WO2017090572A1 - 水素誘起割れ測定方法および測定装置 - Google Patents

水素誘起割れ測定方法および測定装置 Download PDF

Info

Publication number
WO2017090572A1
WO2017090572A1 PCT/JP2016/084520 JP2016084520W WO2017090572A1 WO 2017090572 A1 WO2017090572 A1 WO 2017090572A1 JP 2016084520 W JP2016084520 W JP 2016084520W WO 2017090572 A1 WO2017090572 A1 WO 2017090572A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
test
ultrasonic probe
hydrogen
probe
Prior art date
Application number
PCT/JP2016/084520
Other languages
English (en)
French (fr)
Inventor
水野 大輔
石川 信行
穣 松井
恭野 安田
幸二 藤本
薫昭 杉本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/778,012 priority Critical patent/US10788461B2/en
Priority to CN201680065209.3A priority patent/CN108351326B/zh
Priority to BR112018009718-7A priority patent/BR112018009718B1/pt
Priority to EP16868519.6A priority patent/EP3382387B1/en
Priority to JP2017552411A priority patent/JP6394933B2/ja
Priority to KR1020187013975A priority patent/KR102137066B1/ko
Publication of WO2017090572A1 publication Critical patent/WO2017090572A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0672Imaging by acoustic tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Definitions

  • the present invention relates to a hydrogen-induced crack measurement method and a measurement apparatus for measuring the occurrence and progress of hydrogen-induced cracks in a steel material in real time, and specifically, a welded steel pipe for line pipes and a seamless for oil wells.
  • Real-time generation and progress of hydrogen induced cracking (HIC: Hydrogen Induced Cracking; hereinafter referred to as “HIC”), which is a problem when steel pipes are immersed in an aqueous solution containing hydrogen sulfide
  • the present invention relates to a measuring method and a measuring apparatus for measuring in a short time.
  • H 2 S hydrogen sulfide
  • oil well pipes, gas well pipes, pipelines for transporting oil and natural gas, oil refinery facilities, etc. There is concern that hydrogen-induced cracking (HIC) may occur and lead to an accident.
  • HIC hydrogen-induced cracking
  • HIC atomic hydrogen generated by corrosion of the pipe inner surface penetrates into the steel, diffuses and accumulates around the nonmetallic inclusions or second phase structure existing in the steel, and gasifies it. This is a phenomenon that causes internal cracking.
  • the HIC is known to propagate along the hardened structure corresponding to the center segregation part of steel and the band-like hardened structure formed by rolling. In particular, the tip part of MnS extended by rolling is stressed. Are easy to concentrate and are considered to be highly harmful to HIC.
  • the X65 grade (TS: 535 MPa or more, YS: 450 MPa or more) defined by the American Petroleum Institute (API) standard is generally used.
  • API American Petroleum Institute
  • high-pressure transportation is aimed at from the viewpoint of improving transportation efficiency and laying costs, and the steel sheets for line pipes are required to have higher strength.
  • HIC is closely related to the strength of the material, and the higher the strength, that is, the harder the HIC cracking sensitivity becomes.
  • the HIC resistance of steel is generally evaluated by the HIC test defined in the NACE TM0284 standard.
  • a steel material (test piece) of a predetermined size is immersed in an aqueous solution containing 2300 ppm or more of hydrogen sulfide, taken out after 96 hours, the test piece is cut, and the crack length of the HIC generated inside is observed by observing the cross section.
  • This is a method for evaluating the sheath form (see Non-Patent Document 1).
  • evaluation is also performed by a method of calculating the area ratio of the crack portion with respect to the cross-sectional area of the test piece using an ultrasonic flaw detection test apparatus (UT). (For example, refer to Patent Document 1).
  • Patent Document 2 proposes a method for measuring the occurrence and progress of cracking of HIC in real time by a method combining an electrochemical hydrogen permeation method and an ultrasonic deep wound method.
  • a test piece is installed between the cathode tank and the anode tank, the hydrogen supplied in the cathode tank and diffused and permeated through the test piece is drawn out in the anode tank, the current associated with the anode reaction is measured, and the hydrogen permeation rate is increased.
  • hydrogen-induced cracking inside the test piece is periodically measured with an ultrasonic probe immersed in the liquid in the anode tank.
  • the cross-sectional observation of the test piece after 96-hour immersion and ultrasonic flaw detection which are general evaluation methods in the HIC test, can measure the state of cracks generated in the test piece. And progress cannot be measured in real time.
  • the corrosion state of the surface changes. The amount of corrosion will not be the same as the test conducted continuously. Therefore, the test piece once taken out cannot be used continuously. That is, in order to measure the occurrence and progress of cracks during the HIC test in real time, it is necessary to measure the test piece while being immersed in a solution containing hydrogen sulfide.
  • Patent Document 2 does not describe the above points.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is hydrogen induction that can measure in real time the occurrence and progress of hydrogen induced cracks that occur inside the steel during the HIC test.
  • the inventors have made extensive studies focusing on a method of measuring cracks without taking a test piece out of a test container. As a result, if the test piece (steel material) or ultrasonic probe installed in the HIC test vessel is scanned periodically by some means during the HIC test, the occurrence and progress of hydrogen-induced cracks occurring in the steel material will be detected in real time. As a result, the present invention has been developed.
  • the hydrogen-induced crack measurement method of the present invention is a hydrogen-induced crack in which a test piece is immersed in a test solution containing hydrogen sulfide in a test vessel and a crack generated inside the test piece is measured with an ultrasonic probe.
  • an ultrasonic probe is placed in a test container, and the ultrasonic probe and the test piece are relatively scanned at predetermined intervals to immerse the test piece in the test solution. The position and size of the crack generated inside the test piece are measured over time.
  • the above scanning is a mechanical scan in which the ultrasonic probe is moved with respect to the test piece or the test piece is moved with respect to the ultrasonic probe. It is preferable to contain.
  • the measurement surface of the test piece (the surface on which the ultrasonic wave transmitted from the ultrasonic probe hits) in the test solution is arranged substantially vertically.
  • the hydrogen-induced crack measuring apparatus of the present invention includes hydrogen sulfide, a test vessel that contains a test solution in which a test piece is immersed, and a test vessel that is installed in the test solution and transmits ultrasonic waves toward the test piece.
  • an ultrasonic probe that receives a reflected echo from the test piece
  • a scanning unit that relatively scans the ultrasonic probe and the test piece at predetermined time intervals
  • an ultrasonic wave at each of a plurality of scanning positions
  • the scanning means has a drive mechanism that moves the ultrasonic probe relative to the test piece or moves the test piece relative to the ultrasonic probe. It is preferable to have.
  • the drive mechanism includes a drive shaft connected to the ultrasonic probe or the test piece, a drive device installed outside the test container, and a drive shaft that drives the power of the drive device in a non-contact manner across the test container. It is preferable to have non-contact power transmission means for transmitting to the vehicle.
  • the bubble removing means is a brush that is attached to the ultrasonic probe and sweeps the surface of the test piece on which the ultrasonic wave is irradiated using the relative displacement between the ultrasonic probe and the test piece by the drive mechanism. can do.
  • the ultrasonic probe is capable of electronically scanning a plurality of transducers that transmit and receive ultrasonic waves one-dimensionally and in a direction orthogonal to the scanning direction by the drive mechanism. It is preferable that the linear phased array type probe is constructed as described above.
  • the ultrasonic probe is preferably sealed in a case that is corrosion resistant to the test solution.
  • the visualization means acquires a plurality of ultrasonic tomographic images based on reception signals from the ultrasonic probe for each of a plurality of scanning positions, and It is preferable that a plurality of ultrasonic tomographic images are combined to reconstruct a three-dimensional ultrasonic image of a crack inside the specimen.
  • the occurrence and progress of hydrogen-induced cracks generated in a test piece of an aqueous solution containing hydrogen sulfide is subjected to ultrasonic flaw detection by taking out the conventional test piece without taking out the test piece from the test solution. Measurement can be performed in real time with detection accuracy equivalent to or better than the method. Therefore, according to the present invention, since the HIC sensitivity of the test piece (steel material) can also be evaluated, it is possible to obtain useful information in product design.
  • FIG. 1 It is a figure explaining the HIC measuring device of a prior art. It is a figure explaining the HIC measuring device of one embodiment according to the present invention.
  • the ultrasonic probe which can be used for the HIC measuring device of Drawing 2 is shown, (a) is a sectional view along the width direction of a test piece, and (b) is a section along the length direction of a test piece.
  • FIG. It is a figure explaining the HIC measuring device of other embodiments according to the present invention. It is a flowchart explaining the HIC measuring method of one Embodiment according to this invention. It is a figure explaining the HIC measuring device of other embodiments according to the present invention. It is the schematic of the brush in the apparatus of FIG.
  • FIG. 1 shows a conventional HIC measurement apparatus having a structure similar to that of the measurement apparatus disclosed in Patent Document 2.
  • This HIC measuring apparatus includes a test piece 1 for measuring hydrogen-induced cracking (HIC) and an ultrasonic probe 2 for measuring cracks generated in the test piece 1 (hereinafter also simply referred to as “probe”).
  • the test container 3 to be stored is divided into a test piece room 3a in which the test piece 1 is installed and a probe room 3b in which the ultrasonic probe 2 is installed by a partition wall 4 provided at the center of the test container.
  • the test piece chamber 3a contains an amount of the HIC test solution 5 in which the test piece 1 is immersed, and the probe room 3b contains an amount of water 6 in which the probe 2 is immersed.
  • the test piece chamber 3a is provided with a gas introduction port 7a and an exhaust port 7b for exhausting nitrogen gas for degassing the test solution 5 and hydrogen sulfide dissolved in the test solution 5.
  • the probe 2 scans the entire measurement surface of the test piece 1 through the drive shaft 9 connected to the probe 2 by the drive device 8 installed outside the test container 3. It is configured to measure internal cracks.
  • this HIC measuring apparatus can measure the crack generated inside the test piece 1 in a state in which the test piece 1 is immersed in the test solution 5, it becomes a measurement through the partition wall 4, The problem is that ultrasonic waves are attenuated and cracks cannot be measured with high accuracy.
  • FIG. 2 shows an example of an HIC measuring apparatus according to an embodiment of the present invention.
  • a test piece 1 for measuring hydrogen induced cracking (HIC) and an ultrasonic probe 2 for measuring cracks generated in the test piece 1 are installed in one test vessel (vessel) 3.
  • the test container 3 contains a test liquid 5 in an amount to be immersed in the test piece 1 and the probe 2.
  • the test vessel 3 is provided with a gas inlet 7a and an exhaust port 7b for exhausting nitrogen gas for degassing the test solution 5 and hydrogen sulfide dissolved in the test solution 5.
  • the material of the test vessel 3 is preferably glass or acrylic, and should not be deteriorated by reacting with hydrogen sulfide or an aqueous solution containing hydrogen sulfide (test solution 5).
  • the test container 3 has a structure excellent in liquid-tightness and airtightness in which hydrogen sulfide or its evaporation component does not leak to the outside.
  • an ultrasonic probe corresponding to a frequency range of 1 MHz to 50 MHz can be used, and it is desirable to select an optimum frequency according to the form of cracking.
  • a probe having a frequency of 5 to 15 MHz it is desirable to use a probe having a frequency of 5 to 15 MHz.
  • the ultrasonic probe 2 may be composed of one transducer. However, in order to measure the crack generated in the test piece with the single vibrator over the entire measurement surface of the test piece, the probe 2 is placed in the width direction and the length direction of the test piece with respect to the measurement surface of the test piece. It is necessary to scan, or to scan the measurement surface of the test piece 1 in the width direction and the length direction of the test piece 1 with respect to the probe 2, and the measurement takes a long time.
  • a linear phased array type probe 2 in which a plurality of transducers 2a (see FIG. 3) are arranged one-dimensionally, that is, arranged in one direction in the width direction or the length direction of the test piece 1 is provided. It is preferable to use it.
  • the flat plate-like transducers 2 a are arranged in a line, and the flat plate-like transducers 2 a are arranged with an inclination so that the entire probe has a curvature, Alternatively, the transducers 2a having a curvature are arranged in a line so that the probe has a curvature as a whole, and the optimal linear phased array probe 2 is used according to the shape of the test piece 1.
  • the direction in which the probe 2 or the test piece 1 is mechanically scanned is set to one direction.
  • the electronic scanning direction of the linear phased array type probe 2 is preferably set to a direction orthogonal to the mechanical scanning direction.
  • the linear phased array type probe 2 is tested by a drive mechanism. In order to scan in the length direction (vertical direction) of the piece 1, the electronic scanning direction of the linear phased array type probe 2 is set to the width direction (lateral direction) of the test piece 1.
  • a matrix phased array type probe in which a plurality of transducers are arranged in two directions of the width direction and the length direction of the test piece 1 may be used as the probe 2. Also in the case of a matrix phased array type probe (not shown), a transducer having a curvature and a probe having a curvature as a whole due to the arrangement of flat-plate transducers are included. It is desirable to use an optimal matrix phased array type probe in accordance with the shape. Since this matrix phased array probe 2 has a wider measurement area than the linear phased array probe 2, the measurement time can be further reduced. When the measurement region of the matrix phased array type probe 2 is the same as or larger than the measurement surface of the test piece 1, the time required for measurement can be further shortened.
  • the ultrasonic probe 2 when measuring the crack of the test piece 1 during the HIC test, the ultrasonic probe 2 is immersed in the same test solution 5 containing hydrogen sulfide as the test piece 1, but the ultrasonic probe is used. 2 is a general material and may be corroded and deteriorated in the test solution 5 containing hydrogen sulfide, and the oscillation and reception of ultrasonic waves may become unstable.
  • a normal ultrasonic probe is a case in which a transducer for transmitting and receiving ultrasonic waves, a signal line for connecting the transducer to an electric circuit, and a damper material for expanding the bandwidth of the transducer are made of stainless steel. It has a structure enclosed in.
  • the ultrasonic probe 2 is sealed in a case that is corrosion resistant to the test solution 5. Specifically, as shown in FIG. 3, a case 14 made of resin or glass having corrosion resistance to the test solution 5 is provided outside a case 13 made of stainless steel or the like, and the probe 2 is formed in two layers.
  • the thicknesses of the inner layer and outer layer cases 13 and 14 are preferably 3 mm or more, for example.
  • the transducer surface of the ultrasonic probe 2 is preferably provided with an acoustic lens 15 made of glass or a resin material and constituting a part of the outer case 14, and according to this, the sensitivity of ultrasonic flaw detection and The resolution can be improved and a structure that also serves as a countermeasure against deterioration of the ultrasonic probe 2 can be provided. It is desirable that the cable portion 2b exposed from the outer layer side case 14 is also protected by a tube made of acrylic or the like to prevent corrosion due to the test liquid 5.
  • the drive mechanism includes a drive shaft 9 to which the ultrasonic probe 2 or the test piece 1 is coupled, and a drive device 8 that drives the drive shaft 9 to raise and lower the ultrasonic probe 2 or the test piece 1. ing.
  • the ultrasonic probe 2 is connected to the drive shaft 9 and the ultrasonic probe 2 is moved up and down with respect to the test piece 1.
  • the driving device 8 that scans the ultrasonic probe 2 or the test piece 1 is installed in the test container 3, it is necessary to take measures against corrosion against hydrogen sulfide.
  • a system is adopted in which the driving device 8 is installed outside the test container 3 and the ultrasonic probe 2 or the test piece 1 in the test container 3 is scanned.
  • a driving device 8 such as a motor installed outside the test container 3
  • a driving shaft 9 such as a rack via a pinion or the like to transmit the ultrasonic probe 2 or the test piece 1.
  • a mechanical type that moves up and down and moves horizontally rack and pinion mechanism.
  • a magnet coupling as a non-contact power means for transmitting the power of the drive device 8 to the drive shaft 9 in a non-contact manner across the test container 3 in the power transmission path from the output shaft of the drive device 8 to the drive shaft 9.
  • a pair of permanent magnets 10a and 10b are arranged inside and outside the test container 3, and a driving device 8 such as a motor in which the external permanent magnet 10b is arranged outside the test container 3.
  • the method of scanning the probe 2 or the test piece 1 (magnetic drive type) or the like by rotating the permanent magnet 10a inside the test container 3 in a non-contact manner can be used.
  • the HIC measurement apparatus includes a visualization unit that visualizes cracks in the test piece 1 based on reception signals from the ultrasonic probe 2 at each of a plurality of scanning positions.
  • the visualization means obtains at least one of an A-scan image, a B-scan image, and a C-scan image from the reflected echo and the scanning position received by the probe 2. 17 and a monitor 18 for displaying the acquired scanned image.
  • the arithmetic control unit 17 synthesizes a plurality of ultrasonic tomographic images (for example, B-scan images) obtained on the basis of received signals from the probe 2 at a plurality of scanning positions to superimpose three-dimensional cracks inside the test piece 1.
  • the arithmetic control unit 17 can be configured to also perform scanning control of the ultrasound probe 2 and the drive mechanism. As the arithmetic control unit 17, for example, a commercially available personal computer can be used.
  • the HIC measurement apparatus also has a storage unit 19 for storing acquired images and the like, and an input unit 20 for setting a time (measurement cycle) for performing repeated measurement, a scheduled end time of the HIC test, and the like. It's okay.
  • the HIC test itself that causes hydrogen-induced cracking may be performed according to a conventional method, and is not particularly limited.
  • the test liquid 5 is filled so that the test piece 1 and the ultrasonic probe 2 are completely immersed in the container 3.
  • any test solution can be selected.
  • Solution A solution (5 mass% NaCl + 0.5 mass% CH 3 COOH) defined in NACE TM0284, BP solution (hydrogen sulfide saturated artificial seawater) PH: 4.8 to 5.4) can be used.
  • the test is performed after confirming that the hydrogen sulfide concentration in the test solution 5 is the H 2 S concentration determined by 2300 mass ⁇ hydrogen sulfide partial pressure. It is preferable to start.
  • the nitrogen gas and the hydrogen sulfide gas may be supplied from an inlet 7a of the same system or may be supplied from an inlet (not shown) of another system.
  • the immersion time (test time) in the HIC test solution 5 can be set to an arbitrary time. For example, when it corresponds to the HIC test of NACE TM0284, it is set to 96 hours.
  • the hydrogen induced cracking (HIC) measurement method of the present embodiment is characterized in that the crack generated in the test piece 1 by the HIC test can be obtained at any time between the start and end of the test.
  • the ultrasonic flaw detection is enabled in a state where the test liquid 5 is immersed in the test solution 5. That is, according to the HIC measuring method of the present embodiment, the probe 2 or the test piece 1 is scanned to remove the test piece 1 from the test container 3, and therefore, cracks generated inside the HIC test piece 1. Can be measured in real time at any time during the test.
  • the occurrence and progress of cracks generated in the test piece 1 can be measured by performing an ultrasonic flaw detection while scanning the ultrasonic probe 2 or the test piece 1 at a constant time interval.
  • a repetitive measurement time (measurement cycle) t is set in step S 1, and a measurement end scheduled time T is set in step S 2.
  • flaw detection is started. At the time of flaw detection start, both the time ts and the elapsed time tf from the flaw detection start are zero.
  • step S4 it is determined whether or not the elapsed time tf is less than the scheduled end time T. If the scheduled end time T is reached, the flaw detection is terminated in step S5. Determines whether or not the time ts has repeatedly reached the measurement time t in step S6.
  • step S7 If the repetitive measurement time t has not been reached, the time tf and the time ts are updated in step S7 and the process returns to step S4. If the repetitive measurement time t has been reached, the process proceeds to step S8 to perform flaw detection. In the subsequent step S9, the measurement result is stored. In the subsequent step S10, the time ts is reset to 0. In step S11, the time tf is updated, and the process returns to step S4.
  • the measurement surface of the test piece 1 and the surface of the ultrasonic probe 2 that transmits and receives ultrasonic waves substantially vertically.
  • substantially vertical means an inclination that can prevent bubbles from adhering to the surface, and does not mean strict vertical. Therefore, in reality, there is no problem if the inclination angle from the vertical is within 5 degrees, and it is more preferable that the inclination angle is within 3 degrees.
  • a brush 22 as bubble removing means is attached to the ultrasonic probe 2 as shown in FIGS. 6 and 7, and the ultrasonic probe 2 and the test piece by the drive mechanism are attached. It is preferable that the measurement surface of the test piece 1 is swept using a relative displacement with respect to 1 to remove bubbles adhering to the surface of the test piece 1.
  • the brush 22 is preferably made of a material having corrosion resistance with respect to the test liquid 5, and for example, silicon rubber or a resin material can be used. In the illustrated example, the brush 22 is attached to the upper part of the probe 2, but the attachment position and attachment method of the brush are not limited to this.
  • the bubble removing means is not limited to the brush 22, and an injection nozzle is attached to the probe 2, and the test solution 5 or the like collides with the measurement surface of the test piece 1 from the injection nozzle to remove the bubbles. Good.
  • the removal of bubbles using a brush or the like is performed by adding steps S12, S13 and S14 between steps S7 and S8 in the measurement method shown in FIG. can do.
  • the measurement surface of the test piece 1 is swept with the brush 22 by mechanically scanning the test piece 1 or the ultrasonic probe 2 with the drive mechanism in step S12, and the following step.
  • step S13 the presence / absence of bubbles on the measurement surface of the test piece 1 is determined by the bubble presence / absence determination means. If bubbles remain in step S14, the process returns to step S12, and scanning for removing bubbles is performed again.
  • step S8 flaw detection is performed in step S8.
  • the presence / absence of bubbles in step S13 can be determined from the propagation time obtained by transmitting / receiving ultrasonic waves with the ultrasonic probe 2, acquiring a reflected wave from the surface of the test piece 1.
  • the reception time of the ultrasonic wave is advanced by the thickness of the bubbles, so the presence or absence of bubbles is determined by monitoring the reflected waves from the surface over time. Can do. Therefore, the ultrasound probe 2 and the calculation control unit 17 constitute the bubble presence / absence determining means.
  • the ultrasound probe 2 and the calculation control unit 17 constitute the bubble presence / absence determining means.
  • a test piece having a length of 100 mm, a width of 20 mm, and a plate thickness of 25 mm was collected from an X65 non-sour grade (yield stress 65 ksi class) steel plate for a line pipe having the following composition.
  • the ultrasonic probe and the test piece are placed in the test container of the HIC measuring apparatus of the present embodiment shown in FIG. 2, and the flaw detection surface of the probe and the measurement surface of the test piece are parallel to each other. and it was placed so that each becomes vertical, the NACE solution a solution put (5mass% NaCl + 0.5mass% CH 3 COOH), is immersed with probe test piece in the test solution as a test solution.
  • nitrogen gas having a flow rate of 100 ml / min or more per liter of test solution is purged for 1 hour by flowing nitrogen gas, 100% H 2 S gas having a flow rate of 200 ml / min or more per liter of test solution is added to the solution.
  • the HIC test was started in accordance with the NACE TM0284 HIC test.
  • the pH of the test solution at the start of the test was 2.8.
  • the ultrasonic probe is scanned in the length direction of the test piece every 12 hours from the start of the test to the end of the test (96 hours later), and cracks generated inside the test piece are detected. Occurrence and development were measured in real time.
  • the ultrasonic probe used for the measurement was a linear phased array probe in which eight transducers were arranged in the width direction of the test piece, and the measurement frequency was 10 MHz.
  • FIG. 9 shows the occurrence and progress of cracks in the test piece as the HIC test time elapses with a C-scan image. From this figure, it can be seen that the number of cracks generated and the crack area ratio (CAR: CrackCArea Ratio) increase as the test time elapses. Therefore, it can be seen that by measuring the crack using the measuring device of the present invention, the occurrence and progress of the crack generated inside the test piece can be measured in real time.
  • CAR CrackCArea Ratio
  • FIG. 10 shows a three-dimensional display of the occurrence and progress of cracks inside the test piece when another test piece having the same component composition was used and the HIC test was performed under the same conditions.
  • the calculation control unit as the visualization means calculates the defect depth from the propagation time of the reflected signal of the ultrasonic wave, and determines the defect inside the test piece from the measurement position (scanning position) of the received signal and the defect depth.
  • the three-dimensional distribution is reconstructed and how this defect develops over time is displayed.
  • (a) shows the test start time
  • (b) shows after 12 hours
  • (c) shows after 16 hours
  • (d) shows after 24 hours
  • (e) shows after 67.5 hours.
  • test piece After collecting test pieces having a length of 100 mm, a width of 20 mm and a thickness of 25 mm from A to C3 types of X65 non-sour grade steel plates having the composition shown in Table 1 with different HIC sensitivities, The test piece was subjected to the following HIC test to measure cracks.
  • HIC test a test piece and an ultrasonic probe are installed in the test container of the HIC measuring apparatus, and then the NACE Solution A solution (5 mass% NaCl + 0.5 mass% CH 3 COOH) is used as a test liquid in the test container.
  • the test piece and the ultrasonic probe were immersed. In either case, the test surface was installed in the test container so that the measurement surface of the test piece and the detection surface of the probe were parallel and vertical.
  • ⁇ Measurement device a> 2 is the measurement apparatus of FIG. 2 used in Example 1, in which a test piece and an ultrasonic probe are arranged in one test container, and the ultrasonic probe is placed on the measurement surface of the test piece in a test solution.
  • Structure that mechanically scans to measure the occurrence and development of cracks ⁇ Measuring device b> 4 is a measuring apparatus shown in FIG. 4 and has the structure in which the ultrasonic probe is scanned using the magnetic force of a permanent magnet in the measuring apparatus shown in FIG. 1 is a measurement apparatus according to the prior art shown in FIG.
  • ⁇ Probe I> A probe consisting of a single transducer with a measurement frequency of 10 MHz. In this probe, in order to measure the crack of the test piece, it is necessary to mechanically scan the probe or the test piece in the width direction and the length direction of the test piece.
  • ⁇ Probe> A linear phased array type probe in which 64 transducers having a measurement frequency of 10 MHz are arranged in the width direction of the test piece. In this probe, in order to measure the crack of the test piece, it is necessary to mechanically scan the probe or the test piece in the length direction of the test piece.
  • ⁇ Probe C> A matrix phased array type probe in which 8 transducers with a measurement frequency of 10 MHz are arranged in the width direction of the test piece and 64 in the length direction (512 in total). With this probe, it is possible to measure the crack of the test piece without mechanically scanning the probe or the test piece.
  • Table 2 shows the measurement conditions and measurement results. From this, in the example measured by the measuring method and measuring apparatus of the present invention, that is, in the example in which the crack generated in the test piece in the state where the ultrasonic probe is immersed in the test solution, the crack area ratio CAR is Regardless of the type of probe or the scanning drive method, it is within ⁇ 10% of the reference CAR. On the other hand, the crack area ratio CAR in the example measured by the measurement method and the measurement apparatus of the prior art, that is, in the example in which the test specimen and the probe are arranged in different rooms and the crack area ratio in the test specimen is measured. The difference from the reference CAR exceeds 10%.
  • hydrogen-induced cracking is performed in a test solution containing hydrogen sulfide, and for a test material having a different HIC sensitivity, by ultrasonically measuring the test piece from the test solution. It can be seen that it can be measured with the same accuracy as the measurement method.
  • the technique of the present invention can measure cracks generated in the test piece without taking out the test piece, and therefore in the test solution with high accuracy and in real time, the test materials having different HIC sensitivities can be obtained. It is extremely effective for the evaluation of
  • the technology of the present invention is not limited to steel materials such as steel plates for line pipes, seamless steel pipes and welded steel pipes, and reflected echo is generated from cracks in the test piece immersed in the test liquid by ultrasonic flaw detection. Any substance can be applied as long as it is obtained.
  • Test piece 2 Ultrasonic probe 2a: Vibrator 2b: Cable 3: Test container (vessel) 3a: Test piece room 3b: Probe room 4: Bulkhead 5: HIC test solution containing hydrogen sulfide 6: Water 7a: Inlet for hydrogen sulfide gas (nitrogen gas) 7b: Outlet for hydrogen sulfide gas (nitrogen gas) 8: Drive device 9: Drive shaft 10a: Permanent magnet (inside) 10b: Permanent magnet (external) 11: Hydrogen sulfide gas (nitrogen gas) 13: Inner layer side case 14: Outer layer side case 17: Operation control unit 18: Monitor 19: Storage unit 20: Input unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

HIC試験中に試験片内部に発生する水素誘起割れをリアルタイムに測定することができる水素誘起割れ測定方法と、その方法に用いる測定装置を提案する。 硫化水素を含有する試験液5中に浸潰した試験片1内部に発生した割れを、試験容器3内に設置した超音波探触子2で測定する際、超音波探触子2あるいは試験片1を走査することにより、試験片1を試験液中に浸漬したままで、試験片1内部に発生した割れの位置、大きさを経時的に測定する。

Description

水素誘起割れ測定方法および測定装置
 本発明は、鋼材内部における水素誘起割れの発生と進展をリアルタイムに測定する水素誘起割れ測定方法およびその測定装置に関する技術であり、具体的には、ラインパイプ用の溶接鋼管や油井用の継目無鋼管等を、硫化水素を含有する水溶液に浸漬したときに問題となる水素誘起割れ(HIC:Hydrogen Induced Cracking、以降「HIC」とも称する)の発生と進展を、超音波深傷法を用いてリアルタイムに測定する測定方法と測定装置に関するものである。
 近年、エネルギー資源の開発が極限地域まで及び、油井やガス井の深度化が進行している。これに伴い、原油や天然ガス中に含まれる硫化水素(HS)が増加する傾向にある。硫化水素を含む腐食環境では、鋼中への水素の侵入が促進されることが知られており、油井管やガス井管、石油や天然ガスを輸送するパイプラインや、石油精製設備などにおいて、水素誘起割れ(HIC)が発生し、事故に繋がることが懸念されている。
 HICは、パイプ内面が腐食することで発生した原子状水素が、鋼中に侵入し、拡散して鋼中に存在する非金属介在物あるいは第2相組織の周りに集積してガス化し、その内圧によって割れが引き起こされる現象である。上記HICは、鋼の中心偏析部に対応する硬化組織や、圧延によって形成したバンド状の硬化組織に沿って伝播することが知られており、特に、圧延によって伸展したMnSの先端部は、応力が集中し易く、HICに対して有害性が高いとされている。
 HICの発生を防止するには、鋼の組成成分や製造条件を適正化し、介在物の形態や分散状態を制御したり、中心偏析を低減したりすることが有効であり、耐HIC性に優れた耐サワーラインパイプ用の鋼板や鋼管が開発され、実用化されている。
 ところで、現在、耐サワーラインパイプ用鋼板としては、一般的に、米国石油協会(API:American Petroleum Institute)規格で定められたX65グレード(TS:535MPa以上、YS:450MPa以上)のものが用いられている。しかし、輸送の効率化や敷設費用を低減する観点から、高圧輸送が指向されており、ラインパイプ用鋼板には、さらなる高強度化が要求されている。しかし、HICは材料の強度と密接な関係があり、高強度ほど、すなわち、硬くなるほどHICの割れ感受性が高くなる。
 鋼の耐HIC性は、一般に、NACE TM0284の規格に規定されたHIC試験により評価される。この方法は、硫化水素を2300ppm以上含む水溶液中に、所定寸法の鋼材(試験片)を浸漬し、96時間後に取り出して試験片を切断し、断面観察することによって内部に発生したHICの割れ長さや形態を評価する方法である(非特許文献1参照)。なお、近年では、より効率的に鋼材内部の割れを定量評価するため、超音波探傷試験装置(UT)を用いて試験片の断面積に対する割れ部の面積率を算出する方法でも評価が行われている(例えば、特許文献1参照)。
 また、特許文献2には、電気化学的水素透過法と超音波深傷法を組み合わせた方法により、HICの割れ発生および進展をリアルタイムに測定する方法が提案されている。この方法は、試験片をカソード槽とアノード槽の間に取り付け、カソード槽で供給され試験片を拡散透過してきた水素をアノード槽内で引き抜き、アノード反応に伴う電流を測定して水素透過速度を評価する際、アノード槽内液中に浸漬した超音波探触子で試験片内部の水素誘起割れを定期的に計測している。
特開平04-259853号公報 実開昭63-115750号公報
Standard Test Method、"Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen‐Induced Cracking"TM0284-2003、NACE International(2003).
 しかしながら、HIC試験における一般的な評価方法である96時間浸漬後の試験片の断面観察や超音波探傷では、試験片に発生した割れの状態を測定することはできるが、試験途中における割れの発生や進展をリアルタイムに測定することができない。
 また、硫化水素を含む試験液から取り出した試験片は、空気に曝されると、表面の腐食状態が変化するため、その後、再び試験液に浸漬して試験を行っても、その腐食形態や腐食量は、連続的に継続して行った試験と同じにならない。そのため、一旦取り出した試験片は、継続して使用することはできない。すなわち、HIC試験中における割れの発生や進展をリアルタイムに測定するには、硫化水素を含む溶液中に浸潰した状態のままで試験片を測定することが必要となる。
 この点、特許文献1に開示の技術では、HIC試験によって生じた試験片の表面近傍の割れを、水浸式の超音波探傷することにより高い精度で測定することができるものの、HIC試験液中での測定ではないため、HIC試験中の割れの発生や進展を連続的に測定することはできない。
 一方、特許文献2に開示の技術では、試験片の1面を試験液に曝した状態でHIC割れの発生や進展を連続的に測定することができる。しかし、この方法では、水素が侵入する試験片の面は1面のみであり、6面全面が試験液に曝されるHIC試験とは、試験片への水素侵入形態が異なる。
 また、超音波探触子で試験片の割れを測定するには、試験片に対して超音波探触子を、あるいは、超音波探触子に対して試験片を移動させることが必要である。しかし、特許文献2には上記の点については記載がない。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、HIC試験中に鋼材内部に発生する水素誘起割れの発生と進展をリアルタイムに測定することができる水素誘起割れ測定方法を提案するとともに、その方法に用いる測定装置を提供することにある。
 発明者らは、上記の課題を解決するべく、試験片を試験容器から取り出すことなく割れを測定する方法に着目して鋭意検討を重ねた。その結果、HIC試験容器内に設置した試験片(鋼材)あるいは超音波探触子をHIC試験中、何らかの手段で定期的に走査すれば、鋼材内部に発生する水素誘起割れの発生と進展をリアルタイムに測定することができることに想到し、本発明を開発するに至った。
 すなわち、本発明の水素誘起割れ測定方法は、試験容器内の硫化水素を含有する試験液中に試験片を浸潰し、超音波探触子で試験片内部に発生した割れを測定する水素誘起割れ測定方法において、超音波探触子を試験容器内に設置し、所定の時間毎に超音波探触子と試験片とを相対的に走査することにより、上記試験片を試験液中に浸漬したままで、試験片内部に発生した割れの位置、大きさを経時的に測定するものである。
 なお、本発明の水素誘起割れ測定方法にあっては、上記走査は、超音波探触子を試験片に対して移動させ、あるいは試験片を超音波探触子に対して移動させる機械的走査を含むことが好ましい。
 また、本発明の水素誘起割れ測定方法にあっては、試験液中で試験片の測定面(超音波探触子から送信された超音波が当たる面)を略鉛直に配置することが好ましい。
 また、本発明の水素誘起割れ測定装置は、硫化水素を含有し、試験片が浸漬される試験液を収容する試験容器と、試験液中に設置され、試験片に向けて超音波を送信するとともに試験片からの反射エコーを受信する超音波探触子と、所定の時間毎に、超音波探触子と試験片とを相対的に走査する走査手段と、複数の走査位置毎の超音波探触子からの受信信号に基づいて試験片内部の割れを可視化する可視化手段と、を備えるものである。
 なお、本発明の水素誘起割れ測定装置にあっては、走査手段は、超音波探触子を試験片に対して移動させ、あるいは試験片を超音波探触子に対して移動させる駆動機構を有することが好ましい。この場合、駆動機構は、超音波探触子または試験片に連結された駆動軸と、試験容器外に設置された駆動装置と、該試験容器を隔てて駆動装置の動力を非接触で駆動軸に伝達する非接触動力伝達手段と、を有することが好ましい。
 また、本発明の水素誘起割れ測定装置にあっては、試験片の測定面に付着した気泡を除去する気泡除去手段を備えるが好ましい。例えば、気泡除去手段は、超音波探触子に取り付けられ、駆動機構による超音波探触子と試験片との相対変位を利用して試験片の、超音波が照射される面を掃くブラシとすることができる。
 さらに、本発明の水素誘起割れ測定装置にあっては、超音波探触子は、超音波を送受信する複数の振動子が一次元配列され駆動機構による走査方向に対する直交方向に電子的に走査可能に構成されたリニアフェーズドアレイ型探触子であることが好ましい。
 さらに、本発明の水素誘起割れ測定装置にあっては、超音波探触子は、試験液に対する耐食性のケース内に密封されていることが好ましい。
 加えて、本発明の水素誘起割れ測定装置にあっては、上記可視化手段は、複数の走査位置毎の超音波探触子からの受信信号に基づいて複数の超音波断層画像を取得し、該複数の超音波断層画像を合成して試験片内部の割れの3次元的超音波画像を再構築するよう構成されていることが好ましい。
 本発明によれば、硫化水素を含む水溶液の試験片内部に発生した水素誘起割れの発生や進展を、試験片を試験液から取り出すことなく、しかも、従来の試験片を取り出して超音波探傷する方法と同等以上の検出精度で、リアルタイムに測定することができる。そのため、本発明によれば、試験片(鋼材)のHIC感受性も評価することができるので、製品設計上、有益な情報をえることが可能となる。
従来技術のHIC測定装置を説明する図である。 本発明に従う一実施形態のHIC測定装置を説明する図である。 図2のHIC測定装置に用いることができる超音波探触子を示し、(a)は試験片の幅方向に沿った断面図であり、(b)は試験片の長さ方向に沿った断面図である。 本発明に従う他の実施形態のHIC測定装置を説明する図である。 本発明に従う一実施形態のHIC測定方法を説明するフローチャートである。 本発明に従う更に他の実施形態のHIC測定装置を説明する図である。 図6の装置におけるブラシの概略図である。 図6の装置を用いて行うことができる、本発明に従う他の実施形態のHIC測定方法を説明するフローチャートである。 本発明に従う一実施形態のHIC測定方法で試験片内部に発生した割れを経時的に測定した結果を示した図である。 (a)~(e)は本発明に従う一実施形態のHIC測定方法で試験片内部に発生した割れを3次元的かつ経時的に表示した図である。
 図1は、特許文献2に開示された測定装置と類似の構造を有する従来技術のHIC測定装置を示したものである。
 このHIC測定装置は、水素誘起割れ(HIC)を測定する試験片1と該試験片1内に発生した割れを測定する超音波探触子2(以降、単に「探触子」ともいう)を収納する試験容器3が、試験容器の中央部に設けられた隔壁4によって、試験片1を設置する試験片部屋3aと、超音波探触子2を設置する探触子部屋3bとに分割され、試験片部屋3aには試験片1が浸漬する量のHIC試験液5が、探触子部屋3bには探触子2が浸漬する量の水6が入れられている。
 試験片部屋3aには、試験液5を脱気するための窒素ガスや、試験液5に溶解させる硫化水素を通排気するためのガスの導入口7aと排気口7bが設けられている。また、探触子2は、試験容器3の外部に設置された駆動装置8により、探触子2に接続する駆動軸9を介して、試験片1の測定面全面を走査し、試験片1内部に発生した割れを測定するように構成されている。
 しかし、このHIC測定装置は、試験片1の内部に発生した割れを、試験片1を試験液5中に浸漬した状態で測定することができるものの、隔壁4を介しての測定となるため、超音波が減衰し、高い精度で割れを測定できないという問題を抱えている。
 そこで、本発明は、上記問題点を解消し、試験片内部の割れの発生と進展をリアルタイムに測定することができる水素誘起割れ(HIC)測定装置を開発した。
 図2は、本発明に従う一実施形態のHIC測定装置の一例を示したものである。この測定装置は、水素誘起割れ(HIC)を測定する試験片1と該試験片1内に発生した割れを測定する超音波探触子2が1つの試験容器(ベッセル)3の内部に設置されており、試験容器3には、試験片1と探触子2に浸漬する量の試験液5が入れられている。
 試験容器3には、試験液5を脱気するための窒素ガスや、試験液5に溶解させる硫化水素を通排気するためのガスの導入口7aと排気口7bが設けられている。試験容器3の材質は、ガラスやアクリルなどであることが好ましく、硫化水素や硫化水素を含む水溶液(試験液5)と反応して劣化するものであってはならない。また、試験容器3は、硫化水素またはその蒸発成分が外部へ漏洩しない、液密性かつ気密性に優れた構造となっている。
 本実施形態では、例えば、1MHz~50MHzの周波数範囲に対応した超音波探触子を使用することができ、割れの形態に応じて最適な周波数を選定するのが望ましい。なお、試験片1として炭素鋼についての、硫化水素を含む水溶液中におけるHICを検出する場合には、周波数5~15MHzの探触子を使用するのが望ましい。
 また、超音波探触子2は、1つの振動子からなるものでもよい。しかし、単一の振動子で試験片に発生した割れを試験片の測定面全面にわたって測定するためには、試験片の測定面に対して探触子2を試験片幅方向、長さ方向に走査する、あるいは、探触子2に対して試験片1の測定面を試験片1の幅方向、長さ方向に走査してすることが必要となり、測定に長時間を要する。
 そこで、本実施形態においては、複数の振動子2a(図3参照)を一次元配列した、すなわち試験片1の幅方向または長さ方向の一方向に配列したリニアフェーズドアレイ型探触子2を用いることが好ましい。リニアフェーズドアレイ型探触子2には、平板状の振動子2aが一列に配列されているものの他、平板状の振動子2aが傾きをもって配列することで探触子全体として曲率をもつもの、あるいは、曲率を有する振動子2aが一列に配列して、探触子全体として曲率をもつものなどが含まれ、試験片1の形状に合わせて、最適なリニアフェーズドアレイ型探触子2を用いることが望ましい。このリニアフェーズドアレイ型探触子2を用いるとともに送受信する振動子2aを順次切り替えて電子的走査を行うことで、探触子2あるいは試験片1を機械的に走査する方向を1方向とすることができ、測定時間を大幅に削減することができるだけでなく、機械的な走査を行う後述の駆動機構も簡略化することができる。この場合、リニアフェーズドアレイ型探触子2の電子的な走査方向は機械的な走査方向に直交する方向とすることが好ましく、図示例では、リニアフェーズドアレイ型探触子2を駆動機構により試験片1の長さ方向(縦方向)に走査するため、リニアフェーズドアレイ型探触子2の電子的走査方向は試験片1の幅方向(横方向)としている。
 なお、本発明においては、探触子2として、振動子を試験片1の幅方向と長さ方向の2方向に複数配列したマトリクスフェーズドアレイ型探触子を用いてもよい。マトリクスフェーズドアレイ型探触子(図示省略)の場合にも、振動子が曲率を有するものや、平板状の振動子の配列により探触子全体として曲率を有するものなどが含まれ、試験片1の形状に合わせて、最適なマトリクスフェーズドアレイ型探触子を用いることが望ましい。このマトリクスフェーズドアレイ型探触子2は、測定領域がリニアフェーズドアレイ型探触子2より広いので、測定時間をさらに削減することができる。なお、マトリクスフェーズドアレイ型探触子2の測定領域を試験片1の測定面と同じ又はそれ以上とした場合には、測定に要する時間をさらに短縮することが可能となる。
 本実施形態では、HIC試験中に試験片1の割れを測定するにあたり、超音波探触子2を試験片1と同じ、硫化水素を含む試験液5中に浸漬するが、超音波探触子2は、一般的な材質のものでは、硫化水素を含む試験液5中で腐食劣化し、超音波の発振や受信が不安定となる虞がある。通常の超音波探触子は超音波を送受信するための振動子、該振動子を電気回路に接続するための信号線、振動子の帯域幅を広くするためのダンパー材がステンレス製などのケースに内封された構造となっている。このような通常の超音波探触子を硫化水素を含有する試験用液中にそのまま浸漬すると、硫化水素などが超音波探触子内に侵入し、振動子や信号線が劣化する。発明者らが実際に超音波探触子をHIC試験と同じ環境の試験用液内に浸漬したところ、超音波探触子は24時間程度で超音波を送受信する機能が失われた。そこで、本実施形態では、超音波探触子2を、試験液5に対する耐食性のケース内に密封する構造とする。具体的には、図3に示すように、通常のステンレス製等のケース13の外側に試験液5に対して耐食性を有する樹脂製またはガラス製のケース14を設けて探触子2を二層構造で密封、保護することが好ましい。内層、外層のケース13,14の厚みはそれぞれ例えば3mm以上とすることが好ましい。また超音波探触子2の振動子面には、ガラスまたは樹脂材で作成した、外層ケース14の一部を構成する音響レンズ15を設けることが好ましく、これによれば超音波探傷の感度および分解能を向上させることができるとともに超音波探触子2の劣化対策を兼ねた構造とすることができる。外層側ケース14から露出するケーブル部分2bもアクリル製等のチューブで保護し、試験液5による腐食を防止する構造とするのが望ましい。
 ここで、探触子2と試験片1との相対位置を変化させて機械的走査を行う駆動機構について図2を参照して説明する。駆動機構は、超音波探触子2または試験片1が連結された駆動軸9と、駆動軸9を駆動して超音波探触子2または試験片1を昇降させる駆動装置8とを有している。図示例では、駆動軸9に超音波探触子2を連結し、超音波探触子2を試験片1に対して昇降させる構成としている。
 超音波探触子2または試験片1を走査する駆動装置8を試験容器3内に設置すると硫化水素に対する腐食対策が必要となる。そこで、本実施形態においては、駆動装置8を試験容器3外に設置して試験容器3内の超音波探触子2あるいは試験片1を走査する方式を採用する。具体的な方法としては、例えば、試験容器3外に設置したモーター等の駆動装置8の回転をピニオン等を介してラック等の駆動軸9に伝達して超音波探触子2あるいは試験片1を昇降や水平移動させる機械式が挙げられる(ラック・アンド・ピニオン機構)。また、駆動装置8の出力軸から駆動軸9に至る動力伝達経路内に、試験容器3を隔てて駆動装置8の動力を非接触で駆動軸9に伝達する非接触動力手段としてのマグネットカップリングを設けることもできる。具体的には図4に示すように、試験容器3の内部と外部に一対の永久磁石10a,10bを配設し、外部の永久磁石10bを試験容器3外に配置したモーター等の駆動装置8で回転させて、試験容器3内部の永久磁石10aを非接触に回転させることにより、探触子2あるいは試験片1を走査する方式(磁気駆動式)等を用いることができる。
 なお、図1や図2に示した測定装置のように、駆動装置8と探触子2が駆動軸9で物理的に接続されている場合、つまり上述したようなマグネットカップリングを用いない場合には、試験容器3に駆動軸9または駆動装置8の出力軸を通す貫通孔を設けるため、硫化水素の漏洩を適切に防止する必要があるが、図4に示した磁気駆動式ではこのような配慮は不要となる点で有利である。
 また、本実施形態のHIC測定装置は、複数の走査位置毎の超音波探触子2からの受信信号に基づいて試験片1内部の割れを可視化する可視化手段を備えている。可視化手段は、図2および図4に示すように、探触子2で受信した反射エコー及び走査位置等からAスキャン画像、Bスキャン画像、およびCスキャン画像の少なくとも1つを取得する演算制御部17と、取得したスキャン画像を表示するモニター18とを有している。演算制御部17は複数の走査位置毎の探触子2からの受信信号に基づいて得られる複数の超音波断層画像(例えばBスキャン画像)を合成して試験片1内部の割れの3次元超音波画像を再構築するように構成することもできる。演算制御部17は超音波探触子2および駆動機構の走査制御も行うよう構成することができ、演算制御部17としては例えば市販のパーソナルコンピュータを用いることができる。HIC測定装置はまた、取得した画像等を記憶する記憶部19、および繰り返し測定を行う時間(測定周期)の設定やHIC試験の終了予定時間の設定等を行うための入力部20を有していてよい。
 次に、本発明に従う一実施形態の水素誘起割れ(HIC)測定方法について説明する。
 水素誘起割れを起こさせるHIC試験自体は、常法に準じて行えばよく、特に制限はない。例えば、まず、試験容器3内に試験片1および超音波探触子2を設置した後、容器3内に試験片1および超音波探触子2が完全に浸漬するだけの試験液5を満たす。試験液5としては、任意の試験液を選択することができ、例えば、NACE TM0284に規定されたSolution A液(5mass%NaCl+0.5mass%CHCOOH)や、BP溶液(硫化水素飽和の人工海水、pH:4.8~5.4)を用いることができる。
 次いで、上記試験液5中に、試験液1Lあたり100ml/min以上の流量で窒素ガスを少なくとも1時間通気して、試験液5中の溶存酸素を脱気した後、試験液1Lあたり200ml/min以上の流量で硫化水素(HS)ガスを1時間以上通気し、試験液5にHSを溶解させる。100%の硫化水素ガスを用いる場合には、1時間後、試験液5中のHS濃度を測定し、2300massppm以上(飽和状態)であることを確認してから試験を開始するのが好ましい。また、硫化水素と窒素あるいは炭酸ガスの混合ガスを用いる場合には、試験溶液5中の硫化水素濃度が、2300mass×硫化水素分圧によって定められるHS濃度であることを確認してから試験を開始するのが好ましい。ここで、上記窒素ガスと硫化水素ガスは、同じ系統の導入口7aから供給してもよいし、別の系統の導入口(図示せず)から供給してもよい。上記HIC試験液5への浸漬時間(試験時間)は、任意の時間とすることができるが、例えば、NACE TM0284のHIC試験に対応させるときは96時間とする。
 ここで、本実施形態の水素誘起割れ(HIC)測定方法の特徴は、上記HIC試験により試験片1内部に発生した割れを、試験開始から終了までの間の任意の時間に、試験片1が試験液5中に浸ったままの状態で超音波探傷できるようにしたところにある。すなわち、本実施形態のHIC測定方法によれば、探触子2あるいは試験片1を走査することで、試験片1を試験容器3から取り出すことなく、したがって、HIC試験片1内部に発生した割れを試験中の任意の時間に、リアルタイムに測定することができる。また、試験片1内部に発生した割れの発生および進展は、一定の時間間隔で超音波探触子2あるいは試験片1を走査しながら超音波探傷することで測定することができる。
 本実施形態のHIC測定装置を用いた測定方法の一例を図5にフローチャートで示すと、まず、ステップS1では繰り返し測定時間(測定周期)tを設定し、ステップS2では測定終了予定時間Tを設定する。そして、ステップS3において探傷を開始する。探傷開始時点では時刻tsおよび探傷開始からの経過時間tfは共に0である。ステップS4では、経過時間tfが終了予定時間T未満であるか否かを判断し、終了予定時間Tに到達している場合にはステップS5において探傷を終了し、終了予定時間T未満の場合には、ステップS6において時刻tsが繰り返し測定時間tに達しているか否かを判断する。繰り返し測定時間tに達していない場合には、ステップS7において時間tfおよび時刻tsを更新してステップS4に戻り、繰り返し測定時間tに達している場合にはステップS8に進んで探傷を実行し、続くステップS9において測定結果を保存し、続くステップS10において時刻tsを0にリセットし、ステップS11において時間tfを更新し、ステップS4へと戻る。
 なお、試験片1としての鋼材の腐食が激しい場合や、試験が長期間に及ぶ場合には、試験片1や超音波探触子2の表面に気泡が付着し、測定精度が不安定になることがある。このような現象を避けるためには、試験片1の測定面および超音波探触子2の超音波を送受信する面を略鉛直に配置することが好ましい。略鉛直とすることで、気泡が表面に付着するのを防止できるので、安定して測定を行うことができる。ここで、上記「略鉛直」は、気泡が表面に付着するのを防止できる傾きであることを意味しており、厳密な鉛直を意味していない。したがって、現実的には、鉛直からの傾き角が5度以内であれば問題はなく、3度以内であればより好ましい。
 しかしながら、それでも気泡が付着することがあるため、図6および図7に示すように超音波探触子2に気泡除去手段としてのブラシ22を取り付け、駆動機構による超音波探触子2と試験片1との相対変位を利用して試験片1の測定面を掃くようし、これにより試験片1表面に付着した気泡の除去を行うことが好ましい。ブラシ22には試験液5に対して耐食性を有する材料を用いることが好ましく、例えばシリコンゴムや樹脂材を用いることができる。図示例では、探触子2の上部にブラシ22を取り付けているが、ブラシの取り付け位置や取り付け方法はこれに限定されない。また、気泡除去手段としてはブラシ22に限らず、探触子2に噴射ノズルを取り付け、この噴射ノズルから試験片1の測定面に試験液5等を衝突させて気泡を除去するようにしてもよい。
 ブラシ等を用いた気泡の除去は、例えば、図8のフローチャートに示すように、図5に示した測定方法におけるステップS7とステップS8との間にステップS12、S13およびS14を追加することにより実施することができる。具体的には、ステップS8における測定直前に、ステップS12において駆動機構により試験片1または超音波探触子2を機械的に走査することによりブラシ22で試験片1の測定面を掃き、続くステップS13において気泡有無判定手段により試験片1の測定面上の気泡の有無を判定し、ステップS14において気泡が残っている場合にはステップS12に戻り再度気泡除去のための走査を行い、試験片1の測定面上に気泡が無い場合にはステップS8において探傷を実行するものである。なお、ステップS13における気泡有無の判定は、超音波探触子2で超音波の送受信を行い、試験片1の表面からの反射波を取得し、その伝搬時間から判定することができる。つまり、仮に気泡が存在している場合には、気泡の厚み分だけ超音波の受信時刻が早まることになるため、経時的に表面からの反射波をモニタリングすることで気泡の有無を判定することができる。よって、超音波探触子2および演算制御部17は上記気泡有無判定手段を構成する。このように気泡有無判定および気泡除去のステップS12~S14を付加することで、試験片1の測定面上の気泡を確実に除去して精度の高い測定を行うことができる。
 C:0.04~0.05mass%、Si:0.16~0.22mass%、Mn:1.40~1.50mass%、P:0.005mass%未満、S:0.002mass%未満、Ni:0.10~0.20mass%、Cr:0.18~0.22mass%、Nb:0.02~0.03mass%、Ti:0.008~0.012mass%、残部が実質的にFeからなる成分組成を有するX65ノンサワーグレード(降伏応力65ksiクラス)のラインパイプ用鋼板から、長さ100mm×幅20mm×板厚25mmの試験片を採取した。
 次いで、上記試験片を、図2に示した本実施形態のHIC測定装置の試験容器内に、超音波探触子と試験片を、探触子の探傷面と試験片の測定面とが平行かつそれぞれが鉛直になるように設置した後、試験液としてNACE Solution A液(5mass%NaCl+0.5mass%CHCOOH)を入れて、探触子と試験片を試験液中に浸漬させた。
 次いで、試験液1Lあたり100ml/min以上の流量の窒素ガスを1時間通気して溶存酸素をパージした後、試験液1Lあたり200ml/min以上の流量の100%HSガスを溶液中に1時間通気して、試験液中のHS濃度が2300ppm(飽和濃度)以上になったことを確認してから、NACE TM0284のHIC試験に準じて、HIC試験を開始した。なお、試験開始時の試験液のpHは2.8であった。
 上記HIC試験においては、試験開始から試験終了(96時間後)までの間、12時間おきに超音波探触子を試験片長さ方向に走査(スキャン)し、試験片の内部に発生した割れの発生、進展をリアルタイムに測定した。
 ここで、上記測定に用いた超音波探触子は、試験片の幅方向に8個の振動子が並んだリニアフェーズドアレイ型探触子で、測定周波数は10MHzのものを用いた。
 また、96時間経過後には、試験液中で上記方法による最後の超音波探傷を行った後、速やかに試験液に窒素を1Lあたり200ml/min以上で2時間通気して試験液中のHSをパージした後、試験液から試験片を取り出して水中に浸漬し、10MHzの超音波探触子を用いて試験片内部の割れ面積率CARを測定した。
 図9に、HIC試験時間の経過に伴う試験片内部の割れの発生、進展状況をCスキャン画像で示した。この図から、試験時間の経過とともに試験片内部の割れ発生数および割れ面積率(CAR:Crack Area Ratio)が増加していることがわかる。したがって、本発明の測定装置を用いて割れを測定することで、試験片内部に発生した割れの発生、進展をリアルタイムに測定することができることがわかる。
 また、図9中には、上記測定結果とともに、従来技術と同様、96時間試験後に試験片を試験液から取り出し、再度、水中で超音波探傷して試験片内部の割れを測定した結果を対比して示したが、両者の測定結果の差は約3.4%でほぼ一致している。したがって、本発明によれば、硫化水素を含む試験液中における試験片の割れの発生や進展を、試験片を試験液から取り出すことなく、従来技術と同等の精度で、リアルタイムに測定できることがわかる。
 図10は、同成分組成からなる別の試験片を用い、同条件でHIC試験を実施し、そのときの試験片内部の割れの発生、進展状況を3次元的に表示したものである。具体的には、可視化手段としての演算制御部が、超音波の反射信号の伝搬時間から欠陥深さを算出し、受信信号の測定箇所(走査位置)と欠陥深さから試験片内部の欠陥の3次元分布を再構築し、かつ、経時的にこの欠陥がどのように進展していくのかを表示したものである。図10において(a)は試験開始時点、(b)は12時間経過後、(c)は16時間経過後、(d)は24時間経過後、(e)は67.5時間経過後を示す。このように欠陥の分布を3次元的にかつ経時的に表示したことにより、試験片内部の欠陥の進展をこれまでになく詳細に観察することが可能となった。
 HICの感受性が異なる、表1に示した成分組成を有するA~C3種類のX65ノンサワーグレードのラインパイプ用鋼板から、長さ100mm×幅20mm×板厚25mmの試験片を採取した後、上記試験片を以下のHIC試験に供して、割れの測定を行った。
 HIC試験は、HIC測定装置の試験容器内に、試験片と超音波探触子を設置した後、上記試験容器内に、試験液としてNACE Solution A液(5mass%NaCl+0.5mass%CHCOOH)を入れて試験片と超音波探触子を浸漬させた。なお、いずれの場合も、試験片の測定面と探触子の検出面とは平行かつそれぞれが鉛直になるように試験容器内に設置した。
 次いで、上記試験液に、溶液1Lあたり100ml/min以上の流量で窒素を1時間通気して溶存酸素をパージした後、試験液1Lあたり200ml/min以上の流量で100%HSガスを試験液に通気し、1時間後に試験液中のHS濃度が2300ppm以上(飽和状態)となったことを確認してから、HIC試験を開始した。なお、試験開始時の試験液のpHは2.9であった。
 次いで、96時間経過後、試験片を試験液に浸潰したままの状態で超音波探傷を行い、試験片の内部に発生した割れ面積率CARを測定した。
 さらに、上記測定終了後、速やかに試験液に窒素を1Lあたり200ml/min以上で2時間通気して試験液中のHSをパージした後、試験液から試験片を取り出して水中に浸漬し、10MHzの超音波深傷子を用いて試験片内部の割れ面積率CARを測定し、この値を本発明のCARを評価するための基準CARとした。
 ここで、上記HIC試験には、下記3種類の測定装置を用いた。
<測定装置a>
 実施例1において用いた図2の測定装置であり、1つの試験容器内に試験片と超音波探触子を配置し、試験液中で超音波探触子を試験片の測定面に対して機械的に走査して割れの発生、進展を測定する構造のもの
<測定装置b>
 図4に示した測定装置であり、図2に示した測定装置において、超音波探触子の走査を永久磁石の磁力を用いて行う構造のもの
<測定装置c>
 図1に示した従来技術の測定装置であり、試験片と超音波探触子を、試験容器内で隔離された別々部屋に配置し、超音波探触子を試験片の測定面に対して機械的に走査して割れの発生、進展を測定する構造のもの
<測定装置d>
 図6に示した測定装置であり、つまり図4に示した測定装置における超音波探触子にブラシを取り付けた構造を持つものであって、図8に示すフローチャートに従って超音波探触子を試験片の測定面に対して走査して割れの発生、進展を測定する構造のもの
 また、上記割れの測定には、下記3種類の超音波探触子を用いた。
<探触子イ>
 測定周波数が10MHzの単一の振動子からなる探触子。この探触子では、試験片の割れを測定するには、探触子または試験片を試験片幅方向および長さ方向に機械的に走査する必要がある。
<探触子ロ>
 測定周波数が10MHzの振動子を試験片の幅方向に64個配列したリニアフェーズドアレイ型探触子。この探触子では、試験片の割れを測定するには、探触子または試験片を試験片長さ方向に機械的に走査する必要がある。
<探触子ハ>
 測定周波数が10MHzの振動子を試験片の幅方向に8個、長さ方向に64個(合計512個)を配列したマトリクスフェーズドアレイ型探触子。この探触子では、探触子や試験片を機械的に走査せずに試験片の割れの測定が可能である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に上記測定条件および測定結果を示した。これから、本発明の測定方法および測定装置で測定した例、すなわち、超音波探触子を試験液に浸潰した状態で試験片中に発生した割れを測定した例では、割れ面積率CARが、探触子の種類や走査の駆動方式によらず、基準CARに対して±10%以内に収まっている。
 これに対して、従来技術の測定方法および測定装置で測定した例、すなわち、試験片と探触子を異なる部屋に配置して試験片中の割れ面積率を測定した例における割れ面積率CARは、基準CARとの差が10%を超えている。
 したがって、上記実施例によれば、硫化水素を含む試験液中においても、また、HIC感受性の異なる試験材に対しても、水素誘起割れを、試験片を試験液から取り出して超音波測定する従来の測定法と同等の精度で測定することができることがわかる。
 本発明の技術は、試験片内部に発生した割れを、試験片を取り出すことなく、したがって、試験液中においても高い精度で、かつ、リアルタイムに測定することができるので、HIC感受性の異なる試験材の評価に極めて有効である。なお、本発明の技術は、ラインパイプ用鋼板、継目無鋼管および溶接鋼管のような鋼材に限られるものではなく、超音波探傷により試験液中に浸漬された試験片内部の割れから反射エコーが得られる物質であればいずれにも適用可能である。
 1:試験片
 2:超音波探触子
 2a:振動子
 2b:ケーブル
 3:試験容器(ベッセル)
 3a:試験片部屋
 3b:探触子部屋
 4:隔壁
 5:硫化水素を含むHIC試験液
 6:水
 7a:硫化水素ガス(窒素ガス)の導入口
 7b:硫化水素ガス(窒素ガス)の排出口
 8:駆動装置
 9:駆動軸
 10a:永久磁石(内部)
 10b:永久磁石(外部)
 11:硫化水素ガス(窒素ガス)
 13:内層側ケース
 14:外層側ケース
 17:演算制御部
 18:モニター
 19:記憶部
 20:入力部

Claims (11)

  1.  試験容器内の硫化水素を含有する試験液中に試験片を浸潰し、超音波探触子で試験片内部に発生した割れを測定する水素誘起割れ測定方法において、
     前記超音波探触子を前記試験容器内に設置し、所定の時間毎に超音波探触子と試験片とを相対的に走査することにより、試験片を試験液中に浸漬したままで試験片内部に発生した割れの位置、大きさを経時的に測定することを特徴とする水素誘起割れ測定方法。
  2.  前記走査は、前記超音波探触子を試験片に対して移動させ、あるいは試験片を超音波探触子に対して移動させる機械的走査を含むことを特徴とする請求項1に記載の水素誘起割れ測定方法。
  3.  試験液中で試験片の測定面を略鉛直に配置することを特徴とする請求項1または2に記載の水素誘起割れ測定方法。
  4.  硫化水素を含有し、試験片が浸漬される試験液を収容する試験容器と、
     試験液中に設置され、試験片に向けて超音波を送信するとともに試験片からの反射エコーを受信する超音波探触子と、
     所定の時間毎に、超音波探触子と試験片とを相対的に走査する走査手段と、
     複数の走査位置毎の超音波探触子からの受信信号に基づいて試験片内部の割れを可視化する可視化手段と、を備えることを特徴とする水素誘起割れ測定装置。
  5.  前記走査手段は、超音波探触子を試験片に対して移動させ、あるいは試験片を超音波探触子に対して移動させる駆動機構を有することを特徴とする請求項4に記載の水素誘起割れ測定装置。
  6.  前記駆動機構は、超音波探触子または試験片に連結された駆動軸と、前記試験容器外に設置された駆動装置と、該試験容器を隔てて前記駆動装置の動力を非接触で前記駆動軸に伝達する非接触動力伝達手段と、を有することを特徴とする請求項5に記載の水素誘起割れ測定装置。
  7.  試験片の測定面に付着した気泡を除去する気泡除去手段を備えることを特徴とする請求項5または6に記載の水素誘起割れ測定装置。
  8.  前記気泡除去手段は、前記超音波探触子に取り付けられ、前記駆動機構による超音波探触子と試験片との相対変位を利用して試験片の、超音波が照射される面を掃くブラシであることを特徴とする請求項7に記載の水素誘起割れ測定装置。
  9.  前記超音波探触子は、超音波を送受信する複数の振動子が一次元配列され、前記駆動機構による走査方向に対する直交方向に電子的に走査可能に構成されたリニアフェーズドアレイ型探触子であることを特徴とする請求項5から8までのいずれか一項に記載の水素誘起割れ測定装置。
  10.  前記超音波探触子は、試験液に対する耐食性のケース内に密封されていることを特徴とする請求項4から9までのいずれか一項に記載の水素誘起割れ測定装置。
  11.  前記可視化手段は、複数の走査位置毎の超音波探触子からの受信信号に基づいて複数の超音波断層画像を取得し、該複数の超音波断層画像を合成して試験片内部の割れの3次元的超音波画像を再構築するよう構成されていることを特徴とする請求項4から10までのいずれか一項に記載の水素誘起割れ測定装置。
PCT/JP2016/084520 2015-11-27 2016-11-22 水素誘起割れ測定方法および測定装置 WO2017090572A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/778,012 US10788461B2 (en) 2015-11-27 2016-11-22 Method and apparatus for measuring hydrogen-induced cracking
CN201680065209.3A CN108351326B (zh) 2015-11-27 2016-11-22 氢致裂纹测定方法及测定装置
BR112018009718-7A BR112018009718B1 (pt) 2015-11-27 2016-11-22 Método e aparelho para medir craqueamento induzido por hidrogênio
EP16868519.6A EP3382387B1 (en) 2015-11-27 2016-11-22 Method and device for measuring hydrogen-induced cracking
JP2017552411A JP6394933B2 (ja) 2015-11-27 2016-11-22 水素誘起割れ測定方法および測定装置
KR1020187013975A KR102137066B1 (ko) 2015-11-27 2016-11-22 수소 유기 균열 측정 방법 및 측정 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015231276 2015-11-27
JP2015-231276 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090572A1 true WO2017090572A1 (ja) 2017-06-01

Family

ID=58764299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084520 WO2017090572A1 (ja) 2015-11-27 2016-11-22 水素誘起割れ測定方法および測定装置

Country Status (7)

Country Link
US (1) US10788461B2 (ja)
EP (1) EP3382387B1 (ja)
JP (1) JP6394933B2 (ja)
KR (1) KR102137066B1 (ja)
CN (1) CN108351326B (ja)
BR (1) BR112018009718B1 (ja)
WO (1) WO2017090572A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060207B (zh) * 2018-08-22 2019-08-20 大连理工大学 过盈配合连接力超声检测装置与方法
CN109709214B (zh) * 2018-11-14 2022-05-10 中国石油天然气股份有限公司 页岩原位转化过程中动态裂缝测量装置
CN109752257B (zh) * 2019-02-20 2024-04-02 中国地质大学(武汉) 带超声扫描的天然气水合物沉积物动三轴实验装置及方法
CN110333331B (zh) * 2019-06-24 2021-09-10 江阴兴澄特种钢铁有限公司 金属材料抗氢致诱导裂纹试验有效性的评价方法
KR102372982B1 (ko) * 2019-12-16 2022-03-11 주식회사 포스코 수소지연파괴 시험장치
US11788951B2 (en) * 2021-03-19 2023-10-17 Saudi Arabian Oil Company Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC)
US11656169B2 (en) * 2021-03-19 2023-05-23 Saudi Arabian Oil Company Development of control samples to enhance the accuracy of HIC testing
RU2766370C1 (ru) * 2021-04-27 2022-03-15 Эдгар Ибрагимович Велиюлин Способ внутритрубной диагностики и устройство для его осуществления (варианты)
CN117153305B (zh) * 2023-08-29 2024-07-09 天津大学 管线钢等效湿硫化氢环境充氢模型的建立方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115750U (ja) 1987-01-20 1988-07-26
JPH04259853A (ja) 1991-02-14 1992-09-16 Nippon Steel Corp 水浸式超音波探傷方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2827423C2 (de) * 1978-06-22 1987-04-16 Philips Patentverwaltung Gmbh, 2000 Hamburg Vorrichtung zur Ermittlung der inneren Struktur eines Körpers mit Hilfe von Schallstrahlen
JPS63115750A (ja) 1986-11-04 1988-05-20 Fuji Kikai Kogyo Kk フオ−ム印刷機における印刷部の紙送り調節装置
US4922421A (en) * 1986-12-15 1990-05-01 General Electric Company Flaw characterization by multiple angle inspection
JPH06271976A (ja) 1993-03-16 1994-09-27 Sumitomo Metal Ind Ltd 耐硫化物割れ性に優れた鋼材並びに鋼管
US5728943A (en) * 1996-03-15 1998-03-17 Northwest Pipeline Corporation Method and system for detection and prevention of stress corrosion cracking in buried structures
US6173613B1 (en) * 1996-04-30 2001-01-16 Harold L. Dunegan Measuring crack growth by acoustic emission
JPH10142208A (ja) 1996-11-15 1998-05-29 Hitachi Constr Mach Co Ltd 超音波検査用プローブ
JP3777071B2 (ja) 1999-07-30 2006-05-24 日立建機株式会社 超音波検査装置
JP2001232294A (ja) 2000-02-24 2001-08-28 Matsushita Electric Works Ltd 超音波振動子
JP3659153B2 (ja) 2000-09-26 2005-06-15 松下電工株式会社 超音波振動子
KR100488366B1 (ko) 2002-03-13 2005-05-11 주식회사 에스알에스텍 초음파를 이용한 수소유기균열 및 부식 측정 시스템과안전성 평가 방법
EP1656568B1 (en) * 2003-07-11 2017-12-27 Teledyne RESON A/S Systems and methods implementing frequency-steered acoutic arrays for 2d and 3d imaging
US7602301B1 (en) * 2006-01-09 2009-10-13 Applied Technology Holdings, Inc. Apparatus, systems, and methods for gathering and processing biometric and biomechanical data
JP4511487B2 (ja) * 2006-03-30 2010-07-28 住重試験検査株式会社 水素に起因する損傷及び腐食減肉現象の検査方法
US8547428B1 (en) * 2006-11-02 2013-10-01 SeeScan, Inc. Pipe mapping system
FR2939510B1 (fr) 2008-12-08 2010-12-31 Inst Francais Du Petrole Methode de detection et localisation de l'amorce de fissuration de type ssc dans un acier soumis a un milieu aqueux acide contenant des elements hydrogenants
KR200458466Y1 (ko) 2009-08-14 2012-02-21 탑테크(주) 강재의 수소 유기 균열 시험장치
CN101909230A (zh) * 2010-07-15 2010-12-08 哈尔滨工程大学 金属与压电陶瓷和聚合物复合材料宽带水声换能器
EP2881064B1 (de) 2012-04-27 2019-11-13 KUKA Deutschland GmbH Chirurgierobotersystem
ITPI20120109A1 (it) * 2012-10-25 2014-04-26 Letomec S R L Dispositivo e metodo per misure di permeazione di idrogeno
JP5405686B1 (ja) * 2013-04-25 2014-02-05 株式会社日立パワーソリューションズ 超音波検査装置
US9424674B2 (en) * 2014-04-01 2016-08-23 Saudi Arabian Oil Company Tomographic imaging of multiphase flows
US10295508B2 (en) * 2016-01-06 2019-05-21 Saudi Arabian Oil Company Integrated system for quantitative real-time monitoring of hydrogen-induced cracking in simulated sour environment
US10473626B2 (en) * 2017-04-05 2019-11-12 Loenbro Inspection, LLC. Method for the graphical representation and data presentation of weld inspection results

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115750U (ja) 1987-01-20 1988-07-26
JPH04259853A (ja) 1991-02-14 1992-09-16 Nippon Steel Corp 水浸式超音波探傷方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking", 2003, NACE INTERNATIONAL
MITSURU SAWAMURA ET AL.: "Sour Kankyo-chu ni Okeru Suiso Yuki Ware no Sonoba Kansatsu", PROCEEDINGS OF JSCE MATERIALS AND ENVIRONMENTS, 4 November 2012 (2012-11-04), pages 123 - 124, XP009507390 *
See also references of EP3382387A4

Also Published As

Publication number Publication date
CN108351326A (zh) 2018-07-31
EP3382387A4 (en) 2018-11-14
JPWO2017090572A1 (ja) 2018-01-25
CN108351326B (zh) 2021-05-07
BR112018009718A2 (pt) 2018-12-04
KR102137066B1 (ko) 2020-07-23
BR112018009718B1 (pt) 2023-05-09
EP3382387A1 (en) 2018-10-03
JP6394933B2 (ja) 2018-09-26
US20180340913A1 (en) 2018-11-29
US10788461B2 (en) 2020-09-29
KR20180070661A (ko) 2018-06-26
EP3382387B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6394933B2 (ja) 水素誘起割れ測定方法および測定装置
US7389693B2 (en) Methods and apparatus for porosity measurement
JP4116483B2 (ja) 管体の超音波探傷検査方法および装置
JP5565904B2 (ja) 超音波探傷試験体の表面形状の同定方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラム
Sharma et al. A non-contact technique for damage monitoring in submerged plates using guided waves
CN106770683A (zh) 复合材料t形连接区液体自耦超声合换能器及检测方法
JP5324136B2 (ja) 粒界面亀裂検出方法及び粒界面亀裂検出装置
Guo et al. Research on phased array ultrasonic technique for testing butt fusion joint in polyethylene pipe
Dawood et al. Nondestructive assessment of a jetty bridge structure using impact-echo and shear-wave techniques
Vinogradov et al. New magnetostrictive transducers and applications for SHM of pipes and vessels
Park et al. Application of the ultrasonic propagation imaging system to an immersed metallic structure with a crack under a randomly oscillating water surface
JP2014211398A (ja) 管状構造物の欠陥検査方法及び装置
Vos et al. Application of Wide-Band Ultrasound for the Detection of Angled Crack Features in Oil and Gas Pipelines
Aanes et al. Inline-inspection crack detection for gas pipelines using a novel technology
Moles et al. Phased arrays for pipeline girth weld inspections
Shi et al. Ultrasonic inspection of large diameter polyethylene pipe used in nuclear power plant
Rahim The Application of Imaging Techniques SAFT As An Ultrasonic Monitoring System Support
Cheng et al. Study on Ultrasonic Phased Array Imaging Technique for Direct Contact Inspection on Double Curved Surface
Lopez Weld inspection with EMAT using guided waves
Haines et al. Adaptive Ultrasonic Imaging of Electric Resistance Welded Pipeline Seams
Chang et al. Ultrasonic synthetic aperture focusing technique with finite source element for focused transducers
Buitrago et al. Ultrasonic evaluation of a beta-C titanium alloy
Dhanasekaran et al. In‐service application of EMAT in boiler water wall tubes at high temperature components
Feng et al. Storage tank floor and wall defect in-situ inspection with ultrasonic guided wave technique
Karpelson Quasi-tomographic ultrasonic inspection of tubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552411

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013975

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009718

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15778012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868519

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016868519

Country of ref document: EP

Effective date: 20180627

ENP Entry into the national phase

Ref document number: 112018009718

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180514