WO2017090423A1 - 車両制御装置 - Google Patents
車両制御装置 Download PDFInfo
- Publication number
- WO2017090423A1 WO2017090423A1 PCT/JP2016/083098 JP2016083098W WO2017090423A1 WO 2017090423 A1 WO2017090423 A1 WO 2017090423A1 JP 2016083098 W JP2016083098 W JP 2016083098W WO 2017090423 A1 WO2017090423 A1 WO 2017090423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- control
- deceleration
- downhill
- acceleration
- Prior art date
Links
- 230000008929 regeneration Effects 0.000 claims abstract description 67
- 238000011069 regeneration method Methods 0.000 claims abstract description 67
- 230000001133 acceleration Effects 0.000 claims description 97
- 230000007423 decrease Effects 0.000 claims description 27
- 230000008859 change Effects 0.000 claims description 13
- 230000001172 regenerating effect Effects 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 10
- 238000005381 potential energy Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
- B60L15/2018—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/12—Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
- B60W20/14—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/62—Vehicle position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/642—Slope of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/20—Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/24—Energy storage means
- B60W2710/242—Energy storage means for electrical energy
- B60W2710/244—Charge state
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- This relates to vehicle control in a vehicle that uses motor output and engine output as driving force.
- Regeneration using this motor as a generator is known by rotating the motor by rotating the wheel.
- the electric energy generated by regeneration is used for charging the storage battery. Further, the regeneration is controlled by a vehicle control device provided in the vehicle, and is performed in accordance with the establishment of a predetermined driving condition.
- Patent Document 1 discloses a configuration that increases the efficiency of regeneration by reducing the charging rate of the storage battery before the downhill.
- the present disclosure has been made in view of the above problems, and provides a vehicle control device capable of improving both the regeneration efficiency during downhill traveling and the engine efficiency and increasing the energy efficiency of the vehicle. Objective.
- a vehicle control device includes an engine and a motor that is driven by electric power supplied from a storage battery, and controls a vehicle that uses at least one of the engine output and the motor output as a driving force.
- the search unit that searches for the downhill that can perform regeneration of the motor, and the vehicle speed is reduced at the deceleration start position before the searched downhill.
- a charge rate control unit that performs deceleration control to reduce the charge rate of the storage battery, and in the deceleration control, the vehicle driving force is reduced to a driving force that is extracted only by the motor output to reduce the vehicle speed.
- FIG. 1 is a diagram illustrating a configuration of a vehicle 100 as an example.
- FIG. 2A is a diagram illustrating a travel route of a vehicle and a gradient of the travel route
- FIG. 2B is a diagram for explaining changes in the target vehicle speed in cruise control.
- FIG. 2C is a diagram for explaining a change in the charging rate SOC of the battery.
- FIG. 2D is a diagram illustrating a change in driving force of the vehicle.
- FIG. 3 is a flowchart for explaining processing when setting a travel plan for the vehicle 100.
- FIG. 4 is a flowchart illustrating in detail the acquisition of the deceleration start position Dc.
- FIG. 5A is a diagram illustrating a vehicle speed controlled in the deceleration control.
- FIG. 5B is a diagram for explaining the vehicle speed controlled in the deceleration control.
- FIG. 6 is a flowchart for explaining the travel control of the vehicle 100.
- FIG. 7A is a diagram illustrating vehicle speed control performed in acceleration control.
- FIG. 7B is a diagram illustrating vehicle speed control performed in acceleration control.
- FIG. 8 is a flowchart for explaining the lower limit avoidance control in detail.
- FIG. 9 is a diagram for explaining the lower limit avoidance control.
- FIG. 10A is a diagram illustrating a travel route of a vehicle and a gradient of the travel route;
- FIG. 10B is a diagram for explaining a change in the target vehicle speed.
- FIG. 10C is a diagram for explaining a change in the charging rate SOC of the battery.
- FIG. 10D is a diagram for explaining a change in driving force of the vehicle.
- FIG. 11 is a flowchart for explaining processing when setting a travel plan for the vehicle 100.
- FIG. 12 is a flowchart showing in detail the processing in step S35.
- FIG. 13A is a diagram illustrating processing for determining whether or not deceleration control is performed in step S35.
- FIG. 13B is a diagram illustrating a process of determining whether or not deceleration control is performed in step S35.
- FIG. 14 is a flowchart for explaining the travel control of the vehicle 100.
- FIG. 15 is a flowchart showing downhill acceleration control, FIG.
- FIG. 16 is a flowchart showing the setting of the deceleration start position Dc.
- FIG. 17 is a diagram illustrating a relationship between the target decrease value of the charging rate SOC and the distance L from the downhill gradient start position Dd to the deceleration start position Dc.
- FIG. 18 is a flowchart for explaining a travel plan according to the fourth embodiment.
- FIG. 1 is a diagram illustrating a configuration of a vehicle 100 as an example.
- the vehicle 100 mainly includes an engine 31, a motor 32 including a motor generator, a clutch 33, a transmission 34, a drive shaft 35, a drive wheel 37, an inverter unit 39, a battery (storage battery) 40, and a vehicle control device 50. Yes. Further, the vehicle 100 includes a navigation device 60, and the vehicle control device 50 can acquire geographic information from the navigation device 60.
- the engine 31 generates a desired engine output by burning a mixture of fuel and air injected from the fuel injection valve in the combustion chamber.
- the engine 31 may be a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil or the like as fuel.
- the motor 32 is rotated by electric power from the battery 40 to generate a motor output, and also functions as a power generator for generating the battery 40.
- the motor 32 is an AC motor that is driven by AC power, and includes a rotor as a rotor and a stator that is arranged on the outer periphery of the rotor and generates an induced voltage.
- the rotor is connected to a drive shaft 35 that rotates drive wheels 37 via a transmission 34.
- the stator is connected to the battery 40 via the inverter unit 39.
- the inverter unit 39 functions as a power conversion device that performs power conversion between the DC power supplied from the battery 40 and the AC power generated by the motor 32.
- the inverter unit 39 includes a converter that converts AC power into DC power and an inverter that converts DC power into AC power.
- the stator When the motor 32 is driven, the stator generates induced voltages having different phases by AC power supplied from the battery 40 via the inverter unit 39, and rotates the rotor. Further, during regeneration of the motor 32, AC generated power is generated in the stator by rotation of the rotor accompanying rotation of the drive wheels 37. The generated power is rectified by the inverter unit 39 and then supplied to the battery 40, and the battery 40 is charged by the supplied power.
- the clutch 33 functions as a transmission switching unit that disconnects the engine output occupying the driving force of the vehicle 100.
- the engine 31 is drivingly connected to the output shaft of the motor 32 via the clutch 33. Therefore, in the HV traveling mode, the vehicle 100 connects the engine 31 and the motor 32 by the clutch 33 and travels by obtaining driving force from both the engine output and the motor output. On the other hand, in the EV travel mode, the vehicle 100 travels by obtaining the driving force only from the motor output by disconnecting the engine 31 from the motor 32 by the clutch 33.
- the vehicle control device 50 is a general term for devices that control each part of the vehicle 100, and includes an engine ECU 51, a motor ECU 52, a HVECU 53, and an ACC ECU 54.
- the engine ECU 51 controls driving of the engine 31.
- the motor ECU 52 controls driving of the motor 32 and the inverter unit 39.
- the HVECU 53 controls each travel mode in the vehicle 100 by performing cooperative control between the engine ECU 51 and the motor ECU 52.
- the ACC ECU 54 performs an operation plan of the vehicle 100 in the cruise control mode (constant speed control) based on the geographical information supplied from the navigation device 60.
- ECUs 51 to 54 are mainly composed of a microcomputer composed of a well-known CPU, ROM, RAM and the like. Further, the ECUs 51 to 54 are electrically connected via a bus, and bidirectional communication is possible. Therefore, each of the ECUs 51 to 54 can control driving of various devices connected to the output side of the other ECU based on the detection signal or the operation signal input to any ECU.
- Navigation device 60 provides geographic information to vehicle 100.
- the navigation device 60 is, for example, a car navigation system or a smartphone, and is connected to the ACC ECU 54 via a wired or wireless connection.
- Geographic information is map information such as latitude, longitude, and altitude, and related information such as facilities associated with these, and is managed by a database (not shown).
- the ACC ECU 54 can acquire information necessary for traveling and regeneration of the vehicle 100 by acquiring geographical information via the navigation device 60.
- FIG. 2A is a diagram illustrating a travel route of the vehicle 100 and a gradient of the travel route.
- FIG. 2B is a diagram for explaining a change in the target vehicle speed in cruise control.
- FIG. 2C is a diagram for explaining a change in the charging rate SOC of the battery 40.
- FIG. 2D is a diagram illustrating a change in driving force of the vehicle 100.
- the vehicle 100 starts regeneration for charging the battery 40 on a downhill that meets a predetermined condition.
- regeneration is started in the middle of traveling on the downhill, and regeneration is continued even after traveling downhill using the low load state associated with downhill traveling.
- the battery 40 is charged by the generated power generated by the power generation of the motor 32, and the charge rate SOC is increased (FIG. 2C).
- vehicle 100 When traveling on a long downhill or a downhill with a large gradient, the charge rate SOC of the battery 40 may exceed the upper limit during regeneration using the downhill travel. Electric power that exceeds the upper limit value must be released by heat or the like, and regeneration efficiency is poor. Therefore, vehicle 100 performs deceleration control for reducing the charging rate SOC of battery 40 before starting regeneration. In the deceleration control, the vehicle 100 is decelerated (FIG. 2B), and the charge rate SOC of the battery 40 is decreased (FIG. 2C). This deceleration control is performed by reducing the driving force of the vehicle 100 to a region corresponding to the EV traveling mode. The charging rate SOC is reduced by the deceleration control before the start of regeneration (FIG. 2C), and then the charging rate SOC can be increased by charging the battery 40 by regeneration using traveling on the downhill.
- FIG. 3 is a flowchart for explaining processing when setting a travel plan for vehicle 100.
- the travel plan shown in FIG. 3 is implemented, for example, in a cruise control mode (constant vehicle speed state) in which the vehicle 100 travels at a vehicle speed within a certain range.
- the search unit is realized by the ACC ECU 54 performing steps S11 to S13.
- the deceleration position search part is implement
- step S11 the ACC ECU 54 acquires geographic information necessary for the travel plan.
- the geographical information acquired in step S11 is acquired in accordance with the travel route selected by the navigation device 60 by the driver or the like, for example.
- the geographic information is, for example, latitude and longitude, gradient information, and downhill gradient distance at each point on the travel route.
- the ACC ECU 54 requests the navigation device 60 to supply such geographic information.
- step S12 the ACC ECU 54 searches for a downhill on which regeneration can be performed.
- the downhill conditions under which regeneration can be performed are selected, for example, from those in which the downhill gradient angle acquired from the gradient information is a predetermined angle or more and the gradient distance is a predetermined distance or more.
- the ACC ECU 54 searches for the corresponding downhill from the geographical information acquired in step S11.
- step S13 the ACC ECU 54 acquires the downhill slope start position Dd.
- the ACC ECU 54 registers the latitude and longitude at the position where the downhill gradient is started as the gradient start position Dd.
- step S12: NO a travel plan is complete
- step S14 the ACC ECU 54 acquires a deceleration start position Dc at which deceleration control is disclosed.
- the deceleration start position Dc is a position where deceleration control of the vehicle 100 is started, and is acquired as a position before the gradient start position Dd registered in step S13 on the registered travel route.
- FIG. 4 is a flowchart illustrating in detail the acquisition of the deceleration start position Dc in step S14 as an example.
- 5A and 5B are diagrams illustrating the vehicle speed controlled in the deceleration control.
- the deceleration start position Dc is acquired based on the target vehicle speed V and the driving force upper limit value MD in the deceleration control.
- step S141 the ACC ECU 54 sets the target vehicle speed V1.
- the target vehicle speed V1 indicates the vehicle speed that the vehicle 100 finally reaches by executing the deceleration control of the vehicle 100.
- the ACC ECU 54 sets the target vehicle speed V1 so that the amount of decrease in the vehicle speed due to the deceleration control increases in accordance with the magnitude of the vehicle speed before the deceleration control.
- step S142 the ACC ECU 54 sets the driving force upper limit value MD.
- the driving force upper limit value MD is a value that sets an upper limit of the driving force that the vehicle 100 can output.
- the vehicle 100 switches the driving mode by changing the engine output and the motor output in the driving force.
- the ACC ECU 54 sets the driving force upper limit value MD within the range of the driving force corresponding to the EV traveling mode, so that the driving of the engine 31 (engine output) is limited during the deceleration control, and the output of the motor 32 (motor output). Only becomes the driving force of the vehicle 100.
- step S143 the ACC ECU 54 calculates the deceleration start position Dc based on the target vehicle speed acquired in step S141 and the driving force upper limit value MD acquired in step S142. For example, the ACC ECU 54 first calculates the distance required for the vehicle 100 to reach the target vehicle speed V1 with the set driving force upper limit value MD. The ACC ECU 54 calculates the deceleration start position Dc in the travel route by using the calculated distance as the distance L between the two points from the gradient start position Dd acquired in step S13 to the deceleration start position Dc.
- step S15 the ACC ECU 54 acquires the acceleration start position Da.
- the acceleration start position Da is a position before the deceleration start position Dc acquired in step S14, and is a position at which the vehicle 100 starts acceleration control.
- the vehicle 100 is accelerated before the start of the deceleration control, so that the vehicle speed reduction amount of the vehicle 100 in the deceleration control is ensured.
- the ACC ECU 54 acquires, as the acceleration start position Da, a position that is a predetermined distance from the deceleration start position Dc.
- FIG. 6 is a flowchart for explaining the travel control of the vehicle 100.
- the HVECU 53 implements the processing of steps S24 to S28, thereby realizing a charging rate control unit.
- step S21 the HVECU 53 acquires the current vehicle position Dp.
- the vehicle position Dp indicates the position where the vehicle 100 is currently traveling, and is acquired from the navigation device 60 by the ACC ECU 54.
- step S22 the HVECU 53 determines whether or not the vehicle 100 has reached the gradient start position Dd at which regeneration starts.
- the HVECU 53 compares the vehicle position Dp acquired in step S21 with the gradient start position Dd acquired by the travel plan, and determines whether or not the vehicle 100 has reached the gradient start position Dd.
- step S24 the HVECU 53 determines whether or not the vehicle 100 has reached the deceleration start position Dc at which deceleration control is started.
- the HVECU 53 compares the vehicle position Dp with the deceleration start position Dc acquired from the travel plan, and determines whether or not the vehicle 100 has reached the deceleration start position Dc.
- step S27 the HVECU 53 determines whether or not the vehicle 100 has reached the acceleration start position Da where acceleration control is performed.
- the HVECU 53 compares the vehicle position Dp with the acceleration start position Da acquired from the travel plan, and determines whether or not the vehicle 100 is standing at the acceleration start position Da.
- step S29 the HVECU 53 sets the target vehicle speed to V0.
- the target vehicle speed V0 indicates the vehicle speed of the vehicle 100 in a range set by cruise control. That is, in step S29, the HVECU 53 maintains the vehicle speed within the range of the target vehicle speed V0 set by the cruise control.
- step S28 the HVECU 53 starts acceleration control.
- the HVECU 53 sets the target vehicle speed V2 so that the vehicle speed is faster than the current vehicle speed (V0).
- the engine ECU 51 and the motor ECU 52 increase the driving force of the engine 31 and the motor 32 to accelerate the vehicle 100.
- FIG. 7A and FIG. 7B are diagrams for explaining the vehicle speed control performed in the acceleration control as an example.
- the HVECU 53 sets the target vehicle speed V2 in the acceleration control so that the vehicle speed increase amount increases as the current vehicle speed Vp increases.
- the HVECU 53 sets the acceleration in the acceleration control so that the acceleration decreases as the current vehicle speed Vp increases.
- step S25 the HVECU 53 starts deceleration control.
- the HVECU 53 reduces the charge rate SOC of the battery 40 by reducing the vehicle speed from the vehicle speed V0 before acceleration.
- the HVECU 53 limits the driving force to a range that does not exceed the driving force upper limit MD set in the travel plan (FIG. 5B). Therefore, the vehicle 100 shifts to the EV traveling mode and starts decelerating traveling.
- step S26 the HVECU 53 performs lower limit avoidance control.
- the lower limit avoidance control is control that prevents the SOC 40 of the battery 40 from being extremely lowered due to the execution of the deceleration control.
- the HVECU 53 stops the deceleration control and returns the vehicle speed to the vehicle speed V0 set in the cruise control.
- FIG. 8 is a flowchart illustrating in detail the lower limit avoidance control performed in step S26.
- FIG. 9 is a diagram for explaining the lower limit avoidance control.
- step S261 the HVECU 53 compares the charging rate SOC with the threshold value Sa.
- the threshold value Sa indicates the maximum value of the reduced charging rate SOC required in the deceleration control. That is, when the deceleration control is performed, the vehicle speed is controlled so that the charging rate SOC of the battery 40 is less than the threshold value Sa.
- step S261 NO
- the HVECU 53 ends the lower limit avoidance control.
- the charge rate SOC is equal to or greater than the threshold value Sa because the battery 40 is sufficiently charged and it can be determined that the charge rate SOC does not decrease excessively even if deceleration control is continued.
- step S262 the HVECU 53 compares the charging rate SOC with the threshold value Sb.
- the threshold value Sb indicates the lower limit value of the charging rate SOC that can be reduced by the deceleration control.
- the threshold value Sb is experimentally acquired based on the charging rate SOC that may cause the battery 40 to deteriorate. Therefore, in the deceleration control, the charging rate SOC of the battery 40 is reduced in the range from the threshold value Sa to the threshold value Sb (FIG. 9).
- step S264 the HVECU 53 decreases the amount of decrease in the charging rate SOC in the deceleration control.
- the HVECU 53 increases the vehicle speed target value beyond the vehicle speed V1 set in the deceleration control (to the target vehicle speed V3), and decreases the driving force upper limit value MD.
- the driving force upper limit value MD is set within the driving force range in which the vehicle 100 is set to the EV traveling mode, the deceleration control is maintained by reducing the driving force upper limit value MD. The rate of decrease of the charging rate SOC is reduced.
- step S262 If the charging rate SOC is equal to or less than the threshold value Sb (step S262: YES), the HVECU 53 stops the deceleration control in step S263. In this case, if the deceleration control is continued, the charging rate SOC may fall below the threshold value Sb. Therefore, the HVECU 53 returns the vehicle speed target value to V0 and returns the driving force upper limit value MD to the range where the engine 31 is driven.
- step S23 when the vehicle 100 has reached the gradient start position Dd (step S22: YES), in step S23, the HVECU 53 starts regeneration. Therefore, the electric power generated by the motor 32 when the vehicle 100 starts regeneration while traveling downhill is supplied to the battery 40 via the inverter unit 39, and charging of the battery 40 is started.
- the vehicle control device 50 performs the deceleration control that reduces the charging rate SOC of the battery 40 before the regeneration on the downhill, so that the vehicle 100 in the downhill traveling can be operated. Increase regeneration efficiency.
- the driving of the engine 31 is stopped by reducing the driving force of the vehicle 100 to a driving force that is extracted only by the motor output, thereby suppressing a decrease in engine efficiency.
- improvement in regeneration efficiency and improvement in engine efficiency can both be achieved, and the energy efficiency of the vehicle 100 can be increased.
- the vehicle 100 shifts from a state in which only the motor output is used to a state in which the engine output and the motor output are used in combination in accordance with an increase in the driving force. Set the value within the range where only motor output is used.
- the driving force is set within a range in which only the motor output is used, so that a decrease in engine efficiency can be suppressed without being affected by the traveling state of the vehicle 100.
- the charge rate control unit monitors the change in the charge rate of the battery 40 in the execution of the deceleration control, and stops the deceleration control when the degree of decrease in the charge rate SOC is large.
- a deceleration position search unit that searches for a deceleration start position based on the vehicle speed after deceleration of the vehicle 100 set in the deceleration control is provided.
- the deceleration position search unit sets the vehicle speed after deceleration so that the vehicle speed decrease amount increases as the vehicle speed of the vehicle 100 before deceleration control increases.
- the charge rate control unit performs acceleration control for accelerating the vehicle 100 before performing deceleration control.
- the vehicle speed can be increased before deceleration, so that it is possible to ensure a vehicle speed reduction amount even when the vehicle 100 is traveling at a low speed.
- the vehicle speed can be prevented from excessively decreasing due to the deceleration control, a decrease in drivability can be suppressed.
- the charge rate control unit increases the vehicle speed increase amount in the acceleration control as the vehicle speed of the vehicle 100 before the acceleration control increases.
- the charge rate control unit performs deceleration control when the vehicle 100 is in the cruise control state (constant speed control state).
- the vehicle speed control can be performed within a range in which the driver does not feel uncomfortable under the condition of the constant speed control based on the set speed.
- the configuration for performing the regeneration on the downhill is the same as that of the first embodiment, but the downhill acceleration control for accelerating the vehicle 100 in a part of the downhill for performing the regeneration is performed.
- the configuration is different from that of the first embodiment.
- FIG. 10 is a diagram for explaining processing associated with regeneration in the second embodiment.
- FIG. 10A is a diagram illustrating a travel route of the vehicle 100 and a gradient of the travel route.
- FIG. 10B is a diagram illustrating a change in the target vehicle speed.
- FIG. 10C is a diagram for explaining a change in the charging rate SOC of the battery 40.
- FIG. 10D is a diagram illustrating a change in driving force of the vehicle 100.
- the vehicle 100 performs regeneration on a downhill corresponding to a predetermined condition.
- the ACC ECU 54 searches for a downhill that meets the conditions for performing the regeneration, and when the vehicle 100 reaches this downhill, the regeneration is started.
- deceleration control is performed before regeneration is performed.
- acceleration control may be performed before deceleration control.
- the vehicle 100 performs downhill acceleration control for accelerating the vehicle speed.
- the vehicle 100 is accelerated by converting a part of the potential energy in the downhill travel into the kinetic energy of the vehicle without using the engine output as the driving force in a part of the downhill section. (FIGS. 10B and 10D).
- the kinetic energy of the vehicle 100 increases the energy efficiency of the vehicle in downhill travel.
- FIG. 11 is a flowchart illustrating a process when setting a travel plan for vehicle 100.
- the travel plan shown in FIG. 11 is implemented, for example, when the vehicle is in the cruise control mode.
- step S31 the ACC ECU 54 acquires geographic information necessary for the travel plan.
- step S31 as well, as in step S11, the geographical information is acquired according to the travel route selected by the driver or the like using the navigation device 60.
- step S32 the ACC ECU 54 searches for a downhill that meets the regeneration conditions. Also in step S32, the same processing as step S12 of FIG. 3 is performed. When the corresponding downhill is detected (step S32: YES), the ACC ECU 54 proceeds to step S33. On the other hand, if no corresponding downhill is detected (step S32: NO), the ACC ECU 54 ends the travel plan process.
- step S33 the ACC ECU 54 determines the curvature of the downhill detected in step S32. If the curvature of the downhill is large, the driver may feel uncomfortable when the speed of the vehicle 100 changes. Therefore, when the curvature of the downhill is larger than the predetermined threshold value T ⁇ (step S33: NO), the ACC ECU 54 ends the travel plan. As a result, deceleration control is not performed in vehicle 100.
- the curvature acquisition unit is realized by the HVECU 53 performing the process of step S33.
- step S33 If the curvature of the downhill is smaller than the predetermined threshold value T ⁇ (step S33: YES), the ACC ECU 54 proceeds to step S34.
- step S34 the slope start position Dd of the downhill where regeneration is performed is acquired.
- step S35 the ACC ECU 54 determines whether or not the charge rate SOC can be reduced. If the charging rate SOC can be reduced, the ACC ECU 54 turns on deceleration control (step S36). If the deceleration control is impossible, the ACC ECU 54 turns off deceleration control (step S37). Whether or not the charging rate SOC is possible is determined based on the energy efficiency of the vehicle 100 traveling on the downhill. Specifically, if the vehicle speed when the vehicle 100 travels downhill while performing regeneration including deceleration control is slower than the vehicle speed before traveling downhill, the ACC ECU 54 cannot reduce the charge rate SOC. judge.
- FIG. 12 is a flowchart showing in detail the processing in step S35.
- FIGS. 13A and 13B are diagrams illustrating processing for determining whether or not deceleration control is performed in step S35. Also in FIG. 12, the processing from step S351 to S353 can be the same as the processing from step S141 to S143 in FIG.
- step S351 the ACC ECU 54 sets a target vehicle speed V1 in the deceleration control.
- step S352 the ACC ECU 54 sets a driving force upper limit value MD in the deceleration control.
- step S353 the ACC ECU 54 calculates the deceleration start position Dc based on the target vehicle speed acquired in step S351 and the driving force upper limit value MD acquired in step S352.
- step S354 the ACC ECU 54 acquires slope information of the downhill where the regeneration is performed.
- the ACC ECU 54 acquires a gradient angle and a gradient distance as downhill gradient information.
- step S355 the ACC ECU 54 calculates the estimated vehicle speed Ve of the vehicle 100 when it is assumed that the deceleration control is performed and the downhill traveling is finished.
- the estimated vehicle speed Ve indicates the speed of the vehicle 100 at the end point of the downhill when the vehicle travels on the downhill in a state where the deceleration control is performed.
- the ACC ECU 54 calculates the estimated vehicle speed Ve using the potential energy obtained when the vehicle 100 travels on the detected downhill and the target vehicle speed V1 and the weight of the vehicle 100 during the deceleration control.
- step S356 the ACC ECU 54 compares the estimated vehicle speed Ve with the current speed Vp of the vehicle. As shown in FIGS. 13A and 13B, if the calculated estimated vehicle speed (Ve1) is equal to or higher than the current speed Vp, the potential energy in the downhill travel is used for the downhill acceleration control even if the deceleration control is performed. The speed of the vehicle 100 can be returned. Therefore, ACC ECU 54 proceeds to step S357 and determines that the charging rate SOC can be reduced. On the other hand, if the calculated estimated vehicle speed (Ve2) is less than the current speed Vp, the speed of the vehicle 100 cannot be returned due to the potential energy in the downhill traveling when the deceleration control is performed. Therefore, ACC ECU 54 proceeds to step S358 and determines that the charging rate SOC cannot be reduced.
- step S36 when the charging rate SOC can be reduced (step S35: YES), in step S36, the ACC ECU 54 turns on deceleration control. Therefore, in step S37, the ACC ECU 54 acquires the deceleration start position Dc. As the deceleration start position Dc acquired in step S37, for example, the value calculated in step S353 can be used. By turning on the deceleration control, the vehicle 100 decelerates the vehicle speed and lowers the battery charge rate SOC before the downhill where regeneration is performed.
- step S35 NO
- the ACC ECU 54 turns off the deceleration control in step S38. That is, priority is given to the improvement of the energy efficiency in downhill running rather than the improvement of the regeneration efficiency by deceleration control.
- FIG. 14 is a flowchart illustrating travel control of vehicle 100. Also in the process shown in FIG. 14, the processes in steps S41, S42, S44, S47, and S48 can be the same processes as the processes shown in FIG.
- the HVECU 53 implements the process of step S44 in FIG. 14 to realize the regeneration control unit, and the process of step S43 and step S43 implements the downhill acceleration control unit.
- step S41 the HVECU 53 acquires the current vehicle position Dp.
- step S42 the HVECU 53 determines whether or not the slope start position Dd of the downhill where the regeneration is performed has been reached.
- step S45 the HVECU 53 determines whether or not the deceleration control is set to ON.
- step S48 the HVECU 53 sets the target vehicle speed to V0.
- step S46 the HVECU 53 determines whether or not the vehicle 100 has reached the deceleration start position Dc. If vehicle 100 has not reached deceleration start position Dc (step S46: NO), in step S48, HVECU 53 sets the target vehicle speed to V0.
- step S47 the HVECU 53 performs deceleration control.
- the HVECU 53 reduces the charge rate SOC of the battery 40 by decelerating the vehicle 100 to the vehicle speed (V1) in the EV traveling mode.
- step S43 the HVECU 53 performs downhill acceleration control.
- the vehicle 100 is accelerated without performing regeneration in a part of the downhill traveling section.
- FIG. 15 is a flowchart showing the downhill acceleration control performed in step S43.
- step S431 the HVECU 53 sets the target vehicle speed V4.
- the target vehicle speed V4 indicates the upper limit value of the vehicle speed that the vehicle 100 can reach in the downhill acceleration control.
- the HVECU 53 sets the target vehicle speed V4 by setting the increase speed to the current vehicle speed Vp (or the vehicle speed after deceleration control) within the range of the vehicle speed increase amount set by the cruise control.
- step S432 the HVECU 53 disconnects the transmission of the engine output.
- the HVECU 53 instructs the clutch 33 to disconnect the engine 31 and the motor 32. Therefore, the clutch 33 is in an open state and releases the participation of the engine 31 in the driving force.
- step S433 the HVECU 53 stops the engine 31.
- the HVECU 53 instructs the engine ECU 51 to stop the engine 31.
- the engine ECU 51 stops the internal combustion movement of the engine 31.
- step S434 the HVECU 53 monitors the acceleration of the vehicle 100. If the acceleration increases due to potential energy while the vehicle 100 is traveling downhill, the driver may feel uncomfortable. Therefore, if the acceleration is equal to or greater than threshold Ta (step S434: YES), in step S435, HVECU 53 performs negative torque control for decelerating vehicle 100. In this negative torque control, the HVECU 53 commands the motor ECU 52 to generate a torque in the direction opposite to the rotation direction of the rotor of the motor 32. In response to this command, the motor ECU 52 applies the stator so that negative torque is generated.
- step S436 the HVECU 53 determines whether or not the vehicle 100 has a condition for starting regeneration.
- a condition for starting regeneration is, for example, when the vehicle 100 travels a predetermined distance on a downhill. If vehicle 100 is not ready to start regeneration (step S436: NO), HVECU 53 returns to step S434 and continues to monitor acceleration. On the other hand, if vehicle 100 is in a state where regeneration can be started (step S436: YES), HVECU 53 ends the process related to the downhill acceleration control.
- step S44 the HVECU 53 performs regeneration.
- the electric power generated by the motor 32 by regeneration is supplied to the battery 40 via the inverter unit 39, and the battery 40 is charged.
- downhill acceleration control from the downhill slope start point is only an example.
- downhill acceleration control may be performed in a plurality of times during downhill travel.
- you may implement downhill acceleration control after regeneration.
- the vehicle 100 includes the navigation device 60.
- the vehicle 100 includes a gradient detection sensor (not shown), and the HVECU 53 determines that the vehicle 100 is traveling on a downhill based on an output from the gradient detection sensor, thereby performing downhill acceleration control and regeneration. It is good also as composition to do.
- the HVECU 53 determines the downhill gradient start position based on the output from the gradient detection sensor in step S41 of FIG. 14, a series of processing (steps S42 to S48) is performed.
- the detection of the deceleration start position Dc is implemented within this step S43.
- the vehicle 100 is accelerated by the downhill acceleration control in a part of the downhill section where regeneration is performed.
- the vehicle 100 does not use the engine output as a drive output and travels without regeneration in a part of the downhill section. That is, in this partial section, direct conversion from downhill position energy to kinetic energy is performed. As a result, the rate at which the potential energy when the vehicle 100 travels downhill is converted into electrical energy by regeneration can be reduced, and the energy efficiency of the vehicle can be improved.
- the vehicle 100 includes a clutch 33 (transmission switching unit) that switches transmission of engine output to driving force, and the downhill acceleration control unit causes the transmission switching unit to disconnect transmission of engine output in the downhill acceleration control.
- a clutch 33 transmission switching unit
- the downhill acceleration control unit causes the transmission switching unit to disconnect transmission of engine output in the downhill acceleration control.
- the downhill acceleration control unit stops driving the engine in the downhill acceleration control.
- the downhill acceleration control unit causes the motor 32 to generate a negative torque when the acceleration of the vehicle 100 is equal to or greater than a threshold value in the downhill acceleration control.
- -It has a curvature acquisition part which acquires the curvature of a downhill based on the geographic information supplied from the navigation apparatus 60, and a downhill acceleration control part does not implement downhill acceleration control, when a curvature is more than a threshold value .
- the deceleration control part which implements the deceleration control which decelerates the vehicle 100 before implementing downhill acceleration control.
- the downhill acceleration control unit performs the downhill acceleration control when the vehicle is running at a constant speed.
- the vehicle speed control can be performed within a range in which the driver does not feel uncomfortable under the condition of the constant speed control based on the set speed.
- FIG. 16 is a flowchart showing the setting of the deceleration start position Dc in the third embodiment.
- the flowchart shown in FIG. 16 is, for example, the process used in step S14 of FIG.
- FIG. 17 is a diagram showing a relationship between a target decrease value of the charging rate SOC (SOC decrease target value) and a distance (distance between two points) L from the downhill gradient start position Dd to the deceleration start position Dc. is there.
- step S144 the ACC ECU 54 sets the SOC decrease target value.
- the SOC decrease target value is set within the range of the threshold values Sa to Sb, as shown in FIG.
- step S145 the ACC ECU 54 sets the driving force upper limit value MD.
- the driving force upper limit value MD is set in the driving force range in which the vehicle 100 performs EV traveling, as in the first embodiment.
- step S146 the ACC ECU 54 acquires the deceleration start position Dc based on the SOC decrease target value acquired in step S144. At this time, the ACC ECU 54 sets the deceleration start position Dc so that the distance L between the two points increases as the SOC decrease target value increases.
- the ACC ECU 54 includes a map that defines the relationship between the SOC decrease target value and the distance L between the two points shown in FIG.
- the relationship between the SOC decrease target value and the distance between two points is defined in accordance with the driving force upper limit value MD set in step S145. Therefore, the larger the driving force upper limit MD, the shorter the distance L between the two points even if the SOC reduction target value is the same. Conversely, the smaller the driving force upper limit MD, the longer the distance L between two points even if the SOC reduction target value is the same.
- the deceleration start position Dc in the deceleration control is set according to the target decrease value of the charge rate SOC of the battery 40, so that the intended decrease in the charge rate SOC in the deceleration control is achieved. be able to.
- FIG. 18 is a flowchart for explaining a travel plan according to the fourth embodiment.
- the deceleration start position Dc and the acceleration start position Da acquired by this travel plan are used, for example, for travel control shown in FIG.
- step S51 the ACC ECU 54 acquires geographic information.
- step S52 the ACC ECU 54 searches for a downhill on which regeneration can be performed.
- the ACC ECU 54 searches for a corresponding downhill in the range of the search distance QD1 from the current vehicle position.
- step S53 the ACC ECU 54 acquires the gradient start position Dd.
- step S54 the ACC ECU 54 acquires a reference position Ds (i) for setting the acceleration start position and the deceleration start position.
- the reference position Ds (i) is a variable that sets a reference position for searching for the acceleration start position Da (i) and the deceleration start position Dc (i).
- the value of the reference position Ds (i) is the downhill gradient start position Dd acquired in step S51.
- step S55 the ACC ECU 54 acquires a deceleration start position Dc (i) that is a start position of the deceleration control.
- step S56 the ACC ECU 54 acquires an acceleration start position Da (i) that is a start position of acceleration control.
- the acquisition of the positions in steps S55 and S56 is set, for example, in the range of the search distance QD2 (QD2 ⁇ QD1) from the reference position Ds (i).
- N is an integer equal to or greater than 1 before the vehicle 100 reaches the gradient start position Dd
- the search distance QD2 is shorter than the distance obtained by dividing the search distance QD1 by N. Distance.
- the method similar to other embodiment mentioned above can be used for the acquisition method of each position.
- step S57 the ACC ECU 54 determines whether or not the position of the vehicle 100 has reached the gradient start position Dd. If it is not the gradient start position Dd (step S57: NO), in step S58, the ACC ECU 54 determines whether or not the position of the vehicle 100 has reached the acceleration start position Da (i) acquired in step S56.
- step S59 the ACC ECU 54 adds a counter i for identifying a search target.
- the search range is changed to the near side in the traveling direction of the vehicle 100 from the range searched by the counter i in steps S54 to S56.
- the ACC ECU 54 inputs the acceleration start position Da (i) acquired in step S58 to the reference position Ds (i), so that the updated reference position Ds (i + 1) is used as a reference.
- a deceleration start position Dc (i + 1) and an acceleration start position Da (i + 1) on the nearer side in the traveling direction of the vehicle 100 than (i + 1) are searched.
- the deceleration start position Dc (i + 1) and the acceleration start position Da (i + 1) are searched in the range of the search distance QD2 from the reference position Ds (i + 1).
- step S58 YES
- the ACC ECU 54 proceeds to step S60. Since the vehicle 100 has reached the acceleration start position Da (i), the HVECU 53 needs to perform acceleration control. Therefore, in step S60, the ACC ECU 54 first acquires the position Dp of the vehicle 100.
- step S61 the ACC ECU 54 searches for the counter i that satisfies the acceleration start position Da (i) using the vehicle position Dp acquired in step S60. For example, the ACC ECU 54 searches for the counter i satisfying the relationship of Da (i) ⁇ Dp ⁇ Ds (i) among the counters i updated by the series of processes in steps S54 to S59.
- step S62 the ACC ECU 54 acquires the acceleration start position Da (i) and the deceleration start position Dc (i) based on the counter i searched in step S61.
- the traveling control of the vehicle 100 shown in FIG. 6 is performed using the acceleration start position Da (i) and the deceleration start position Dc (i) set in FIG.
- the process shown in FIG. 18 is repeatedly performed at a predetermined cycle.
- the acceleration control is performed, the vehicle shown in FIG. 14 using the acceleration start position Da (i) and the deceleration start position Dc (i) set in FIG. 100 travel controls are implemented.
- acceleration control and deceleration control are performed a plurality of times before the vehicle enters the downhill. Therefore, the decrease in the charge rate SOC can be performed in a plurality of times, and the decrease amount of the charge rate SOC in the period until traveling on the downhill can be increased.
- the configuration of the vehicle 100 is merely an example in which the engine and the motor are connected by a single clutch on the drive shaft.
- the configuration of the vehicle 100 may be a configuration in which an engine and a motor are connected by two clutches on the drive shaft.
- a power split mechanism using a planetary gear instead of a clutch may be used as the driving force transmission mechanism.
- the configuration of the vehicle 100 may be a configuration in which an engine and two motors are used on the drive shaft, and an engine output and a motor output are respectively extracted by a power split mechanism.
- a driving force transmission mechanism that connects the engine and the motor is not provided, and the engine and the motor are directly connected via the output shaft, or the engine is connected to the output shaft on the front wheel side, and the motor May be connected to the output shaft on the rear wheel side.
- the timing at which the vehicle 100 performs the deceleration control and the downhill acceleration control is not limited to the case where the vehicle 100 performs the cruise control.
- the above-described deceleration control or downhill acceleration control may be performed during travel of the vehicle 100 other than cruise control.
- the speed until the target vehicle speed V1 is reached may be set in a plurality of stages on the travel route in which the deceleration control is performed.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Human Computer Interaction (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
車両制御装置(50)は、ナビゲーション装置(60)から供給される地理情報に基づいて、モータ(32)の回生に適合する下り坂よりも手前の減速開始位置を探索する探索部と、車両(100)が減速開始位置に到達した場合、車速を減少させてバッテリ(40)の充電率を低下させる減速制御を実施する充電率制御部と、を有する。充電率制御部が実施する減速制御では、車両(100)の駆動力をモータ出力のみで取り出す駆動力まで低下させて車速を減少させる。
Description
本出願は、2015年11月27日に出願された日本出願番号2015-231392号に基づくもので、ここにその記載内容を援用する。
駆動力としてモータ出力とエンジン出力とを使用する車両における車両制御に関する。
車輪の回転によりモータを回転させることで、このモータを発電機として使用する回生が知られている。回生により発電される電気エネルギーは蓄電池の充電に用いられる。また、回生は、車両が備える車両制御装置により制御されており、所定の運転条件の成立に合わせて実施される。
車両が下り坂を走行中に回生を実施することで、下り坂の高低差に基づく位置エネルギーを電気エネルギーとして回収することができる。しかし、回生の途中で蓄電池が満充電に達してしまうと、回生により生じたエネルギーを熱等により放出しなければならない。そのため、特許文献1には、下り坂の手前で、蓄電池の充電率を低下させることで、回生の効率を高める構成が開示されている。
充電率を低下させる手法としては、下り坂の手前までにエンジン出力を低下させて、モータ出力の範囲を拡大することが考えられる。しかし、エンジンが低負荷となることで車両の燃費が悪化し、エンジン効率が悪くなるという問題が生じる。
本開示は上記課題に鑑みたものであり、下り坂走行時における回生効率の向上と、エンジン効率の向上とを両立し、車両のエネルギー効率を高めることが可能な車両制御装置を提供することを目的とする。
本開示の一態様では、エンジンと、蓄電池から供給される電力により駆動するモータとを備え、少なくともエンジン出力及びモータ出力のいずれかを駆動力として使用する車両を制御する車両制御装置であって、ナビゲーション装置から供給される地理情報に基づいて、前記モータの回生を実施することができる下り坂を探索する探索部と、探索された前記下り坂よりも手前の減速開始位置において、車速を減少させて前記蓄電池の充電率を低下させる減速制御を実施する充電率制御部と、を有し、前記減速制御では、前記車両の駆動力を前記モータ出力のみで取り出す駆動力まで低下させて車速を減少させる。
これによれば、車速を減少させて下り坂での回生前に蓄電池の充電率を低下させることで、下り坂走行における回生の効率を高める。この減速制御では、車両の駆動力をモータ出力のみで取り出すことで、エンジン効率の低下を抑制する。その結果、回生効率の向上とエンジン効率の向上とを両立し、車両のエネルギー効率を高めることができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一例としての車両100の構成を示す図であり、
図2Aは、車両の走行経路とこの走行経路の勾配とを示す図であり、
図2Bは、クルーズコントロールにおける目標車速の変化を説明する図であり、
図2Cは、バッテリの充電率SOCの変化を説明する図であり、
図2Dは、車両の駆動力の変化を説明する図であり、
図3は、車両100の走行計画を設定する際の処理を説明するフローチャートであり、
図4は、減速開始位置Dcの取得を詳細に説明するフローチャートであり、
図5Aは、減速制御において制御される車速を説明する図であり、
図5Bは、減速制御において制御される車速を説明する図であり、
図6は、車両100の走行制御を説明するフローチャートであり、
図7Aは、加速制御において実施される車速の制御を説明する図であり、
図7Bは、加速制御において実施される車速の制御を説明する図であり、
図8は、下限回避制御を詳細に説明するフローチャートであり、
図9は、下限回避制御を説明する図であり、
図10Aは、車両の走行経路とこの走行経路の勾配とを示す図であり、
図10Bは、目標車速の変化を説明する図であり、
図10Cは、バッテリの充電率SOCの変化を説明する図であり、
図10Dは、車両の駆動力の変化を説明する図であり、
図11は、車両100の走行計画を設定する際の処理を説明するフローチャートであり、
図12は、ステップS35における処理を詳細に示すフローチャートであり、
図13Aは、ステップS35における減速制御の実施の有無を判定する処理を説明する図であり、
図13Bは、ステップS35における減速制御の実施の有無を判定する処理を説明する図であり、
図14は、車両100の走行制御を説明するフローチャートであり、
図15は、下り坂加速制御を示すフローチャートであり、
図16は、減速開始位置Dcの設定を示すフローチャートであり、
図17は、充電率SOCの低下目標値と、下り坂の勾配開始位置Ddから減速開始位置Dcまでの距離Lとの関係を示す図であり、
図18は、第4実施形態に係る走行計画を説明するフローチャートである。
(第1実施形態)
本開示に係る実施形態について図を参照しながら説明する。以下の説明では、エンジン及び走行用のモータから車両走行用の駆動力を得るハイブリッド車両に、本実施形態の車両制御装置を適用している。以下、ハイブリッド車両を単に車両とも記載する。なお、以下の実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
本開示に係る実施形態について図を参照しながら説明する。以下の説明では、エンジン及び走行用のモータから車両走行用の駆動力を得るハイブリッド車両に、本実施形態の車両制御装置を適用している。以下、ハイブリッド車両を単に車両とも記載する。なお、以下の実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
図1は、一例としての車両100の構成を示す図である。車両100は、エンジン31、電動発電機からなるモータ32、クラッチ33、変速機34、駆動軸35、駆動輪37、インバータユニット39、バッテリ(蓄電池)40、車両制御装置50、を主に備えている。また、車両100は、ナビゲーション装置60を備えており、車両制御装置50は、このナビゲーション装置60から地理情報を取得することができる。
エンジン31は、燃料噴射弁から噴射される燃料と空気との混合気を燃焼室内で燃焼させることで所望のエンジン出力を生じさせる。エンジン31としては、燃料としてガソリンを使用するガソリンエンジンであってもよいし、燃料として軽油等を使用するディーゼルエンジンであってもよい。
モータ32は、バッテリ40からの電力により回転することでモータ出力を生じさせるとともに、バッテリ40を発電するための発電装置としても機能する。モータ32は、交流電力により駆動するACモータであり、回転子としてのロータと、このロータの外周に配置され誘起電圧を生じさせるステータと、を備えている。ロータは、変速機34を介して駆動輪37を回転させる駆動軸35に接続されている。ステータは、インバータユニット39を介してバッテリ40に接続されている。
インバータユニット39は、バッテリ40から供給される直流電力とモータ32が生成する交流電力との間で電力変換を行う電力変換装置として機能する。例えば、インバータユニット39は、交流電源を直流電源に変換するコンバータと、直流電力を交流電力に変換するインバータとを備えている。モータ32の駆動時には、バッテリ40からインバータユニット39を介して供給される交流電力によりステータが相の異なる誘起電圧を発生し、ロータを回転させる。また、モータ32の回生時は、駆動輪37の回転に伴うロータの回転により、ステータに交流の発電電力が発生する。この発電電力は、インバータユニット39により整流された後、バッテリ40に供給され、その供給電力によりバッテリ40が充電される。
クラッチ33は、車両100の駆動力に占めるエンジン出力を切り離す伝達切替え部として機能する。エンジン31は、クラッチ33を介して、モータ32の出力軸に駆動連結されている。そのため、HV走行モードでは、車両100は、このクラッチ33によりエンジン31とモータ32とを連結し、エンジン出力及びモータ出力の双方から駆動力を得て走行する。一方、EV走行モードでは、車両100は、クラッチ33によりエンジン31をモータ32から切り離すことで、モータ出力のみから駆動力を得て走行する。
車両制御装置50は、車両100の各部を制御する装置の総称であり、エンジンECU51、モータECU52、HVECU53、ACCECU54、を備えている。エンジンECU51は、エンジン31の駆動を制御する。モータECU52は、モータ32及びインバータユニット39の駆動を制御する。HVECU53は、エンジンECU51及びモータECU52との間で協調制御を行うことで、車両100における各走行モードを制御する。ACCECU54は、ナビゲーション装置60から供給される地理情報に基づいて、クルーズコントロールモード(定速度制御)における車両100の運転計画を行う。
これら各ECU51~54は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。また、各ECU51~54は、バスを介して電気的に接続されており、双方向の通信が可能である。そのため、いずれかのECUに入力された検出信号あるいは操作信号に基づいて、各ECU51~54は、他のECUの出力側に接続された各種機器の駆動を制御することができる。
ナビゲーション装置60は、車両100に地理情報を提供する。ナビゲーション装置60は、例えば、カーナビゲーションシステムや、スマートフォンであり、ACCECU54と有線又は無線を介して接続されている。地理情報は、緯度、経度、及び標高といった地図情報や、これらに関連づけられた施設等の関連情報であり、不図示のデータベースにより管理されている。ACCECU54は、ナビゲーション装置60を介して地理情報を取得することで、車両100の走行や回生に必要な情報を取得することができる。
次に、図2を用いて車両100の回生に伴う動作を説明する。図2Aは、車両100の走行経路とこの走行経路の勾配とを示す図である。図2Bは、クルーズコントロールにおける目標車速の変化を説明する図である。図2Cは、バッテリ40の充電率SOCの変化を説明する図である。図2Dは、車両100の駆動力の変化を説明する図である。
車両100は、所定の条件に適合する下り坂において、バッテリ40を充電するための回生を開始する。図2Aでは、下り坂の走行途中において回生が開始され、下り坂走行に伴う低負荷状態を利用して下り坂走行後においても回生が継続されている。回生では、モータ32の発電により生じた発電電力によりバッテリ40が充電され、充電率SOCを上昇させる(図2C)。
長い下り坂や勾配の大きな下り坂を走行する場合、下り坂での走行を利用した回生途中にバッテリ40の充電率SOCが上限値を超えてしまうことがある。上限値を超えた電力は熱等により放出しなければならなくなり、回生の効率が悪い。そのため、車両100は、回生を開始する前に、バッテリ40の充電率SOCを低減させるための減速制御を行う。減速制御では、車両100を減速させて(図2B)、バッテリ40の充電率SOCを低下させる(図2C)。この減速制御は、車両100の駆動力をEV走行モードに該当する領域まで低下させることで行われる。減速制御により回生の開始前に充電率SOCが低下され(図2C)、その後、下り坂での走行を利用した回生によりバッテリ40を充電することで、充電率SOCを増加させることができる。
次に、図2A~図2Dで示した車両100の走行制御を行うための車両制御装置50の具体的な処理を図を用いて説明する。図3は、車両100の走行計画を設定する際の処理を説明するフローチャートである。図3に示す走行計画は、例えば、車両100を一定の範囲での車速で走行させるクルーズコントロールモード(定車速状態)で実施される。なお、ACCECU54がステップS11~S13の処理を実施することで探索部が実現される。また、ACCECU54がステップS14,S15の処理を実施することで減速位置探索部が実現される。
ステップS11では、ACCECU54は、走行計画に必要な地理情報を取得する。ステップS11で取得される地理情報は、例えば、運転者等がナビゲーション装置60により選択した走行経路に則して取得される。地理情報は、例えば、走行経路上の各地点における緯度及び経度、勾配情報、及び下り坂の勾配距離、である。ACCECU54は、ナビゲーション装置60に対してこれら地理情報の供給を要求する。
ステップS12では、ACCECU54は、回生を実施することができる下り坂を探索する。回生を実施することができる下り坂の条件としては、例えば、勾配情報により取得される下り坂の勾配角度が所定角度以上あり、勾配距離が所定距離以上と成るものの中から選択される。ACCECU54は、ステップS11で取得した地理情報から、該当する下り坂を探索する。
該当する下り坂が検出された場合(ステップS12:YES)、ステップS13では、ACCECU54は、下り坂の勾配開始位置Ddを取得する。例えば、ACCECU54は、下り坂の勾配が開始される位置における、緯度及び経度を勾配開始位置Ddとして登録する。なお、該当する下り坂が検出されない場合(ステップS12:NO)、走行計画は終了される。
ステップS14では、ACCECU54は、減速制御が開示される減速開始位置Dcを取得する。減速開始位置Dcは、車両100の減速制御が開始される位置であり、登録された走行経路においてステップS13で登録された勾配開始位置Ddよりも手前の位置として取得される。
図4は、一例としての、ステップS14における減速開始位置Dcの取得を詳細に説明するフローチャートである。また、図5A,図5Bは、減速制御において制御される車速を説明する図である。この実施形態では、減速開始位置Dcを求めるに際し、減速制御における目標車速V及び駆動力上限値MDをもとに、減速開始位置Dcを取得している。
まず、ステップS141では、ACCECU54は、目標車速V1を設定する。目標車速V1は、車両100の減速制御を実施することで車両100が最終的に到達する車速を示している。図5Aに示すように、ACCECU54は、減速制御による車速の低下量が、減速制御前の車速の大きさに応じて大きくなるよう目標車速V1を設定する。
ステップS142では、ACCECU54は、駆動力上限値MDを設定する。駆動力上限値MDは、車両100が出力できる駆動力の上限を設定する値である。図5Bに示すように、車両100は、駆動力に占めるエンジン出力とモータ出力とを変化させて走行モードを切り替える。ACCECU54は、駆動力上限値MDをEV走行モードに該当する駆動力の範囲に設定することで、減速制御時において、エンジン31の駆動(エンジン出力)が制限され、モータ32の出力(モータ出力)のみが車両100の駆動力となる。
ステップS143では、ACCECU54は、ステップS141で取得された目標車速とステップS142で取得された駆動力上限値MDとに基づいて、減速開始位置Dcを算出する。例えば、ACCECU54は、まず、設定された駆動力上限値MDで、車両100が目標車速V1に達するまでに要する距離を算出する。そして、ACCECU54は、算出した距離をステップS13で取得した勾配開始位置Ddから減速開始位置Dcまでの2点間距離Lとして用いることで、走行経路内において減速開始位置Dcを算出する。
図3に戻り、ステップS15では、ACCECU54は、加速開始位置Daを取得する。加速開始位置Daは、ステップS14で取得された減速開始位置Dcよりも手前の位置であって、車両100が加速制御を開始する位置である。加速制御では、減速制御の開始前に車両100を加速させることで、減速制御における車両100の車速低下量を確保するために行われる。ACCECU54は、例えば、減速開始位置Dcから所定距離だけ手前の位置を加速開始位置Daとして取得する。
加速開始位置Daが取得されると、走行計画は終了する。
次に、走行計画により取得された位置(Dd,Dc,Da)を用いた、車両100の回生に伴う走行制御を説明する。図6は、車両100の走行制御を説明するフローチャートである。図6において、HVECU53がステップS24~S28の処理を実施することで、充電率制御部を実現する。
ステップS21では、HVECU53は、現在の車両位置Dpを取得する。車両位置Dpは、車両100が現在走行中の位置を示し、ACCECU54がナビゲーション装置60から取得する。
ステップS22では、HVECU53は、車両100が回生を開始する勾配開始位置Ddに達したか否かを判定する。HVECU53は、ステップS21で取得した車両位置Dpと走行計画により取得している勾配開始位置Ddとを比較し、車両100が勾配開始位置Ddに達したか否かを判定する。
車両100が勾配開始位置Ddに達していない場合(ステップS22:NO)、ステップS24では、HVECU53は、車両100が減速制御を開始する減速開始位置Dcに達しているか否かを判定する。HVECU53は、車両位置Dpと走行計画により取得している減速開始位置Dcとを比較し、車両100が減速開始位置Dcに達しているか否かを判定する。
車両100が減速開始位置Dcに達していない場合(ステップS24:NO)、ステップS27では、HVECU53は、車両100が加速制御を行う加速開始位置Daに達しているか否かを判定する。HVECU53は、車両位置Dpと走行計画により取得している加速開始位置Daとを比較し、車両100が加速開始位置Daに立っているか否かを判定する。
車両100が加速開始位置Daに達していない場合(ステップS27:NO)、ステップS29では、HVECU53は、目標車速をV0に設定する。目標車速V0は、クルーズコントロールにより設定されている範囲での車両100の車速を示している。すなわち、ステップS29では、HVECU53は、車速をクルーズコントロールで設定されている目標車速V0の範囲に維持する。
一方、車両位置Dpが加速開始位置Daに達している場合(ステップS27:YES)、ステップS28では、HVECU53は、加速制御を開始する。加速制御では、HVECU53は、車速を現在の車速(V0)よりも早くなるよう目標車速V2を設定する。ステップS28で設定される目標車速V2により、エンジンECU51及びモータECU52はエンジン31及びモータ32の駆動力を増加させ、車両100を加速させる。
図7A,図7Bは、一例として、加速制御において実施される車速の制御を説明する図である。図7Aに示すように、HVECU53は、現在の車速Vpが大きいほど、車速増加量が大きくなるよう、加速制御における目標車速V2を設定する。また、図7Bに示すように、HVECU53は、現在の車速Vpが大きいほど、加速度が小さくなるよう、加速制御における加速度を設定する。
図6に戻り、車両100が減速開始位置Dcに達している場合(ステップS24:YES)、ステップS25では、HVECU53は、減速制御を開始する。減速制御では、HVECU53は、車速を加速前の車速V0よりも減速させて、バッテリ40の充電率SOCを低下させる。このとき、HVECU53は、駆動力を走行計画で設定した駆動力上限値MDを超えない範囲に制限する(図5B)。そのため、車両100はEV走行モードに移行し、減速走行を開始する。
ステップS26では、HVECU53は、下限回避制御を行う。下限回避制御は、減速制御の実施によりバッテリ40の充電率SOCが極端に低下することを予防する制御である。この下限回避制御により、減速制御におけるバッテリ40の充電率SOCが大きく低下する場合、HVECU53は減速制御を停止し、車速をクルーズコントロールにおいて設定されている車速V0に戻す。
図8は、ステップS26で実施される下限回避制御を詳細に説明するフローチャートである。図9は、下限回避制御を説明する図である。
ステップS261では、HVECU53は、充電率SOCを閾値Saと比較する。図9に示すように、閾値Saは、減速制御において要求される低下後の充電率SOCの最大値を示している。即ち、減速制御を行う場合、バッテリ40の充電率SOCが閾値Sa未満となるよう車速が制御される。
充電率SOCが閾値Saを超える場合(ステップS261:NO)、HVECU53は、下限回避制御を終了する。充電率SOCが閾値Sa以上であるということは、バッテリ40が十分に充電されており、減速制御を継続しても充電率SOCが低下し過ぎることはないと判断できるからである。
充電率SOCが閾値Sa以下であれば(ステップS261:YES)、ステップS262では、HVECU53は、充電率SOCを閾値Sbと比較する。閾値Sbは、減速制御によって低下できる充電率SOCの下限値を示している。例えば、閾値Sbは、バッテリ40を劣化させる恐れがある充電率SOCに基づいて実験的に取得される。そのため、減速制御では、閾値Saから閾値Sbまでの範囲でバッテリ40の充電率SOCが低下される(図9)。
充電率SOCが閾値Sbを超える場合(ステップS262:NO)、ステップS264では、HVECU53は、減速制御における充電率SOCの低下量を減少させる。このとき、HVECU53は、車速目標値を減速制御において設定した車速V1よりも増加させ(目標車速V3へ)、また、駆動力上限値MDを低下させる。上述したように、駆動力上限値MDは、車両100をEV走行モードとする駆動力の範囲に設定されているため、この駆動力上限値MDを低下させることで、減速制御は維持されるものの、充電率SOCの減少速度が低下する。
充電率SOCが閾値Sb以下であれば(ステップS262:YES)、ステップS263では、HVECU53は、減速制御を停止する。この場合、減速制御を継続すると、充電率SOCが閾値Sbを下回る恐れが生じる。そのため、HVECU53は、車速目標値をV0に戻し、駆動力上限値MDをエンジン31が駆動する範囲まで戻す。
図6に戻り、車両100が勾配開始位置Ddに達している場合(ステップS22:YES)、ステップS23では、HVECU53は、回生を開始する。そのため、車両100が下り坂の走行中に回生を開始することでモータ32により発電された電力は、インバータユニット39を介してバッテリ40に供給され、バッテリ40の充電が開始される。
以上説明したように、この第1実施形態では、車両制御装置50は、下り坂での回生前にバッテリ40の充電率SOCを低下させる減速制御を実施することで、下り坂走行における車両100の回生効率を高める。この減速制御では、車両100の駆動力をモータ出力のみで取り出す駆動力まで低下させることでエンジン31の駆動を停止し、エンジン効率の低下を抑制する。その結果、回生の効率の向上とエンジン効率の向上とを両立し、車両100のエネルギー効率を高めることができる。
・車両100は、駆動力の増加に応じて、モータ出力のみを使用する状態から、エンジン出力と前記モータ出力とを組み合わせて使用する状態へ移行し、減速制御では、車両100の駆動力の上限値をモータ出力のみを使用する範囲で設定する。上記構成により、減速制御において、駆動力をモータ出力のみを使用する範囲で設定するため、車両100の走行状態に影響されることなくエンジン効率の低下を抑制することができる。
・充電率制御部は、減速制御の実施におけるバッテリ40の充電率の変化を監視しており、充電率SOCの低下度合が大きい場合、減速制御を停止する。上記構成により、回生の開始までに減速制御により充電率SOCが過剰に低下することを防止し、バッテリ40の劣化を抑制することができる。
・減速制御において設定される車両100の減速後の車速に基づいて減速開始位置を探索する減速位置探索部を有する。上記構成により、減速制御において設定される車両100の目標車速から減速開始位置を探索することで、減速制御で必要となる車速低下を実施するのに適正な減速開始位置を設定することができる。
・減速位置探索部は、減速制御前の車両100の車速が大きいほど車速低下量が大きくなるよう減速後の車速を設定する。上記構成により、低速走行時において、減速制御により車速が下がり過ぎることを抑制し、ドライバビリィティの低下を抑制することができる。
・充電率制御部は、減速制御を行う前に、車両100を加速させる加速制御を行う。上記構成により、減速前に車速を増加させることができるため、車両100が低速度で走行している場合でも車速低下量を確保することができる。また、減速制御による車速の下がり過ぎを防止することができるため、ドライバビリティの低下を抑制することができる。
・充電率制御部は、加速制御前の車両100の車速が大きいほど加速制御における車速増加量を大きくする。上記構成により、加速制御によって車両が加速することによる運転者等の違和感を軽減することができる。
・充電率制御部は、車両100がクルーズコントロール状態(定速制御状態)である場合に、減速制御を実施する。上記構成により、設定速度に基づく定速制御の状態下において、運転者に違和感を覚えさせない範囲で車両の速度制御を実施することができる。
(第2実施形態)
この第2実施形態では、下り坂において回生を実施する構成は第1実施形態と同じであるが、回生を実施する下り坂の一部の区間において車両100を加速させる下り坂加速制御を実施する構成が第1実施形態と異なる。
この第2実施形態では、下り坂において回生を実施する構成は第1実施形態と同じであるが、回生を実施する下り坂の一部の区間において車両100を加速させる下り坂加速制御を実施する構成が第1実施形態と異なる。
図10は、第2実施形態における回生に伴う処理を説明する図である。図10Aは、車両100の走行経路とこの走行経路の勾配とを示す図である。図10Bは、目標車速の変化を説明する図である。図10Cは、バッテリ40の充電率SOCの変化を説明する図である。図10Dは、車両100の駆動力の変化を説明する図である。
この第2実施形態においても図10A~10Dに示すように、車両100は、所定の条件に該当する下り坂において、回生を行う。この実施形態においても、ACCECU54により、回生を行う条件に適合する下り坂の探索がなされ、車両100がこの下り坂に到達すると、回生が開始される。また、図10A~10Dに示す走行制御においても、回生を実施する前に減速制御を実施している。なお、この第2実施形態においても、減速制御の前に加速制御を実施してもよい。
また、回生を行う下り坂の一部の区間において、車両100は車速を加速させる下り坂加速制御を行う。下り坂加速制御では、下り坂の一部の区間においてエンジン出力を駆動力に使用することなく、下り坂走行における位置エネルギーの一部を車両の運動エネルギーに変換することで、車両100を加速させる(図10B,10D)。その結果、回生に伴う損失を低減するとともに、車両100の運動エネルギーを高めることで、下り坂走行における車両のエネルギー効率を高める。
次に、図10A~10Dで示した車両100の走行制御を行うための車両制御装置50の具体的な処理を、図を用いて説明する。図11は、車両100の走行計画を設定する際の処理を説明するフローチャートである。図11に示す走行計画は、例えば、車両がクルーズコントロールモードである場合に実施される。
ステップS31では、ACCECU54は、走行計画に必要な地理情報を取得する。ステップS31においても、ステップS11と同様、地理情報は運転者等がナビゲーション装置60により選択した走行経路に則して取得される。
ステップS32では、ACCECU54は、回生の条件に適合する下り坂を探索する。このステップS32においても、図3のステップS12と同様の処理が行われる。該当する下り坂が検出された場合(ステップS32:YES)、ACCECU54は、ステップS33に進む。一方、該当する下り坂が検出されなければ(ステップS32:NO)、ACCECU54は、走行計画処理を終了する。
ステップS33では、ACCECU54は、ステップS32で検出された下り坂の曲率を判定する。下り坂の曲率が大きい場合、車両100の速度が変化すると、運転者が違和感を覚える恐れがある。そのため、下り坂の曲率が予め定められた閾値Tαより大きい場合(ステップS33:NO)、ACCECU54は走行計画を終了する。その結果、車両100において減速制御は実施されない。HVECU53がステップS33の処理を実施することで、曲率取得部が実現される。
下り坂の曲率が予め定められた閾値Tαより小さい場合(ステップS33:YES)、ACCECU54はステップS34に進む。ステップS34では、回生を行う下り坂の勾配開始位置Ddを取得する。
ステップS35では、ACCECU54は、充電率SOCの低下が可能か否かを判定する。充電率SOCの低下が可能であれば、ACCECU54は、減速制御をONし(ステップS36)、減速制御が不可能であれば、ACCECU54は、減速制御をOFFする(ステップS37)。充電率SOCが可能か否かの判定は、下り坂を走行する車両100のエネルギー効率に基づいて行われる。具体的には、車両100が減速制御を含む回生を実施しつつ下り坂を走行した場合の車速が、下り坂走行前の車速よりも遅い場合、ACCECU54は、充電率SOCの低下が不可能と判定する。
図12は、ステップS35における処理を詳細に示すフローチャートである。また、図13A,13Bは、ステップS35における減速制御の実施の有無を判定する処理を説明する図である。図12においても、ステップS351~S353までの処理は、図4のステップS141~S143の処理と同様の処理とすることができる。
まず、ステップS351では、ACCECU54は、減速制御における目標車速V1を設定する。次に、ステップS352では、ACCECU54は、減速制御における駆動力上限値MDを設定する。また、ステップS353では、ACCECU54は、ステップS351で取得された目標車速とステップS352で取得された駆動力上限値MDとに基づいて、減速開始位置Dcを算出する。
ステップS354では、ACCECU54は、回生が実施される下り坂の勾配情報を取得する。例えば、ACCECU54は、下り坂の勾配情報として、勾配角度と、勾配距離とを取得する。
ステップS355では、ACCECU54は、減速制御を実施して下り坂の走行を終了したと仮定した場合の車両100の推定車速Veを算出する。推定車速Veは、減速制御を実施した状態で下り坂を走行した場合に、この下り坂の終点での車両100の速度を示す。例えば、ACCECU54は、検出された下り坂を車両100が走行することで得られる位置エネルギーと、減速制御時における車両100の目標車速V1及び車両100の重量とを用いて推定車速Veを算出する。
ステップS356では、ACCECU54は、推定車速Veと車両の現在の速度Vpとを比較する。図13A,13Bに示すように、算出された推定車速(Ve1)が現在の速度Vp以上であれば、減速制御を実施しても下り坂走行における位置エネルギーを下り坂加速制御に用いることで、車両100の速度を復帰させることができる。そのため、ACCECU54は、ステップS357に進み、充電率SOCの低下が可能であると判定する。一方、算出された推定車速(Ve2)が現在の速度Vp未満であれば、減速制御を実施すると下り坂走行における位置エネルギーにより車両100の速度を復帰させることができない。そのため、ACCECU54は、ステップS358に進み、充電率SOCの低下が不可能であると判定する。
図11に戻り、充電率SOCの低下が可能である場合(ステップS35:YES)、ステップS36では、ACCECU54は、減速制御をONとする。そのため、ステップS37では、ACCECU54は、減速開始位置Dcを取得する。ステップS37で取得される減速開始位置Dcは、例えば、ステップS353で算出された値を用いることができる。減速制御をONにすることで、車両100は回生が実施される下り坂より前に、車速を減速させてバッテリの充電率SOCを低下させる。
充電率SOCの低下が不可能である場合(ステップS35:NO)、ステップS38では、ACCECU54は、減速制御をOFFとする。即ち、減速制御による回生効率の向上よりも、下り坂走行におけるエネルギー効率の向上を優先することになる。
次に、第2実施形態における走行計画により取得された位置(Dd,Dc)をもとに、車両100の回生時における処理を説明する。図14は、車両100の走行制御を説明するフローチャートである。図14に示す処理においても、ステップS41,S42,S44,S47,S48の処理は、図6で示した各処理と同様の処理とすることができる。HVECU53が図14のステップS44の処理を実施することで回生制御部が実現され、ステップS43、ステップS43の処理を実施することで下り坂加速制御部が実現される。
ステップS41では、HVECU53は、現在の車両位置Dpを取得する。ステップS42では、HVECU53は、回生を実施する下り坂の勾配開始位置Ddに達したか否かを判定する。車両100が勾配開始位置Ddに達していない場合(ステップS42:NO)、ステップS45では、HVECU53は、減速制御がONに設定されているか否かを判定する。減速制御がONに設定されていない場合(ステップS45:NO)、ステップS48では、HVECU53は、目標車速をV0に設定する。
また、減速制御がONに設定されている場合(ステップS45:YES)、ステップS46では、HVECU53は、車両100が減速開始位置Dcに達しているか否かを判定する。車両100が減速開始位置Dcに達していなければ(ステップS46:NO)、ステップS48では、HVECU53は、目標車速をV0に設定する。
車両100が減速開始位置Dcに達している場合(ステップS46:YES)、ステップS47では、HVECU53は、減速制御を実施する。減速制御では、HVECU53は、EV走行モードにより車両100を車速(V1)まで減速させて、バッテリ40の充電率SOCを低下させる。
車両100が下り坂の勾配開始位置Ddに到達している場合(ステップS42:YES)、ステップS43では、HVECU53は、下り坂加速制御を実施する。この下り坂加速制御において、下り坂走行の一部の区間において、回生を実施することなく車両100を加速させる。
図15は、ステップS43において実施される下り坂加速制御を示すフローチャートである。
ステップS431では、HVECU53は、目標車速V4を設定する。目標車速V4は、下り坂加速制御において車両100が到達することができる車速の上限値を示している。例えば、HVECU53は、クルーズコントロールで設定されている車速増加量の範囲内で現在の車速Vp(又は減速制御後の車速)に増加速度を設定することで目標車速V4を設定する。
ステップS432では、HVECU53は、エンジン出力の伝達を切り離す。例えば、HVECU53は、クラッチ33にエンジン31とモータ32の接続を切り離すよう命令する。そのため、クラッチ33は、開状態となりエンジン31の駆動力への関与を解除する。
ステップS433では、HVECU53は、エンジン31を停止させる。例えば、HVECU53は、エンジンECU51に対してエンジン31を停止するよう命令する。エンジンECU51はこの命令を受けてエンジン31の内燃運動を停止させる。
ステップS434では、HVECU53は、車両100の加速度を監視する。車両100の下り坂走行中に、位置エネルギーにより加速度が増加すると、運転者等に違和感を覚えさせる恐れがある。そのため、加速度が閾値Ta以上であれば(ステップS434:YES)、ステップS435では、HVECU53は、車両100を減速させる負トルク制御を実施する。この負トルク制御では、HVECU53は、モータECU52に、モータ32のロータの回転方向と逆方向のトルクを生じさせるよう命令する。モータECU52はこの命令を受けて、負のトルクが生じるようステータを印加する。
ステップS436では、HVECU53は、車両100が回生を開始できる条件となったか否かを判定する。回生を開始できる条件は、例えば、下り坂において車両100が予め定められた距離を走行した場合等である。車両100が回生を開始できる状態になければ(ステップS436:NO)、HVECU53は、ステップS434に戻り、加速度の監視を継続する。一方、車両100が回生を開始できる状態であれば(ステップS436:YES)、HVECU53は、下り坂加速制御に係る処理を終了する。
図14に戻り、ステップS44では、HVECU53は、回生を実施する。回生により、モータ32が発電した電力は、インバータユニット39を介してバッテリ40に供給され、バッテリ40が充電される。
ここで、下り坂加速制御を下り坂の勾配開始地点から実施することは一例に過ぎない。これ以外にも、下り坂走行中に、下り坂加速制御を複数回に分けて行うものであっても良い。また、下り坂加速制御を回生の後に実施するものであってもよい。
下り坂加速制御において、車両100がナビゲーション装置60を備えていることは必須の構成ではない。例えば、車両100が不図示の勾配検出センサを備え、HVECU53がこの勾配検出センサからの出力により車両100が下り坂を走行していることを判定することで、下り坂加速制御と回生とを実施する構成としてもよい。この場合、図14のステップS41においてHVECU53が勾配検出センサからの出力により下り坂の勾配開始位置を判定すると、一連の処理(ステップS42~S48)を実施する。また、減速開始位置Dcの検出は、このステップS43内において実施される。
以上説明したように、この第2実施形態では、車両100は、回生を行う下り坂の一部の区間において、下り坂加速制御により加速する。この下り坂加速制御では、下り坂の一部の区間において、車両100にエンジン出力を駆動出力として使用させず、且つ回生を伴わない走行をさせる。即ち、この一部の区間において、下り坂の位置エネルギーから運動エネルギーへの直接的な変換がなされる。その結果、車両100が下り坂を走行する際の位置エネルギーを回生により電気エネルギーへ変換する割合を低くし、車両のエネルギー効率を向上させることができる。
・車両100はエンジン出力の駆動力への伝達を切り替えるクラッチ33(伝達切替え部)を有し、下り坂加速制御部は、下り坂加速制御において、伝達切替え部にエンジン出力の伝達を切り離させる。上記構成により、下り坂加速制御において、エンジンブレーキ等による損失を低減することができ、エネルギー効率を向上させることができる。
・下り坂加速制御部は、下り坂加速制御において、エンジンの駆動を停止させる。上記構成により、下り坂加速制御において、低負荷時におけるエンジンの燃費悪化を抑制でき、エネルギー効率を向上させることができる。
・下り坂加速制御部は、下り坂加速制御において、車両100の加速度が閾値以上と成る場合、モータ32に負のトルクを生じさせる。上記構成により、車両100の加速に伴う運転者等の違和感を抑制することができる。
・ナビゲーション装置60から供給される地理情報に基づいて、下り坂の曲率を取得する曲率取得部を有し、下り坂加速制御部は、曲率が閾値以上である場合、下り坂加速制御を実施しない。上記構成により、曲率が大きい下り坂では下り坂加速制御を行わないため、運転者等の違和感を抑制することができる。
・下り坂加速制御を実施する前に、車両100を減速走行させる減速制御を実施する減速制御部を有する。上記構成により、所定の速度まで低下させた後、車両を加速させることができるため、下り坂加速制御に伴う車速の極端な増加を抑制することができる。
・下り坂加速制御部は、車両が定速走行状態である場合に、前記下り坂加速制御を実施する。上記構成により、設定速度に基づく定速制御の状態下において、運転者に違和感を覚えさせない範囲で車両の速度制御を実施することができる。
(第3実施形態)
減速開始位置Dcを目標車速V1に基づいて設定することは一例に過ぎない。例えば、充電率SOCの低下目標値に基づいて設定してもよい。図16は、第3実施形態において、減速開始位置Dcの設定を示すフローチャートである。図16に示すフローチャートは、例えば、図3のステップS14で用いられる処理である。また、図17は、充電率SOCの低下目標値(SOC低下目標値)と、下り坂の勾配開始位置Ddから減速開始位置Dcまでの距離(2点間距離)Lとの関係を示す図である。
減速開始位置Dcを目標車速V1に基づいて設定することは一例に過ぎない。例えば、充電率SOCの低下目標値に基づいて設定してもよい。図16は、第3実施形態において、減速開始位置Dcの設定を示すフローチャートである。図16に示すフローチャートは、例えば、図3のステップS14で用いられる処理である。また、図17は、充電率SOCの低下目標値(SOC低下目標値)と、下り坂の勾配開始位置Ddから減速開始位置Dcまでの距離(2点間距離)Lとの関係を示す図である。
図16において、ステップS144では、ACCECU54は、SOC低下目標値を設定する。SOC低下目標値は、図9で示したのと同様、閾値SaからSbの範囲内において設定される。
ステップS145では、ACCECU54は、駆動力上限値MDを設定する。駆動力上限値MDは、第1実施形態と同様、車両100がEV走行を行う駆動力の範囲で設定される。
ステップS146では、ACCECU54は、ステップS144で取得されたSOC低下目標値に基づいて、減速開始位置Dcを取得する。このとき、ACCECU54は、SOC低下目標値が増加するに従い、2点間距離Lが増加する関係と成るよう、減速開始位置Dcを設定する。
例えば、ACCECU54は、図17に示されるSOC低下目標値と2点間距離Lとの関係を規定したマップを備えている。このマップは、ステップS145で設定された駆動力上限値MDに応じて、SOC低下目標値と2点間距離との関係が規定されている。そのため、駆動力上限値MDが大きいほど、SOC低下目標値が同じでも2点間距離Lが短くなる。逆に、駆動力上限値MDが小さいほど、SOC低下目標値が同じでも2点間距離Lが長くなる。
以上説明したようにこの第3実施形態では、減速制御における減速開始位置Dcをバッテリ40の充電率SOCの低下目標値に応じて設定するため、減速制御における意図する充電率SOCの低下を達成することができる。
(第4実施形態)
上述した第1~第3実施形態において、下り坂を走行する前に減速制御を1回だけ行うことは一例に過ぎず、下り坂を走行する前に減速制御を複数回繰り返すものであってもよい。また、減速制御の実施前に加速制御を行う場合、下り坂の手前で加速制御と減速制御を複数回繰り返すものであってもよい。
上述した第1~第3実施形態において、下り坂を走行する前に減速制御を1回だけ行うことは一例に過ぎず、下り坂を走行する前に減速制御を複数回繰り返すものであってもよい。また、減速制御の実施前に加速制御を行う場合、下り坂の手前で加速制御と減速制御を複数回繰り返すものであってもよい。
図18は、第4実施形態に係る走行計画を説明するフローチャートである。この走行計画により取得された減速開始位置Dc及び加速開始位置Daは、例えば、図6に示す走行制御に使用される。
ステップS51では、ACCECU54は、地理情報を取得する。また、ステップS52では、ACCECU54は、回生を実施できる下り坂を探索する。ACCECU54は、現在の車両の位置から探索距離QD1の範囲で該当する下り坂を探索する。下り坂が検出された場合(ステップS52:YES)、ステップS53では、ACCECU54は、勾配開始位置Ddを取得する。
ステップS54では、ACCECU54は、加速開始位置及び減速開始位置を設定するための基準位置Ds(i)を取得する。基準位置Ds(i)は、加速開始位置Da(i)と減速開始位置Dc(i)の探索を行うための基準とする位置を設定する変数である。例えば、最初の探索においては、基準位置Ds(i)の値は、ステップS51で取得された下り坂の勾配開始位置Ddとなる。
ステップS55では、ACCECU54は、減速制御の開始位置である減速開始位置Dc(i)を取得する。ステップS56では、ACCECU54は、加速制御の開始位置である加速開始位置Da(i)を取得する。ステップS55,S56における位置の取得は、例えば、基準位置Ds(i)から探索距離QD2(QD2<QD1)の範囲で設定される。車両100が勾配開始位置Ddに達するまでに減速制御と加速制御とをN回(Nは1以上の整数)実施する走行計画では、探索距離QD2は、探索距離QD1をNで割った距離より短い距離となる。また、各位置の取得方法は上述した他の実施形態と同様の手法を用いることができる。
ステップS57では、ACCECU54は、車両100の位置が勾配開始位置Ddに到達しているか否かを判定する。勾配開始位置Ddでなければ(ステップS57:NO)、ステップS58では、ACCECU54は、車両100の位置がステップS56で取得した加速開始位置Da(i)に到達しているか否かを判定する。
車両100が加速開始位置Da(i)に到達していない場合(ステップS58:NO)、ステップS59では、ACCECU54は、探索対象を識別するカウンタiを加算する。カウンタiを加算(i+1)することで、ステップS54~S56において、探索範囲がカウンタiで探索された範囲よりも車両100の進行方向の手前側に変更される。具体的には、ACCECU54は、基準位置Ds(i)にステップS58で取得した加速開始位置Da(i)を入力することで、更新後の基準位置Ds(i+1)を基準として、この基準位置Ds(i+1)よりも車両100の進行方向で手前側の減速開始位置Dc(i+1)と加速開始位置Da(i+1)とが探索される。なお、この実施形態においても、減速開始位置Dc(i+1)と加速開始位置Da(i+1)とは、基準位置Ds(i+1)から探索距離QD2の範囲で探索される。
車両100が加速開始位置Da(i)に到達している場合(ステップS58:YES)、ACCECU54は、ステップS60に進む。車両100が加速開始位置Da(i)に達しているため、HVECU53は加速制御を実施する必要がある。そのため、ステップS60では、ACCECU54は、まず、車両100の位置Dpを取得する。
ステップS61では、ACCECU54は、ステップS60で取得した車両位置Dpを用いて加速開始位置Da(i)を満たすカウンタiを探索する。例えば、ACCECU54は、ステップS54~S59の一連の処理により更新されたカウンタiの内、Da(i)≦Dp<Ds(i)の関係を満たすカウンタiを探索する。
ステップS62では、ACCECU54は、ステップS61で探索されたカウンタiに基づいて、加速開始位置Da(i)と、減速開始位置Dc(i)を取得する。
そして、図18において設定された加速開始位置Da(i)と減速開始位置Dc(i)とを用いて、図6に示した車両100の走行制御が実施される。無論、図18に示す処理は、所定周期で繰り返し実施される。また、第2実施形態の別例として、加速制御を実施する場合、図18において設定された加速開始位置Da(i)と減速開始位置Dc(i)とを用いて、図14に示した車両100の走行制御が実施される。
以上説明したようにこの第4実施形態では、車両が下り坂に侵入する前に、加速制御と減速制御を複数回実施する。そのため、充電率SOCの低下を複数回に分けて実施することができ、下り坂を走行するまでの期間における充電率SOCの低下量を増加させることができる。
(その他の実施形態)
車両100の構成として、駆動軸においてエンジンとモータとを1つのクラッチで繋ぐ構成としたことは一例に過ぎない。車両100の構成としては、駆動軸においてエンジンとモータとを2つのクラッチで繋ぐ構成としてもよい。また、駆動力伝達機構として、クラッチではなく遊星ギアを用いた動力分割機構を用いるものであってもよい。この場合、車両100の構成は、駆動軸においてエンジンと2つのモータとを用い、動力分割機構により、それぞれエンジン出力とモータ出力とを取り出す構成としてもよい。さらに、車両100の構成として、エンジンとモータとを繋ぐ駆動力伝達機構を備えず、エンジンとモータとが出力軸を介して直結されている構成や、エンジンを前輪側の出力軸に繋ぎ、モータを後輪側の出力軸に繋ぐ構成であってもよい。
車両100の構成として、駆動軸においてエンジンとモータとを1つのクラッチで繋ぐ構成としたことは一例に過ぎない。車両100の構成としては、駆動軸においてエンジンとモータとを2つのクラッチで繋ぐ構成としてもよい。また、駆動力伝達機構として、クラッチではなく遊星ギアを用いた動力分割機構を用いるものであってもよい。この場合、車両100の構成は、駆動軸においてエンジンと2つのモータとを用い、動力分割機構により、それぞれエンジン出力とモータ出力とを取り出す構成としてもよい。さらに、車両100の構成として、エンジンとモータとを繋ぐ駆動力伝達機構を備えず、エンジンとモータとが出力軸を介して直結されている構成や、エンジンを前輪側の出力軸に繋ぎ、モータを後輪側の出力軸に繋ぐ構成であってもよい。
車両100が減速制御及び下り坂加速制御を実施するタイミングは、車両100がクルーズコントロールを実施している場合に限定されない。例えば、クルーズコントロール以外の車両100の走行時において、上述した減速制御や下り坂加速制御を実施するものであってもよい。
減速制御において目標車速V1を1つだけ設定するのではなく、減速制御が実施される走行経路において、目標車速V1に到達するまでの速度を複数段に設定するものであってもよい。上記構成により、減速制御における車速を段階的に低減させることで、運転者等に違和感を生じさせることなく車両100を減速させることができる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (9)
- エンジン(31)と、蓄電池(40)から供給される電力により駆動するモータ(32)とを備え、少なくともエンジン出力及びモータ出力のいずれかを駆動力として使用する車両(100)を制御する車両制御装置(50)であって、
ナビゲーション装置(60)から供給される地理情報に基づいて、前記モータの回生を実施することができる下り坂を探索する探索部(S2)と、
探索された前記下り坂よりも手前の減速開始位置において、車速を減少させて前記蓄電池の充電率を低下させる減速制御を実施する充電率制御部(S25)と、を有し、
前記減速制御では、前記車両の駆動力を前記モータ出力のみで取り出す駆動力まで低下させて車速を減少させる、車両制御装置。 - 前記車両は、前記駆動力の増加に応じて、前記モータ出力のみを使用する状態から、前記エンジン出力と前記モータ出力とを組み合わせて使用する状態へ移行し、
前記減速制御では、前記車両の駆動力の上限値を前記モータ出力のみを使用する範囲で設定する、請求項1に記載の車両制御装置。 - 前記充電率制御部は、前記減速制御の実施における前記蓄電池の充電率の変化を監視しており、
前記充電率が閾値以下となる場合、前記減速制御を停止する、請求項1又は請求項2に記載の車両制御装置。 - 前記減速制御において設定される前記車両の減速後の車速に基づいて前記減速開始位置を探索する減速位置探索部(S14)を有する、請求項1から請求項3のいずれか一項に記載の車両制御装置。
- 前記減速位置探索部は、前記減速制御前の前記車両の車速が大きいほど速度低下量が大きくなるよう前記減速後の車速を設定する、請求項4に記載の車両制御装置。
- 前記充電率制御部は、前記減速制御を行う前に、前記車両を加速させる加速制御を行う、請求項1から請求項5のいずれか一項に記載の車両制御装置。
- 前記充電率制御部は、前記加速制御前の前記車両の車速が大きいほど前記加速制御における車速増加量を大きくする、請求項6に記載の車両制御装置。
- 前記車両が前記下り坂を走行する際、前記下り坂の一部の区間において、前記車両に、前記エンジン出力を前記駆動力として使用させず、且つ前記モータの回生を伴わない加速を実施させる下り坂加速制御部(S43)を有する、請求項1から請求項7のいずれか一項に記載の車両制御装置。
- 前記下り坂加速制御部は、前記車両が車速を設定速度に制御する定速制御状態である場合に、前記減速制御を実施する、請求項8に記載の車両制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016005438.6T DE112016005438B4 (de) | 2015-11-27 | 2016-11-08 | Fahrzeugsteuerungseinrichtung |
US15/779,765 US10538234B2 (en) | 2015-11-27 | 2016-11-08 | Vehicle control device |
CN201680069238.7A CN108290572B (zh) | 2015-11-27 | 2016-11-08 | 车辆控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-231392 | 2015-11-27 | ||
JP2015231392A JP6421742B2 (ja) | 2015-11-27 | 2015-11-27 | 車両制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090423A1 true WO2017090423A1 (ja) | 2017-06-01 |
Family
ID=58763998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083098 WO2017090423A1 (ja) | 2015-11-27 | 2016-11-08 | 車両制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10538234B2 (ja) |
JP (1) | JP6421742B2 (ja) |
CN (1) | CN108290572B (ja) |
DE (1) | DE112016005438B4 (ja) |
WO (1) | WO2017090423A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515875B2 (ja) * | 2016-06-10 | 2019-05-22 | 株式会社デンソー | 車載電源システム |
GB2552021B (en) * | 2016-07-08 | 2019-08-28 | Jaguar Land Rover Ltd | Improvements in vehicle speed control |
JP7139740B2 (ja) * | 2018-07-12 | 2022-09-21 | いすゞ自動車株式会社 | 車両の制御装置、及び車両 |
KR20210154298A (ko) * | 2020-06-11 | 2021-12-21 | 현대자동차주식회사 | 연료전지 차량의 전력 제어 시스템 및 방법 |
WO2023007529A1 (ja) * | 2021-07-26 | 2023-02-02 | 日産自動車株式会社 | ハイブリッド車両の回生制御方法および回生制御装置 |
CN113879301B (zh) * | 2021-10-19 | 2023-06-23 | 中寰卫星导航通信有限公司 | 一种车辆控制方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005160269A (ja) * | 2003-11-28 | 2005-06-16 | Equos Research Co Ltd | 駆動制御装置、及びハイブリッド車両 |
JP2012106652A (ja) * | 2010-11-18 | 2012-06-07 | Toyota Motor Corp | 車両制御装置 |
JP2014054874A (ja) * | 2012-09-11 | 2014-03-27 | Daimler Ag | ハイブリッド車両のオートクルーズ制御装置 |
JP2014518802A (ja) * | 2011-04-27 | 2014-08-07 | ダイムラー・アクチェンゲゼルシャフト | ハイブリッド駆動制御装置 |
JP2015013509A (ja) * | 2013-07-03 | 2015-01-22 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | ハイブリッド車両のオートクルーズ制御装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3336777B2 (ja) | 1994-10-25 | 2002-10-21 | 株式会社エクォス・リサーチ | ハイブリッド車両及びハイブリッド車両の制御方法 |
JP3374802B2 (ja) | 1999-09-24 | 2003-02-10 | 株式会社日立製作所 | ハイブリッド車両 |
EP2071162B1 (en) * | 2006-10-03 | 2013-05-15 | Mitsubishi Electric Corporation | Hybrid vehicle |
JP5045685B2 (ja) * | 2009-01-20 | 2012-10-10 | アイシン・エィ・ダブリュ株式会社 | 経路案内装置、経路案内方法及びコンピュータプログラム |
JP5332907B2 (ja) * | 2009-05-27 | 2013-11-06 | 日産自動車株式会社 | 電動車両のバッテリ充電制御装置 |
CA2797787C (en) | 2010-04-29 | 2019-07-09 | Wisconsin Alumni Research Foundation | Metabolic biomarkers of autism |
JP5429197B2 (ja) * | 2011-01-11 | 2014-02-26 | トヨタ自動車株式会社 | 車両制御装置 |
JP5692405B2 (ja) * | 2011-11-04 | 2015-04-01 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
JP5765194B2 (ja) | 2011-11-08 | 2015-08-19 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
CN104185584B (zh) * | 2012-03-16 | 2016-12-07 | 日产自动车株式会社 | 混合动力车辆的驱动力控制装置以及混合动力车辆的驱动力控制方法 |
JP2014103771A (ja) | 2012-11-20 | 2014-06-05 | Daimler Ag | 電気自動車の回生制御装置 |
GB2508670A (en) * | 2012-12-10 | 2014-06-11 | Jaguar Land Rover Ltd | Hybrid vehicle and boost control for gradients |
JP5811148B2 (ja) | 2013-07-11 | 2015-11-11 | トヨタ自動車株式会社 | 回生発電機付車両 |
SE538539C2 (sv) * | 2014-07-07 | 2016-09-13 | Scania Cv Ab | Styrning av förberedande åtgärder i ett fordon |
JP6269607B2 (ja) * | 2015-07-22 | 2018-01-31 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP6347235B2 (ja) * | 2015-07-30 | 2018-06-27 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP6249003B2 (ja) * | 2015-09-30 | 2017-12-20 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP6269641B2 (ja) * | 2015-11-19 | 2018-01-31 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP6436071B2 (ja) | 2015-12-07 | 2018-12-12 | 株式会社デンソー | 車両の制御装置 |
-
2015
- 2015-11-27 JP JP2015231392A patent/JP6421742B2/ja active Active
-
2016
- 2016-11-08 US US15/779,765 patent/US10538234B2/en active Active
- 2016-11-08 WO PCT/JP2016/083098 patent/WO2017090423A1/ja active Application Filing
- 2016-11-08 DE DE112016005438.6T patent/DE112016005438B4/de active Active
- 2016-11-08 CN CN201680069238.7A patent/CN108290572B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005160269A (ja) * | 2003-11-28 | 2005-06-16 | Equos Research Co Ltd | 駆動制御装置、及びハイブリッド車両 |
JP2012106652A (ja) * | 2010-11-18 | 2012-06-07 | Toyota Motor Corp | 車両制御装置 |
JP2014518802A (ja) * | 2011-04-27 | 2014-08-07 | ダイムラー・アクチェンゲゼルシャフト | ハイブリッド駆動制御装置 |
JP2014054874A (ja) * | 2012-09-11 | 2014-03-27 | Daimler Ag | ハイブリッド車両のオートクルーズ制御装置 |
JP2015013509A (ja) * | 2013-07-03 | 2015-01-22 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | ハイブリッド車両のオートクルーズ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108290572B (zh) | 2021-01-05 |
JP6421742B2 (ja) | 2018-11-14 |
DE112016005438T5 (de) | 2018-08-09 |
CN108290572A (zh) | 2018-07-17 |
US10538234B2 (en) | 2020-01-21 |
JP2017095029A (ja) | 2017-06-01 |
DE112016005438B4 (de) | 2024-05-08 |
US20190241174A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017090423A1 (ja) | 車両制御装置 | |
KR101742397B1 (ko) | 하이브리드 차량 | |
US10518768B2 (en) | Hybrid vehicle and control method for hybrid vehicle | |
US9499162B2 (en) | Hybrid vehicle | |
US20150019097A1 (en) | Control system for vehicle | |
WO2017090424A1 (ja) | 車両制御装置 | |
JP6213497B2 (ja) | ハイブリッド車両 | |
US9108526B2 (en) | Hybrid vehicle | |
JP2017178134A (ja) | ハイブリッド車両 | |
JP6179504B2 (ja) | ハイブリッド車両 | |
JP6319077B2 (ja) | ハイブリッド車両 | |
JP2015143072A (ja) | ハイブリッド車両 | |
JP5696790B2 (ja) | 車両および車両の制御方法 | |
KR101757987B1 (ko) | 차량 제어 장치 및 차량 제어 방법 | |
JP6213498B2 (ja) | ハイブリッド車両 | |
JP2015104149A (ja) | 車両 | |
JP2016155486A (ja) | ハイブリッド車両 | |
JP7087999B2 (ja) | ハイブリッド車両の駆動力制御装置 | |
WO2014038442A1 (ja) | ハイブリッド車両の制御装置 | |
JPWO2013061414A1 (ja) | 車両および車両の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16868371 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016005438 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16868371 Country of ref document: EP Kind code of ref document: A1 |