WO2017092197A1 - 一种艾沙康唑中间体的酶法拆分方法 - Google Patents

一种艾沙康唑中间体的酶法拆分方法 Download PDF

Info

Publication number
WO2017092197A1
WO2017092197A1 PCT/CN2016/076940 CN2016076940W WO2017092197A1 WO 2017092197 A1 WO2017092197 A1 WO 2017092197A1 CN 2016076940 W CN2016076940 W CN 2016076940W WO 2017092197 A1 WO2017092197 A1 WO 2017092197A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
filtered
structural compound
esaconazole
Prior art date
Application number
PCT/CN2016/076940
Other languages
English (en)
French (fr)
Inventor
杜琳
刘强
邓道敏
董强
Original Assignee
成都绿林科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都绿林科技有限公司 filed Critical 成都绿林科技有限公司
Publication of WO2017092197A1 publication Critical patent/WO2017092197A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture

Definitions

  • the invention relates to an enzymatic resolution method for an intermediate of esaconazole.
  • Isaconazole is a new class of triazole broad-spectrum antifungal drugs approved by the US FDA in 2015. Studies have shown that esaconazole has a broad spectrum of antifungal effects, including yeast (such as Candida) and mold (such as Aspergillus, Mucor).
  • Patent US6300353 reports that esaconazole intermediate synthesis route 1, starting with R-methyl lactate, introduces the first chiral center, and the second chiral center passes asymmetric epoxidation. Reaction synthesis.
  • the specific synthetic route is as follows:
  • Patent US 2004/0176432 reports that the esaconazole intermediate synthesis route 2, starting from R-3 butyn-2-ol, introduces the first chiral center, and is replaced by methylsulfonyl chloride to form an ester.
  • the second chiral center was asymmetrically synthesized under the catalysis of Pd(II) catalyst and diethyl zinc.
  • the specific synthetic route is as follows:
  • R-3-butyn-2-ol The raw material R-3-butyn-2-ol is relatively expensive. Some researchers have used lower-priced R-4-phenyl-3-butyn-2-ol instead of R-3-butyn-2-ol, but studies have found that asymmetric synthesis is less selective and obtained. Chiral intermediates are of low purity. In addition, the removal of the benzene ring after the reaction increases the reaction and processing steps and also increases the cost.
  • Patent US8207352 reports a more efficient and low-cost chiral separation method, the synthesis route of esaconazole intermediate 3.
  • the preparation process comprises a plurality of routes, the racemic intermediate being first synthesized as an inexpensive starting material, and the intermediate may be compound a or b or c.
  • a resolving agent R-10-camphorsulfonic acid or S-10-camphorsulfonic acid
  • R-10-camphorsulfonic acid or S-10-camphorsulfonic acid is added to the key process to obtain a pure optical isomer intermediate or final product after crystallization.
  • the specific synthetic route is as follows:
  • the present invention provides an enzymatic resolution method for an isoxaconazole intermediate which is economical, environmentally friendly, stable in quality, and easy to operate.
  • the invention provides an enzymatic resolution method of an ixaconazole intermediate, which comprises the following steps:
  • the amount of ethyl acetate in the step a is 1.5 to 5 times the weight of the racemic ixaconazole intermediate I of the structural formula represented by the formula I.
  • the reaction temperature in the step b is preferably 25 to 40 °C.
  • the pH in the step b is preferably 7.5 to 9.0 °C.
  • the structural compound (2S, 3R)-intermediate I represented by the formula IV in the step b is beaten with methyl tert-butyl ether, filtered, and dried to obtain a structural compound (2S, 3R)-in the formula IV.
  • the methyl tert-butyl ether was replaced with isopropyl ether or diethyl ether.
  • the base in step b is sodium hydroxide or sodium carbonate solution.
  • the structural compound (2S, 3R)-intermediate I obtained in the formula b is mixed with isopropanol, heated to 40 ° C ⁇ 80 ° C, cooled to 0 ⁇ 30 ° C crystallized, filtered, dried Structural compound (2S, 3R) - intermediate I refined product of formula IV.
  • water in an amount of 1 to 4 times the volume of isopropanol may be added.
  • the isopropanol can be replaced with ethanol, methanol, acetone.
  • the invention has the following advantages: high resolution of the separation; high purity of chiral product due to the use of a space-selective enzyme; mild enzymatic separation conditions and simple operation.

Abstract

本发明提供一种艾沙康唑中间体的酶法拆分方法。采用腈水解酶(2R, 3S)-艾沙康唑中间体( I )中的对映异构体杂质水解为(2S, 3S)-羧酸副产物,经分离纯化得光学纯(2S, 3R)-艾沙康唑中间体( I )。

Description

一种艾沙康唑中间体的酶法拆分方法 技术领域
本发明涉及一种艾沙康唑中间体的酶法拆分方法。
背景技术
艾沙康唑是一种新的三唑类广谱抗真菌药,美国FDA2015年批准上市。研究显示,艾沙康唑具有广谱抗真菌作用,包括酵母菌(如念珠菌属)和霉菌(如曲霉属、毛霉属)。
临床要求具有光学异构体的药物,必须以光学纯的形态上市。艾沙康唑具有两个光学手心中心,因此,式Ⅳ所示结构的化合物((2S,3R)-中间体Ⅰ,手性纯)的制备是艾沙康唑制备工艺的关键与难点。
Figure PCTCN2016076940-appb-000001
宋婷婷等(《抗真菌药物艾沙康唑研究进展》)对艾沙康唑手性中心构建进行了综述。艾沙康唑手性构建现有技术包括不对称合成、化学拆分,存在收率不高、手性纯度低、过程繁杂等缺点。
不对称合成法:专利US6300353报道,艾沙康唑中间体合成路线1,以R-乳酸甲酯为起始原料,引入第1个手性中心,第2个手性中心通过不对称环氧化反应合成。具体合成路线如下:
Figure PCTCN2016076940-appb-000002
该反应步骤较多,总收率不高(16%)。另有专利US6133485报道,以价格低廉的天然S-乳酸为起始原料合成艾沙康唑,原料成本降低,但反应涉及构型翻转,更为复杂。
专利US 2004/0176432报道,艾沙康唑中间体合成路线2,以R-3丁炔-2-醇为起始原料,引入第1个手性中心,经甲基磺酰氯取代成酯后,在Pd(II)催化剂和二乙基锌的催化下不对称合成第2个手性中心。具体合成路线如下:
Figure PCTCN2016076940-appb-000003
原料R-3-丁炔-2-醇的价格较高。有研究人员采用价格较低的R-4-苯基-3-丁炔-2-醇代替R-3-丁炔-2-醇,但研究发现,不对称合成反应选择性较差,获得的手性中间体纯度较低。另外,反应后要去除苯环,增加了反应和处理步骤,也增加了成本。
化学法手性拆分法:专利US8207352报道了更为高效和低成本手性拆分法,艾沙康唑中间体合成路线3。制备方法包括多个路径,首先以廉价原料合成消旋中间体,中间体可以为化合物a或b或c。在关键工艺中加入拆分试剂(R-10-樟脑磺酸或S-10-樟脑磺酸),结晶后获得纯的光学异构体中间体或终产物。具体合成路线如下:
Figure PCTCN2016076940-appb-000004
但实际实验发现,该方法重现性差,不能结晶。
发明内容
为了解决上述技术问题,本发明提供了一种经济环保、质量稳定、操作简便的艾沙康唑中间体的酶法拆分方法。
本发明提供了一种艾沙康唑中间体的酶法拆分方法,其特征包括如下步骤:
a、将式Ⅰ所示结构化合物(艾沙康唑中间体Ⅰ,消旋)与乙酸乙酯混合,加热至60~80℃搅拌,冷却后过滤,得滤液A;
b、将腈水解酶与水混合,再与滤液A混合,在10~50℃下搅拌反应,加碱控制pH值在6~10,将式Ⅱ所示结构化合物((2R,3S)-中间体Ⅰ对映异构体)水解为式Ⅲ所示结构化合物((2S,3S)-羧酸副产物),分液,有机层过滤,浓缩,得式Ⅳ所示结构化合物((2S,3R)-中间体Ⅰ)粗品。
Figure PCTCN2016076940-appb-000005
其中,a步骤所述的乙酸乙酯用量为式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ重量的1.5~5倍。
其中,b步骤所述反应温度优选为25~40℃。
其中,b步骤所述pH优选为7.5~9.0℃。
其中,b步骤所述的式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品使用甲基叔丁基醚打浆,过滤,干燥,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品。所述的甲基叔丁基醚使用异丙醚、乙醚替代。
其中,b步骤所述碱为氢氧化钠或碳酸钠溶液。
其中,b步骤所述的式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品,与异丙醇混合,加热至40℃~80℃,冷却至0~30℃结晶,过滤,干燥得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品。结晶时,可加入1~4倍异丙醇体积的水。所述的异丙醇可使用乙醇、甲醇、丙酮替代。
本发明具有以下优点:拆分收率高;由于使用具有空间选择性的酶,产品手性纯度高;酶法拆分条件温和、操作简便。
具体实施方式
实施例1
500ml烧瓶中加入100.0g式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ,再加入400ml乙酸乙酯,加热至60℃搅拌20分钟,冷却至室温,过滤,得滤液A。将10g市售AK226腈水解酶与300ml水加入1000ml烧杯中,机械搅拌,将滤液A慢慢倒入酶解液中,于32℃慢速搅拌,维持两相分层状态,滴加5%氢氧化钠溶液,控制pH值8~8.5。待pH稳定,不再消耗氢氧化钠溶液后,分液,有机层过滤,50℃减压蒸除溶剂,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品。式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品加入60ml甲基叔丁基醚打浆,过滤,60℃鼓风干燥,得(2S,3R)-中间体Ⅰ精制品33.8g,99.6%ee。
实施例2
5000ml烧瓶中加入1.00kg式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ,再加入3.0L乙酸乙酯,加热至70℃搅拌10分钟,冷却至室温,过滤,得滤液A。将120g市售AK226腈水解酶与2.0L水混合,机械搅拌,将滤液A慢慢倒入酶解液中,于35℃慢速搅拌,维持两相分层状态,滴加饱和碳酸钠溶液,控制pH值7.5~8.0。待pH稳定,不再消耗碳酸钠溶液后,分液,1.0L乙酸乙酯反萃取水层,合并有机层过滤,水层去酶回收,55℃减压蒸除溶剂,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品。式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品加入1.5L异丙醇,搅拌,加热至50℃,加入3.0L水,冷却至0~5℃,搅拌1小时。过滤,水洗,70℃减压干燥,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品32.4g,99.9%ee。
酶回收:分液所得水层过滤,酶滤饼使用300ml水洗两次,酶滤饼浸泡于0.1M磷酸钾缓冲液(pH=8.5)中存储,待下次重复使用。
实施例3
5000ml烧瓶中加入1.00kg式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ,再加入5.0L乙酸乙酯,加热至50℃搅拌30分钟,冷却至10℃,过滤,得滤液A。将实施例2中在缓冲液中存储的回收的腈水解酶过滤,滤饼与3.0L水混合,机械搅拌,将滤液A慢慢倒入酶解液中,于40℃慢速搅拌,维持两相分层状态,滴加饱和5%氢氧化钾溶液,控制pH值8.4~8.6。HPLC监控式Ⅳ所示结构化合物(2R,3S)-中间体Ⅰ对映异构体已水解剩余≤0.2%(面积归一法),分液,2.0L乙酸乙酯反萃取水层,合并有机层过滤,水层去酶回收,50℃减压蒸除溶剂,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品。式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品加入2.5L乙醇,搅拌,加热至50℃,加入10L水,冷却至10~15℃,搅拌1小时。过滤,水洗,70℃鼓风干燥,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品30.0g,100%ee。
水层酶回收:分液的水层过滤,酶滤饼使用300ml水洗两次,酶滤饼浸泡于0.1M磷酸钾缓冲溶液(pH=8.5)中存储待下次重复使用。
实施例4
5000ml烧瓶中加入1.00kg式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ,再加入5.0L乙酸乙酯,加热至50℃搅拌30分钟,冷却至10℃,过滤,得滤液A。将实施例2中在缓冲液中存储的回收的腈水解酶过滤,滤饼与3.0L水混合,机械搅拌,将滤液A慢慢倒入酶解液中,于25℃慢速搅拌,维持两相分层状态,滴加饱和5%氢氧化钾溶液,控制pH值8.4~8.6。HPLC监控式Ⅳ所示结构化合物(2R,3S)-中间体Ⅰ对映异构体已水解剩余≤0.2%(面积归一法),分液,2.0L乙酸乙酯反萃取水层,合并有机层过滤,水层去酶回收,50℃减压蒸除溶剂,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品。式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品加入2.5L甲醇,搅拌,加热至50℃,加入5L水,冷却至30~35℃,搅拌1小时。过滤,水洗,60℃鼓风干燥,得(2S,3R)-中间体Ⅰ精制品29.7g,100%ee。
水层酶回收:分液的水层过滤,酶滤饼使用300ml水洗两次,酶滤饼浸泡于0.1M磷酸钾缓冲溶液(pH=8.5)中存储待下次重复使用。
实施例5
5000ml烧瓶中加入1.00kg将式Ⅰ所示结构化合物消旋艾沙康唑中间体 Ⅰ,再加入5.0L乙酸乙酯,加热至50℃搅拌30分钟,冷却至10℃,过滤,得滤液A。将实施例2中在缓冲液中存储的回收的腈水解酶过滤,滤饼与3.0L水混合,机械搅拌,将滤液A慢慢倒入酶解液中,于30℃慢速搅拌,维持两相分层状态,滴加饱和5%氢氧化钾溶液,控制pH值8.4~8.6。HPLC监控式Ⅳ所示结构化合物(2R,3S)-中间体Ⅰ对映异构体已水解剩余≤0.2%(面积归一法),分液,2.0L乙酸乙酯反萃取水层,合并有机层过滤,水层去酶回收,50℃减压蒸除溶剂,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品。式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品加入2.5L异丙醇,搅拌,加热至50℃,加入10L水,冷却至0~5℃,搅拌1小时。过滤,水洗,80℃鼓风干燥,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品30.1g,100%ee。
水层酶回收:分液的水层过滤,酶滤饼使用300ml水洗两次,酶滤饼浸泡于0.1M磷酸钾缓冲溶液(pH=8.5)中存储待下次重复使用。

Claims (10)

  1. 一种艾沙康唑中间体的酶法拆分方法,其特征包括如下步骤:
    a、将式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ与乙酸乙酯混合,加热至60~80℃搅拌,冷却后过滤,得滤液A;
    b、将腈水解酶与水混合,再与滤液A混合,在10~50℃下搅拌反应,加碱控制pH值在6~10,将式Ⅱ所示结构化合物水解为式Ⅲ所示结构化合物,分液,有机层过滤,浓缩,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品;
    Figure PCTCN2016076940-appb-100001
  2. 根据权利要求1所述拆分方法,其特征在于:a步骤所述的乙酸乙酯用量为式Ⅰ所示结构化合物消旋艾沙康唑中间体Ⅰ重量的1.5~5倍。
  3. 根据权利要求1所述拆分方法,其特征在于:b步骤所述反应温度优选为25~40℃。
  4. 根据权利要求1所述拆分方法,其特征在于:b步骤所述pH优选为7.5~9.0℃。
  5. 根据权利要求1所述拆分方法,其特征在于:b步骤所述的式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品使用甲基叔丁基醚打浆,过滤,干燥,得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品。
  6. 根据权利要求1所述拆分方法,其特征在于:b步骤所述碱为氢氧化钠或碳酸钠溶液。
  7. 根据权利要求1所述拆分方法,其特征在于:b步骤所述的式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ粗品,与异丙醇混合,加热至40℃~80℃,冷却至0~30℃结晶,过滤,干燥得式Ⅳ所示结构化合物(2S,3R)-中间体Ⅰ精制品。
  8. 根据权利要求5所述拆分方法,其特征在于:所述的甲基叔丁基醚使用异丙醚、乙醚替代。
  9. 根据权利要求7所述拆分方法,其特征在于:结晶时,加入1~4倍异丙醇体积的水。
  10. 根据权利要求7所述拆分方法,其特征在于:所述的异丙醇使用乙醇、甲醇、丙酮替代。
PCT/CN2016/076940 2015-12-02 2016-03-22 一种艾沙康唑中间体的酶法拆分方法 WO2017092197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510873311.3A CN105907832B (zh) 2015-12-02 2015-12-02 一种酶法拆分艾沙康唑中间体的方法
CN201510873311.3 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017092197A1 true WO2017092197A1 (zh) 2017-06-08

Family

ID=56744237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076940 WO2017092197A1 (zh) 2015-12-02 2016-03-22 一种艾沙康唑中间体的酶法拆分方法

Country Status (2)

Country Link
CN (1) CN105907832B (zh)
WO (1) WO2017092197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611822B (zh) * 2022-10-12 2023-09-19 四川澄华生物科技有限公司 艾沙康唑中间体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087030A1 (en) * 2009-10-08 2011-04-14 Carbo-Design LLC Process for the manufacture of enantiomerically pure antifungal azoles as ravuconazole and isavuconazole
CN104507917A (zh) * 2012-08-07 2015-04-08 巴斯利尔药物股份公司 用于制造艾沙康唑或雷夫康唑的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087030A1 (en) * 2009-10-08 2011-04-14 Carbo-Design LLC Process for the manufacture of enantiomerically pure antifungal azoles as ravuconazole and isavuconazole
CN104507917A (zh) * 2012-08-07 2015-04-08 巴斯利尔药物股份公司 用于制造艾沙康唑或雷夫康唑的方法

Also Published As

Publication number Publication date
CN105907832B (zh) 2019-07-12
CN105907832A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
EP2537825B1 (en) Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane
EP2294207B1 (en) Process for the stereoselective enzymatic hydrolysis of 5-methyl-3-nitromethyl-hexanoic acid ester
CA2888877A1 (en) A process for the preparation of pregabalin
JP2007519655A (ja) 鏡像異性的に純粋なアミノアルコールの調製方法
MXPA02005321A (es) Nuevo proceso para la preparacion de intermediarios enantiomericamente enriquecidos.
BE1017548A6 (fr) Procede de preparation d'escitalopram.
KR20140059872A (ko) 록소프로펜 (2s, 1''r, 2''s) 트랜스-알코올의 제조방법
WO2016202252A1 (zh) 一种合成d-对羟基苯甘氨酸甲酯的方法
WO2012167413A1 (zh) 一种光学纯的(-)-黄皮酰胺类化合物的制备方法
JP6137185B2 (ja) (r)−1,1,3−トリメチル−4−アミノインダンの製造方法
WO2017092197A1 (zh) 一种艾沙康唑中间体的酶法拆分方法
CN110128449B (zh) 7-苯乙酰胺基-3-去乙酰氧基头孢烷酸盐及其制法和应用
WO2011010579A1 (ja) 光学活性ニペコタミドの製造方法
CN110092726B (zh) 一种Bictegravir中间体的合成方法
US20110251407A1 (en) Process for production of optically active organic carboxylic acid
Yamada et al. Optically active cyclohexene derivative as a new antisepsis agent: an efficient synthesis of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242)
JPH09143101A (ja) 光学活性カルボン酸の製造法
JPWO2008156095A1 (ja) 光学活性トランス−2−アミノシクロヘキサノールの製造方法およびその中間体
EP1831150A1 (en) Process for the preparation of (2r, 3r)-2-hydroxy-3-amino-3-aryl-propionamide and (2r, 3r)-2-hydroxy-3-amino-3-aryl-propionic acid alkyl ester
CN114989045B (zh) 合成奈玛特韦的中间体及其制法以及合成奈玛特韦的方法
JP5329973B2 (ja) リパーゼ触媒を用いるエナンチオ選択的アシル化とその後の硫酸による沈殿によって、ラセミ体の4−(1−アミノエチル)安息香酸メチルエステルから(r)−および(s)−4−(1−アンモニウムエチル)安息香酸メチルエステル硫酸塩を調製する方法
JP4812434B2 (ja) 光学活性(s)−2−メチル−6−オキソヘプタン酸の製造方法
WO2009147528A1 (en) Improved process for preparing pregabalin
US20040077061A1 (en) Enzymatic resolution of aryl and thio-substituted acids
JP2001514901A (ja) シス−およびトランス−ピロロピペリジンの生化学的ラセミ分割法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869511

Country of ref document: EP

Kind code of ref document: A1