WO2017090959A1 - 폴리아릴렌 설파이드계 수지 조성물 및 성형품 - Google Patents
폴리아릴렌 설파이드계 수지 조성물 및 성형품 Download PDFInfo
- Publication number
- WO2017090959A1 WO2017090959A1 PCT/KR2016/013488 KR2016013488W WO2017090959A1 WO 2017090959 A1 WO2017090959 A1 WO 2017090959A1 KR 2016013488 W KR2016013488 W KR 2016013488W WO 2017090959 A1 WO2017090959 A1 WO 2017090959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyarylene sulfide
- resin composition
- resin
- group
- elastomer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/04—Polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/507—Screws characterised by the material or their manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/68—Barrels or cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/68—Barrels or cylinders
- B29C48/682—Barrels or cylinders for twin screws
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0209—Polyarylenethioethers derived from monomers containing one aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/28—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2081/00—Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
- B29K2081/04—Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
Definitions
- the present invention relates to a polyarylene sulfide resin composition and a molded article exhibiting excellent physical properties due to improved compatibility with other polymer materials or layered materials.
- polyarylene sulfide is a representative engineering plastic, and is used in various products or electronic products used in high temperature and corrosive environments due to high heat resistance, chemical resistance, flame resistance, and electrical insulation. Demand is increasing.
- TPS polyphenylene sulfide
- PDCB para-dichlorobenzene
- sodium sulfide as raw materials such as N-methyl pyrrolidone.
- Solution polymerization in a polar organic solvent This method is known as the Macallum process.
- the main chain terminal is composed of iodine and most aryl groups (typically, benzene).
- aryl groups typically, benzene
- the present invention provides a polyarylene sulfide-based resin composition which is excellent in processability and exhibits excellent physical properties due to improved compatibility with other polymer materials or layered materials.
- the present invention is to provide a molded article showing the physical properties optimized for each use, including the polyarylene sulfide-based resin composition and a method for producing the same.
- the present invention provides a polyarylene sulfide comprising disulfide repeating units in a repeating unit of the main chain, wherein at least a part of the end groups of the main chain is a hydroxy group (-OH);
- the present invention provides a polyarylene sulfide-based resin composition comprising at least one selected from the group consisting of a thermoplastic resin, a thermoplastic elastomer, and a filler.
- the present invention provides a method for producing a molded article comprising the step of extruding the polyarylene sulfide-based resin composition.
- the present invention also provides a molded article comprising the polyarylene sulfide resin composition.
- a polyarylene sulfide-based resin composition according to a specific embodiment of the present invention, a molded article including the same, and a manufacturing method thereof will be described.
- this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
- polyarylene sulfide comprising a disulfide repeat unit in the repeating unit of the main chain, at least a portion of the end group of the main chain is a hydroxyl group (-OH);
- a polyarylene sulfide-based resin composition comprising at least one member selected from the group consisting of a thermoplastic resin, a thermoplastic elastomer, and a filler.
- the disulfide repeating unit refers to a disulfide bond (-SS-bond) instead of a sulfur bond in a general repeating unit of the polyarylene sulfide represented by the following general formula (1). . paragraph
- polyarylene disulfa 0 repeat unit of Formula 2 including:
- Ar represents a substituted or unsubstituted arylene group.
- the polyarylene sulfide included in the resin composition of the embodiment includes a disulfide repeating unit, it is possible to prevent the polyarylene sulfide from containing a considerable amount of oligomer-type polymer chain having a low molecular weight. Can be. This is because the disulfide bonds in the disulfide repeating unit can generally homogenize the molecular weight of the polymer chains contained in the polyarylene sulfide while continuously causing sulfur exchange reaction between the polymers / chains contained in the polyarylene sulfide.
- the polyarylene sulfide included in the resin composition of one embodiment may include a polymer chain in an oligomeric form having a low molecular weight with a minimum content, and the molecular weight distribution curve of the entire polymer chains is uniform, resulting in a relatively narrow molecular weight distribution curve. It can be derived with a symmetry close to the normal distribution curve. Accordingly, the resin composition of the ol embodiment including the polyarylene sulfa may greatly reduce the amount of flash generated even when molding a product requiring high precision, and may exhibit more improved workability.
- these disulfide repeating units may be included as about 3 weight 0/0 or less, or about 0.01 to 3.0 parts by weight 0/0, or from about 0.1 to 2.0% by weight based on the total polyarylene sulfide.
- the effect of improving the workability due to the disulfide repeating unit can be optimized, and the disulfide repeating unit can be excessively suppressed so that the physical properties of the polyarylene sulfide are rather deteriorated.
- the polyarylene sulfide is a hydroxyl group (-OH) is bonded to at least a portion of the end group (End Group) of the main chain Can be.
- the present inventors show better compatibility with other polymer materials or layered materials by introducing specific terminal groups in the process of producing a polyarylene sulfide by melt polymerizing a semi-aungmul containing a diiodine aromatic compound and elemental sulfur. It has been found that polyarylene sulfides can be obtained that enable compounding with materials and the implementation of optimized physical properties for each application.
- the polyarylene sulfide previously prepared by melt polymerization, since the main chain terminal is composed of iodine and most of aryl groups (typically benzene), there is substantially no semi-apron group at the main chain terminal, As a result, the polyarylene sulfide had a disadvantage of poor compatibility with various reinforcing materials and fillers such as other polymer materials or glass fibers.
- the polyarylene sulfide is a nylon resin having a hydrophilic group in a polymer chain, polyethylene glycol resin (PEG; Polyethyleneglycol), polyethylene oxide resin, polyethyleneimine, polyvinyl alcohol resin Polymer materials such as (Polyvinylalcohol) or ethylene glycidyl methacrylate (Ethyleneglycidylmethacrylate) elastomer having a hydroxyl group and a reaction property; It can exhibit excellent compatibility with inorganic materials having hydrophilic groups such as glass fiber or talc.
- PEG polyethylene glycol resin
- Polyethylene oxide resin polyethylene oxide resin
- polyethyleneimine polyvinyl alcohol resin
- Polymer materials such as (Polyvinylalcohol) or ethylene glycidyl methacrylate (Ethyleneglycidylmethacrylate) elastomer having a hydroxyl group and a reaction property; It can exhibit excellent compatibility with inorganic materials having hydrophilic
- a polymer material having a strong hydrogen bond or an epoxy-based functional group such as glycidyl group may be formed by the hydroxyl group bonded to the main chain terminal of the polyarylene sulfide and the hydroxyl group in the silanol group of the glass fiber (eg For example, the epoxy ring of ethyleneglycidyl methacrylate elastomer, etc.) may be opened to bond with a hydroxyl group bonded to the main chain terminal of the polyarylene sulfide, thereby exhibiting a strong binding force.
- the polyarylene sulfide having the hydroxy group at the main chain terminal in the case of the resin composition of one embodiment including a thermoplastic resin or another polymer material of thermoplastic elastomer, or a layered material, excellent heat resistance peculiar to polyarylene sulfide, In addition to exhibiting chemical resistance and excellent mechanical properties, the increase in physical properties due to mixing with other materials (for example, compounding) is optimized to provide a molded article exhibiting excellent physical properties suitable for various applications. Therefore, due to the resin composition of one embodiment, the polyarylene sulfide-based resin composition can be applied to more various uses.
- the resin composition of one embodiment exhibits excellent processability with little variation in molding of articles requiring high precision, and shows excellent compatibility between polyarylene sulfide and other materials, resulting in a better rise due to compounding.
- the effect can be exhibited and it is possible to provide molded articles having physical properties suitable for various applications.
- the polyarylene sulfide contained in the composition of the embodiment includes a iodine and free iodine bonded to the main chain, as obtained by melt polymerization of a diiodine aromatic compound and a semi-ungmul containing a sulfur element
- the backbone bound iodine and free iodine content may be about 10 to 10000 ppmw, or about 10 to 3000 ppmw, or about 50 to 2000 ppmw.
- Such main chain-bonded iodine and free iodine content can be measured by a method of quantifying by ion chromatography after heat-treating a polyarylene sulfide sample at high temperature as in the following examples.
- the free iodine refers to iodine molecules, iodine ions, or iodine radicals generated in the process of incorporating the diiodine aromatic compound and the elemental sulfur, and remain together in a chemically separated state from the polyarylene sulfide finally formed.
- the polyarylene sulfide solves the problem of the polyarylene sulfide prepared by the previous MacColumn process, the advantages of the polyarylene sulfide obtained by melt polymerization, for example, by-products do not occur, and post-processing It is easy to maintain the advantages, such as excellent mechanical properties.
- the polyarylene sulfide can exhibit its unique excellent heat resistance, chemical resistance and excellent mechanical properties.
- the polyarylene sulfide included in the composition of the above embodiment when analyzed by FT-IR spectroscopy, may exhibit a peak of about 3300 to 3600 cm derived from the hydroxyl group of the main chain terminal in the FT-IR spectrum. . At this time, about 3300 to 3600.
- the intensity of the peak of cm ⁇ 1 may correspond to the content of the hydroxyl group bonded to the main chain end group.
- the polyarylene sulfide is a FT-IR spectrum on, from about 1400 to Ring stretch when the height of the peak intensity hayeoteul to 100%, of the about 3300 to about 3600 cm "1 peak appearing at 1600cm -1
- the relative height strength may be about 0.0001 to 10%, black about 0.005 to 7%, or about 0.001 to 4% : or about 0.01 to 3%, wherein the ring stretch peaks appearing at 1400 to 1600 cm ⁇ 1 It may be derived from an arylene group such as phenylene included in the main chain of the polyarylene sulfide, etc.
- the peak of 3300 to 3600 cm 1 derived from the hydroxy group is derived from the arylene group (for example, phenylene group).
- the polyarylene sulfide may be formed of another polymer material as it exhibits a height strength of about 0.0001 to 10%, or about 0.005 to 7%, or about 0.001 to 4%, or about 01 to 3% with respect to the height strength of the peak.
- it is possible to maintain excellent physical properties peculiar to polyarylene sulfide while exhibiting better compatibility with a layered material for example, a polymer material having a property of a hydrophilic group or a layered material.
- the resin composition of one embodiment including the same may exhibit a more excellent synergistic effect due to the compounding of polyarylene sulfide and other polymer materials or fillers.
- the polyarylene sulfide included in the resin composition of one embodiment may have a melting point of about 265 to 290 ° C., or about 270 to 285 ° C., or about 275 to 283 ° C. With such a melting point range, the polyarylene sulfide introduced with a hydroxyl group and obtained by melt polymerization and the resin composition of one embodiment including the same may exhibit excellent heat resistance and flame resistance. '
- the polyarylene sulfide may have a number average molecular weight of about 5,000 to 50,000, or about 8,000 to 40,000, or about 10,000 to 30,000. have.
- the polyarylene sulfide may have a dispersion degree defined as a weight average molecular weight relative to a number average molecular weight, about 2.0 to 4.5, black about 2.0 to 4.0, or about 2.0 to 3.5.
- the resin composition of one embodiment including the same may exhibit excellent mechanical properties and processability, and may be processed into various molded articles that can be used for more various purposes. Can be.
- the polyarylene sulfide described above may have a melt viscosity of about 10 to 50,000 poise, or about 1,00 to 20,000, and black about 3,00 to 10,000, measured at 300 ° C. using a rotating disc viscometer.
- the polyarylene sulfide exhibiting such melt viscosity and the resin composition of one embodiment including the same may exhibit excellent mechanical properties, together with excellent processability.
- the tensile strength value measured according to ASTM D 638 may be about 100 to 900 kgf / cm 2 , or about 200 to 800 kgf / cm 2 , or about 300 to 700 kgf / cm 2 , measured according to ASTM D 638.
- the elongation may be about 1-10%, or about 1-8%, and black about 1-6%.
- the polyarylene sulfide may have a flexural strength value measured according to ASTM D 790 of about 100 to 2000 kgf / cm 2 , or about 500 to 2000 kgf / cm 2 , or about 1000 to 2000 kg cm 2 .
- the layer strength measured according to ASTM D 256 may be about 1 to 100 J / m, or about 5 to 50 J / m, or about 10 to 20 J / m.
- the polyarylene sulfide included in the resin composition of one embodiment may exhibit various physical properties such as excellent mechanical properties, and together with, may exhibit excellent compatibility with other polymer materials or fillers described above.
- the resin composition of the embodiment may exhibit a higher synergistic effect according to the mixing of each component and excellent physical properties suitable for various applications.
- the resin composition of one embodiment may include a high molecular material, a layered material, or the like of a thermoplastic resin or a thermoplastic elastomer together with the above-described polyarylene sulfide having a hydroxyl group introduced into the main chain terminal.
- polyvinyl alcohol-based resins such as polyvinyl alcohol resin, polyethylene glycol resin or Various thermoplastic resins such as polyether resins such as polyethylene oxide resins, polyalkyleneimine resins such as polyethyleneimine resins, polyamide resins such as vinyl chloride resins and nylon resins, polyolefin resins or polyester resins; Or poly (meth) acrylate elastomers such as polyvinyl chloride elastomers and ethylene glycidyl methacrylate elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, polyamide elastomers, or polybutadiene elastomers Various thermoplastic elastomers, and the like.
- the resin composition of one embodiment includes a polyarylene sulfide having a hydroxyl group introduced at the terminal thereof
- polyarylene sulfide is a nylon resin having a hydrophilic group in the polymer chain, polyethylene glycol resin, polyethylene oxide resin, polyethyleneimine resin, Polymer materials such as polyvinyl alcohol, an ethylene glycidyl methacrylate elastomer having a reaction property with a resin or a hydroxyl group; It can exhibit excellent compatibility with glass fiber or inorganic material having hydrophilic group with talc.
- thermoplastic resins or thermoplastic elastomers may be suitably included in the resin composition of one embodiment, and in the resin composition, the polyarylene sulfide may be compounded with these polymer materials and the like to exhibit an excellent synergistic effect, suitable for various applications. Optimized physical properties can be realized.
- the layered material which may be included in the resin composition may be an organic or inorganic layered material in the form of fiber, bead, flake, or powder. Specific examples thereof include glass fiber, carbon fiber, boron fiber, glass bead, glass Various reinforcing / straightening materials such as flakes, talc or calcium carbonate.
- the resin composition of one embodiment includes a polyarylene sulfide having a hydroxy group introduced at the end of the main chain, the resin composition may be hydrogen-bonded with a filler having better compatibility with such polyarylene sulfide, for example, a hydroxyl group.
- a filler having better compatibility with such polyarylene sulfide, for example, a hydroxyl group.
- Such as glass fibers having silanol groups Fillers may be included as appropriate.
- the filler such as glass fiber or carbon fiber may be used in a form where the surface is treated with a silane coupling agent or the like.
- a silane coupling agent when the surface treatment with a silane coupling agent, the cohesion or compatibility of the layered material and the polyarylene sulfide may be more improved.
- the resin composition of one embodiment exhibits excellent compatibility with such various polymer materials or fillers
- the resin composition of one embodiment is compatible with various other polymer materials or layering materials described above (for example, Compounding) to exhibit an excellent synergistic effect and to exhibit optimized physical properties for various applications.
- other various polymer materials or reinforcing materials / layered materials may be included with the polyarylene sulfide described above in the resin composition of one embodiment and may exhibit more excellent physical properties.
- various polymer materials or fillers for further improving mechanical properties, heat resistance, weather resistance, or moldability of the resin composition may be included in the resin composition of one embodiment without particular limitation.
- the resin composition comprises one member selected from the group consisting of and about 5 to 95 weight 0/0, or from about 50 to 90 weight 0/0 of the polyarylene sulfide, the thermoplastic resin, thermoplastic elastomer and a layer vibration damper at least 5 to 95 weight 0/0, or may include from about 10 to 50% by weight.
- the resin composition of one embodiment maintains excellent physical properties unique to polyarylene sulfide, while optimizing synergistic effects due to mixing with other components, and thus being excellently applicable to various applications. Will be displayed.
- the resin composition of one embodiment may further include additional additives and / or stabilizers and the like to further improve its mechanical properties, heat resistance, weather resistance or moldability.
- additives are not particularly limited, and examples thereof include oxidation stabilizers, light stabilizers (such as UV stabilizers), plasticizers, lubricants, nucleating agents, or layered reinforcing materials, and two or more selected from them. You may.
- primary or secondary antioxidants may be used as the oxidation stabilizer, and specific examples thereof include hindered phenolic, amine, sulfur, or phosphorus antioxidants.
- the light stabilizer may be included when the resin composition of one embodiment is applied to the exterior material, in particular, UV semi-figure is used representatively, for example, benzotriazole or benzophenol.
- the lubricant is a component used for improving moldability in molding and processing the resin composition of one embodiment, and hydrocarbon lubricants may be representatively used.
- a lubricating agent By use of such a lubricating agent, provision of mold release property, such as friction prevention of a resin composition and a metal mold
- nucleating agents may be used to improve the crystallization rate in the molding process of the resin composition, and through this, it is possible to improve the solidification speed of the product during pressure and injection, and to shorten the product manufacturing time.
- the resin composition of the above-described embodiment may include a molten polymerized polyarylene sulfide having a hydroxyl group (-OH) introduced into the main chain terminal as the main resin component, such a polyarylene sulfide is a diiodine aromatic compound and sulfur Polymerizing the reaction product comprising the element; And while proceeding to the polymerization reaction step, it can be prepared by a method comprising the step of further adding an aromatic compound having a hydroxyl group.
- the method may further include adding 30 parts by weight of elemental sulfur.
- the polymerization reaction between the diiodine aromatic compound and the elemental sulfur is weakly polymerized.
- the reaction may be added when the reaction proceeds to at least about 90%, or at least about 90% to less than 100% (eg, at the end of the polymerization reaction).
- the progress of the polymerization reaction is determined as the ratio of the current viscosity to the target viscosity by setting the molecular weight of the polyarylene sulfide to be obtained and the target viscosity of the polymerization product according thereto, and measuring the current viscosity according to the progress of the polymerization reaction. can do.
- the method of measuring the current viscosity can be determined by a method apparent to those skilled in the art according to the semi-ungunggi scale. For example, when the polymerization is performed in a relatively small polymerization reactor, a sample in which the polymerization reaction is progressing in the reactor may be taken and measured by a viscometer. On the contrary, when the polymerization is performed in a large continuous polymerization reactor, the present viscosity can be automatically measured in real time continuously and in a viscometer installed in the reactor.
- the reaction is carried out by adding an aromatic compound having a hydroxy group at the end of the polymerization reaction.
- an appropriate amount of hydroxy group is introduced at the end of the main chain to exhibit excellent compatibility with other polymer materials or fillers described above, The above-described polyarylene sulfide having excellent physical properties can be produced effectively.
- the compound of the arbitrary monomer (mono molecule) form which has a hydroxy group can be used as an aromatic compound which has the hydroxy group.
- the compound of the arbitrary monomer (mono molecule) form which has a hydroxy group can be used.
- aromatic compounds having various hydroxyl groups can be used.
- the aromatic compound having a hydroxy group may be added in an amount of about 0.0001 to 10 parts by weight, or about 001 to 7 parts by weight, or about 0.01 to 2 parts by weight based on about 100 parts by weight of the diiodine aromatic compound.
- An appropriate amount of hydroxyl group can be introduced, and as a result, a molten polymerized polyarylene sulfide having excellent physical properties peculiar to polyarylene sulfide can be effectively produced while exhibiting excellent compatibility with other polymer materials or layered materials. have.
- the polyarylene sulfide described above is basically prepared by a method of polymerizing the reaction product of the diiodine aromatic compound and elemental sulfur, and thus has excellent mechanical properties and the like compared to that produced by the conventional MacColumn process. Can be represented.
- Such polyarylene sulfides include iodine and residual free iodine bonded to the main chain as already described above, and the iodine and free iodine content bound to the main chain may be about 10 to 10000 ppmw.
- Such main chain-bonded iodine and free iodine content can be measured by a method of quantitating the polyarylene sulfide sample at high temperature, followed by ion chromatography.
- diiodine aromatic compounds usable in the polymerization reaction include diiobenzene (DIB), diionaphthalene (diiodonaphthalene), diiodine biphenyl (diiodobiphenyl) and diiodine bisphenol ( diiodobisphenol, and one or more selected from the group consisting of diiodobenzophenone, but not limited thereto, and alkyl compounds, sulfone groups, etc. may be substituted with these compounds.
- DIB diiobenzene
- diionaphthalene diiiodonaphthalene
- diiiodine biphenyl diiiodobiphenyl
- diiodine bisphenol diiodobisphenol
- alkyl compounds, sulfone groups, etc. may be substituted with these compounds.
- the diiodine aromatic compound in the form of being bonded to or containing an atom such as oxygen or nitrogen in an aromatic group
- diiodine aromatic compounds include isomers of various diiodine compounds depending on the position of the iodine atom, among them, para-diiodinebenzene (pDIB), 2,6-diiodonaphthalene, or ⁇ , Compounds in which the iodine is bonded in the para position, such as ⁇ '-diiodobiphenyl, may be used more suitably.
- elemental sulfur which reacts with the said diiodine aromatic compound.
- elemental sulfur exists in the form of a ring (cyclooctasulfiir; S8) connected by 8 atoms at room temperature. If it is not in this form, all of them are commercially available solid or liquid sulfur without limitation. Can be used.
- the sulfur element is polymerized banung Additional steps may be added during the step.
- the amount of elemental sulfur added in this way may be appropriately determined by those skilled in the art in view of the content of a suitable disulfide repeat unit, but, for example, in an amount of about 0.01 to 30 parts by weight based on 100 parts by weight of elemental sulfur contained in the initial reactant. Can be applied.
- the sulfur element added in this way may be added, for example, when the polymerization reaction is about 50 to 99%, and may be added separately from or together with the aromatic compound having the aforementioned hydroxyl group.
- the reactants for the preparation of the polyarylene sulfide may further include a polymerization initiator, a stabilizer, or a mixture thereof in addition to the diiodine aromatic compound and the elemental sulfur, and specifically, 1, 1 type selected from the group consisting of 3-diiodine-4nitrobenzene, mercaptobenzothiazole, 2,2'-dithiobisbenzothiazole, cyclonuxylbenzothiazole sulfenamide, and butylbenzothiazole sulfenamide
- 1, 1 type selected from the group consisting of 3-diiodine-4nitrobenzene, mercaptobenzothiazole, 2,2'-dithiobisbenzothiazole, cyclonuxylbenzothiazole sulfenamide, and butylbenzothiazole sulfenamide
- 1, 1 type selected from the group consisting of 3-diiodine-4nitrobenzene, mercaptobenzothiazo
- the stabilizer is not particularly limited as long as it is a stabilizer normally used for polymerization reaction of resin.
- a polymerization terminator may be added at a time when the polymerization is made to some extent.
- the polymerization inhibitor which can be used at this time is not a limitation of the structure, if it is a compound which can remove superposition
- diphenyldisuldife, diphenyl ether, diphenyl, dibenzo, benzophenone, dibenzothiazole disulfide, monoiodoaryl compound, Benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates and diphenyldisulfides May be one or more selected from the group
- the polymerization terminating agent is iodobiphenyl (iodobiphenyl), iodophenol (iodophenol), iodoaniline (iodoaniline), iodobenzophenone (iodobenzophenone), 2- mercaptobenzothiazole (2- mercaptobenzothiazole ), 2,2'-dithiobis benzothiazole, N-cyclohexylbenzothiazole-2-sulfenamide, 2-morpholinothiobenzo 2-morpholinothiobenzothiazole, N, N-dicyclohexylbenzothiazole-2- sulfenamide, tetramethylthiuram monosulfide, tetramethyl thi At least one selected from the group consisting of tetramethylthiuram disulfide, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate and diphenyl disulf
- the timing of administration of the polymerization terminator may be determined in consideration of the molecular weight of the polyarylene sulfide to be finally polymerized.
- the initial di-iodine banung the aromatic compounds contained in the water is about 70 to 100 parts by weight 0/0 banung may be administered at the time of exhaustion.
- the polymerization reaction as described above may proceed under any condition as long as the polymerization of the reaction product including the diiodine aromatic compound and elemental sulfur can be initiated.
- the polymerization reaction may be carried out under elevated pressure and reduced pressure reaction conditions.
- temperature rise and pressure drop may be performed at an initial reaction condition of a temperature of about 180 to 25 CTC and a pressure of about 50 to 450 torr.
- the temperature was changed from about 270 to 350 ° C. and the pressure was about 0.001 to 20 torr, and the process could be performed for about 1 to 30 hours.
- the final reaction conditions include a temperature of about 280 to 300 ° C. and a pressure of about 0.1 to 0.5.
- the polymerization reaction can be performed by setting torr.
- the above-described method for producing a polyarylene sulfide may further comprise the step of melting and mixing the semi-ungmul containing a diiodine aromatic compound and elemental sulfur before the polymerization reaction.
- This melt mixture is the There is no limitation in the configuration as long as all of the conditions can be melt mixed, for example, it may proceed at a temperature of about 130 ° C to 200 ° C, or about 160 ° C to 190 ° C.
- the polymerization may be performed in the presence of a nitrobenzene catalyst.
- the catalyst may be added in the melt mixing step.
- the nitrobenzene-based catalyst include 1,3-diiodine-4-nitrobenzene, 1-iodine-4-nitrobenzene, and the like, but are not limited to the examples described above.
- melt-polymerized polyarylene sulfide having a hydroxyl group or the like introduced into the main chain terminal may be obtained, and such polyarylene sulfide exhibits excellent compatibility with other polymer materials or fillers, and thus, the resin composition of one embodiment may be used. You can get it.
- a molded article comprising the polyarylene sulfide-based resin composition of the above 3 ⁇ 4 one embodiment and a manufacturing method thereof.
- the molded article may be manufactured by a method including the step of extruding the resin composition in one embodiment.
- the molded article of another embodiment may include at least one selected from the group consisting of a molten polymerized polyarylene sulfide having a hydroxyl group or the like, a thermoplastic resin, a thermoplastic elastomer, and a layered material, and optionally other additives. After mixing to obtain a resin composition of one embodiment may be prepared by extrusion.
- the molded article and the polyarylene sulfide from about 5 to 95 weight 0/0, or from about 50 to 90 weight 0/0, and the thermoplastic resin, the thermoplastic elastomer of About 5 to 95% by weight of at least one member selected from the group consisting of fillers, black is about 10 to 50 parts by weight, and may contain 0/0, and about 2 parts by weight or less based on 100 parts by weight of the combined amount of the two components For example, it may include about 0.1 to 2 parts by weight of other additives, etc.
- an additive such as an oxidative stabilizer or a lubricant may be included in an amount of about 0.1 to 1 parts by weight, and additives such as a curing agent may be about It may be included in an amount of 0.1 to 2 parts by weight.
- a curing agent may be included in an amount of 0.1 to 2 parts by weight.
- a twin screw extruder in manufacturing a molded article by mixing and extruding a resin composition including each of these components, for example, a twin screw extruder can be used, and the diameter ratio (L / D) of such a twin screw extruder is about It can be around 30 to 50.
- a small amount of other additives may be mixed with polyarylene sulfide in a mixer such as a supermixer in advance, and the premixed primary composition may be introduced through a main inlet of a twin screw extruder.
- a mixer such as a supermixer
- other polymer materials, fillers, and the like of the thermoplastic resin or the thermoplastic elastomer may be separately input through a side feeder located on the side of the extruder. At this time, the side feeding position may be approximately 1/3 to 1/2 point from the outlet side of the entire barrel of the extruder. In this way, the filler and the like can be prevented from being broken by rotation and friction by the extruder screw in the extruder.
- Molded articles of such other embodiments may be in various forms such as films, sheets, or fibers.
- the molded article may be an injection molded article, an extrusion molded article, or a blow molded article.
- the mold temperature may be about 50 ° C. or more, about 60 ° C. or more, or about 80 ° C. or more in terms of crystallization, and about 190 ° C. or less, in view of deformation of the test piece. Or about 170 or less, or about 160 " C or less.
- ⁇ Fiber includes various fibers such as unstretched yarn, stretched yarn, or super-stretched yarn, and includes woven fabrics, knitted fabrics, and nonwoven fabrics (spunbond, melt blown, staple), It can be used as a rope or a net.
- Such molded articles can be used as coatings for electrical and electronic parts such as computer accessories, building parts, automobile parts, mechanical parts, daily necessities, or parts in contact with chemicals, industrial chemical resistant fibers, and the like.
- the present invention comprises a hydroxy group at the end of the main chain, a resin composition comprising a melt polymerized polyarylene sulfide showing excellent processability while showing excellent compatibility with other polymer materials or reinforcing materials / fillers, and other polymer materials or layered materials. Can be provided.
- thermocouple capable of measuring the internal temperature of the reactor, and a 5 L reaction vessel equipped with a vacuum line capable of conducting a nitrogen layer and a vacuum, heated a reaction product containing 5130 g of para-diiodobenzene (p-DIB) and 450 g of sulfur to 180 ° C. After fully melted and mixed, 220 ° C And starting from the initial reaction conditions of 350 Torr, the final reaction temperature is 300 ° C, the pressure is carried out stepwise temperature rise and pressure drop up to lTorr or less, and proceeded the polymerization reaction while adding a small amount of sulfur.
- p-DIB para-diiodobenzene
- This polyarylene sulfide resin of Example 1 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- the height intensity of the ring stretch peak appearing at about 1400 to 1600cm -1 was 100% on the FT-IR spectrum, it was confirmed that the relative height intensity of the peak of the about 3300 to 3600cm 1 was about 0.4%.
- the iodine and free iodine content bound to the polyarylene sulfide main chain were measured by the method described below, and the content was found to be about 1500 ppmw.
- thermocouple capable of measuring the temperature of the reaction, and a 5 L reaction vessel with a vacuum line capable of conducting the nitrogen layer and vacuum, the reaction product containing 5130 g of para-iodine benzene (p-DIB) and 450 g of sulfur at 180 ° C.
- p-DIB para-iodine benzene
- the temperature of the reaction and the pressure drop are carried out in steps up to 300 ° C and the pressure is less than lTorr. Small amount was added additionally ' polymerization proceeded. 80% of the polymerization reaction When progressed (the progress of these reactions
- the polyarylene sulfide resin of Example 2 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- the height intensity of the ring stretch peak appearing from about 1400 to 1600cm- 1 is 100% on the FT-IR spectrum, it is confirmed that the relative height intensity of the peak of about 3300 to 3600cm " 1 is about 0.24%.
- thermocouple capable of measuring the temperature of the reaction, and a 5 L reaction vessel equipped with a vacuum line for nitrogen filling and vacuuming, the reaction product containing 5130 g of paradiiobenzene (p-DIB) and 450 g of sulfur ' at 180 ° C
- the final reaction temperature is carried out stepwise temperature rise and pressure drop to 300 ° C, pressure up to lTorr, and a small amount of sulfur
- the polymerization reaction was carried out while adding each other.
- thermocouple capable of measuring the temperature of the reactor, and a 5 L reactor equipped with a vacuum line for nitrogen filling and vacuuming, the reaction product containing 5130 g of paradiiobenzene (p-DIB) and 450 g of sulfur at 180 ° C.
- the reaction temperature is carried out step by step temperature rise and pressure drop up to 300 ° C, pressure up to ⁇ , the sulfur in small amounts
- the polymerization reaction was carried out while further adding.
- the degree of progress of the polymerization reaction is
- the mixture was terminated to synthesize a polyarylene sulfide resin containing a hydroxyl group at the main chain terminal.
- the reaction was completed in a pellet form using a small strand cutter.
- the polyarylene sulfide resin of Example 4 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- the height intensity of the ring stretch peak appearing at about 1400 to 1600cm "1 was 100% on the FT-IR spectrum, it was confirmed that the relative height intensity of the peak of about 3300 to 3600cm 1 was about 0.33%.
- the content of iodine and free iodine bound to the polyarylene sulfide main chain was measured by the method described below, and the content was found to be about 1200 ppmw.
- Example 5 Polyarylene sulfide containing a hydroxyl group at the end of the main chain M
- step temperature rise and pressure drop are carried out step by step until the final reaction temperature is 300 ° C and the pressure is below lTorr, and additional sulfur is added in small amounts.
- the reaction was carried out.
- the polyarylene sulfide resin of Example 5 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- the height intensity of the ring stretch peak appearing at about 1400 to 1600cm "1 is 100% on the FT-IR spectrum, it was confirmed that the relative height intensity of the peak of the about 3300 to 3600cm- 1 is about 0.27%.
- thermocouple capable of measuring the temperature of the reaction, and a 5 L reaction vessel equipped with a vacuum line capable of conducting the nitrogen layer and vacuum, the reaction product containing 5130 g of paradiiobenzene (p-DIB) and 450 g of sulfur at 180 ° C.
- p-DIB paradiiobenzene
- sulfur is added in small amounts.
- the polymerization reaction was carried out while further adding.
- the polyarylene sulfide resin of Example 6 was analyzed by FT-IR to determine the presence of a hydroxyl group peak of about 3300 to 3600 cm -1 on the spectrum. Confirmed. In addition, when the height intensity of the ring stretch peak appearing from about 1400 to 1600cm 1 was 100% on the FT-IR spectrum, it was confirmed that the relative height intensity of the peak of about 3300 to 3600cm "1 was about 0.58%.
- a reaction mixture containing 5130 g of paradiiobenzene (p-DIB) and 450 g of sulfur was heated to 180 ° C in a 5 L semi-unggi equipped with a thermocouple capable of measuring the temperature of the reactor, and a vacuum line capable of conducting the nitrogen layer and vacuum.
- p-DIB paradiiobenzene
- a vacuum line capable of conducting the nitrogen layer and vacuum.
- the polyarylene sulfide resin of Example 7 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum. Further, confirmed to be on the FT-IR spectrum, from about 1400 to 1600cm eu when a high intensity of the peak appearing in the stretch Ring 1 to 100%, the relative height of the strength of approximately 3300 to S Ocm- first peak from about 0.29% It became.
- the content of iodine and free iodine bound to the polyarylene sulfide backbone was measured by the method described below, and the content was found to be about 800 ppmw.
- Example 8 Paradiodebenzene in a 5 L semi-ungunger equipped with a thermocouple capable of measuring the internal temperature of the semi-ungung group of polyarylene sulfide containing a hydroxy group at the main chain end, and a vacuum line capable of applying a nitrogen layer and vacuum (p-DIB) 5130 g, 450 g of sulfur, the reactant is heated to 180 ° C and completely melted and mixed, starting at the initial reaction conditions of 220 ° C and 350 Torr, the final reaction temperature is 300 t, the pressure up to lTorr The temperature rise and pressure drop were carried out step by step, and addition reaction was carried out while additionally adding small amounts of sulfur. When the polymerization reaction proceeds 80% (the degree of progress of this polymerization reaction is
- the polyarylene sulfide resin of Example 8 was analyzed by FT-IR to confirm the presence of a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- a hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- the height intensity of the ring stretch peak appearing at about 1400 to 1600cm- 1 was 100% on the FT-IR spectrum, it was confirmed that the relative height intensity of the peak at about 3300 to 3600cm- 1 was about 0.26%.
- the iodine and free iodine content bound to the polyarylene sulfide main chain were measured by the method described below. It was confirmed about 700ppmw. Comparative Example 1
- a semi-coal water containing 5130 g of para-iodine benzene (p-DIB) and 450 g of sulfur was heated to 180 ° C.
- the temperature and the pressure drop are carried out step by step until the final reaction temperature is 300 ° C, the pressure is less than lTorr, and the addition of small amounts of sulfur The polymerization reaction was performed.
- the polyarylene sulfide resin of Comparative Example 1 was analyzed by FT-IR, and it was confirmed that there was no hydroxyl group peak of about 3300 to 3600 cm ⁇ 1 on the spectrum.
- a differential scanning calorimetry analyzer (Differential Scanning Calorimeter; DSC) for use to from 30 ° C to 320 ° C in the back 30 ° C then cooled to 30 ° C after the temperature was raised at a rate of 10 ° C / min up to 320 ° C 10 ° C Melting
- fusing point was measured, heating up at the speed of / min. ⁇
- the sample was dissolved by stirring at 250 ° C for 25 minutes at a concentration of 0.4wt% in 1-chloronaphthalene, while 1-chloronaphthalene was poured at a flow rate of 1 mL / min in a high temperature gel permeation chromatography system (210 ° C) to have different molecular weights.
- a high temperature gel permeation chromatography system 210 ° C
- melt viscosity (“MV”) was measured at 300 ° C. with a rotating disk viscometer. In the frequency sweep method, the angular frequency was measured from 0.6 to 500 rad / s, and the viscosity at 1.84 rad / s was defined as melt viscosity (MV).
- Main chain-bound iodine and free iodine content can be prepared by ion chromatography (IQ Chromatography), which is prepared by automatic pretreatment (AQF), in which samples are burned using flimace at high temperature and ionized and dissolved in distilled water. The content of iodine in the sample was measured using the analyzed calibration curve. Physical properties measured by the above method are summarized in Table 1 below:
- Example 2 278.8 17,333 2.8 2,210 2000
- Example 3 277.5 17,225 2.9 1,960 500
- Example 4 277.8 17,457 2.8 2,010 1200
- Example 5 279.2 17,320 2.9 2,530 1800
- Example 6 278.3 17,112 2.9 2,440 600
- Example 7 279.5 17,450 2.8 2,250 800
- Example 8 279.2 17,420 2.8 2,150 700 Comparative Example 1 280.5 17,267 2.8 2,420 2500
- Test Example 2 Evaluation of mechanical properties of polyarylene sulfide
- Specimens were prepared according to ASTM D638 using 3 kg polyarylene sulfide using an injection machine (Engel ES75P, mold clamping force 80 tons, diameter 25 mm). At this time, the barrel temperature was set to 270 ° C / 300 ° C / 30 (rC in sequence from the inlet, the nozzle temperature was 30 CTC, the mold temperature was 150 o C.
- Each of the polymerized resins was dried and compounded by adding 40 parts by weight of glass fiber (910 to Owens Corporation) to 60 parts by weight of the resin using a compact twin screw extruder under an extrusion die temperature of 330 ° C. and a screw rpm 200 condition. .
- Comparative Example 2 660 15.7 940 76 According to Tables 2 and 3, by compounding the polyarylene sulfide of Example 1 having a hydroxyl group introduced into the main chain with glass fibers, the layer strength was greatly improved from about 18 J / m to about 92 J / m. Confirmed. In addition, as the polyarylene sulfide of Example 1 having a hydroxyl group introduced at the terminal of the main chain was compounded with the elastomer, the tensile elongation was from about 1.5% to about 18.0%, and the delamination strength was about 55 J at 18 J / m. It has been found to be greatly improved to / m. The improvement of physical properties according to such compounding was also confirmed in other examples.
- polyarylene sulfide of the example has excellent compatibility with various other polymer materials or fillers and can exhibit an excellent synergistic effect according to the improvement of physical properties according to the compounding.
- polyarylene sulfide of Comparative Example was confirmed that the synergistic effect due to the compounding is not very good due to poor compatibility with other polymer materials or layered materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
본 발명은 가공성이 우수하며, 다른 고분자 소재나 충진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물 및 성형품에 관한 것이다. 이러한 폴리아릴렌 설파이드계 수지 조성물은 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하고, 주쇄의 말단기 (End Group) 중 적어도 일부가 히드록시기 (-OH)인 폴리아릴렌 설파이드; 및 열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하는 것이다.
Description
【명세서】
【발명의 명칭】
폴리아릴렌 설파이드계 수지 조성물 및 성형품
【기술분야】
본 발명은 다른 고분자 소재나 층진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물 및 성형품에 관한 것이다.
【배경기술】
현재 폴리아릴렌 설파이드는 대표적인 엔지니어링 폴라스틱 (Engineering Plastic)으로, 높은 내열성과 내화학성, 내화염성 (flame resistance), 전기 절연성 등으로 인해 고온과 부식성 환경에서 사용되는 각종 제품이나 전자 제품에 사용되는 용도로 수요가증대되고 있다.
이러한 폴리아릴렌 설파이드 중에서 상업적으로 판매되는 것은 현재 폴리페닐렌 설파이드 (polyphenylene sulfide; 이하 TPS')가 유일하다. 현재까지 주로 적용되는 PPS의 상업적 생산 공정은, 파라-디클로로벤젠 (P- dichlorobenzene; 이하 'pDCB')과 황화나트륨 (sodium sulfide)을 원료로 하여 N- 메틸파이를리돈 (N-methyl pyrrolidone) 등의 극성 유기 용매에서 용액중합반웅시키는 방법이다. 이 방법은 맥컬럼 공정 (Macallum process)으로 알려져 있다.
그러나, 이러한 용액중합 방식의 맥컬럼 공정으로 제조한 폴리아릴렌설파이드의 경우, 황화나트륨 등을 사용한 용액중합 공정으로 인해 염 형태의 부산물이 발생할 수 있으며, 이러한 염 형태의 부산물 또는 잔류 유기 용매의 제거를 위해 세척 또는 건조 공정 등이 필요하게 되는 단점이 있다. 또, 이러한 맥컬럼 공정으로 제조된 폴리아릴렌설파이드가 분말 형태를 가짐에 따라, 후가공이 용이하지 않고 작업성이 떨어질 수.있다. 더구나, 상기 맥컬럼 공정으로 제조한 폴리아릴렌 설파이드의 경우, 분자량이 낮은 올리고머 형태의 고분자 쇄를 상당 함량으로 포함함에 따라, 높은 정밀도가 요구되는 제품을 성형하고자 하면 바리 (flash)가 상당량 발생하고 이를 제거하기 위한 별도 공정의 필요성 등으로 인해 가공성이 떨어지는 문제를 가지고 있었다.
이에 따라, 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 용융중합하는 방법으로 상기 PPS 등의 폴리아릴렌 설파이드를 제조하는 방법이 제안된 바 있다. 이렇게 제조된 폴리아릴렌 설파이드는 제조 과정 중에 염 형태의 부산물 등이 발생하지 않고 유기 용매의 사용이 요구되지 않으므로, 이들의 제거를 위한 별도의 공정이 요구되지 않는다. 또, 최종 제조된 폴리아릴렌 설파이드가 펠렛 (pellet) 형태를 가짐에 따라, 후가공이 보다 용이해지고 작업성이 좋은 장점이 있다.
그런데, 상기 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 그 주쇄 말단이 요오드와 대부분의 아릴기 (대표적으로, 벤젠)으로 이루어져 있다. 이러한 폴리아릴렌 설파이드의 경우, 주쇄 구조의 특성상 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 충진재와의 상용성이 떨어지는 단점이 있다.
이로 인해, 상기 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 다양한 용도에 적합한 최적화된 물성을 나타내게 하기 위해 다른 고분자 소재 또는 층진재 등과 컴파운딩하기가 힘들었으며, 컴파운딩하더라도 원하는 최적화된 물성을 나타내기 어려운 단점이 있었다. 이러한 문제점으로 인해, 이전에 알려진 폴리아릴렌 설파이드계 수지 조성물의 경우, 각 용도에 맞는 층분한 물성을 나타내기 어려웠고, 다양한 용도에의 적용에 있어 한계가 있었던 것이 사실이다.
또한, 높은 정밀도가 요구되는 제품을 성형하고자 할 때, 바리 (flash)의 발생량을 보다 줄일 수 있고, 보다 우수한 가공성을 나타내는 폴리아릴렌 설파이드의 개발이 계속적으로 요구되고 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 가공성이 우수하며, 다른 고분자 소재나 층진재 등과의 보다 향상된 상용성으로 인해 우수한 물성을 나타내는 폴리아릴렌 설파이드계 수지 조성물을 제공하는 것이다.
또한, 본 발명은 상기 폴리아릴렌 설파이드계 수지 조성물올 포함하여 각 용도에 최적화된 물성을 나타내는 성형품 및 이의 제조 방법을 제공하는 것이다.
【기술적 해결방법】
본 발명은 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하고, 주쇄의 말단기 (End Group) 중 적어도 일부가 히드록시기 (-OH)인 폴리아릴렌 설파이드; 및
열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상 ¾ 포함하는 폴리아릴렌 설파이드계 수지 조성물을 제공한다.
또한, 본 발명은 상기 폴리아릴렌설파이드계 수지 조성물을 압출하는 단계를 포함하는 성형품의 제조 방법을 제공한다.
본 발명은 또한, 상기 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품을 제공한다. 이하, 발명의 구체적인 구현예에 따른 폴리아릴렌 설파이드계 수지 조성물 및 이를 포함하는 성형품과 이의 제조 방법에 대하여 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하고, 주쇄의 말단기 (End Group) 중 적어도 일부가 히드록시기 (- OH)인 폴리아릴렌 설파이드; 및
열가소성 수지, 열가소성 엘라스토머 및 충진재로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리아릴렌 설파이드계 수지 조성물이 제공된다.
이러한 폴리아릴렌 설파이드계 수지 조성물에서, 상기 디설파이드 반복 단위라 함은 하기 일반식 1로 표시되는 폴리아릴렌 설파이드의 일반적인 반복 단위에서, 황 결합 대신 디설파이드 결합 (-S-S- 결합)을
.„
포함하는 일반식 2의 폴리아릴렌 디설파 0 반복 단위를 지칭할 수 있다: [일반식
상기 일반식 1 및 2에서, Ar은 치환 또는 비치환된 아릴렌기를 나타낸다.
이와 같이, 상기 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드가 디설파이드 반복 단위를 포함함에 따라, 상기 폴리아릴렌 설파이드 중에 분자량이 지나치게 낮은 을리고머 형태의 고분자 쇄가 상당 함량 포함되는 것을 억제할 수 있다. 이는 상기 디설파이드 반복 단위 중의 디설파이드 결합이 폴리아릴렌 설파이드에 포함된 고분자.쇄들 간의 황 교환 반웅을 계속적으로 일으키면서 폴리아릴렌 설파이드에 포함된 고분자 쇄들의 분자량을 대체로 균일화할 수 있기 때문으로 보인다. 그 결과, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 분자량이 지나치게 낮은 올리고머 형태의 고분자 쇄를 최소한의 함량으로 포함할 수 있고, 전체 고분자 쇄들의 분자량 분포가 균일화되어 분자량 분포 곡선이 비교적 좁고 정규 분포 곡선에 가까운 대칭형으로 도출될 수 있다. 따라서, 이러한 폴리아릴렌 설파ᄋ 포함하 ol 구현예의 수지 조성물은 이를 사용해 높은 정밀도가 요구되는 제품을 성형하고자 하는 경우에도 바리 (flash)의 발생량을 크게 줄일 수 있고, 보다 향상된 가공성을 나타낼 수 있다.
또, 이러한 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드에 대해 약 3 중량0 /0 이하, 혹은 약 0.01 내지 3.0 중량0 /0, 혹은 약 0.1 내지 2.0 중량%로 포함될 수 있다. 이에 따라, 상기 디설파이드 반복 단위에 기인한 가공성 향상 효과가 최적화될 수 있고, 이러한 디설파이드 반복 단위가 지나치게 많아져 상기 폴리아릴렌 설파이드의 물성이 오히려 저하되는 것을 억제할 수 있다.
한편, 일 구현예의 수지 조성물에서, 상기 폴리아릴렌 설파이드는 주쇄의 말단기 (End Group) 증 적어도 일부에 히드록시기 (-OH)가 결합된
것으로 될 수 있다.
본 발명자들은 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 용융중합하여 폴리아릴렌 설파이드를 제조하는 과정에서, 특정한 말단기의 도입으로 다른 고분자 소재나 층진재 등과의 보다 우수한 상용성을 나타내어 다양한 소재와의 컴파운딩 및 이를 통한 각 용도에 맞는 최적화된 물성의 구현을 가능케 하는 폴리아릴렌 설파이드를 얻을 수 있음을 밝혀 내었다.
즉, 이전에 용융중합 방식으로 제조된 폴리아릴렌 설파이드의 경우, 그 주쇄 말단이 요오드와 대부분의 아릴기 (대표적으로, 벤젠)으로 이루어져 있기 때문에, 주쇄 말단에 반웅성기가 실질적으로 존재하지 않고, 그 결과, 상기 폴리아릴렌 설파이드가 다른 고분자 소재 또는 유리 섬유 등 각종 강화재나 충진재와의 상용성이 떨어지는 단점을 가지고 있었다.
그러나, 주쇄 말단의 적어도 일부에 히드록시기 (-OH)와 같은 반웅성기가 도입된 폴리아릴렌 설파이드의 경우, 상기 반웅성기의 존재로 인해 다른 고분자 소재나, 충진재 등과의 우수한 상용성을 나타냄이 확인되었다. 예를 들어, 상기 폴리아릴렌 설파이드는 친수성기를 고분자 쇄에 가지고 있는 나일론 (Nylon) 수지, 폴리에틸렌글리콜 수지 (PEG; Polyethyleneglycol), 폴리에틸렌옥사이드 수지 (Polyethyleneoxide), 폴리에틸렌이민 수지 (Polyethyleneimine), 폴리비닐 알코올 수지 (Polyvinylalcohol), 또는 히드록시기와 반웅성을 갖는 에틸렌글리시딜 메타크릴레이트 (Ethyleneglycidylmethacrylate) 엘라스토머 등의 고분자 소재나; 유리섬유 또는 탈크 등 친수성기를 가진 무기물 등과 우수한 상용성을 나타낼 수 있다. 이는 고분자 소재나 무기물이 가지고 있는 친수성기나 극성기와, 폴리아릴렌 설파이드 말단의 히드록시기가 강한 극성결합내지 수소결합을 이루기 때문으로 예측된다. 예를 들어, 유리섬유의 실라놀 (silanol)기에 있는 히드록시기와 폴리아릴렌 설파이드의 주쇄 말단에 결합된 히드록시기가 만나 강한 수소결합을 이루거나, 글리시딜기 등 에폭시계 작용기를 갖는 고분자 소재 (예를 들어, 에틸렌글리시딜 메타크릴레이트 엘라스토머 등)의 에폭시 링이 열리면서 폴리아릴렌 설파이드의 주쇄 말단에 결합된 히드록시기와 결합되어 강한 결합력을 나타낼 수 있다.
그 결과, 상기 히드록시기를 주쇄 말단에 갖는 폴리아릴렌 설파이드와 함께, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 층진재를 포함하는 일 구현예의 수지 조성물의 경우, 폴리아릴렌 설파이드 특유의 우수한 내열성, 내화학성 및 뛰어난 기계적 물성 등을 나타내면서도, 다른 소재와의 흔합 (예를 들어 , 컴파운딩 )에 따른 물성의 상승이 최적화되어 다양한 용도에 적합한 뛰어난 물성을 나타내는 성형품의 제공을 가능케 한다. 따라서, 일 구현예의 수지 조성물로 인해 폴리아릴렌 설파이드계 수지 조성물을 보다 다양한 용도로 적용할 수 있게 된다.
결국, 일 구현예의 수지 조성물은 높은 정밀도가 요구되는 제품의 성형시에 바리를 거의 발생시키지 않고 우수한 가공성을 나타내면서도, 폴리아릴렌 설파이드 및 다른 소재 간의 우수한 상용성을 나타내어 컴파운딩에 따른 보다 우수한 상승 효과를 나타낼 수 있고, 다양한 용도에 적합한 물성을 갖는 성형품의 제공을 가능케 한다.
한편, 상기 일 구현예의 조성물에 포함된 폴리아릴렌 설파이드는 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 용융중합하여 얻어짐에 따라, 그 주쇄에 결합된 요오드 및 유리 요오드를 포함하며, 이러한 주쇄 결합 요오드 및 유리 요오드 함량이 약 10 내지 10000 ppmw, 혹은 약 10 내지 3000 ppmw, 혹은 약 50 내지 2000ppmw로 될 수 있다. 이와 같은 주쇄 결합 요오드 및 유리 요오드 함량은 이하의 실시예와 같이, 폴리아릴렌 설파이드 시료를 고온에서 열처리한 후, 이온크로마토그래피를 이용해 정량하는 방법으로 측정할 수 있다. 이때, 상기 유리 요오드라 함은 상기 디요오드 방향족 화합물과, 황 원소의 증합 과정에서 발생하여, 최종 형성된 폴리아릴렌 설파이드와 화학적으로 분리된 상태로 함께 잔류하는 요오드 분자, 요오드 이온 또는 요오드 라디칼 등을 총칭할수 있다.
이에 따라, 이러한 폴리아릴렌 설파이드는 이전의 맥컬럼 공정으로 제조된 폴리아릴렌 설파이드의 문제점을 해결하고, 용융중합으로 얻어진 폴리아릴렌 설파이드의 장점, 예를 들어, 부산물이 발생하지 않고, 후가공이 용이하며, 기계적 특성이 우수하게 되는 등의 장점을 그대로 유지할 수 있다. 또, 상기 폴리아릴렌 설파이드는 그 특유의 우수한 내열성, 내화학성 및 뛰어난 기계적 물성을 나타낼 수 있다.
^리고, 상기 일 구현예의 조성물에 포함된 폴리아릴렌 설파이드는, FT-IR 분광법으로 분석하였을 때, FT-IR 스펙트럼에서 상기 주쇄 말단의 히드록시기에서 유래한 약 3300 내지 3600 cm 의 피크를 나타낼 수 있다. 이때, 상기 약 3300 내지 3600 . cmᅳ1의 피크의 강도는 주쇄 말단기에 결합된 히드록시기의 함량에 대응할수 있다.
일 예에 따르면, 상기 폴리아릴렌 설파이드는 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 약 3300 내지 3600 cm"1의 피크의 상대적 높이 강도가 약 0.0001 내지 10%, 흑은 약 0.005 내지 7%, 혹은 약 0.001 내지 4%: 혹은 약 0.01 내지 3%로 될 수 있다. 이때, 상기 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크는 폴리아릴렌 설파이드의 주쇄 증에 포함된 페닐렌 등의 아릴렌기에서 유래한 것으로 될 수 있다. 상기 히드록시기에서 유래한 3300 내지 3600 cm 1의 피크가 아릴렌기 (예를 들어, 페닐렌기)에서 유래한 피크의 높이 강도에 대해 약 0.0001 내지 10%, 혹은 약 0.005 내지 7%, 혹은 약 0.001 내지 4%, 혹은 약 으01 내지 3%의 높이 강도를 나타냄에 따라, 상기 폴리아릴렌 설파이드는 다른 고분자 소재 또는 층진재, 예를 들어, 친수성기의 특성을 갖는 고분자 소재 또는 층진재 등과의 보다 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 유지할 수 있다.
따라서, 이를 포함하는 일 구현예의 수지 조성물은 폴리아릴렌 설파이드 및 다른 고분자 소재나 충진재의 컴파운딩에 따른 보다 뛰어난 상승 효과를 나타낼 수 있다.
한편, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 융점이 약 265 내지 290 °C , 혹은 약 270 내지 285 °C , 혹은 약 275 내지 283 °C로 될 수 있다. 이러한 융점 범위를 가짐에 따라, 히드록시기가 도입되며 용융중합 방식으로 얻어진 상기 폴리아릴렌 설파이드와 이를 포함하는 일 구현예의 수지 조성물은 우수한 내열성 및 난연성을 나타낼 수 있다. '
또한, 상기 폴리아릴렌 설파이드는 수 평균 분자량이 약 5,000 내지 50,000, 혹은 약 8,000 내지 40,000, 혹은 약 10,000 내지 30,000으로 될 수
있다. 그리고, 상기 폴리아릴렌 설파이드는 수평균 분자량에 대한 중량평균 분자량으로 정의되는 분산도가 약 2.0 내지 4.5, 흑은 약 2.0 내지 4.0, 혹은 약 2.0 내지 3.5로 될 수 있다. 상기 폴리아릴렌 설파이드가 상술한 범위의 분산도 및 분자량을 가짐에 따라, 이를 포함하는 일 구현예의 수지 조성물이 우수한 기계적 물성 및 가공성 등을 나타낼 수 있고, 보다 다양한 용도로 사용 가능한 여러 가지 성형품으로 가공될 수 있다.
그리고, 상술한 폴리아릴렌 설파이드는 회전 원판 점도계로 300 °C에서 측정한 용융 점도가 약 10 내지 50,000 poise, 혹은 약 1,00 내지 20,000, 흑은 약 3,00 내지 10,000으로 될 수 있다. 이러한 용융 점도를 나타내는 폴리아릴렌 설파이드 및 이를 포함하는 일 구현예의 수지 조성물은 우수한 가공성과 함께, 뛰어난 기계적 물성 등을 나타낼 수 있다. 예를 들어, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는
ASTM D 638에 따라 측정한 인장강도 값이 약 100 내지 900 kgf/cm2, 혹은 약 200 내지 800 kgf/cm2, 혹은 약 300 내지 700 kgf/cm2일 수 있으며, ASTM D 638에 따라 측정한 신율이 약 1 내지 10%, 혹은 약 1 내지 8%, 흑은 약 1 내지 6%로 될 수 있다. 또, 상기 폴리아릴렌 설파이드는 ASTM D 790에 따라 측정한 굴곡강도 값이 약 100 내지 2000 kgf/cm2, 혹은 약 500 내지 2000 kgf/cm2, 혹은 약 1000 내지 2000 kg cm2으로 될 수 있고, ASTM D 256에 따라 측정한 층격강도가 약 1 내지 100J/m, 혹은 약 5 내지 50 J/m, 혹은 약 10 내지 20 J/m 로 될 수 있다. 이와 같이, 일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드는 우수한 기계적 물성 등 제반 물성을 나타낼 수 있으며, 이와 함께, 이미 상술한 다른 고분자 소재 또는 충진재와의 우수한 상용성을 나타낼 수 있기 때문에, 일 구현예의 수지 조성물은 각 성분의 흔합에 따른 보다 높은 상승 효과 및 다양한 용도에 적합한 뛰어난 물성을 나타낼 수 있다.
한편, 일 구현예의 수지 조성물은 주쇄 말단에 히드록시기가 도입된 상술한 폴리아릴렌 설파이드와 함께, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 층진재 등을 포함할 수 있다. 이때, 일 구현예의 수지 조성물에 포함될 수 있는 고분자 소재의 예로는, 폴리비닐 알코올 수지 등의 폴리비닐알코올계 수지, 폴리에틸렌글리콜 수지 또는
폴리에틸렌옥사이드 수지와 같은 폴리에테르계 수지, 폴리에틸렌이민 수지와 같은 폴리알킬렌이민계 수지, 염화비닐계 수지, 나일론 수지 등의 폴리아미드계 수지, 폴리올레핀계 수지 또는 폴리에스테르계 수지 등의 다양한 열가소성 수지; 혹은 폴리염화비닐계 엘라스토머, 에틸렌글리시딜 메타크릴레이트 엘라스토머 등의 폴리 (메트)아크릴레이트계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머 또는 폴리부타디엔계 엘라스토머 등의 다양한 열가소성 엘라스토머 등을 들 수 있다.
특히, 일 구현예의 수지 조성물이 말단에 히드록시기가 도입된 폴리아릴렌 설파이드를 포함함에 따라, 이러한 폴리아릴렌 설파이드는 친수성기를 고분자 쇄 중에 갖는 나일론 수지, 폴리에틸렌글리콜 수지, 폴리에틸렌옥사이드 수지, 폴리에틸렌이민 수지, 폴리비닐 알코을 수지 또는 히드록시기와 반웅성을 갖는 에틸렌글리시딜 메타크릴레이트 엘라스토머 등의 고분자 소재나; 유리섬유 또는 탈크 둥 친수성기를 가진 무기물 등과 우수한 상용성을 나타낼 수 있다. 이미 상술한 바와 같이, 이는 고분자소재나 무기물이 가지고 있는 친수성기나 극성기와, 폴리아릴렌 설파이드 말단의 히드록시기가 강한 극성결합내지 수소결합을 이루기 때문으로 보인다. 따라서, 이들 열가소성 수자 또는 열가소성 엘라스토머가 일 구현예의 수지 조성물에 적절히 포함될 수 있고, 이러한 수지 조성물 내에서 상기 폴리아릴렌 설파이드가 이들 고분자 소재 등과 컴파운딩되어 뛰어난 상승 효과를 나타낼 수 있으며 , 다양한 용도에 맞는 최적화된 물성의 구현이 가능해진다.
또, 상기 수지 조성물에 포함될 수 있는 층진재는 섬유, 비드, 플레이크, 또는 분말 형태의 유기 또는 무기 층진재로 될 수 있고, 이의 구체적인 예로는, 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 또는 탄산칼슘 등의 다양한 강화재 /층진재를 들 수 있다. 특히, 일 구현예의 수지 조성물이 주쇄 말단에 히드록시기가 도입된 폴리아릴렌 설파이드를 포함함에 따라, 상기 수지 조성물은 이러한 폴리아릴렌 설파이드와 보다 우수한 상용성을 나타내는 충진재, 예를 들어, 히드록시기와 수소결합을 이를 수 있는 실라놀기를 갖는 유리섬유 등의
충진재 등을 적절히 포함할 수 있다. 또, 상기 유리 섬유 또는 탄소 섬유 등의 충진재는 그 표면이 실란 커플링제 등으로 처리되거나 미처리된 형태로 사용될 수도 있다. 다만, 실란 커플링제로 표면 처리시 상기 층진재와 폴리아릴렌 설파이드의 웅집력 또는 상용성이 보다 향상될 수 있다. '
일 구현예의 수지 조성물에 포함된 폴리아릴렌 설파이드가 이러한 다양한 고분자 소재나 충진재 등과 우수한 상용성을 나타냄에 따라, 일 구현예의 수지 조성물은 상술한 다양한 다른 고분자 소재나 층진재 등과 흔합 (예를 들어, 컴파운딩)되어 뛰어난 상승 효과를 나타낼 수 있고, 다양한 용도에 맞는 최적화된 물성을 나타낼 수 있게 된다. 다만, 위에서 나열된 고분자 소재 또는 층진재 외에도, 다른 여러 가지 고분자 소재 또는 강화재 /층진재 등이 일 구현예의 수지 조성물에 상술한 폴리아릴렌 설파이드와 함께 포함되어 보다 우수한 물성을 나타낼 수 있음은 물론이다. 보다 구체적으로, 수지 조성물의 기계적 물성, 내열성, 내후성 또는 성형성 등을 보다 향상시키기 위한 다양한 고분자 소재 또는 충진재 등이 별다른 제한없이 일 구현예의 수지 조성물에 포함될 수 있다.
또한, 일 구현예의 수지 조성물은 상기 폴리아릴렌 설파이드의 약 5 내지 95 중량0 /0, 혹은 약 50 내지 90 중량0 /0와, 상기 열가소성 수지, 열가소성 엘라스토머 및 층진재로 이루어진 군에서 선택된 1종 이상의 5 내지 95 중량0 /0, 혹은 약 10 내지 50 중량 %를 포함할 수 있다. 각 성분을 이러한 함량 범위로 포함함에 따라, 일 구현예의 수지 조성물은 폴리아릴렌 설파이드 특유의 우수한 물성을 유지하면서도, 다른 성분과의 흔합에 따른 상승 효과를 최적화하여 다양한 용도에 바람직하게 적용 가능한 뛰어난 물성을 나타낼 수 있게 된다.
한편, 일 구현예의 수지 조성물은 이의 기계적 물성, 내열성, 내후성 또는 성형성 등을 추가적으로 향상시키기 위해 추가적인 첨가제 및 /또는 안정제 등을 더 포함할 수도 있다. 이러한 첨가제 등의 종류는 별달리 한정되지는 않지만, 예를 들어, 산화 안정제, 광 안정제 (UV 안정제 등), 가소제, 활제, 핵제 또는 층격 보강재 등을 들 수 있으며, 이들 중에 선택된 2종 이상을 더 포함할수도 있다.
이들 첨가제 중, 산화 안정제로는 1차 또는 2차 산화 방지제를 사용할 수 있고, 보다 구체적인 예로는, 힌더드 페놀계, 아민계, 유황계, 또는 인계 산화 방지제를 들 수 있다. 또, 상기 광안정제는 일 구현예의 수지 조성물이 외장재에 적용될 경우 포함될 수 있는데, 특히 UV 반정제가 대표적으로 사용되며, 예를 들어, 벤조트리아졸 또는 벤조페놀 등을 들 수 있다.
그리고, 활제는 일 구현예의 수지 조성물을 성형, 가공함에 있어 성형성의 향상을 위해 사용되는 성분으로서, 탄화수소계 활제를 대표적으로 사용할 수 있다. 이러한 활제의 사용으로, 수지 조성물과 금형 금속과의 마찰방지나, 금형에서의 탈착등 이형성의 부여가 가능해진다.
또한, 수지 조성물의 성형 과정에서 결정화 속도 개선을 위해 다양한 핵제를 사용할 수 있고, 이를 통해 압, 사출시 제품의 고화 속도 향상, 제품제조 시간 (Cycle time) 단축 등이 가능해진다.
한편, 상술한 일 구현예의 수지 조성물은 주된 수지 성분으로서 주쇄 말단에 히드록시기 (-OH)가 도입된 용융중합형 폴리아릴렌 설파이드를 포함할 수 있는데, 이러한 폴리아릴렌 설파이드는 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 중합반웅시키는 단계; 및 상기 중합반웅 단계를 진행하면서, 히드록시기를 갖는 방향족 화합물을 추가로 첨가하는 단계를 포함하는 방법으로 제조될 수 있다. 또, 상기 폴리아릴렌 설파이드에 포함된 디설파이드 반복 단위의 함량을 적절한 범위로 조절하기 위해, 예를 들어, 상기 중합반응 단계를 진행하면서, 상기 반응물에 포함된 황 원소 100 중량부에 대해, 0.01 내지 30 중량부의 황 원소를 추가로 가하는 단계를 더 포함할 수도 있다.
이하 이러한 폴리아릴렌 설파이드의 제조 방법에 대해 설명하기로 한다.
상기 폴리아릴렌 설파이드의 제조 방법에서, 상기 히드록시기를 갖는 방향족 화합물은 목표 점도에 대한 현재 점도의 비율로 중합반웅의 진행 정도를 측정하였을 때, 상기 디요오드 방향족 화합물과 황 원소 간의 중합반웅이 약 중합반웅이 약 90% 이상, 혹은 약 90% 이상 100% 미만으로 진행되었을 때 (예를 들어, 중합반웅 후기에) 첨가될 수 있다. 상기
중합반응의 진행 정도는 얻고자 하는 폴리아릴렌 설파이드의 분자량 및 이에 따른 중합 산물의 목표 점도를 설정하고, 중합 반웅의 진행 정도에 따른 현재 점도를 측정하여 상기 목표 점도에 대한 현재 점도의 비율로서 측정할 수 있다. 이때, 현재 점도를 측정하는 방법은 반웅기 스케일에 따라 당업자에게 자명한 방법으로 결정할 수 있다. 예를 들어, 상대적으로 소형 중합 반응기에서 증합을 진행하는 경우, 반응기에서 증합 반웅이 진행 중인 샘플을 취하여 점도계로 측정할 수 있다. 이와 달리, 대형의 연속 중합 반웅기에서 중합을 진행하는 경우, 반웅기 자체에 설치된 점도계로 연속적, 실시간으로 현재 점도가 자동 측정될 수 있다.
이와 같이, 상기 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 중합반웅시키는 과정에서, 중합반응 후기에 히드록시기를 갖는 방향족 화합물을 첨가하여 반웅시킴에 따라, 폴리아릴렌 설파이드 주쇄의 말단기 (End Group) 중 적어도 일부에 히드록시기가 도입된 용융중합형 폴리아릴렌 설파이드를 제조할 수 있다. 특히, 상기 중합반웅 후기에 히드록시기를 갖는 화합물을 추가로 첨가하여, 주쇄 말단기에 적절한 함량의 히드록시기가 도입되어 상술한 다른 고분자 소재 또는 충진재 등과의 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 갖는 상술한 폴리아릴렌 설파이드가 효과적으로 제조될 수 있다.
또한, 상기 폴리아릴렌 설파이드의 제조 방법에서, 상기 히드록시기를 갖는 방향족 화합물로는, 히드록시기를 갖는 임의의 모노머 (단분자) 형태의 화합물을 사용할 수 있다. 아러한 히드록시기를 갖는 화합물의 보다 구체적인 예로는, 2-요오도페놀 (2-Iodophenol), 3-요오도페놀 (3-Iodophenol), 4- 요오도페놀 (4-Iodophenol), 2,2'-디티오디페놀 (2,2'-Dithiodiphenol), 3,3'- 디티오디페놀 (3,3'-Dithiodiphenol) 또는 4,4'-디티오디페놀 (4,4'-Dithiodiphenol) 등을 들 수 있고, 이외에도 다양한 히드록시기를 갖는 방향족 화합물을 사용할 수 있다.
또, 상기 히드록시기를 갖는 방향족 화합물은 디요오드 방향족 화합물의 약 100 중량부에 대해 약 0.0001 내지 10 중량부, 혹은 약 으001 내지 7 중량부, 혹은 약 0.01 내지 2 중량부로 첨가될 수 있다. 이러한 함량으로 히드록시기를 갖는 방향족 화합물을 첨가하여, 주쇄 말단기에
적절한 함량의 히드록시기를 도입할 수 있고, 그 결과, 다른 고분자 소재 또는 층진재 등과의 우수한 상용성을 나타내면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 갖는 용융 중합형 폴리아릴렌 설파이드가 효과적으로 제조될 수 있다.
또한, 상술한 폴리아릴렌 설파이드는 기본적으로 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 중합반웅시키는 방법으로 제조되며, 이에 따라 종래의 맥컬럼 공정으로 제조된 것에 비해 보다 우수한 기계적 물성 등을 나타낼 수 있다. 이러한 폴리아릴렌 설파이드는 이미 상술한 바와 같이 주쇄에 결합된 요오드 및 잔류 유리 요오드를 포함하며, 상기 주쇄에 결합된 요오드 및 유리 요오드 함량이 약 10 내지 10000 ppmw로 될 수 있다. 이와 같은 주쇄 결합 요오드 및 유리 요오드 함량은 폴리아릴렌 설파이드 시료를 고온에서 열처리한 후, 이온크로마토그래피를 이용해 정량하는 방법으로 측정할 수 있다.
상기 폴리아릴렌 설파이드의 제조 방법에서, 상기 중합반응에 사용 가능한 디요오드 방향족 화합물로는 디요오드화벤젠 (diiodobenzene; DIB), 디요오드화나프탈렌 (diiodonaphthalene), 디요오드화비페닐 (diiodobiphenyl), 디요오드화비스페놀 (diiodobisphenol), 및 디요오드화벤조페논 (diiodobenzophenone)로 이루어진 군에서 선택되는 1종 이상을 들 수 있지만, 이에 한정되지 않고, 이러한 화합물들에 알킬 원자단 (alkyl group)이나 술폰 원자단 (sulfone group) 등이 치환기로 결합되어 있거나, 방향족기에 산소나 질소 등의 원자가 함유된 형태의 디요오드 방향족 화합물도 사용될 수 있다. 또, 상기 디요오드 방향족 화합물에는 요오드 원자가 붙은 위치에 따라 여러 가지 디요오드 화합물의 이성질체 (isomer)가 있는데, 이 중에서도 파라-디요오드벤젠 (pDIB), 2,6- 디요오도나프탈렌, 또는 ρ,ρ'-디요오도비페닐처럼 파라 위치에 요오드가 결합된 화합물이 보다 적합하게 사용될 수 있다.
그리고, 상기 디요오드 방향족 화합물과 반웅하는 황 원소의 형태에는 별다른 제한이 없다. 보통 황 원소는 상온에서 원자 8개가 연결된 고리 형태 (cyclooctasulfiir; S8)로 존재하는데, 이러한 형태가 아니더라도 상업적으로 사용 가능한 고체 또는 액체 상태의 황이라면 별다른 한정 없이 모두
사용할 수 있다.
또, 이미 상술한 바와 같이, 상술한 폴리아릴렌 설파이드에 · 포함된 디설파이드 반복 단위의 함량을, 예를 들어, 약 3 중량0 /0 이하의 적절한 범위로 조절하기 위해, 상기 황 원소는 중합반웅 단계 중에 추가적으로 가해질 수도 있다. 이렇게 추가적으로 가해지는 황 원소의 양은 적절한 디설파이드 반복 단위의 함량을 고려하여 당업자가 적절히 결정할 수 있지만, 예를 들어, 상기 최초 반응물에 포함된 황 원소 100 중량부에 대해, 약 0.01 내지 30 중량부의 양으로 가해질 수 있다. 이렇게 추가적으로 가해지는 황 원소는, 예를 들어, 중합반응이 약 50 내지 99% 정도 진행되었을 때, 가해질 수 있고, 이미 상술한 히드록시기를 갖는 방향족 화합물과 별도로 가해지거나, 이와 함께 가해질 수도 있다.
한편, 상기 폴리아릴렌 설파이드의 제조를 위한 반응물에는 디요오드 방향족 화합물과 황 원소 외에도 중합개시게, 안정제, 또는 이들의 흔합물을 추가로 포함시킬 수 있는데, 구체적으로 사용 가능한 중합개시제로는 1,3- 디요오드 -4ᅳ니트로벤젠, 머캅토벤조티아졸, 2,2'-디티오비스벤조티아졸, 사이클로핵실벤조티아졸 술펜아미드, 및 부틸벤조티아졸 술펜아미드로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있으나, 상술한 예에 한정되지는 않는다.
그리고, 상기 안정제로는 통상 수지의 중합반웅에 사용되는 안정제이면 그 구성의 한정은 없다.
한편, 상기와 같은 중합반웅 도중, 중합이 어느 정도 이루어진 시점에 중합중지제를 첨가할 수 있다. 이때 사용 가능한 중합 중지제는 중합되는 고분자에 포함되는 요오드 그룹을 제거하여 중합을 중지 시킬 수 있는 화합물이면, 그 구성의 한정은 없다. 구체적으로는 디페닐설파이드 (diphenyldisuldife), 디페닐 에테르 (diphenyl ether), 디페닐 (diphenyl), 벤조페논 (benzophenone), 디벤조티아졸 디설파이드 (dibenzothiazole disulfide), 모노요오도아릴화합물 (monoiodoaryl compound), 벤조티아졸류 (benzothiazole)류, 벤조티아졸술펜아미드 (benzothiazolesulfenamide)류, 티우람 (thiuram)류, 디티오카바메이트 (dithiocarbamate)류 및 디페닐디설파이드로 이루어지는
군에서 선택되는 1종 이상일 수 있다ᅳ
더욱 바람직하게로, 상기 중합중지제는 요오도비페닐 (iodobiphenyl), 요오도페놀 (iodophenol), 요오도아닐린 (iodoaniline), 요오도벤조페논 (iodobenzophenone), 2-메르갑토벤조티아졸 (2- mercaptobenzothiazole), 2,2'-디티오비스밴조티아졸 (2,2'-dithiobisbenzothiazole), N- 시클로핵실벤조티아졸 -2-술펜아미드 (N-cyclohexylbenzothiazole-2-sulfenamide), 2- 모르폴리노티오벤조티아졸 (2-morpholinothiobenzothiazole), Ν,Ν- 디시클로핵실벤조티아졸 -2-술펜아미드 (N,N-dicyclohexylbenzothiazole-2- sulfenamide), 테트라메틸티우람 모노술파이드 (tetramethylthiuram monosulfide), 테트라메틸티우람 디술파이드 (tetramethylthiuram disulfide), 아연 디메틸디티오카바메이트 (Zinc dimethyldithiocarbamate), 아연 디에틸디티오카바메이트 (Zinc diethyldithiocarbamate) 및 디페닐디설파이드 (diphenyl disulfide)로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
한편, 중합중지제의 투여 시점은 최종 중합시키고자 하는 폴리아릴렌 설파이드의 분자량을 고려하여 그 시기를 결정할 수 있다. 예를 들어, 초기 반웅물 내에 포함된 디요오드 방향족 화합물이 약 70 내지 100 중량0 /0이 반웅되어 소진된 시점에서 투여할 수 있다.
그리고, 상기와 같은 중합반웅은 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물의 중합이 개시될 수 있는 조건이면 어떠한 조건에서든 진행될 수 있다. 예를 들어, 상기 증합반웅은 승온 감압 반웅 조건에서 진행될 수 있는데, 이 경우, 온도 약 180 내지 25CTC 및 압력 약 50 내지 450 torr의 초기 반웅조건에서 온도 상승 및 압력 강하를 수행하여 최종 반웅조건인 온도 약 270 내지 350 °C 및 압력 약 0.001 내지 20 torr로 변화시키며, 약 1 내지 30시간 동안 진행할 수 았다ᅳ 보다 구체적인 예로서, 최종 반웅조건을 온도 약 280 내지 300°C 및 압력 약 0.1내지 0.5 torr로 하여 중합반웅을 진행할 수 있다.
한편, 상술한 폴리아릴렌 설파이드의 제조 방법은 상기 중합반웅 전에, 디요오드 방향족 화합물과 황 원소를 포함하는 반웅물을 용융 흔합하는 단계를 추가로 포함할 수 있다. 이와 같은 용융 흔합은 상술한 반응물들이
모두 용융 흔합될 수 있는 조건이면 그 구성의 한정은 없으나, 예를 들어, 약 130 °C 내지 200 °C , 혹은 약 160 °C 내지 190 °C의 온도에서 진행할 수 있다.
이와 같이 중합반웅 전에 용융 흔합'단계를 진행하여, 추후 행해지는 중합반웅을 보다 용이하게 진행할 수 있다.
그리고, 상술한 폴리아릴렌 설파이드의 제조 방법에 있어서, 중합반응은 니트로벤젠계 촉매의 존재 하에사 진행될 수 있다. 또한, 상술한 바와 같이 중합반웅 전에 용융흔합 단계를 거치는 경우, 상기 촉매는 용융흔합 단계에서 추가될 수 있다. 니트로벤젠계 촉매의 종류로는 1,3- 디요오드 -4-니트로벤젠, 또는 1-요오드 -4-니트로벤젠 등을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
상술한 제조 방법으로, . 주쇄 말단에 히드록시기 등이 도입된 용융중합형 폴리아릴렌 설파이드가 얻어질 수 있고, 이러한 폴리아릴렌 설파이드는 다른 고분자 소재 또는 충진제 등과의 우수한 .상용성을 나타내므로, 이를 이용해 일 구현예의 수지 조성물을 얻을 수 있게 된다. 한편, 발명의 다른 구현예에 따르면, 상술 ¾ 일 구현예의 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품 및 이의 제조 방법이 제공된다. 상기 성형품은 상기 일 구현예이 수지 조성물을 압출하는 단계를 포함하는 방법으로 제조될 수 있다.
이하 이러한 성형품 및 제조 방법에 대해 보다 구체적으로 설명하기로 한다. 다만, 상기 성형품에 포함될 수 있는 성분의 종류 및 함량에 대해서는 이미 일 구현예의 수지 조성물에 대해 설명한 바가 있으므로, 이에 대한 추가적인 구체적인 설명은 생략하기로 한다.
■ 다른 구현예의 성형품은 히드록시기 등이 도입된 용융중합형 폴리아릴렌 설파이드, 열가소성 수지, 열가소성 엘라스토머 및 층진재로 이루어진 군에서 선택된 1종 이상, 그리고 선택적으로 다른 첨가제 등을 포함하게 되는데, 이들 각 성분을 흔합하여 일 구현예의 수지 조성물을 얻은 후 이를 압출하여 제조될 수 있다.
이러한 성형품은 상기 폴리아릴렌 설파이드의 약 5 내지 95 중량0 /0, 혹은 약 50 내지 90 중량0 /0와, 상기 열가소성 수지, 열가소성 엘라스토머 및
충진재로 이루어진 군에서 선택된 1종 이상의 약 5 내지 95 중량 %, 흑은 약 10 내지 50 중량0 /0를 포함할 수 있으며, 상기 2 가지 성분의 함량을 합한 100 중량부에 대해 약 2 중량부 이하, 예를 들어, 약 0.1 내지 2 중량부의 다른 첨가제 등을 포함할 수 있다ᅳ 예를 들어, 산화 안정제 또는 활제 등의 첨가제는 약 0.1 내지 1 중량부의 함량으로 포함될 수 있고, 경화제 등의 첨가제는 약 0.1 내지 2 중량부의 함량으로 포함될 수 있다. 상기 성형품이 이러한 함량 범위를 충족함에 따라, 다양한 용도에 바람직하게 적용 가능한 뛰어난 물성을 나타낼 수 있다.
또한, 이들 각 성분을 포함하는 수지 조성물을 흔합 및 압출하여 성형품을 제조함에 있어서는, 예를 들어, 이축 압출기 (Twin Screw Extruder)를 사용할 수 있으며, 이러한 이축 압출기의 직경비 (L/D)는 약 30에서 50 내외로 될 수 있다.
일 예에 따르면, 먼저 소량 첨가되는 기타 첨가제 등을 수퍼믹서 등의 흔합기로 폴리아릴렌 설파이드와 사전에 흔합할 수 있고, 사전 흔합된 1차 조성물을 2축 압출기의 주 투입구를 통해 투입할 수 있다. 또한, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충진재 등은 압출기의 측면에 위치한 투입구 (side feeder)를 통해 별도로 투입할 수 있다. 이때, 측면 투입하는 위치는 압출기 전체 배럴의 배출구 측으로부터 대략 1/3 내지 1/2 지점으로 될 수 있다. 이렇게 하면, 상기 충진재 등이 압출기 내에서 압출기 스크루에 의한 회전 및 마찰에 의해 깨지는 것이 방지할 수 있다.
이러한 방식으로 일 구현예의 수지 조성물의 각 성분을 흔합한 후, 이축 압출기로 압출함으로서, 다른 구현예의 성형품을 얻을 수 있다.
이러한 다른 구현예의 성형품은 필름, 시트, 또는 섬유 등의 다양한 형태로 될 수 있다. 또, 상기 성형품은 사출 성형품, 압출 성형품, 또는 블로우 성형품일 수 있다. 사출 성형하는 경우의 금형 온도는, 결정화의 관점에서, 약 50 °C 이상, 약 60 °C 이상, 혹은 약 80 °C 이상으로 될 수 있고, 시험편의 변형의 관점에서, 약 190 °C 이하, 혹은 약 170 이하, 혹은 약 160 "C 이하로 될 수 있다.
그리고, 상기 성형품이 필름 또는 시트 형태로 되는 경우, 미연신, 1축
연신, 2축 연신 등의 각종 필름 또는 시트로 제조할 수 있다ᅳ 섬유로서는, 미연신사, 연신사, 또는 초연신사 등 각종 섬유로 하고, 직물, 편물, 부직포 (스펀본드, 멜트블로우, 스테이플), 로프, 또는 네트로서 이용할 수 있다.
이러한 성형품은 컴퓨터 부속품 등의 전기 ᅳ전자 부품, 건축 부재, 자동차 부품, 기계 부품, 일용품 또는 화학물질이 접촉하는 부분의 코팅, 산업용 내화학성 섬유 등으로서 이용할 수 있다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
【발명의 효과】
본 발명은 히드록시기를 주쇄 말단에 포함함으로써, 다른 고분자 소재 또는 강화재 /충진재 등과 우수한 상용성을 나타내면서도 우수한 가공성을 나타내는 용융 중합형 폴리아릴렌 설파이드와, 다른 고분자 소재 또는 층진재 등을 포함하는 수지 조성물을 제공할 수 있다.
이러한 수지 조성물은 각 용도에 최적화된 우수한 물성을 나타낼 수 있으면서도, 폴리아릴렌 설파이드 특유의 우수한 물성을 나타낼 수 있다. 이는 수지 조성물의 각 성분의 상용성이 향상되어 각 성분의 물성이 상승 효과를 나타낼 수 있기 때문으로 보인다.
따라서, 이러한 수지 조성물은 보다 다양한 용도로 적용되어 우수한 물성 및 효과를 나타낼 수 있다.
【발명의 실시를 위한 형태】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220°C
및 350Torr의 초기 반응 조건에서 시작하여, 최종 반웅온도는 300°C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반응을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반웅의 진행 정도는 "(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2,-디티오비스벤조티아졸을 50g 첨가하고 1시간 반웅을 진행하였다. 이어서, 상기 중합반웅이 90% 진행되었을 때 4- 요오도페놀 (4-Iodophenol) 51g을 첨가하고 10분 동안 질소 분위기 하에서 반응을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 1의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm 1 의 피크의 상대적 높이 강도는 약 0.4 %임이 확인되었다.
또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 1500ppmw로 확인되었다.
' 실시예 2: 히드톡시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반웅물을 180°C로 가열하여 ^전히 용융 및 흔합한 후, 220 °C 및 350ΤΟΠ·의 초기 반웅 조건에서 시작하여, 최종 반응온도는 300 °C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 '중합반응을 진행하였다. 상기 중합반웅이 80%
진행되었을 때 (이러한 증합반웅의 진행 정도는
"(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 바을로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조티아졸을 50g 첨가하고 1시간 반응을 진행하였다. 이어서, 중합반웅이 90% 진행되었을 때 4-요오도페놀 (4- Iodophenol) 25g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 2의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm"1 의 .피크의 상대적 높이 강도는 약 0.24 %임이 확인되었다. 또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 2000ppmw로 확인되었다. 실시예 3: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 ' 450g을 포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반웅온도는 300°C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반웅의 진행 정도는
"(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로
측정하였다ᅳ), 중합중지제로 2,2,-디티오비스벤조티아졸을 50g 첨가하고 1시간 반응을 진행하였다. 이어서, 증합반웅이 90% 진행되었을 때 4,4'- 디티오디페놀 (4,4'-Dithiodiphenol) 51g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 3의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm"1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm"1 의 피크의 상대적 높이 강도는 약 0.62 %임이 확인되었다. 또한, 이하에 기술하는 방법으로.폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 500ppmw로 확인되었다. 실시예 4: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반응 조건에서 시작하여, 최종 반웅온도는 300°C , 압력은 ΙΤοιτ 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반웅의 진행 정도는
"(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합중지제로 2,2'-디티오비스벤조티아졸을 50g 첨가하고 1시간 반웅을 진행하였다. 이어서, 중합반웅이 90% 진행되었을 때 4,4'- 디티오디페놀 (4,4'-Dithiodiphenol) 25g을 첨가하고 10분 동안 질소 분위기
하에서 반웅을 진행한 후, 0.5Torr 이하로.서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 4의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm"1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm 1 의 피크의 상대적 높이 강도는 약 0.33 %임이 확인되었다ᅳ 또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 1200ppmw로 확인되었다. 실시예 5: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 M
반웅기의 내은 측정이 가능한 써모커플, 그리고 질소 충전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 2201 및 350Torr의 초기 반웅 조건에서 시작하여, 최종 반웅온도는 300 °C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 증합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반웅의 진행 정도는
"(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 증의 샘플을 채취해 점도계로 측정하였다ᅳ), 중합중지제로 디페닐디설파이드를 30g 첨가하고 1시간 반웅을 진행하였다. 이어서, 중합반응이 90% 진행되었을 때 4-요오도페놀 (4- Iodophenol) 25g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛
형태로 제조하였다.
이러한 실시예 5의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cmᅳ1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm"1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm-1 의 피크의 상대적 높이 강도는 약 0.27 %임이 확인되었다. 또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 1800ppmw로 확인되었다. 실시예 6: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반웅 조건에서 시작하여, 최종 반웅온도는 300 °C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반웅의 진행 정도는 "(현재점도 /목표점도) *100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.) , 중합중지제로 디페닐디설파이드를 30g 첨가하고 1시간 반웅을 진행하였다. 이어서, 중합반웅이 90% 진행되었을 때 4,4'-디티오디페놀 (4,4'- Dithiodiphenol) 51g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실사예 6의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를
확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm 1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm"1 의 피크의 상대적 높이 강도는 약 0.58%임이 확인되었다. 또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 600ppmw로 확인되었다. 실시예 7: 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 합성
반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반응물을 180 °C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반웅 조건에서 시작하여, 최종 반웅온도는 300 °C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 증합반웅의 진행 정도는
"(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.) , 중합중지제로 디페닐디설파이드를 35g 첨가하고 1시간 반웅을 진행하였다. 이어서, 증합반웅이 90% 진행되었을 때 4-요오도페놀 (4- Iodophenol) 25g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한 후, 0.5ΤΟΠ· 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반웅이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 7의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cmᅳ1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 S Ocm-1 의 피크의 상대적 높이 강도는 약 0.29 %임이 확인되었다.
또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은 약 800ppmw로 확인되었다. 실시예 8: 히드톡시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드의 반웅기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반웅기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반응물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반웅 조건에서 시작하여, 최종 반웅온도는 300t , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황올 소량씩 추가투입하면서 증합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 증합반응의 진행 정도는
"(현재점도 /목표점도) *100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.) , 중합중지제로 디페닐디설파이드를 35g 첨가하고 1시간 반웅을 진행하였다. 이어서, 중합반웅이 90% 진행되었을 때 4,4'-디티오디페놀 (4,4'- Dithiodiphenol) 13g을 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한 후, 0.5Torr 이하로 서서히 진공을 가하여 목표 점도에 도달한 후 종료하여, 히드록시기를 주쇄 말단에 포함하는 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 실시예 8의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크의 존재를 확인하였다. 또한, 상기 FT-IR 스펙트럼 상에서, 약 1400 내지 1600cm-1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 약 3300 내지 3600cm-1 의 피크의 상대적 높이 강도는 약 0.26%임이 확인되었다. 또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드 와 유리 요오드 함량을 측정하였으며, 그 함량은. 약 700ppmw로 확인되었다.
비교예 1
반응기의 내온 측정이 가능한 써모커플, 그리고 질소 층전 및 진공을 걸 수 있는 진공라인이 부착된 5 L 반응기에 파라디요오드벤젠 (p-DIB) 5130g, 황 450g을 포함한 반웅물을 180°C로 가열하여 완전히 용융 및 흔합한 후, 220 °C 및 350Torr의 초기 반웅 조건에서 시작하여, 최종 반웅온도는 300 °C , 압력은 lTorr 이하까지 단계적으로 온도 상승 및 압력 강하를 수행하고, 황을 소량씩 추가투입하면서 중합반웅을 진행하였다. 상기 중합반웅이 80% 진행되었을 때 (이러한 중합반응의 진행 정도는 "(현재점도 /목표점도) * 100%"의 식으로, 목표 점도에 대한 현재 점도의 상대 비율로서 측정하였으며, 현재점도는 중합 진행 중의 샘플을 채취해 점도계로 측정하였다.), 중합증지제로 2,2'-디티오비스벤조티아졸을 50g 첨가하고 10분 동안 질소 분위기 하에서 반웅을 진행한 후, 으 5Torr 이하로 서서히 진공을 가하여 목표점도에 도달 한 후 반웅을 종료하여, 히드록시기를 주쇄 말단에 포함하지 않은 폴리아릴렌 설파이드 수지를 합성하였다. 반응이 완료된 수지를 소형 스트랜드 커터기를 사용하여 펠렛 형태로 제조하였다.
이러한 비교예 1의 폴리아릴렌 설파이드 수지를 FT-IR로 분석하여 스펙트럼 상에서, 약 3300 내지 3600cm-1의 히드록시기 피크가 없음을 확인하였다.
또한, 이하에 기술하는 방법으로 폴리아릴렌 설파이드 주쇄에 결합된 요오드와 유리 요오드 함량을 측정하였으며, 그 함량은 약 2500ppmw로 확인되었다. 비교예 2
맥컬럼 공정으로 제조된 폴리아릴렌 설파이드와, 엘라스토머가 컴파운딩된 DIC사 Z200 제품을 입수하여 비교예 3으로 하였다. 시험예 1: 폴리아릴렌 설파이드의 기본물성 평가
실시예 1 내지 8 및 비교예 1의 폴리아릴렌 설파이드의 제반 물성을 다음의 방법으로 평가하였다:
융점 (Tm)
시차주사 열량분석기 (Differential Scanning Calorimeter; DSC)를 이용하여 30 °C에서 320 °C까지 10 °C/min의 속도로 승온 후 30 °C까지 냉각 후에 다시 30 °C에서 320 °C까지 10 °C/min 의 속도로 승온하면서 융점을 측정하였다. 、
수평균 분자량 (Mil) 및 분자량 분포 (PDI)
1-chloronaphthalene에 0.4wt%의 농도로 250°C에서 25분간 교반 용해한 샘플을 고온 GPC(Gel permeation chromatography)시스템 (210 °C)에서 1- chloronaphthalene을 1 mL/min의 유속으로 홀려주면서 분자량이 다른 폴리아릴렌 설파이드를 순차적으로 컬럼 내에서 분리하면서, RI detector를 이용하여 분리된 폴리아릴렌 설파이드의 분자량별 강도 (Intensity)를 측정하며, 미리 분자량을 알고 있는 표준시료 (Polystyrene)로 검량선을 작성하여, 측정 샘플의 상대적인 수평균 분자량 (Mn) 및 분자량 분포 (PDI)를 계산하였다.
용융점도 (Poise)
용융점도 (melt viscosity, 이하 'MV')는 회전 원판 점도계 (rotating disk viscometer)로 300°C에서 측정하였다. Frequency sweep 방법으로 측정함에 있어, angular frequency를 0.6부터 500 rad/s까지 측정하였고, 1.84rad/s에서의 점도를 용융점도 (M.V.)로 정의하였다.
주쇄 결합요오드 및 유리 요오드 함량 (pprnw)
주쇄 결합 요오드 및 유리 요오드 함량 (ppmw)은 시료를 고온에서 flimace를 이용하여 태운 후 요오드를 이온화하여 증류수에 용해시키는 자동 전처리장치 (AQF)를 통해 준비된 샘플을 이온크로마토그래피 (Ion Chromatography)를 통해 미리 분석된 검량커브를 이용하여 시료 중 요오드의 함량을 측정하였다. 위와 같은 방법으로 측정된 물성을 하기 표 1에 정리하여 나타내었다:
[표 1]
실시예 2 278.8 17,333 2.8 2,210 2000 실시예 3 277.5 17,225 2.9 1,960 500 실시예 4 277.8 17,457 2.8 2,010 1200 실시예 5 279.2 17,320 2.9 2,530 1800 실시예 6 278.3 17,112 2.9 2,440 600 실시예 7 279.5 17,450 2.8 2,250 800 실시예 8 279.2 17,420 2.8 2,150 700 비교예 1 280.5 17,267 2.8 2,420 2500
시험예 2: 폴리아릴렌 설파이드의 기계적 물성 평가
실시예 1 내지 8 및 비교예 1의 폴리아릴렌 설파이드의 기계적 물성을 다음의 방법으로 평가하였다. 이러한 각 물성의 측정시 시편은 다음과 같은 조건 하에 얻었다: ―
시편 제조 조건
폴리아릴렌설파이드 3kg을 사출기 (엥겔 ES75P, 형체력 80톤, 직경 25mm)를 이용하여 ASTM D638에 따라 시편을 제조하였다. 이 때, 배럴온도는 투입구부터 차례로 270°C/300°C/30(rC가 되도록 하였고, 노즐온도는 30CTC , 금형온도는 150oC 되도록 하였다.
인장강도 및 신율
ASTM D 638법에 따라, 실시예 1 내지 8 및 비교예 1에 따라 제조된 폴리아릴렌 설파이드 시편의 인장강도 및 신율을 측정하였다.
굴곡강도 및 굴곡강도 유지율
ASTM D 790법에 따라, 실시예 1 내지 8 및 비교예 1에 따라 제조된 폴리아릴렌 설파이드 시편의 굴곡강도를 측정하였다. 그리고, 시편을 280°C 오븐에서 100 시간 동안 aging 한 후 굴곡강도를 다시 측정하였고, 굴곡강도 유지율 (%) = [(aging 후의 굴곡강도) /(aging 전의 굴곡강도)] *100의 식에 따라 굴곡강도 유지율을 산출하였다.
충격강도 (Izod)
ASTM D 256법에 따라, 실시예 1 내지 8 및 비교예 1에 따라 제조된 폴리아릴렌 설파이드 시편의 층격강도를 측정하였다. 위와 같은 방법으로 측정된 기계적 물성을 하기 표 2에 정리하여
나타내었다:
[표 2]
폴리아릴렌 설파이드와 유리섬유의 컴파운딩
중합한 수지를 각각 건조하고, 소형 이축 압출기를 이용하여, 압출 Die 온도 330 °C , Screw rpm 200 조건 하에서 상기 수지 60 중량부에 유리섬유 (오웬스사 910) 40 중량부 첨가하며 컴파운딩을 실시하였다.
폴리아릴렌 설파이드와 엘라스토머의 컴파운딩
압출 Die 온도 300 °C , Screw rpm 200 조건 하에서 상기 수지 90 중량부에 엘라스토머인 AX8840 (Arkema 사제)을 10 중량부 첨가하며 흔합 압출을 실시하였다. 위와 같이 제조된 컴파운딩한 시편과, 비교예 2의 컴파운딩 시편의 기계적 물성을 폴리아릴렌 설파이드 시편에 대해서와 마찬가지 방법으로 평가하여 하기 표 3에 정리하여 나타내었다:
1,780 1.9 2,420 87 92 유리섬유 40%
실시예 2+
1,760 1.8 2,415 85 90 유리섬유 40%
실시예 3+
1,770 1.9 2,410 86 89 유리섬유 40%
실시^ 14+
1,750 1.8 2,410 85 87 유리섬유 40%
실시예 5+
1,720 1.8 2,610 84 90 유리섬유 40%
실시예 6+
유리섬유 40% 1,700 1.7 2,530 83 88 실시예 7+
1,750 1.8 2,440 85 85 유리섬유 40%
실시^ 18+
유리섬유 40% 1,730 1.9 2,515 83 87 비교예 1-+
1,700 1.7 2,300 78 77 유리섬유 40%
비교예 2+
1,800 2.2 2,450 82 110 유리섬유 40%
실시예 1+
엘라스토머 590 18.0 1,050 - 55 10%
실시^ 12+
엘라스토머 585 16.7 1,030 - 53 10%
실시예 3+
엘라스토머 588 17.5 1,030 - 51 10%
실시^ 14+
엘라스토머 585 17.0 1,020 - 50 10%
실시예 5+
엘라스토머 575 17.5 1,030 - 48 10%
실시예 6+
엘라스토머 580 17.2 1,010 - 52 10%
실시예 7+
엘라스토머 586 17.8 1,035 - 48 10%
실시예 8+
엘라스토머 577 16.5 1,020 - 49 10%
비교예 1+
엘라스토머 556 2.5 950 - 17
10%
비교예 2 660 15.7 940 76
상기 표 2 및 3에 따르면, 주쇄 말단에 히드록시기가 도입된 실시예 1의 폴리아릴렌 설파이드를 유리섬유와 컴파운딩함에 따라, 층격강도가 약 18 J/m에서 약 92 J/m로 크게 향상됨이 확인되었다. 또, 주쇄의 말단기에 히드록시기가 도입된 실시예 1의 폴리아릴렌 설파이드를 엘라스토머와 컴파운딩함에 따라, 인장신율이 약 1.5%에서 약 18.0%로, 층격강도가 18 J/m에서 약 55 J/m로 크게 향상됨이 확인되었다. 이러한 컴파운딩에 따른 물성 향상은 다른 실시예에서도 동등하게 확인되었다.
이러한 컴파운딩에 따른 물성의 향상으로부터 실시예의 폴리아릴렌 설파이드가 다양한 다른 고분자 소재나 충진재 등과 우수한 상용성을 나타내고 이에 따른 뛰어난 상승 효과를 나타낼 수 있음이 확인되었다. 이에 비해, 비교예의 폴리아릴렌 설파이드는 다른 고분자 소재나 층진재와의 상용성이 열악하여 컴파운딩에 따른 상승 효과가 그리 크지 않음이 확인되었다.
Claims
【청구항 1】
주쇄의 반복 단위 중에 디설파이드 반복 단위를 포함하고, 주쇄의 말단기 (End Group) 중 적어도 일부가 히드록시기 (-OH)인 폴리아릴렌 설파이드; 및
열가소성 수지, 열가소성 엘라스토머 및 층진재로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리아릴렌 설파이드계 수지 조성물.
【청구항 2】
제 1 항에 있어서, 상기 디설파이드 반복 단위는 전체 폴리아릴렌 설파이드에 대해 3 중량% 이하로 포함되는 폴리아릴렌 설파이드계 수지 조성물.
[청구항 3】
제 1 항에 있어서, 상기 폴리아릴렌 설파이드는 주쇄에 결합된 요오드 및 유리 요오드를 포함하며, 상기 주쇄에 결합된 요오드 및 유리 요오드 함량이 10 내지 lOOOO ppmw인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 4】
제 1 항에 있어서, 상기 폴리아릴렌 설파이드는 FT-IR 스펙트럼 상에서, 3300 내지 3600 cm"1 의 피크를 나타내는 폴리아릴렌 설파이드계 수지 조성물.
[청구항 5】
제 4 항에 있어서, 상기 폴리아릴렌 설파이드의 FT-IR 스펙트럼 상에서, 1400 내지 1600cm 1에서 나타나는 Ring stretch 피크의 높이 강도를 100%로 하였을 때, 상기 3300 내지 3600 cm"1 의 피크의 상대적 높이 강도는 0.01 내지 3%인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 6】
제 1 항에 있어서, 상기 열가소성 수지는 폴리비닐알코올계 수지, 폴리에테르계 수지, 폴리알킬렌이민계 수지, 염화비닐계 수지, 폴리아미드계 수지, 폴리올레핀계 수지 및 폴리에스테르계 수지로 이루어진 군에서 선택된
1종 이상인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 7】
거 1 1 항에 있어서, 상기 열가소성 엘라스토머는 폴리염화비닐계 엘라스토머, 폴리 (메트)아크릴레이트계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머 및 폴리부타디엔계 엘라스토머로 이루어진 군에서 선택된 1종 이상인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 8】
제 1 항에 있어서, 상기 층진재는 섬유, 비드, 플레이크, 또는 분말 형태의 유기 또는 무기 충진재인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 9】
제 1 항에 있어서, 상기 충진재는 유리 섬유, 탄소 섬유, 붕소 섬유, 유리 비드, 유리 플레이크, 탈크 및 탄산칼슘으로 이루어진 군에서 선택된 1종 이상인 폴리아릴렌 설파이드계 수지 조성물.
【청구항 10】
제 1 항에 있어서, 상기 폴리아릴렌 설파이드는 수평균 분자량이 5,000 내지 50,000인 폴리아릴렌 설파이드계 수지 조성물. ,
【청구항 11】
제 1 항에 있어서, 상기 폴리아릴렌 설파이드의 5 내지 95 중량%와, 상기 열가소성 수지, 열가소성 엘라스토머 및 층진재로 이루어진 군에서 선택된 1종 이상의 5 내지 95 중량0 /0를 포함하는 폴리아릴렌 설파이드계 수지 조성물.
[청구항 12】
제 1 항에 있어서, 산화 안정제, 광 안정제, 가소제, 활제, 핵제 및 충격 보강재로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함하는 폴리아릴렌설파이드계 수지 조성물.
【청구항 13】
제 1 항 내지 제 12 항 중 어느 한 항의 폴리아릴렌설파이드계 수지 조성물을 압출하는 단계를 포함하는 성형품의 제조 방법.
【청구항 14】
제 13 항에 있어서, 상기 압출은 이축 압출기로 진행되는 성형품의 제조 방법.
【청구항 15】
제 1 항 내지 제 12 항 중 어느 한 항에 따른 폴리아릴렌 설파이드계 수지 조성물을 포함하는 성형품.
【청구항 16]
제 15 항에 있어서, 필름, 시트, 또는 섬유 형태인 성형품.
【청구항 17】
제 15 항에 있어서, 자동자 내장 부품, 자동차 외장 부품, 전기 부품, 전자 부품 또는 산업재로 사용되는 성형품.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/777,982 US20180346721A1 (en) | 2015-11-23 | 2016-11-22 | Polyarylene sulfide resin composition and molded article |
JP2018526660A JP7100222B2 (ja) | 2015-11-23 | 2016-11-22 | ポリアリーレンスルフィド系樹脂組成物および成形品 |
CN201680078196.3A CN108473766A (zh) | 2015-11-23 | 2016-11-22 | 聚亚芳基硫醚树脂组合物和模制物品 |
EP16868855.4A EP3381982A4 (en) | 2015-11-23 | 2016-11-22 | POLYARYLENE SULFIDE RESIN COMPOSITION AND MOLDED PRODUCT |
HK18113184.9A HK1254114A1 (zh) | 2015-11-23 | 2018-10-15 | 聚亞芳基硫醚樹脂組合物和模製物品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0164288 | 2015-11-23 | ||
KR20150164288 | 2015-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090959A1 true WO2017090959A1 (ko) | 2017-06-01 |
Family
ID=58763338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/013488 WO2017090959A1 (ko) | 2015-11-23 | 2016-11-22 | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20180346721A1 (ko) |
EP (1) | EP3381982A4 (ko) |
JP (1) | JP7100222B2 (ko) |
KR (1) | KR20170059898A (ko) |
CN (1) | CN108473766A (ko) |
HK (1) | HK1254114A1 (ko) |
TW (1) | TWI740858B (ko) |
WO (1) | WO2017090959A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017090958A1 (ko) | 2015-11-23 | 2017-06-01 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드 수지 및 그의 제조 방법 |
US12024596B2 (en) | 2021-09-08 | 2024-07-02 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
WO2023038889A1 (en) | 2021-09-08 | 2023-03-16 | Ticona Llc | Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786713A (en) * | 1987-11-06 | 1988-11-22 | Eastman Kodak Company | Copoly(arylene sulfidex-disulfide) |
KR20060074919A (ko) * | 1997-09-03 | 2006-07-03 | 다이닛뽄 잉크 앤드 케미칼즈, 인코포레이티드 | 관능기-함유 폴리아릴렌 설파이드 수지의 제조방법 |
US20130273280A1 (en) * | 2012-04-13 | 2013-10-17 | Ticona Llc | Continuous Fiber Reinforced Polyarylene Sulfide |
KR20140037776A (ko) * | 2012-09-19 | 2014-03-27 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 |
KR20150085087A (ko) * | 2013-03-25 | 2015-07-22 | 디아이씨 가부시끼가이샤 | 폴리아릴렌설피드 수지의 제조 방법 및 폴리아릴렌설피드 수지 조성물 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826149B2 (ja) * | 1987-08-19 | 1996-03-13 | 東ソー株式会社 | ポリアリ−レンスルフィドの製造方法 |
KR101549205B1 (ko) * | 2008-12-23 | 2015-09-02 | 에스케이케미칼 주식회사 | 폴리아릴렌 설파이드의 제조 방법 |
KR101554010B1 (ko) * | 2008-12-31 | 2015-09-18 | 에스케이케미칼 주식회사 | 유리 요오드 저감 폴리아릴렌 설파이드의 제조 방법 |
JP5969925B2 (ja) * | 2010-03-09 | 2016-08-17 | エスケー ケミカルズ カンパニー リミテッド | 再利用可能なポリアリーレンスルフィドの製造方法 |
WO2014025190A1 (ko) * | 2012-08-07 | 2014-02-13 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드 수지 및 그의 제조 방법 |
JP6655392B2 (ja) | 2013-08-09 | 2020-02-26 | Dic株式会社 | ポリアリーレンスルフィド樹脂組成物及びその成形品 |
KR102654004B1 (ko) | 2013-08-30 | 2024-04-04 | 디아이씨 가부시끼가이샤 | 워터 섹션 부품용 수지 조성물 및 유체용 배관 |
CN110283457B (zh) | 2013-09-26 | 2023-03-31 | Dic株式会社 | 聚芳硫醚树脂组合物及其成形品、以及表面安装电子部件 |
CN109096761B (zh) | 2013-10-01 | 2021-05-11 | Dic株式会社 | 聚芳硫醚树脂组合物及其成形品、以及电动汽车部件 |
EP3103841B1 (en) * | 2014-02-05 | 2018-09-26 | Teijin Limited | Polyarylene sulfide resin composition |
WO2017090958A1 (ko) * | 2015-11-23 | 2017-06-01 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드 수지 및 그의 제조 방법 |
-
2016
- 2016-11-22 US US15/777,982 patent/US20180346721A1/en not_active Abandoned
- 2016-11-22 WO PCT/KR2016/013488 patent/WO2017090959A1/ko active Application Filing
- 2016-11-22 TW TW105138319A patent/TWI740858B/zh active
- 2016-11-22 KR KR1020160155443A patent/KR20170059898A/ko not_active Application Discontinuation
- 2016-11-22 CN CN201680078196.3A patent/CN108473766A/zh active Pending
- 2016-11-22 EP EP16868855.4A patent/EP3381982A4/en active Pending
- 2016-11-22 JP JP2018526660A patent/JP7100222B2/ja active Active
-
2018
- 2018-10-15 HK HK18113184.9A patent/HK1254114A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786713A (en) * | 1987-11-06 | 1988-11-22 | Eastman Kodak Company | Copoly(arylene sulfidex-disulfide) |
KR20060074919A (ko) * | 1997-09-03 | 2006-07-03 | 다이닛뽄 잉크 앤드 케미칼즈, 인코포레이티드 | 관능기-함유 폴리아릴렌 설파이드 수지의 제조방법 |
US20130273280A1 (en) * | 2012-04-13 | 2013-10-17 | Ticona Llc | Continuous Fiber Reinforced Polyarylene Sulfide |
KR20140037776A (ko) * | 2012-09-19 | 2014-03-27 | 에스케이케미칼주식회사 | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 |
KR20150085087A (ko) * | 2013-03-25 | 2015-07-22 | 디아이씨 가부시끼가이샤 | 폴리아릴렌설피드 수지의 제조 방법 및 폴리아릴렌설피드 수지 조성물 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3381982A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20170059898A (ko) | 2017-05-31 |
TWI740858B (zh) | 2021-10-01 |
US20180346721A1 (en) | 2018-12-06 |
HK1254114A1 (zh) | 2019-07-12 |
JP2018536068A (ja) | 2018-12-06 |
JP7100222B2 (ja) | 2022-07-13 |
EP3381982A1 (en) | 2018-10-03 |
CN108473766A (zh) | 2018-08-31 |
EP3381982A4 (en) | 2019-08-21 |
TW201723088A (zh) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102210480B1 (ko) | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 | |
KR102210479B1 (ko) | 폴리아릴렌 설파이드 수지 및 그의 제조 방법 | |
KR101944898B1 (ko) | 폴리아릴렌 설파이드 수지 조성물 및 이의 제조 방법 | |
US11390714B2 (en) | Polyarylene sulfide resin and preparation method thereof | |
WO2017090959A1 (ko) | 폴리아릴렌 설파이드계 수지 조성물 및 성형품 | |
JP6707655B2 (ja) | 金属に対して優れた接着性を有するポリアリーレンスルフィド組成物 | |
KR20220007274A (ko) | 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16868855 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018526660 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016868855 Country of ref document: EP |