WO2017090286A1 - 半導体集積回路及び定電流駆動システム - Google Patents

半導体集積回路及び定電流駆動システム Download PDF

Info

Publication number
WO2017090286A1
WO2017090286A1 PCT/JP2016/074546 JP2016074546W WO2017090286A1 WO 2017090286 A1 WO2017090286 A1 WO 2017090286A1 JP 2016074546 W JP2016074546 W JP 2016074546W WO 2017090286 A1 WO2017090286 A1 WO 2017090286A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
constant current
circuit
transistor
semiconductor integrated
Prior art date
Application number
PCT/JP2016/074546
Other languages
English (en)
French (fr)
Inventor
健悟 島
青木 大輔
聡規 宇留野
淳一 松原
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Priority to EP16868236.7A priority Critical patent/EP3382494A4/en
Priority to US15/777,832 priority patent/US11009899B2/en
Publication of WO2017090286A1 publication Critical patent/WO2017090286A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the output voltage can be adjusted, but a constant current output cannot be obtained.
  • an LED light-emitting diode
  • brightness adjustment of the LED is realized by adjusting the amount of current flowing through the LED.
  • a semiconductor integrated circuit capable of realizing an adjustable constant current output and a constant current driving system mounted with the semiconductor integrated circuit have been desired.
  • the semiconductor integrated circuit according to the first embodiment of the present invention includes a constant voltage circuit that outputs a constant voltage, and an input voltage that is the same as the node voltage at the intermediate portion in the connection path between the output of the constant voltage circuit and the external resistor. Is input to the first gate electrode, one first main electrode region is connected to a fixed power source, and the other second main electrode region is connected to an external power source that supplies a power source different from the fixed power source via a load. And a constant current circuit including a first transistor that causes a constant current to flow between the first main electrode region and the second main electrode region based on an input voltage input to the first gate electrode.
  • the constant current circuit is connected between the constant voltage circuit and the intermediate portion, and is connected to the intermediate portion by an external resistor. And a resistor for generating a node voltage obtained by dividing a constant voltage.
  • the constant current circuit is configured to include the first transistor and a resistor that constitutes a divided resistor with an external resistor.
  • the node voltage at the intermediate part can be adjusted by adjusting the resistance value of the external resistor. For this reason, since the constant current circuit is constituted by two elements, the constant current circuit can be simplified.
  • the constant current circuit is connected between the first transistor and the load, and the constant voltage is An input voltage is input to the second gate electrode, one third main electrode region is connected to the second main electrode region, and the other fourth main electrode region is connected to the load and input to the second gate electrode.
  • the constant current circuit is input to the first gate electrode of the first transistor with respect to the node voltage at the intermediate portion.
  • a current mirror circuit for setting the input voltage to the same voltage.
  • the constant current circuit includes the first transistor and the current mirror circuit.
  • the node voltage at the intermediate part can be adjusted by adjusting the external resistor.
  • the intermediate node voltage is input to the first gate electrode of the first transistor as the same input voltage via the current mirror circuit. For this reason, a constant current circuit can be constructed easily.
  • the constant current flowing through the load can be adjusted by adjusting the resistance value of the external resistor of the circuit board. For this reason, in the semiconductor integrated circuit of the constant current drive system, it is not necessary to design and manufacture again.
  • the constant current drive system according to the sixth embodiment of the present invention is the constant current drive system according to the fifth embodiment, wherein an external power supply is connected to the load.
  • FIG. 1 is a circuit block diagram of a semiconductor integrated circuit according to a first embodiment of the present invention and a constant current drive system in which the semiconductor integrated circuit is mounted on a circuit board.
  • 2 is a graph showing input / output characteristics of a first transistor of a constant current circuit in the semiconductor integrated circuit shown in FIG. 1.
  • FIG. 5 is a circuit block diagram of a semiconductor integrated circuit according to a second embodiment of the present invention and a constant current drive system in which the semiconductor integrated circuit is mounted on a circuit board.
  • 4 is a graph showing input / output characteristics of a first transistor of a constant current circuit in the semiconductor integrated circuit shown in FIG. 3.
  • a vehicle battery is used for the external power source 12.
  • the external power supply 12 is connected to one end of the load 14.
  • a voltage of 12V or 24V is supplied from the external power supply 12 to the load 14.
  • an LED is used as the load 14.
  • the other end of the load 14 is connected to the semiconductor integrated circuit 16.
  • One end of the external resistor 18 is connected to the semiconductor integrated circuit 16, and the other end of the external resistor 18 is connected to the fixed power source 22.
  • the fixed power supply 22 supplies a voltage different from the voltage supplied from the external power supply 12 to the semiconductor integrated circuit 16 and is 0 V (ground) here.
  • the semiconductor integrated circuit 16 generates a constant voltage and outputs the constant voltage.
  • the semiconductor integrated circuit 16 can drive the load 14 with a constant current and adjust the constant current by adjusting the resistance value of the external resistor 18.
  • a constant current circuit 32 More specifically, the constant current circuit 32 includes a resistor 34 and a first transistor 36.
  • the resistor 34 is built in the semiconductor integrated circuit 16 and set to a certain resistance value.
  • the resistor 34 is connected in series with the external resistor 18, and the resistor 34 and the external resistor 18 are configured as divided resistors. Therefore, the constant voltage output from the constant voltage circuit 30 is divided by the dividing resistor, and the divided voltage is used as the node voltage of the intermediate unit 18.
  • the intermediate portion 38 is an intermediate portion in the connection path between the output of the constant voltage circuit 30 and the external resistor 18 in the semiconductor integrated circuit 16.
  • the first transistor 36 is configured by an n-channel insulated gate field effect transistor (IGFET: Insulated Gate Field Effect Transistor).
  • IGFETs include metal-oxide-semiconductor field effect transistors (MOSFET: Metal-Oxide-Semiconductor-Field-Effect-Transistor), metal-insulator-semiconductor field-effect transistors (MISFET: Metal-Insulator-Semiconductor-Field-Effect-Transistor), etc. include.
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • MISFET Metal-insulator-semiconductor field-effect transistors
  • the first gate electrode of the first transistor 36 is connected to the intermediate section 38, and the node voltage of the intermediate section 18 is applied to the first gate electrode as an input voltage.
  • the node voltage of the intermediate portion 38 between the output of the constant voltage circuit 30 and the external resistor 18 is based on the resistance value of the external resistor 18. Adjusted. When the node voltage is adjusted by the external resistor 18, an input voltage having the same voltage as the node voltage is input to the first gate electrode of the first transistor 36 of the constant current circuit 32.
  • the horizontal axis represents the input voltage [V] input to the first gate electrode of the first transistor 36.
  • the vertical axis represents the current [mA] flowing between the source region and the drain region of the first transistor 36.
  • Symbol A represents voltage-current characteristics when the resistance value of the external resistor 18 is adjusted to 4 [k ⁇ ].
  • Reference symbol B represents voltage-current characteristics when the resistance value of the external resistor 18 is adjusted to 10 [k ⁇ ].
  • the input voltage input to the first gate electrode changes. Based on this input voltage, the source region and the drain are changed.
  • a constant current can flow between the region and the saturation region. For example, when the constant voltage output from the constant voltage circuit 30 is 5 [V] and the resistance value of the external resistor 18 is 4 [k ⁇ ], a constant current of 0.8 [mA] flows through the first transistor 36. .
  • the constant voltage output from the constant voltage circuit 30 is set to, for example, 5 [V] and the resistance value of the external resistor 18 is set to 10 [k ⁇ ]
  • the first transistor 36 has 1..
  • a constant current of 8 [mA] flows.
  • the semiconductor integrated circuit 16 when the constant voltage output from the constant voltage circuit 30 is in the range of 8 [V] to 15 [V], the first transistor 36 has an accuracy of ⁇ 20 [%]. Thus, a constant current can flow.
  • the current flowing from the external power source 12 to the load 14 is a constant current flowing to the first transistor 36, a constant current output that can be adjusted by the external resistor 18 can be realized.
  • the brightness of the LED can be easily adjusted by replacing the external resistor 18 and adjusting the resistance value (adjusting the node voltage of the intermediate unit 38). it can.
  • the constant current circuit 32 includes the first transistor 36 and the resistor 34 that forms a divided resistor by the external resistor 18.
  • the node voltage of the intermediate unit 38 can be adjusted by adjusting the resistance value of the external resistor 18. For this reason, since the constant current circuit 32 is comprised by two elements, the constant current circuit 32 can be made into a simple structure.
  • the constant current flowing through the load 14 can be adjusted by adjusting the resistance value of the external resistor 18 of the circuit board 20.
  • the semiconductor integrated circuit 16 of the constant current drive system 10 it is possible to adjust the constant current flowing through the load 14 only by replacing the external resistor 18 without requiring redesign and manufacture.
  • the constant current drive system 10 including the external power supply 12 can be constructed easily.
  • the constant current drive system 10 according to the present embodiment is similar to the constant current drive system 10 according to the first embodiment, and includes an external power supply 12, a load 14, and a semiconductor integrated circuit 16. And an external resistor 18 and a circuit board 20.
  • the constant current drive system 10 according to the present embodiment differs from the constant current drive system 10 according to the first embodiment in the circuit configuration of the semiconductor integrated circuit 16 mounted on the circuit board 20.
  • the semiconductor integrated circuit 16 includes a constant voltage circuit 30 and a constant current circuit 40.
  • the constant current circuit 40 includes a first transistor 36, a second transistor 42 connected between the first transistor 36 and the load 14, and a current mirror circuit 44 in addition to the first transistor 36. .
  • the current mirror circuit 44 includes an npn bipolar transistor 46 and a p-channel IGFET 48 that constitute an input-side current path, and an n-channel IGFET 52 and a p-channel IGFET 50 that constitute an output-side current path.
  • the bipolar transistor 46 in the input side current path connects the base region to the output of the constant voltage circuit 30, and connects the emitter region to an intermediate portion 38 in the connection path between the base region (or the constant voltage circuit 30) and the external resistor 18.
  • the collector region is connected to the drain region and the gate electrode of the p-channel type IGFET 48.
  • the source region of the p-channel type IGFET 48 is connected to the output of the constant voltage circuit 30.
  • the n-channel IGFET 52 in the output-side current path is configured by connecting the source region to the fixed power source 22 and connecting the drain region to the drain region of the p-channel IGFET 50.
  • the gate electrode is connected to the drain region of the n-channel type IGFET 52 and to the first gate electrode of the first transistor 36.
  • the p-channel type IGFET 50 is configured by connecting a source region to the output of the constant voltage circuit 30 and connecting a gate electrode to the gate electrode of the p-channel type IGFET 48.
  • the second transistor 42 is composed of an n-channel IGFET, like the first transistor 36.
  • the second gate electrode of the second transistor 42 is connected to the output of the constant voltage circuit 30, and a constant input voltage is input to the second gate electrode.
  • One third main electrode region of the second transistor 42 is a source region, and this source region is connected to the drain region of the first transistor 36.
  • the other fourth main electrode region of the second transistor 42 is a drain region, and this drain region is connected to the external power supply 12 via the load 14.
  • the first transistor 36 and the second transistor 42 have a two-stage configuration connected in series between the load 14 and the fixed power source 22.
  • the node voltage of the intermediate portion 38 between the output of the constant voltage circuit 30 and the external resistor 18 is based on the resistance value of the external resistor 18. Adjusted. When the node voltage is adjusted by the external resistor 18, an input voltage having the same voltage as the node voltage is input to the first gate electrode of the first transistor 36 of the constant current circuit 40.
  • the constant current circuit 40 includes the current mirror circuit 44
  • the constant voltage output from the constant voltage circuit 30 is first input to the base region of the bipolar transistor 46 of the current mirror circuit 44.
  • a base-emitter current flows from the base region to the emitter region.
  • a voltage obtained by subtracting the threshold voltage of the pn junction diode between the base region and the emitter region from the output voltage of the constant voltage circuit 30 is generated as a node voltage at the intermediate portion 38 between the emitter region and the external resistor 18.
  • an input current flows from the constant voltage circuit 30 to the fixed power source 22 through the p-channel IGFET 48 and the bipolar transistor 46.
  • the constant current circuit 40 of the semiconductor integrated circuit 16 has a second transistor 42 that uses a constant voltage output from the constant voltage circuit 30 as an input voltage between the first transistor 36 and the load 14. Is provided.
  • the second transistor 42 can pass a constant current between the source region and the drain region based on the input voltage. Since this constant current is further made constant by the first transistor 36, variations in the constant current can be reduced.
  • the horizontal axis represents the input voltage [V] input to the first gate electrode of the first transistor 36.
  • the vertical axis represents the current [mA] flowing between the source region and the drain region of the first transistor 36.
  • Symbol C is a voltage-current characteristic when the resistance value of the external resistor 18 is adjusted to 47 [k ⁇ ].
  • the input voltage input to the first gate electrode changes. Based on this input voltage, the source region and the drain are changed.
  • a constant current can flow between the region and the saturation region. For example, when the constant voltage output from the constant voltage circuit 30 is 5 [V] and the resistance value of the external resistor 18 is 47 [k ⁇ ], a constant current of 16 [mA] flows through the first transistor 36.
  • the semiconductor integrated circuit 16 when the constant voltage output from the constant voltage circuit 30 is in the range of 8 [V] to 15 [V], the first transistor 36 has ⁇ 0.1 [%]. A constant current can be made to flow with accuracy.
  • the current flowing from the external power source 12 to the load 14 is a constant current flowing to the first transistor 36, a constant current output that can be adjusted by the external resistor 18 can be realized. Variation can be reduced.
  • the constant current drive system 10 adjusts the resistance value of the external resistor 18 of the circuit board 20 to adjust the load 14. It is possible to adjust the constant current flowing through the. For this reason, the semiconductor integrated circuit 16 of the constant current drive system 10 does not need to be designed and manufactured again. In addition, the constant current drive system 10 including the external power supply 12 can be easily constructed.
  • the present invention is not limited to the above-described embodiment, and can be modified as follows, for example, without departing from the gist thereof.
  • the constant current circuit in the semiconductor integrated circuit according to the first embodiment, may have a two-stage configuration including a first transistor and a second transistor.
  • a load may be mounted on the circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

半導体集積回路(16)は、定電圧が出力される定電圧回路(30)と定電流回路(32)とを備えている。定電流回路(32)は第1トランジスタ(36)を備えている。第1トランジスタ(36)の第1ゲート電極には、定電圧回路(30)の出力と外付け抵抗(18)との接続経路における中間部(38)のノード電圧と同一電圧が入力電圧として入力される。第1トランジスタ(36)のソース領域には固定電源(22)が接続され、ドレイン領域には負荷(14)を介して外部電源(12)が接続されている。第1トランジスタ(36)では、入力電圧に基づいてソース領域とドレイン領域との間に定電流を流すことができる。また、回路基板(20)に半導体集積回路(16)及び外付け抵抗(18)が実装されて定電流駆動システム(10)が構築されている。

Description

半導体集積回路及び定電流駆動システム
 本発明は、半導体集積回路及び定電流駆動システムに関する。
 下記特許文献1には、直流-直流変換装置が開示されている。この直流-直流変換装置では、制御回路ICの出力電圧が、外付け抵抗を用いた抵抗分割により分圧されて制御回路ICの入力端子に入力されている。この直流-直流変換装置によれば、外付け抵抗の抵抗値を変更すれば、簡単に出力電圧が調整可能である。
 しかしながら、上記直流-直流変換装置では、出力電圧が調整可能であるが、定電流出力は得られない。例えば、車載用バッテリによりLED(light emitting diode)を駆動するシステムでは、LEDの輝度調整がLEDに流れる電流量の調整によって実現されている。このため、調整可能な定電流出力を実現することができる半導体集積回路及びこの半導体集積回路が実装された定電流駆動システムが望まれていた。
特開2009-1188692号公報
 本発明は、上記事実を考慮し、調整可能な定電流出力を実現することができる半導体集積回路及びこの半導体集積回路を実装した定電流駆動システムを提供する。
 本発明の第1実施態様に係る半導体集積回路は、定電圧が出力される定電圧回路と、定電圧回路の出力と外付け抵抗との接続経路における中間部のノード電圧と同一電圧の入力電圧が第1ゲート電極に入力され、一方の第1主電極領域が固定電源に接続され、かつ、他方の第2主電極領域が負荷を介して固定電源と異なる電源を供給する外部電源に接続され、第1ゲート電極に入力される入力電圧に基づいて第1主電極領域と第2主電極領域との間に定電流を流す第1トランジスタを含む定電流回路と、を備えている。
 第1実施態様に係る半導体集積回路によれば、定電圧回路の出力と外付け抵抗との中間部のノード電圧が外付け抵抗の抵抗値に基づいて調整される。外付け抵抗によりノード電圧が調整されると、定電流回路の第1トランジスタの第1ゲート電極にノード電圧と同一電圧の入力電圧が入力される。第1トランジスタでは、第1主電極領域と第2主電極領域との間に入力電圧に基づく定電流を流すことができる。このため、外部電源から負荷に流れる電流が第1トランジスタに流れる定電流とされるので、外付け抵抗により調整可能な定電流出力を実現することができる。
 本発明の第2実施態様に係る半導体集積回路では、第1実施態様に係る半導体集積回路において、定電流回路は、定電圧回路と中間部との間に接続され、外付け抵抗とにより中間部に定電圧を分圧させたノード電圧を発生させる抵抗を備えている。
 第2実施態様に係る半導体集積回路によれば、定電流回路は、第1トランジスタと、外付け抵抗により分割抵抗を構成する抵抗とを含んで構成される。中間部のノード電圧は外付け抵抗の抵抗値を調整することにより調整可能である。このため、定電流回路が2つの素子により構成されるので、定電流回路を簡単な構成とすることができる。
 本発明の第3実施態様に係る半導体集積回路では、第1実施態様又は第2実施態様に係る半導体集積回路において、定電流回路は、第1トランジスタと負荷との間に接続され、定電圧が入力電圧として第2ゲート電極に入力され、一方の第3主電極領域が第2主電極領域に接続され、かつ、他方の第4主電極領域が負荷に接続され、第2ゲート電極に入力される入力電圧に基づいて第3主電極領域と第4主電極領域との間に定電流を流す第2トランジスタを備えている。
 第3実施態様に係る半導体集積回路によれば、定電流回路は、第1トランジスタと負荷との間に、定電圧回路から出力される定電圧を入力電圧とする第2トランジスタが接続される。第2トランジスタは、第2ゲート電極に入力される入力電圧に基づいて第3主電極領域と第4主電極領域との間に定電流を流すことができる。この定電流が更に第1トランジスタにより定電流とされるので、定電流のばらつきを小さくすることができる。
 本発明の第4実施態様に係る半導体集積回路では、第3実施態様に係る半導体集積回路において、定電流回路は、中間部のノード電圧に対して、第1トランジスタの第1ゲート電極に入力される入力電圧を同一電圧とするカレントミラー回路を備えている。
 第4実施態様に係る半導体集積回路によれば、定電流回路は、第1トランジスタと、カレントミラー回路とを含んで構成される。中間部のノード電圧は外付け抵抗を調整することにより調整可能である。そして、中間部のノード電圧はカレントミラー回路を介して同一電圧の入力電圧として第1トランジスタの第1ゲート電極に入力される。このため、定電流回路を簡易に構築することができる。
 本発明の第5実施態様に係る定電流駆動システムは、第1実施態様~第4実施態様のいずれか1つに係る半導体集積回路が実装され、中間部に接続された外付け抵抗を有する回路基板と、第1トランジスタの第2主電極領域に接続された負荷と、を備えている。
 第5実施態様に係る定電流駆動システムによれば、回路基板の外付け抵抗の抵抗値を調整することにより、負荷に流れる定電流を調整することができる。このため、定電流駆動システムの半導体集積回路では、再度の設計並びに製作が必要とされない。
 本発明の第6実施態様に係る定電流駆動システムは、第5実施態様に係る定電流駆動システムにおいて、負荷に外部電源が接続されている。
 第6実施態様に係る定電流駆動システムによれば、第5実施態様に係る定電流駆動システムによる作用と同様の作用を得ることができ、外部電源を含めて定電流駆動システムを簡易に構築することができる。
 本発明によれば、調整可能な定電流出力を実現することができる半導体集積回路及びこの半導体集積回路を実装した定電流駆動システムを提供することができるという優れた効果を有する。
本発明の第1実施の形態に係る半導体集積回路及びそれを回路基板に実装した定電流駆動システムの回路ブロック図である。 図1に示される半導体集積回路において定電流回路の第1トランジスタの入出力特性を示すグラフである。 本発明の第2実施の形態に係る半導体集積回路及びそれを回路基板に実装した定電流駆動システムの回路ブロック図である。 図3に示される半導体集積回路において定電流回路の第1トランジスタの入出力特性を示すグラフである。
 以下、図1~図4を用いて、本発明の実施の形態に係る半導体集積回路及び定電流駆動システムを説明する。
 [第1実施の形態]
 まず、図1及び図2を用いて、本発明の第1実施の形態に係る半導体集積回路及び定電流駆動システムを説明する。
 (半導体集積回路の回路構成)
 図1に示されるように、本実施の形態に係る定電流駆動システム10は、外部電源12と、負荷14と、半導体集積回路16と、外付け抵抗18と、回路基板20とを備えている。半導体集積回路16及び外付け抵抗18は回路基板20に実装されている。また、本実施の形態では、負荷14は、回路基板20に実装されずに回路基板20の外付けとされているが、回路基板20に実装されてもよい。
 外部電源12には車載用バッテリが使用されている。外部電源12は負荷14の一端に接続され、例えば外部電源12から負荷14へ12V又は24Vの電圧が供給される。負荷14として、ここではLEDが使用されている。また、負荷14の他端は半導体集積回路16に接続されている。外付け抵抗18の一端は半導体集積回路16に接続され、外付け抵抗18の他端は固定電源22に接続されている。固定電源22は、外部電源12から供給される電圧と異なる電圧を半導体集積回路16に供給し、ここでは0V(接地)である。
 半導体集積回路16は、定電圧を生成してこの定電圧を出力する定電圧回路30と、負荷14を定電流により駆動し、かつ、外付け抵抗18の抵抗値の調整により定電流を調整可能な定電流回路32とを備えている。詳しく説明すると、定電流回路32は、抵抗34と、第1トランジスタ36とを含んで構成されている。
 抵抗34の一端は定電圧回路30の出力に接続され、抵抗34の他端は中間部38を介して外付け抵抗18の一端に接続されている。抵抗34は半導体集積回路16に作り込まれて一定の抵抗値に設定されている。抵抗34は外付け抵抗18に直列に接続され、抵抗34及び外付け抵抗18は分割抵抗として構成されている。このため、定電圧回路30から出力される定電圧は分割抵抗により分圧され、分圧された電圧は中間部18のノード電圧とされる。ここで、中間部38は、半導体集積回路16において、定電圧回路30の出力と外付け抵抗18との接続経路における中間部である。
 本実施の形態において第1トランジスタ36はnチャネル型絶縁ゲート電界効果トランジスタ(IGFET:Insulated Gate Field Effect Transistor)により構成されている。ここで、IGFETには、金属-酸化物-半導体型電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)、金属-絶縁物-半導体型電界効果トランジスタ(MISFET:Metal Insulator Semiconductor Field Effect Transistor)等が含まれている。第1トランジスタ36の第1ゲート電極は中間部38に接続され、中間部18のノード電圧が入力電圧として第1ゲート電極に印加される。第1トランジスタ36の一方の第1主電極領域はソース領域であり、ソース領域は固定電源22に接続されている。他方の第2主電極領域はドレイン領域であり、ドレイン領域は負荷14の他端に接続されている。この第1トランジスタ36は、第1ゲート電極に入力される入力電圧に基づいて、ソース領域とドレイン領域との間に定電流を流す構成とされている。
 (本実施の形態の作用及び効果)
 本実施の形態に係る半導体集積回路16は、図1に示されるように、定電圧回路30の出力と外付け抵抗18との中間部38のノード電圧が外付け抵抗18の抵抗値に基づいて調整される。外付け抵抗18によりノード電圧が調整されると、定電流回路32の第1トランジスタ36の第1ゲート電極にノード電圧と同一電圧の入力電圧が入力される。
 ここで、図2に第1トランジスタ36の入出力特性が示されている。横軸は第1トランジスタ36の第1ゲート電極に入力される入力電圧[V]である。縦軸は第1トランジスタ36のソース領域とドレイン領域との間に流れる電流[mA]である。符号Aは、外付け抵抗18の抵抗値を4[kΩ]に調整した際の電圧-電流特性である。符号Bは、外付け抵抗18の抵抗値を10[kΩ]に調整した際の電圧-電流特性である。
 図2に示されるように、第1トランジスタ36では、外付け抵抗18の抵抗値を変えると、第1ゲート電極に入力される入力電圧が変化し、この入力電圧に基づいて、ソース領域とドレイン領域との間に飽和領域において定電流を流すことができる。例えば、定電圧回路30から出力される定電圧が5[V]、外付け抵抗18の抵抗値が4[kΩ]のとき、第1トランジスタ36には0.8[mA]の定電流が流れる。また、定電圧回路30から出力される定電圧が同様に例えば5[V]に設定され、外付け抵抗18の抵抗値が10[kΩ]に設定されるとき、第1トランジスタ36には1.8[mA]の定電流が流れる。さらに、本実施の形態に係る半導体集積回路16において、定電圧回路30から出力される定電圧が8[V]~15[V]の範囲では、第1トランジスタ36に±20[%]の精度により定電流を流すことができる。
 このため、外部電源12から負荷14に流れる電流が第1トランジスタ36に流れる定電流とされるので、外付け抵抗18により調整可能な定電流出力を実現することができる。例えば、負荷14としてLEDが使用される場合には、外付け抵抗18を取り替えて抵抗値を調整する(中間部38のノード電圧を調整する)ことにより、LEDの輝度を簡易に調整することができる。
 また、本実施の形態に係る半導体集積回路16では、定電流回路32は、第1トランジスタ36と、外付け抵抗18により分割抵抗を構成する抵抗34とを含んで構成される。中間部38のノード電圧は外付け抵抗18の抵抗値を調整することにより調整可能である。このため、定電流回路32が2つの素子により構成されるので、定電流回路32を簡単な構成とすることができる。
 さらに、本実施の形態に係る定電流駆動システム10では、回路基板20の外付け抵抗18の抵抗値を調整することにより、負荷14に流れる定電流を調整することができる。このため、定電流駆動システム10の半導体集積回路16では、再度の設計並びに製作が必要とされずに、外付け抵抗18の取り替えだけで負荷14に流れる定電流が調整可能とされる。そして、外部電源12を含めて、定電流駆動システム10を簡易に構築することができる。
 [第2実施の形態]
 図3及び図4を用いて、本発明の第2実施の形態に係る半導体集積回路16及び定電流駆動システム10を説明する。なお、本実施の形態において、第1実施の形態に係る半導体集積回路16及び定電流駆動システム10の構成要素と同一又は同等の機能を有する構成要素には同一符号を付し、重複する説明は省略する。
 (半導体集積回路の回路構成)
 図3に示されるように、本実施の形態に係る定電流駆動システム10は、第1実施の形態に係る定電流駆動システム10と同様に、外部電源12と、負荷14と、半導体集積回路16と、外付け抵抗18と、回路基板20とを備えている。本実施の形態に係る定電流駆動システム10では、第1実施の形態に係る定電流駆動システム10に対して、回路基板20に実装された半導体集積回路16の回路構成に違いがある。
 詳しく説明すると、半導体集積回路16は、定電圧回路30と、定電流回路40とを備えている。定電流回路40は、第1トランジスタ36と、この第1トランジスタ36に加えて、第1トランジスタ36と負荷14との間に接続された第2トランジスタ42と、カレントミラー回路44とを備えている。
 カレントミラー回路44は、入力側電流経路を構成するnpnバイポーラトランジスタ46及びpチャネル型IGFET48と、出力側電流経路を構成するnチャネル型IGFET52及びpチャネル型IGFET50とを含んで構成されている。入力側電流経路のバイポーラトランジスタ46は、定電圧回路30の出力にベース領域を接続し、ベース領域(又は定電圧回路30)と外付け抵抗18との接続経路における中間部38にエミッタ領域を接続し、pチャネル型IGFET48のドレイン領域及びゲート電極にコレクタ領域を接続して構成されている。pチャネル型IGFET48のソース領域は定電圧回路30の出力に接続されている。一方、出力側電流経路のnチャネル型IGFET52は、固定電源22にソース領域を接続し、pチャネル型IGFET50のドレイン領域にドレイン領域を接続して構成されている。ゲート電極は、nチャネル型IGFET52のドレイン領域に接続されると共に、第1トランジスタ36の第1ゲート電極に接続されている。pチャネル型IGFET50は、定電圧回路30の出力にソース領域を接続し、pチャネル型IGFET48のゲート電極にゲート電極を接続して構成されている。
 第2トランジスタ42は、第1トランジスタ36と同様に、nチャネル型IGFETにより構成されている。第2トランジスタ42の第2ゲート電極は定電圧回路30の出力に接続され、第2ゲート電極に定電圧の入力電圧が入力される。第2トランジスタ42の一方の第3主電極領域はソース領域であり、このソース領域は第1トランジスタ36のドレイン領域に接続されている。第2トランジスタ42の他方の第4主電極領域はドレイン領域であり、このドレイン領域は負荷14を介して外部電源12に接続されている。本実施の形態に係る半導体集積回路16では、第1トランジスタ36及び第2トランジスタ42が、負荷14と固定電源22との間に直列に接続された2段構成とされている。
 (本実施の形態の作用及び効果)
 本実施の形態に係る半導体集積回路16は、図3に示されるように、定電圧回路30の出力と外付け抵抗18との中間部38のノード電圧が外付け抵抗18の抵抗値に基づいて調整される。外付け抵抗18によりノード電圧が調整されると、定電流回路40の第1トランジスタ36の第1ゲート電極にノード電圧と同一電圧の入力電圧が入力される。
 詳しく説明すると、定電流回路40はカレントミラー回路44を備えるので、定電圧回路30から出力される定電圧が、まずカレントミラー回路44のバイポーラトランジスタ46のベース領域に入力される。バイポーラトランジスタ46では、ベース領域からエミッタ領域へベース-エミッタ間電流が流れる。これにより、エミッタ領域と外付け抵抗18との中間部38には、定電圧回路30の出力電圧から、ベース領域とエミッタ領域とのpn接合ダイオードの閾値電圧分を差し引いた電圧がノード電圧として発生する。このノード電圧に応じて、定電圧回路30から固定電源22へ、pチャネル型IGFET48及びバイポーラトランジスタ46を通して入力電流が流れる。そして、カレントミラー回路44では、定電圧回路30から固定電源22へ、入力電流と同一の出力電流がpチャネル型IGFET50及びnチャネル型IGFET52を通して流れる。この出力電流により、第1トランジスタ36の第1ゲート電極には、中間部38のノード電圧と同一電圧が入力電圧として入力され、この入力電圧に基づいて第1トランジスタ36に定電流を流すことができる。
 また、本実施の形態に係る半導体集積回路16の定電流回路40は、第1トランジスタ36と負荷14との間に、定電圧回路30から出力される定電圧を入力電圧とする第2トランジスタ42を備える。第2トランジスタ42は、入力電圧に基づいてソース領域とドレイン領域との間に定電流を流すことができる。この定電流は更に第1トランジスタ36により定電流とされるので、定電流のばらつきを小さくすることができる。
 ここで、図4に第1トランジスタ36の入出力特性が示されている。横軸は第1トランジスタ36の第1ゲート電極に入力される入力電圧[V]である。縦軸は第1トランジスタ36のソース領域とドレイン領域との間に流れる電流[mA]である。符号Cは、外付け抵抗18の抵抗値を47[kΩ]に調整した際の電圧-電流特性である。
 図4に示されるように、第1トランジスタ36では、外付け抵抗18の抵抗値を変えると、第1ゲート電極に入力される入力電圧が変化し、この入力電圧に基づいて、ソース領域とドレイン領域との間に飽和領域において定電流を流すことができる。例えば、定電圧回路30から出力される定電圧が5[V]、外付け抵抗18の抵抗値が47[kΩ]のとき、第1トランジスタ36に16[mA]の定電流が流れる。また、本実施の形態に係る半導体集積回路16において、定電圧回路30から出力される定電圧が8[V]~15[V]の範囲では、第1トランジスタ36に±0.1[%]の精度により定電流を流すことができる。
 このため、外部電源12から負荷14に流れる電流が第1トランジスタ36に流れる定電流とされるので、外付け抵抗18により調整可能な定電流出力を実現することができ、加えて定電流出力のばらつきを小さくすることができる。
 そして、第1実施の形態に係る定電流駆動システム10と同様に、本実施の形態に係る定電流駆動システム10では、回路基板20の外付け抵抗18の抵抗値を調整することにより、負荷14に流れる定電流を調整することができる。このため、定電流駆動システム10の半導体集積回路16は、再度の設計並びに製作が必要とされない。また、外部電源12を含めて定電流駆動システム10を簡易に構築することができる。
 [上記実施の形態の補足説明]
 本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において例えば以下の通り変形可能である。例えば、本発明は、第1実施の形態に係る半導体集積回路において、定電流回路を第1トランジスタと第2トランジスタとの2段構成としてもよい。また、本発明は、第2実施の形態に係る定電流駆動システムにおいて、回路基板に負荷が実装されてもよい。

Claims (6)

  1.  定電圧を出力する定電圧回路と、
     当該定電圧回路の出力と外付け抵抗との接続経路における中間部のノード電圧と同一電圧の入力電圧が第1ゲート電極に入力され、一方の第1主電極領域が固定電源に接続され、かつ、他方の第2主電極領域が負荷を介して前記固定電源と異なる電源を供給する外部電源に接続され、前記第1ゲート電極に入力される前記入力電圧に基づいて前記第1主電極領域と前記第2主電極領域との間に定電流を流す第1トランジスタを含む定電流回路と、
     を備えた半導体集積回路。
  2.  前記定電流回路は、前記定電圧回路と前記中間部との間に接続され、前記外付け抵抗とにより前記中間部に前記定電圧を分圧させたノード電圧を発生させる抵抗を備えている請求項1に記載の半導体集積回路。
  3.  前記定電流回路は、前記第1トランジスタと前記負荷との間に接続され、前記定電圧が入力電圧として第2ゲート電極に入力され、一方の第3主電極領域が前記第2主電極領域に接続され、かつ、他方の第4主電極領域が前記負荷に接続され、前記第2ゲート電極に入力される前記入力電圧に基づいて前記第3主電極領域と前記第4主電極領域との間に定電流を流す第2トランジスタを備えている請求項1又は請求項2に記載の半導体集積回路。
  4.  前記定電流回路は、前記中間部のノード電圧に対して、前記第1トランジスタの第1ゲート電極に入力される入力電圧を同一電圧とするカレントミラー回路を備えている請求項3に記載の半導体集積回路。
  5.  請求項1~請求項4のいずれか1項に記載された半導体集積回路が実装され、前記中間部に接続された前記外付け抵抗を有する回路基板と、
     前記第1トランジスタの前記第2主電極領域に接続された負荷と、
     を備えた定電流駆動システム。
  6.  前記負荷に外部電源が接続されている請求項5に記載の定電流駆動システム。
PCT/JP2016/074546 2015-11-24 2016-08-23 半導体集積回路及び定電流駆動システム WO2017090286A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16868236.7A EP3382494A4 (en) 2015-11-24 2016-08-23 INTEGRATED SEMICONDUCTOR CIRCUIT AND CONSTANT CURRENT DRIVER SYSTEM
US15/777,832 US11009899B2 (en) 2015-11-24 2016-08-23 Circuit and constant-current drive system having adjustable constant current output

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228886A JP6393674B2 (ja) 2015-11-24 2015-11-24 半導体集積回路及び定電流駆動システム
JP2015-228886 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090286A1 true WO2017090286A1 (ja) 2017-06-01

Family

ID=58763381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074546 WO2017090286A1 (ja) 2015-11-24 2016-08-23 半導体集積回路及び定電流駆動システム

Country Status (4)

Country Link
US (1) US11009899B2 (ja)
EP (1) EP3382494A4 (ja)
JP (1) JP6393674B2 (ja)
WO (1) WO2017090286A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115985236B (zh) * 2023-03-17 2023-06-16 成都利普芯微电子有限公司 一种驱动芯片、驱动系统、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231322A (ja) * 1986-03-31 1987-10-09 Toshiba Corp 定電流回路
JPS62256505A (ja) * 1986-04-30 1987-11-09 Fuji Electric Co Ltd 電圧・電流変換回路
JPH09307369A (ja) * 1996-05-15 1997-11-28 Denso Corp カレントミラー回路及び定電流駆動回路
JP2002108464A (ja) * 2000-09-27 2002-04-10 Alps Electric Co Ltd 定電流回路
JP2009118692A (ja) 2007-11-08 2009-05-28 Sony Corp 直流−直流変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954621A (ja) * 1995-08-15 1997-02-25 Mitsumi Electric Co Ltd 定電流回路及びそれを内蔵した半導体装置
US8169387B2 (en) * 2007-09-14 2012-05-01 Ixys Corporation Programmable LED driver
US7852063B2 (en) * 2008-06-04 2010-12-14 Silicon Storage Technology, Inc. Integrated power detector with temperature compensation for fully-closed loop control
JP5447293B2 (ja) * 2010-08-20 2014-03-19 富士通株式会社 基準電流生成回路、及びこれを含む情報処理装置
KR101332072B1 (ko) * 2011-11-17 2014-01-22 서울시립대학교 산학협력단 전원장치에 사용되는 ic 회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231322A (ja) * 1986-03-31 1987-10-09 Toshiba Corp 定電流回路
JPS62256505A (ja) * 1986-04-30 1987-11-09 Fuji Electric Co Ltd 電圧・電流変換回路
JPH09307369A (ja) * 1996-05-15 1997-11-28 Denso Corp カレントミラー回路及び定電流駆動回路
JP2002108464A (ja) * 2000-09-27 2002-04-10 Alps Electric Co Ltd 定電流回路
JP2009118692A (ja) 2007-11-08 2009-05-28 Sony Corp 直流−直流変換装置

Also Published As

Publication number Publication date
US11009899B2 (en) 2021-05-18
US20180348803A1 (en) 2018-12-06
EP3382494A4 (en) 2019-07-24
JP6393674B2 (ja) 2018-09-19
EP3382494A1 (en) 2018-10-03
JP2017097606A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5168910B2 (ja) 定電流回路及び定電流回路を使用した発光ダイオード駆動装置
US7728529B2 (en) LED driver using a depletion mode transistor to serve as a current source
US9276571B2 (en) Systems and methods for driving transistors with high threshold voltages
US10831222B2 (en) Semiconductor apparatus for power supply control and output voltage variable power supply apparatus
JP6951305B2 (ja) 定電圧回路
TWI434602B (zh) 電流鏡電路
JP2007305010A (ja) 基準電圧生成回路
US20200371538A1 (en) Power control semiconductor device, variable output voltage power supply, and designing method
WO2009101770A1 (ja) 半導体装置
US20080284471A1 (en) Current load driving circuit
WO2017090286A1 (ja) 半導体集積回路及び定電流駆動システム
JP2017005565A (ja) ハイサイドドライバ回路及び半導体装置
JP2012009651A (ja) 電流駆動装置
JP2010003115A (ja) 定電流回路
KR101443178B1 (ko) 전압제어회로
US11395386B2 (en) Semiconductor device
JP5983552B2 (ja) 定電流定電圧回路
JP6954845B2 (ja) レベルシフト装置、及びic装置
JP2011198352A (ja) 基準電圧回路
US6861831B2 (en) Voltage regulator
US11507123B2 (en) Constant voltage circuit
JP2019032586A (ja) 電流駆動回路
JP5617618B2 (ja) 灯具点灯回路
JP2022178825A (ja) リニア電源、電子機器、及び車両
JP2006217618A (ja) 出力インピーダンス回路及びこれを適用した出力バッファ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868236

Country of ref document: EP