2018117987-appb-000005
将频域内的质心轨迹的变化转化到时域的中计算,利用拉普拉斯反变换得到时域内的质心变化轨迹X(t)。
如上述步骤S2所述,控制器得到双足机器人的实际运动轨迹后,输入到逆运动学中的本体质心位置,得到双足机器人的两条腿部的各个电机的目标角度,分别是左腿的六个电机角度θ lb和右腿的六个电机角度θ rb。具体计算公式如下:
lbrb] T=IK(Xd_new)。
如上述步骤S3所述,控制器根据两个电机角度θ lb和θ rb所对应的角度,同时控制腿部的各电机运动到对应的目标角度,以完成双足机器人的移动。
本申请的双足机器人的移动方法,根据双足机器人的足底的受力情况以及腿部的关节角度,计算出双足机器人的运动轨迹与实际运动轨迹的差异,来对机器人的移动实现实时闭环控制。控制器采集的是双足机器人自身的受力情况,不需要采集外部的信号即可以准确的计算出双足机器人的受外力的情况,从而可以迅速的根据双足机器人受到的外力改变移动轨迹,避免双足机器人撞到其他物体或人,实现双足机器人与外界安全交互。
本申请还提出一种双足机器人的移动装置,包括:
获取模块1,用于获取双足机器人的实际移动轨迹X d_new
计算模块2,用于根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
控制模块3,用于控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
本实施例中,双足机器人接收到指令后,在移动过程中根据其重心的位置,会产生移动轨迹,根据执行的任务会有既定的规划运动轨迹X d,即机器人的移动路线是根据指令而设置的固定的移动轨迹。当机器人在移动过程中,受到外界的阻力时,比如突然有人走过来与双足机器人发生碰撞,导致双足机器人的移动轨迹会发生变化,产生新的移动轨迹,即实际移动轨迹,用X d_new来表示。双足机器人的控制器获取到实际移动轨迹。
控制器得到双足机器人的实际运动轨迹后,输入到逆运动学中的本体质心位置,得到双足机器人的两条腿部的各个电机的目标角度,分别是左腿的六个电机角度θ lb和右腿的六个电机角度θ rb。具体计算公式如下:
lb,θ rb] T=IK(Xd_new)。
控制器根据两个电机角度θ lb和θ rb所对应的角度,同时控制腿部的各电机运动到对应的目标角度,以完成双足机器人的移动。
本申请的双足机器人的移动装置,根据双足机器人的足底的受力情况以及腿部的关节角度,计算出双足机器人的运动轨迹与实际运动轨迹的差异,来对机器人的移动实现实时闭环控制。控制器采集的是双足机器人自身的受力情况,不需要采集外部的信号即可以准确的计算出双足机器人的受外力的情况,从而可以迅速的根据双足机器人受到的外力改变移动轨迹,避免双足机器人撞到其他物体或人,实现双足机器人与外界安全交互。
本申请还提出一种双足机器人,该双足机器人包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该双足机器人设计的处理器用于提供计算和控制能力。该双足机器人的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储双足机器人的电机角度等数据。该双足机器人的网络接口用于与外部的终端通过网络连接通信。该双足机器人被处理器执行时以实现一种双足机器人的移动方法。
上述处理器执行上述双足机器人的移动方法的步骤:获取双足机器人的实际移动轨迹X d_new;根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依 次串联形成;控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
在一个实施例中,上述处理器执行获取双足机器人的实际移动轨迹X d_new的步骤,包括:采集双足机器人的每一个足底的六维传感器的力数据,以及所述双足机器人的每一条腿部上的电机的角数据;根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息;根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹。
在一个实施例中,上述处理器执行根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息的步骤,包括:分别根据每个足底的力数据部生成两个矩阵F l和F r,分别根据每个腿部的角数据生成两个矩阵θ la和θ ra;根据所述矩阵θ la和θ ra,分别计算两条腿部雅克比矩阵,得到矩阵J l和J r;根据公式
Figure PCTCN2018117987-appb-000006
计算得到所述双足机器人的受力信息,所述F b表示所述双足机器人的受力信息。
在一个实施例中,上述处理器执行根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹的步骤,包括:根据所述受力信息以及所述双足机器人的本体质量、阻尼系数以及刚度系数计算出所述双足机器人的质心位置变化量;将所述质心位置变化量经过拉普拉斯变换计算得到质心变化轨迹;将所述质心变化轨迹加上所述双足机器人的规划运动轨迹,得到所述双足机器人的实际移动轨迹。
在一个实施例中,上述处理器执行根据所述实际移动轨迹,计算得到双足机器人的两个腿部的目标关节角θ lb和θ rb的步骤,包括:将所述实际移动轨迹输入到逆运动学中的本体质心位置,计算得到所述θ lb和θ rb
综上所述,本申请的双足机器人根据双足机器人的足底的受力情况以及腿部的关节角度,计算出双足机器人的运动轨迹与实际运动轨迹的差异,来对机器人的移动实现实时闭环控制。控制器采集的是双足机器人自身的受力情况,不需要采集外部的信号即可以准确的计算出双足机器人的受外力的情况,从而可以迅速的根据双足机器人受到的外力改变移动轨迹,避免双足机器人撞到其他物体或人,实现双足机器人与外界安全交互。
本申请一实施例还提供一种计算机存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现一种基于数据分析选择供应商的方法,具体为:获取双足机器人的实际移动轨迹X d_new;根据所述实际移动轨迹,计算得到双 足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
在一个实施例中,上述处理器执行获取双足机器人的实际移动轨迹X d_new的步骤,包括:采集双足机器人的每一个足底的六维传感器的力数据,以及所述双足机器人的每一条腿部上的电机的角数据;根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息;根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹。
在一个实施例中,上述处理器执行根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息的步骤,包括:分别根据每个足底的力数据部生成两个矩阵F l和F r,分别根据每个腿部的角数据生成两个矩阵θ la和θ ra;根据所述矩阵θ la和θ ra,分别计算两条腿部雅克比矩阵,得到矩阵J l和J r;根据公式
Figure PCTCN2018117987-appb-000007
计算得到所述双足机器人的受力信息,所述F b表示所述双足机器人的受力信息。
在一个实施例中,上述处理器执行根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹的步骤,包括:根据所述受力信息以及所述双足机器人的本体质量、阻尼系数以及刚度系数计算出所述双足机器人的质心位置变化量;将所述质心位置变化量经过拉普拉斯变换计算得到质心变化轨迹;将所述质心变化轨迹加上所述双足机器人的规划运动轨迹,得到所述双足机器人的实际移动轨迹。
在一个实施例中,上述处理器执行根据所述实际移动轨迹,计算得到双足机器人的两个腿部的目标关节角θ lb和θ rb的步骤,包括:将所述实际移动轨迹输入到逆运动学中的本体质心位置,计算得到所述θ lb和θ rb。综上所述,本申请的计算机存储介质根据双足机器人的足底的受力情况以及腿部的关节角度,计算出双足机器人的运动轨迹与实际运动轨迹的差异,来对机器人的移动实现实时闭环控制。控制器采集的是双足机器人自身的受力情况,不需要采集外部的信号即可以准确的计算出双足机器人的受外力的情况,从而可以迅速的根据双足机器人受到的外力改变移动轨迹,避免双足机器人撞到其他物体或人,实现双足机器人与外界安全交互。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运 用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种双足机器人的移动方法,其特征在于,包括步骤:
    获取双足机器人的实际移动轨迹X d_new
    根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
    控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
  2. 如权利要求1所述的双足机器人的移动方法,其特征在于,所述获取双足机器人的实际移动轨迹X d_new的步骤,包括:
    采集双足机器人的每一个足底的六维传感器的力数据,以及所述双足机器人的每一条腿部上的电机的角数据;
    根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息;
    根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹。
  3. 如权利要求2所述的双足机器人和移动方法,其特征在于,所述根据所述力数据以及所述角数据,计算得到所述双足机器人的受力信息的步骤,包括:
    分别根据每个足底的力数据部生成两个矩阵F l和F r,分别根据每个腿部的角数据生成两个矩阵θ la和θ ra
    根据所述矩阵θla和θra,分别计算两条腿部雅克比矩阵,得到矩阵Jl和Jr;
    根据公式
    Figure PCTCN2018117987-appb-100001
    计算得到所述双足机器人的受力信息,所述Fb表示所述双足机器人的受力信息。
  4. 如权利要求2所述的双足机器人的移动方法,其特征在于,所述根据所述受力信息以及双足机器人的属性信息,计算得出所述双足机器人的实际移动轨迹的步骤,包括:
    根据所述受力信息以及所述双足机器人的本体质量计算所述双足机器人的加速度;
    根据所述双足机器人的加速度以及双足机器人的移动速度,计算得到质心变化轨迹;
    将所述质心变化轨迹加上所述双足机器人的规划运动轨迹,得到所述双足机器人的实际移动轨迹。
  5. 如权利要求1所述的双足机器人的移动方法,其特征在于,所述根据所述实际移动轨迹,计算得到双足机器人的两个腿部的目标关节角θ lb和θ rb的步骤,包括:
    将所述实际移动轨迹输入到逆运动学中的本体质心位置,计算得到所述θ lb和θ rb
  6. 如权利要求1所述的双足机器人的移动方法,其特征在于,所述双足本体机器人的每一个腿部上各包括6个电机。
  7. 一种双足机器人的移动装置,其特征在于,包括:
    获取模块,用于获取双足机器人的实际移动轨迹X d_new
    计算模块,用于根据所述实际移动轨迹,计算得到双足机器人的两个腿部的各个电机的目标角度θ lb和θ rb,所述双足机器人的每个腿部均由多个电机依次串联形成;
    控制模块,用于控制所述双足机器人的两个腿部的各个电机运动至所述θ lb和θ rb所对应的角度。
  8. 一种双足机器人,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1所述方法的步骤。
  9. 如权利要求8所述的双足机器人,其特征在于,所述双足机器人的双腿各包括6个电机。
  10. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1所述的方法的步骤。
PCT/CN2018/117987 2018-11-28 2018-11-28 双足机器人及其移动方法、装置和存储介质 WO2020107279A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/117987 WO2020107279A1 (zh) 2018-11-28 2018-11-28 双足机器人及其移动方法、装置和存储介质
US16/753,408 US11550335B2 (en) 2018-11-28 2018-11-28 Biped robot and its moving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117987 WO2020107279A1 (zh) 2018-11-28 2018-11-28 双足机器人及其移动方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2020107279A1 true WO2020107279A1 (zh) 2020-06-04

Family

ID=70854223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117987 WO2020107279A1 (zh) 2018-11-28 2018-11-28 双足机器人及其移动方法、装置和存储介质

Country Status (2)

Country Link
US (1) US11550335B2 (zh)
WO (1) WO2020107279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932961B (zh) * 2022-06-15 2023-10-10 中电海康集团有限公司 一种四足机器人运动控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149933A (zh) * 2013-02-27 2013-06-12 南京邮电大学 基于闭环控制的仿人机器人全向行走方法
CN103895016A (zh) * 2012-12-27 2014-07-02 现代自动车株式会社 用于控制机器人步态的方法
CN104108433A (zh) * 2014-06-30 2014-10-22 中国人民解放军国防科学技术大学 一种轮足式机器人的柔顺控制方法
CN108858208A (zh) * 2018-09-05 2018-11-23 鲁东大学 一种复杂地形仿人机器人自适应平衡控制方法、装置和系统
CN108897220A (zh) * 2018-07-12 2018-11-27 上海硅族智能科技有限公司 一种自适应稳定平衡控制方法和系统以及双足仿人机器人

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004388A1 (fr) * 1996-07-25 1998-02-05 Honda Giken Kogyo Kabushiki Kaisha Dispositif de reproduction de la demarche pour robot articule muni de jambes
US7319918B2 (en) * 2001-12-28 2008-01-15 Honda Giken Kogyo Kabushiki Kaisha Gait generation device for legged mobile robot
KR100977348B1 (ko) * 2002-03-15 2010-08-20 소니 주식회사 다리식 이동 로봇의 동작 제어 장치 및 동작 제어 방법 및 로봇 장치
KR100959472B1 (ko) * 2002-03-18 2010-05-25 소니 주식회사 로봇 장치 및 로봇 장치의 제어 방법
JP3834629B2 (ja) * 2002-09-26 2006-10-18 独立行政法人産業技術総合研究所 歩行ロボットの歩行歩容生成装置
US7805218B2 (en) * 2002-10-01 2010-09-28 Sony Corporation Robot device and control method of robot device
DE602004031425D1 (de) * 2003-06-27 2011-03-31 Honda Motor Co Ltd Steuerung für mobilen roboter mit beinen
KR100709556B1 (ko) * 2005-10-19 2007-04-20 한국과학기술연구원 인간형 로봇의 보행 제어 방법
JP4998506B2 (ja) * 2009-04-22 2012-08-15 トヨタ自動車株式会社 ロボット制御装置、ロボット制御方法、及び脚式ロボット
FR2947236B1 (fr) * 2009-06-30 2011-07-15 Aldebaran Robotics Procede pour controler la marche d'un robot mobile et robot mettant en oeuvre le procede
KR101687629B1 (ko) * 2010-01-18 2016-12-20 삼성전자주식회사 인간형 로봇 및 그 보행 제어방법
KR101687631B1 (ko) * 2010-01-18 2016-12-20 삼성전자주식회사 로봇의 보행 제어 장치 및 그 제어 방법
KR20120070291A (ko) * 2010-12-21 2012-06-29 삼성전자주식회사 보행 로봇 및 그의 동시 위치 인식 및 지도 작성 방법
JP5991857B2 (ja) * 2011-06-10 2016-09-14 三星電子株式会社Samsung Electronics Co.,Ltd. ロボットの均衡制御装置及びその制御方法
JP5945419B2 (ja) * 2012-01-10 2016-07-05 本田技研工業株式会社 脚式移動ロボットの脚体運動軌道生成装置。
KR101985790B1 (ko) * 2012-02-21 2019-06-04 삼성전자주식회사 보행 로봇 및 그 제어 방법
US9517561B2 (en) * 2014-08-25 2016-12-13 Google Inc. Natural pitch and roll
JP6450279B2 (ja) * 2015-08-05 2019-01-09 本田技研工業株式会社 移動ロボットの目標zmp軌道の生成装置
CN105511465B (zh) * 2015-12-02 2017-08-04 歌尔股份有限公司 一种双足机器人的步态控制方法和装置
JP6823569B2 (ja) * 2017-09-04 2021-02-03 本田技研工業株式会社 目標zmp軌道の生成装置
CN108942885B (zh) * 2018-07-23 2021-08-27 东北大学 一种髋关节的可穿戴下肢外骨骼机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895016A (zh) * 2012-12-27 2014-07-02 现代自动车株式会社 用于控制机器人步态的方法
CN103149933A (zh) * 2013-02-27 2013-06-12 南京邮电大学 基于闭环控制的仿人机器人全向行走方法
CN104108433A (zh) * 2014-06-30 2014-10-22 中国人民解放军国防科学技术大学 一种轮足式机器人的柔顺控制方法
CN108897220A (zh) * 2018-07-12 2018-11-27 上海硅族智能科技有限公司 一种自适应稳定平衡控制方法和系统以及双足仿人机器人
CN108858208A (zh) * 2018-09-05 2018-11-23 鲁东大学 一种复杂地形仿人机器人自适应平衡控制方法、装置和系统

Also Published As

Publication number Publication date
US11550335B2 (en) 2023-01-10
US20220011772A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US11279030B2 (en) Systems, devices, articles, and methods for using trained robots
US11865715B2 (en) Offline optimization to robot behavior
US8873831B2 (en) Walking robot and simultaneous localization and mapping method thereof
US9987745B1 (en) Execution of robotic tasks
CN111377004B (zh) 一种双足机器人步态控制方法以及双足机器人
US11059532B1 (en) Control of robotic devices with non-constant body pitch
US20200206898A1 (en) Biped robot gait control method and biped robot
Chen et al. Ball-on-plate motion planning for six-parallel-legged robots walking on irregular terrains using pure haptic information
CN112757301B (zh) 机器人抗扰动控制方法、装置、电子设备及存储介质
WO2020107279A1 (zh) 双足机器人及其移动方法、装置和存储介质
WO2022134131A1 (zh) 一种机器人姿态控制方法、装置及机器人
CN105818145A (zh) 仿人机器人的分布式控制系统及方法
CN112276950B (zh) 抗扰动模型训练、控制方法、装置、设备、机器人及介质
JP6270334B2 (ja) ロボット制御装置及び方法
Chen et al. Human-aided robotic grasping
Sato et al. Experimental evaluation of a trajectory/force tracking controller for a humanoid robot cleaning a vertical surface
CN111358659A (zh) 一种机器人的助力控制方法、系统及下肢康复机器人
Mo et al. A hierarchical safety control strategy for exoskeleton robot based on maximum correntropy kalman filter and bounding box
Wang et al. The simulation of nonlinear model predictive control for a human-following mobile robot
Awad et al. Human-Aided Online Terrain Classification for Bipedal Robots Using Augmented Reality
Elara et al. On the redefinition of fan out metric for human robot interactions with humanoid soccer robots
CN205651353U (zh) 仿人机器人的分布式控制系统
CN116077089B (zh) 面向超声扫描机器人的多模态安全交互方法和装置
CN115446844B (zh) 机器人的控制方法、机器人及控制终端
Gouda et al. Nao humanoid robot motion planning based on its own kinematics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941628

Country of ref document: EP

Kind code of ref document: A1