WO2017090149A1 - 回転子、モータ、空気調和装置および回転子の製造方法 - Google Patents
回転子、モータ、空気調和装置および回転子の製造方法 Download PDFInfo
- Publication number
- WO2017090149A1 WO2017090149A1 PCT/JP2015/083221 JP2015083221W WO2017090149A1 WO 2017090149 A1 WO2017090149 A1 WO 2017090149A1 JP 2015083221 W JP2015083221 W JP 2015083221W WO 2017090149 A1 WO2017090149 A1 WO 2017090149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- rotor
- resin
- outer core
- motor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/38—Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
Definitions
- the present invention relates to a rotor, a motor, an air conditioner, and a method for manufacturing a rotor that include a connecting member that connects an inner core and an outer core.
- Patent Documents In the case of forming a rotor by a lamination method, for example, a method of forming an annular rotor-shaped thin plate material by pressing and laminating and fixing the formed thin plate material is used (for example, Patent Documents). 1). There is also known a method in which a thin plate material having a shape obtained by dividing a rotor is formed, and divided cores obtained by laminating thin plate materials are connected in an annular shape (for example, see Patent Document 2).
- Patent Document 1 discloses a method of injecting resin into a mold while supporting the vicinity of the center of the teeth with a support portion provided on the mold in order to suppress the deflection of the teeth formed on the stator core.
- Patent Document 2 discloses a molding method in which a rotor core composed of a split core, a frame, and a permanent magnet are integrated. Specifically, two permanent magnets with a semicircular cross section are inserted into each of a plurality of holes provided in the rotor core, and resin is formed from resin through holes provided in the frame using a mold. The method of injecting is used.
- the present invention is for solving the above-described problems, and an object of the present invention is to provide a rotor, a motor, an air conditioner, and a method of manufacturing a rotor that are highly productive and reliable and have a stable structure.
- a shaft, an inner core into which the shaft is inserted, and a plurality of divided cores that are provided on the radially outer side of the inner core and in which a plurality of thin plate members are stacked are connected in an annular shape.
- a motor according to the present invention includes the above-described rotor and a stator disposed on the outer side in the radial direction of the rotor.
- An air conditioner according to the present invention includes the above motor, a fan driven by the motor, and a heat exchanger that exchanges heat between the air and the refrigerant by an air flow generated by the fan. .
- the method for manufacturing a rotor according to the present invention includes a shaft, an inner core into which the shaft is inserted, and a plurality of divided cores that are provided on the radially outer side of the inner core and in which a plurality of thin plate members are stacked.
- a method of manufacturing a rotor comprising: a connected outer core; and a resin connecting member that connects the inner core and the outer core and covers both end surfaces of the shaft in the axial direction of the outer core. And including a molding step of molding the connecting member with resin, and in the molding step, the outer peripheral portion of the outer core is pressed against the inner peripheral surface of the mold by a resin pressure when the connecting member is molded with resin. A radially outer portion between the divided cores is brought into close contact.
- an outer core is provided by connecting a plurality of divided cores in which a plurality of thin plate materials are stacked in an annular shape, and thus, an end material.
- the portion is reduced, the yield is improved, the cost is lowered, and the productivity is high.
- the connecting member covers both end surfaces of the outer core shaft in the axial direction, the surface of the split core can be uniformly covered, the yield is improved, and the productivity is high.
- the permanent magnets can be arranged on the outer core at equal intervals, and the roundness necessary for the rotor can be obtained. Therefore, the roundness of the rotor is obtained, the magnetic attractive force is balanced without disturbing the magnetic flux, vibration, cogging sound, etc. are reduced, and the reliability is improved.
- the resin connection member connects the inner core and the outer core, insulation treatment can be performed by the resin connection member, and electric corrosion between the inner core and the outer core is prevented, and reliability is improved. Will improve. Thus, the structure of the rotor is stabilized, and productivity and reliability can be improved.
- connection structure which connects the split cores of the rotor which comprises the motor which concerns on embodiment of this invention is shape
- FIG. 1 is a view showing a side surface of a motor 100 according to an embodiment of the present invention.
- FIG. 2 is a diagram showing an upper surface of the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- FIG. 3 is a perspective view showing a state in which the permanent magnet 12 of the rotor 10 constituting the motor 100 according to the embodiment of the present invention is removed.
- the motor 100 includes a stator 20 around which a coil (not shown) is wound, a rotor 10 that is rotatably installed on the radial inner side of the stator 20, and the stator 20. And a main body outer shell 40 molded and fixed with another resin.
- the stator 20 is disposed on the radially outer side of the rotor 10.
- the stator 20 includes a stator pole piece formed by superimposing a plurality of electromagnetic steel plates, a winding through which a current supplied from a power source flows, an insulator provided in the stator pole piece and used for coil insulation, have.
- the rotor 10 is obtained by connecting a shaft 11 to the rotor body 1.
- the rotor body 1 is a rotor core.
- the rotor body 1 includes an inner core 2 that is a boss and an outer core 3 that is a yoke, and a connecting member 4 in which the inner core 2 and the outer core 3 are molded and connected with resin.
- the rotor 10 is provided with a bearing (not shown).
- the rotor 10 is disposed so as to be coaxial with the cylindrical stator 20.
- the shaft 11 is inserted into the inner core 2 of the rotor body 1.
- a plurality of permanent magnets 12 are attached to the rotor 10 on the outer peripheral surface of the rotor body 1 at regular intervals.
- the rotor 10 rotates when a magnetic field formed by energizing a coil wound around the stator 20 and a permanent magnet 12 disposed on the outer peripheral surface of the rotor 10 repel each other.
- the rotor 10 to which the permanent magnet 12 is attached is used as a rotor of an SPM motor, for example.
- FIG. 4 is a perspective view showing the rotor body 1 viewed from above the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- FIG. 5 is a perspective view showing the rotor main body 1 viewed from below the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- FIG. 6 is an explanatory diagram showing a cross section of the rotor body 1 of the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- the rotor body 1 includes an inner core 2 into which a shaft 11 is inserted, and an outer core 3 that is provided on the radially outer side of the inner core 2 and in which a plurality of divided cores 3a in which a plurality of thin plate materials are stacked are connected in an annular shape. And the inner core 2 and the outer core 3, and a resin-made connecting member 4 that covers both end surfaces of the shaft 11 of the outer core 3 extending in the axial direction.
- the inner core 2 has a disk shape composed of one member, and an insertion hole 2a for inserting the shaft 11 is formed at the center. Further, the inner core 2 is formed with a lightening hole 2b for reducing the weight around the insertion hole 2a.
- the outer core 3 is provided on the radially outer side of the inner core 2 by connecting a plurality of split cores 3 a in a ring shape.
- Each divided core 3a is formed by laminating a plurality of thin plate materials. Specifically, each divided core 3a is laminated by stacking thin plate materials to a required height and fixed by caulking or the like.
- the outer core 3 increases in the number of divisions, which is the number of the divided cores 3a, the outer diameter of the arc-shaped divided core 3a becomes closer to a straight line, so a thin plate material is punched from a rectangular slit material. The edge material generated at the time is reduced, and the yield is improved.
- assembling such as stacking and connection takes time.
- positioning surface of the permanent magnet 12 is taken, there exists an air layer in a division
- the number of divisions of the outer core 3 may be determined according to the number of motor poles, such as four divisions if the number of motor poles is four, six divisions if there are six poles, that is, n divisions if n poles.
- the number of divisions is set to 10 motor poles.
- the permanent magnet 12 when the permanent magnet 12 is attached to the outer peripheral surface of the outer core 3, if there is a step on the surface of the divided portion to which the divided core 3 a is connected, sufficient adhesion strength cannot be obtained when the permanent magnet 12 is attached. There is. For this reason, as described above, it is preferable to match the number of divisions of the outer core 3 to the number of motor poles and not attach the permanent magnet 12 to the division part.
- the connecting member 4 is made of resin, and has a main ring portion 4 a that connects the inner core 2 and the outer core 3 in a planar shape, and the axial height of the shaft 11 is higher than the inner core 2 and the inner core 2.
- Triangular reinforcing ribs 4b that reinforce the outer core 3 at regular intervals.
- the main annular portion 4 a covers both axial end surfaces of the shaft 11 of the outer core 3.
- Ten reinforcing ribs 4b are provided corresponding to each of the split cores 3a so as to be positioned at the center in the circumferential direction of the split core 3a.
- FIG. 7 is a flowchart showing a method for manufacturing the rotor main body 1 of the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- the manufacturing method of the rotor main body 1 includes a connection step S1 and a molding step S2.
- FIG. 8 is a diagram showing a state in which the split cores 3a of the rotor 10 constituting the motor 100 according to the embodiment of the present invention are connected.
- FIG. 9 is a diagram illustrating a state in which the outer core 3 is configured by connecting the split cores 3a of the rotor 10 included in the motor 100 according to the embodiment of the present invention.
- the connecting step S1 the divided cores 3a are arranged one by one before being molded into the lower mold 200a of the mold 200, and the divided cores 3a are connected to each other as shown in FIG.
- the connected divided cores 3 a have an annular shape and constitute the outer core 3.
- FIG. 10 is an enlarged view showing a connection structure 30 for connecting the split cores 3a of the rotor 10 constituting the motor 100 according to the embodiment of the present invention.
- the split cores 3a are connected to each other using the connection structure 30 formed at the circumferential end of each split core 3a.
- the connection structure 30 is formed in the radial center of the circumferential end of the split core 3a.
- the connection structure 30 has a dovetail groove 31 formed at one circumferential end portion and a convex portion 32 formed at the other circumferential end portion and fitted into the dovetail groove 31.
- the dovetail groove 31 is formed in a groove shape in which the bottom 31a is larger than the opening 31b on the surface of the outer core 3 facing the axial direction in which the shaft 11 extends.
- the radially inner side portion 31c of the dovetail groove 31 is inclined with an inclination angle with respect to the circumferential direction.
- the radially inner end portion 3b radially inside the dovetail groove 31 is inclined with an inclination angle with respect to the radial direction.
- the radially outer side portion 31d of the dovetail groove 31 extends in the circumferential direction.
- the radially outer end 3c of the radially outer portion of the dovetail groove 31 is along the radial direction.
- the convex part 32 is formed on the surface of the outer core 3 facing the axial direction in which the shaft 11 extends, and the tip part 32a is formed in a protruding shape larger than the root part 32b.
- the side portion 32 c on the radially inner side of the convex portion 32 is inclined at an inclination angle with respect to the circumferential direction corresponding to the side portion 31 c of the dovetail groove 31. Further, the radially inner end 3d that is radially inward of the convex portion 32 is inclined with an inclination angle with respect to the radial direction.
- the radially outer side portion 32 d of the convex portion 32 extends in the circumferential direction corresponding to the side portion 31 d of the dovetail groove 31.
- the radially outer end 3e of the radially outer portion of the convex portion 32 is along the radial direction.
- the inner circumferential surface 201 of the mold 200 will be described later.
- the divided cores 3a are pressed against each other, they are provided in dimensions that are in complete contact with each other and are in close contact with no gap. In this close state, the outer core 3 is formed in an annular shape.
- the split cores 3 a are connected to each other by fitting the convex portions 32 into the dovetail grooves 31.
- the connection step S1 only the convex portion 32 is fitted in the dovetail groove 31, and the divided cores 3a are connected with play in the lower mold 200a of the mold 200. This play also facilitates assembling when connecting all the split cores 3a in an annular shape.
- the state in which the convex portion 32 is fitted in the dovetail groove 31 restricts the range in which the split core 3a can move, making it difficult for the split cores 3a to be disconnected from each other.
- the inner core 2 is also installed at a predetermined position in the lower mold 200a of the mold 200.
- FIG. 11 is a diagram showing a state in which the rotor body 1 of the rotor 10 constituting the motor 100 according to the embodiment of the present invention is molded with resin.
- the upper mold 200 b is closed to the lower mold 200 a in which the inner core 2 and the divided core 3 a are connected to each other and the outer core 3 formed into an annular shape is disposed, and the resin is supplied into the mold 200. .
- the resin molds the connecting member 4. In the mold 200, injection molding is performed.
- a set amount of resin corresponding to the laminated thickness deviation of the divided cores 3a is supplied into the mold 200, and the outer core after the resin is placed on both end surfaces of the shaft 11 of the outer core 3 in the axial direction.
- the height in the axial direction of 3 is made to coincide with the entire circumference.
- a part of the upper surface of the outer core 3 is covered with resin.
- the lower surface of the outer core 3 is covered with resin over the entire surface except for the columnar support portion that supports the outer core 3.
- the mold 200 has a supply port (not shown) for supplying the resin into the mold 200 at a portion where the main annular portion 4a of the connecting member 4 is molded. For this reason, the resin flows in the radial direction inside and outside in the cavity in which the connecting member 4 of the mold 200 is molded.
- FIG. 12 is an enlarged view showing a state when the connection structure 30 for connecting the split cores 3a of the rotor 10 constituting the motor 100 according to the embodiment of the present invention is molded.
- the resin flows from the inside of the outer core 3 in the molding step S ⁇ b> 2.
- the outer peripheral portion of the outer core 3 is pressed against the inner peripheral surface 201 of the mold 200 by the resin pressure when the connecting member 4 is molded with resin as indicated by the arrows in the figure. Therefore, the resin flows into the gap on the radially inner side than the connection structure 30 between the divided cores 3a.
- the radially outer portion is in close contact with the connection structure 30 between the split cores 3a.
- a split core is formed on the inner peripheral surface 201 of the mold 200.
- 3a When 3a is pressed, it is provided in the dimension which contacts completely, the range which can be moved is regulated and it closely_contact
- the side portion 31d of the dovetail groove 31 and the side portion 32d of the convex portion 32 are caused by the resin pressure when the connecting member 4 is molded with resin.
- This close contact state forms the outer core 3 in an annular shape. Moreover, this close contact state prevents the resin from flowing out from between the split cores 3a to the outer peripheral surface side of the outer core 3 on the radially outer side.
- the outer core 3 can be corrected into an annular shape at the same time as the connecting member 4 is molded using resin. That is, the rotor main body 1 can be formed in a shape with a roundness while ignoring the variation of the split cores 3a. For this reason, the structure of the rotor 10 can be stabilized, and the yield and reliability can be improved. As a result, the life of the rotor 10 and the motor 100 can be extended.
- thermoplastic resin is used as the resin used when the rotor body 1 is molded by molding or the like.
- a PBT resin or other resin having a contractibility that does not hinder the attachment of the permanent magnet 12 is connected. It may be adopted as the member 4.
- an inexpensive resin such as PP (polypropylene) may be employed for the connecting member 4.
- a resin having a small shrinkage rate such as a thermosetting resin may be used.
- the resin constituting the connecting member 4 is appropriately selected according to the type of the motor 100 to which the rotor 10 is applied.
- a resin having suitable shrinkage is used.
- the resin contracts to the outer peripheral surface of the rotor body 1 to which the permanent magnet 12 is attached. Has no effect.
- FIG. 13 is a diagram illustrating an appearance of an air conditioner 50 on which the motor 100 according to the embodiment of the present invention is mounted.
- the air conditioner 50 is an outdoor unit, for example, and includes a motor 100. For this reason, as the life of the motor 100 is extended, the reliability of the apparatus is improved.
- the air conditioner 50 includes a housing 51 formed in a box shape, a suction port 52 formed by an opening on a side surface of the housing 51, and a housing 51 along the suction port 52.
- a heat exchanger (not shown) disposed inside, an air outlet 53 formed by an opening on the top surface of the housing 51, and a fan guard 54 provided so as to allow ventilation to cover the air outlet 53.
- a fan 55 is installed as shown in FIG.
- the air conditioner 50 configured as described above, when the fan 55 rotates, air is sucked from the suction port 52 on the side surface of the casing 51, and after passing through the heat exchanger, becomes a vertical flow. The air is blown out as shown by the arrow in FIG.
- FIG. 14 is a diagram showing side surfaces of motor 100 and fan 55 driven by motor 100 according to the embodiment of the present invention. As shown in FIG. 14, the motor 100 is installed on the support member 57 using the legs 56 in the air conditioner 50. A fan 55 is attached to the shaft 11 of the motor 100.
- the support member 57 is composed of, for example, two rails.
- the motor 100 is placed such that the bottom surface is in contact with the support member 57 and the shaft 11 faces upward.
- a fan 55 is attached to the shaft 11 of the motor 100, and the fan 55 is driven by the rotation of the rotor 10 of the motor 100.
- the length of the shaft 11 is set so as to leave a gap between the lower end of the blade of the fan 55 and the support member 57.
- the length L of the shaft 11 can be shortened compared to the case where the central portion of the motor 100 is supported. Shake of the shaft can be reduced.
- the air conditioning apparatus 50 in the embodiment can improve the reliability as the life of the mounted motor 100 increases.
- the motor 100 can be configured such that the diameter of the main body outer shell 40 in a plan view is smaller than the diameter D of the fan boss 55a of the fan 55. According to this configuration, the resistance of wind from the lower side of motor 100 to the upper side is reduced.
- the rotor 10 includes the shaft 11.
- An inner core 2 into which the shaft 11 is inserted is provided.
- the outer core 3 is provided on the outer side in the radial direction of the inner core 2 and is formed by connecting a plurality of divided cores 3a in which a plurality of thin plate materials are stacked in an annular shape.
- the inner core 2 and the outer core 3 are connected to each other, and a resin-made connecting member 4 that covers both end surfaces of the shaft 11 of the outer core 3 in the axial direction is provided.
- the outer core 3 is in close contact with the radially outer portion between the split cores 3a.
- the outer core 3 is provided by connecting a plurality of divided cores 3a in which a plurality of thin plate materials are stacked in an annular shape, the number of end material portions is reduced, yield is improved, and cost is reduced. High productivity. Further, since the connecting member 4 covers both end surfaces of the outer core 3 in the axial direction of the shaft 11, the surface of the split core 3a can be covered uniformly, the yield is improved, and the productivity is high. Further, since the radially outer portions between the split cores 3a are brought into close contact with each other, the permanent magnets 12 can be arranged on the outer core 3 at equal intervals, and the roundness necessary for the rotor 10 can be obtained.
- the roundness of the rotor 10 is obtained, the magnetic flux is not disturbed, the magnetic attractive force is balanced, vibration, cogging sound, etc. are reduced, and the reliability is improved. Further, since the resin-made connecting member 4 connects the inner core 2 and the outer core 3, an insulation treatment can be performed by the resin-made connecting member 4, and electric corrosion between the inner core 2 and the outer core 3 can be performed. Is prevented and reliability is improved. In this way, the structure of the rotor 10 is stabilized, and productivity and reliability can be improved.
- the outer core 3 is a radially outer portion between the divided cores 3a in a state where the outer peripheral portion of the outer core 3 is pressed against the inner peripheral surface 201 of the mold 200 by resin pressure when the connecting member 4 is molded with resin. Are in close contact. According to this configuration, when the connecting member 4 is molded with resin, the outer peripheral portion of the outer core 3 is pressed against the inner peripheral surface 201 of the mold 200 by resin pressure, and the radially outer portion between the split cores 3a is pressed. It can be adhered. Accordingly, since the radially outer portions between the split cores 3a are brought into close contact with each other, the permanent magnets 12 can be arranged on the outer core 3 at equal intervals, and the roundness necessary for the rotor 10 can be obtained.
- the rotor 10 has a connection structure 30 that connects the split cores 3a.
- the resin flows into a gap radially inward of the connection structure 30 between the divided cores 3 a, and a radially outer portion is brought into close contact with the connection structure 30 between the divided cores 3 a.
- the connecting member 4 is molded with resin
- the outer peripheral portion of the outer core 3 is pressed against the inner peripheral surface 201 of the mold 200 by resin pressure, so that the connection structure 30 between the divided cores 3a is more than that.
- Resin can be flown into the gap on the radially inner side, and the radially outer part can be brought into close contact with the connection structure 30 between the split cores 3a. Accordingly, since the radially outer portions between the split cores 3a are brought into close contact with each other, the permanent magnets 12 can be arranged on the outer core 3 at equal intervals, and the roundness necessary for the rotor 10 can be obtained.
- connection structure 30 has a dovetail groove 31 and a protrusion 32 that fits into the dovetail groove 31. According to this configuration, the resin is allowed to flow into the gap on the radially inner side than the connection structure 30 between the split cores 3a, and the radially outer portion is brought into close contact with the connection structure 30 between the split cores 3a. it can. Further, it becomes difficult to disconnect the divided cores 3a from each other, and the manufacturing becomes easy.
- the outer core 3 has a permanent magnet 12 disposed on the exposed outer peripheral surface. According to this structure, it can utilize as a rotor of a SPM motor.
- the permanent magnet 12 is disposed without straddling the divided portion connecting the divided cores 3 a constituting the outer core 3. That is, the permanent magnet 12 is arranged on each outer peripheral surface of the split core 3a according to the number of the split cores 3a constituting the outer core 3.
- segmentation number of the outer core 3 is match
- the motor 100 includes the above-described rotor 10 and a stator 20 that is disposed on the radially outer side of the rotor 10. According to this configuration, since the structure of the rotor 10 is stable and productivity and reliability are improved, the life of the motor 100 can be extended.
- the air conditioner 50 includes the motor 100 described above, a fan 55 driven by the motor 100, and a heat exchanger that exchanges heat between the air and the refrigerant using an airflow generated by the fan 55. According to this configuration, the reliability of the apparatus can be improved as the life of the motor 100 increases.
- a method of manufacturing the rotor 10 includes a shaft 11, an inner core 2 into which the shaft 11 is inserted, and a plurality of divided cores 3 a that are provided on the radially outer side of the inner core 2 and in which a plurality of thin plate members are stacked.
- a rotor 10 including a connected outer core 3, an inner core 2, and an outer core 3, and a resin-made connecting member 4 that covers both end surfaces of the shaft 11 of the outer core 3 in the axial direction is manufactured. To do.
- the method for manufacturing the rotor 10 includes a molding step S2 in which the connecting member 4 is molded with resin.
- the outer peripheral portion of the outer core 3 is pressed against the inner peripheral surface 201 of the mold 200 by the resin pressure when the connecting member 4 is molded with resin, and the radially outer portion between the divided cores 3a is brought into close contact. .
- the permanent magnets 12 can be arranged on the outer core 3 at equal intervals, and the roundness necessary for the rotor 10 can be obtained.
- the outer core 3 has a connection structure 30 that connects the split cores 3a.
- the method for manufacturing the rotor 10 includes a connection step S1 in which the divided cores 3a are connected to each other by the connection structure 30.
- the outer core 3 to which the divided cores 3a are connected in the connection step S1 is placed in the mold 200, and the inner peripheral surface 201 of the mold 200 is applied by resin pressure when the connecting member 4 is molded with resin.
- the outer peripheral portion of the outer core 3 is pressed onto the resin, and the resin is caused to flow into the gap on the radially inner side of the connection structure 30 between the divided cores 3a. Adhere closely. According to this configuration, since the radially outer portions between the split cores 3a are brought into close contact with each other, the permanent magnets 12 can be arranged on the outer core 3 at equal intervals, and the roundness necessary for the rotor 10 can be obtained.
- a set amount of resin corresponding to the laminated thickness deviation of the divided cores 3a is supplied into the mold 200, and the outer core after the resin is placed on both end surfaces of the shaft 11 of the outer core 3 in the axial direction.
- the height in the axial direction of 3 is matched. According to this configuration, since the connecting member 4 covers the both end surfaces of the shaft 11 of the outer core 3 in the axial direction, the surface of the split core 3a can be uniformly covered, and the height of the rotor 10 is stably maintained. Yield is improved and productivity is high.
- the said embodiment is a suitable specific example in the manufacturing method of a rotor, a motor, an air conditioning harmony device, and a rotor.
- various technically preferable limitations may be imposed.
- the technical scope of the present invention is not limited to these embodiments unless specifically described to limit the present invention.
- the outer core is constituted by ten divided cores, but the outer core may be formed at least in an annular shape. That is, the outer core may have a configuration in which an arbitrary number of split cores having the same shape are connected, and split cores having different shapes that are separated only partially are connected in an annular shape. It may be a configuration.
- Rotor body 2 inner core, 2a insertion hole, 2b fill hole, 3 outer core, 3a split core, 3b radial inner end, 3c radial outer end, 3d radial inner end, 3e radial direction Outer end, 4 connecting member, 4a main ring, 4b reinforcing rib, 10 rotor, 11 shaft, 12 permanent magnet, 20 stator, 30 connection structure, 31 dovetail, 31a bottom, 31b opening, 31c side Part, 31d side part, 32 convex part, 32a tip part, 32b root part, 32c side part, 32d side part, 40 main body outer shell, 50 air conditioner, 51 housing, 52 air inlet, 53 air outlet, 54 fan Guard, 55 fan, 55a fan boss, 56 legs, 57 support member, 100 motor, 200 mold, 200a lower mold, 200b upper mold, 01 inner circumferential surface.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
回転子を形成する金属のうち、特に磁力を形成する部分であるコアバックには、鉄損の影響が少ない電磁鋼板が用いられる。しかし、電磁鋼板を用いても、磁界による渦電流損失などが発生する。このため、積層を実施せずに回転子を形成することは困難である。
また、回転子を分割した形状の薄板材を形成し、薄板材を積層させた分割コアを円環状に接続するという手法も知られている(たとえば、特許文献2参照)。
また、特許文献2には、分割コアからなる回転子鉄心、フレームおよび永久磁石を一体化する成形方法が開示されている。具体的には、回転子鉄心に設けられた複数の穴の各々に断面半円形状に重ねた2枚の永久磁石を挿入し、成形型を用いて、フレームに設けられた樹脂通孔から樹脂を注入するという方法が採用されている。
一方、特許文献2のように、分割コアを接続して回転子鉄心を形成する場合は、薄板材の厚み偏差に起因して分割コアの積層した厚みがそろわず、樹脂によって一体成形する際に、分割コアの表面を均一に覆うことができず、歩留まりが悪化し、生産性が低いという課題がある。
また、特許文献2のような構造の場合には、分割コアの接続に関し、永久磁石を分割コアに挿入するため、分割コア同士の接続部に隙間を開けてしまう結果、回転子に必要な真円度が出ない。回転子の真円度が出ない場合には、磁束が乱れることによって磁気吸引力のアンバランスによる振動、コギング音の増大などの信頼性の問題が発生する。
また、特許文献1、2のモータには、回転子の電食を防ぐための絶縁処理が施されていないため、信頼性が担保されていないという課題がある。
また、連結部材が外側コアのシャフトの軸方向の両端面に被さるため、分割コアの表面を均一に覆うことができ、歩留まりが向上し、生産性が高い。
さらに、分割コア同士の間の径方向外側部分を密着させるため、永久磁石が外側コアに均等間隔で配置でき、回転子に必要な真円度が出せる。したがって、回転子の真円度が出ており、磁束が乱れず磁気吸引力がバランスされ、振動、コギング音などが低下し、信頼性が向上する。
また、樹脂製の連結部材が内側コアと外側コアとを連結するため、樹脂製の連結部材によって絶縁処理を施すことができ、内側コアと外側コアとの間の電食が防止され、信頼性が向上する。
このように、回転子の構造が安定し、生産性および信頼性の向上を図ることができる。
なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
図1は、本発明の実施の形態に係るモータ100の側面を示す図である。図2は、本発明の実施の形態に係るモータ100を構成する回転子10の上面を示す図である。図3は、本発明の実施の形態に係るモータ100を構成する回転子10の永久磁石12を取り除いた状態を示す斜視図である。
図1~図3に示すように、モータ100は、図示しないコイルが巻装された固定子20と、固定子20の径方向内側に回転自在に設置された回転子10と、固定子20を別の樹脂でモールドして固定した本体外殻40と、を備えている。
また、回転子10には、図示しないベアリングが設けられている。回転子10は、円筒形の固定子20と同軸となるように配設されている。シャフト11は、回転子本体1の内側コア2に挿入されている。
さらに、回転子10には、回転子本体1の外周面に複数の永久磁石12が均等間隔で貼り付けて配置されている。
回転子本体1は、シャフト11が挿入される内側コア2と、内側コア2の径方向外側に設けられ、薄板材が複数積層された複数の分割コア3aを円環状に接続させた外側コア3と、内側コア2と外側コア3とを連結し、外側コア3のシャフト11の延出される軸方向の両端面に被さった樹脂製の連結部材4と、を有している。
各分割コア3aは、薄板材が複数枚積層されたものである。具体的には、各分割コア3aは、薄板材を積層して必要高さまで積み上げていき、カシメなどによって固定されている。
また、永久磁石12の配置面に分割コア3a同士の境目である分割部を設けるという構成を採った場合には、分割部には空気層がありフラックスバリアになり、分割部が磁束の抵抗になり、効率の悪化につながる。
よって、外側コア3の分割数は、モータ極数が4極ならば4分割、6極ならば6分割、すなわちn極ならばn分割といったように、モータ極数に合わせて決定するとよい。外側コア3の分割数をモータ極数に合わせれば、磁束の影響を抑制することができる。実施の形態では、分割数をモータ極数の10個に合わせている。
回転子本体1の製造方法は、接続工程S1と、成型工程S2と、を含む。
接続工程S1では、各分割コア3aが金型200の下型200a内に成型させる前に1つずつ配置され、図8に示すように分割コア3a同士が接続される。図9に示すように、接続された分割コア3aは、円環状となり、外側コア3を構成する。
接続工程では、各分割コア3aの周方向端部に形成されている接続構造30を用いて分割コア3a同士を接続する。接続構造30は、分割コア3aの周方向端部の径方向中央部に形成されている。
接続構造30は、一方の周方向端部に形成されているあり溝31と、他方の周方向端部に形成され、あり溝31に嵌まり込む凸部32と、を有している。
あり溝31の径方向内側の側部31cは、周方向に対して傾斜角度を有して傾斜している。また、あり溝31よりも径方向内側の径方向内側端部3bは、径方向に対して傾斜角度を有して傾斜している。
一方、あり溝31の径方向外側の側部31dは、周方向に延出されている。あり溝31よりも径方向外側部分の径方向外側端部3cは、径方向に沿っている。
凸部32の径方向内側の側部32cは、あり溝31の側部31cに対応して周方向に対して傾斜角度を有して傾斜している。また、凸部32よりも径方向内側の径方向内側端部3dは、径方向に対して傾斜角度を有して傾斜している。このように、あり溝31の側部31cと凸部32の側部32cとの間および接続構造30よりも径方向内側端部3b、3d同士の間には、寸法に差を設けており、隙間が形成されている。
一方、凸部32の径方向外側の側部32dは、あり溝31の側部31dに対応して周方向に延出されている。凸部32よりも径方向外側部分の径方向外側端部3eは、径方向に沿っている。あり溝31の側部31dと凸部32の側部32dとの間および接続構造30よりも径方向外側端部3c、3e同士の間は、後述するように金型200の内周面201に分割コア3a同士を押し付けると、完全に接触する寸法に設けてあり、隙間なく密接する。この密接した状態で、外側コア3が円環状に形成される。
なお、接続工程S1では、あり溝31に凸部32を嵌め込んだだけであり、分割コア3a同士は、金型200の下型200a内で遊びを有して接続される。この遊びが分割コア3aの全てを円環状に接続する際の組み易さにもなっている。また、あり溝31に凸部32を嵌め込んだ状態は、分割コア3aの動ける範囲を規制し、分割コア3a同士の接続が外れ難くなっている。
また、接続工程S1の後に、内側コア2も金型200の下型200a内の所定位置に設置される。
成型工程S2では、内側コア2と分割コア3a同士を接続して円環状となった外側コア3とを配置した下型200aに上型200bを型閉めし、樹脂を金型200内に供給する。樹脂は、連結部材4を成型する。金型200では、射出成形が実施される。
図12に示すように、成型工程S2では、樹脂が外側コア3の内側から流れてくる。そして、図示矢印のように連結部材4を樹脂で成型するときの樹脂圧によって、金型200の内周面201に外側コア3の外周部が押し付けられる。そのため、分割コア3a同士の間の接続構造30よりも径方向内側の隙間に樹脂が流入する。一方、分割コア3a同士の間の接続構造30よりも径方向外側部分が密着する。
また、この密着する状態は、樹脂を分割コア3a同士の間から径方向外側の外側コア3の外周面側に流出することを防止している。
図13は、本発明の実施の形態に係るモータ100が搭載される空気調和装置50の外観を示す図である。
空気調和装置50は、たとえば、室外機であり、モータ100を備えている。このため、モータ100の長寿命化に伴い、装置としての信頼性が向上されている。
ファンガード54の内部には、モータ100により駆動される後述する図14に示すようにファン55が設置されている。
上記のように構成された空気調和装置50において、ファン55が回転すると、筐体51側面の吸込口52から空気が吸い込まれ、熱交換器を通過後、垂直方向の流れとなって、筐体51上部に形成された吹出口53から図13の矢印のように吹き出される。
図14に示すように、モータ100は、空気調和装置50内において、脚部56を利用して支持部材57に設置されている。また、モータ100のシャフト11には、ファン55が取り付けられている。
この構成によれば、薄板材が複数積層された複数の分割コア3aを円環状に接続させて外側コア3を設けるため、端材となる部分が少なくなり、歩留まりが向上すると共にコストが低下し、生産性が高い。
また、連結部材4が外側コア3のシャフト11の軸方向の両端面に被さるため、分割コア3aの表面を均一に覆うことができ、歩留まりが向上し、生産性が高い。
さらに、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。したがって、回転子10の真円度が出ており、磁束が乱れず磁気吸引力がバランスされ、振動、コギング音などが低下し、信頼性が向上する。
また、樹脂製の連結部材4が内側コア2と外側コア3とを連結するため、樹脂製の連結部材4によって絶縁処理を施すことができ、内側コア2と外側コア3との間の電食が防止され、信頼性が向上する。
このように、回転子10の構造が安定し、生産性および信頼性の向上を図ることができる。
この構成によれば、連結部材4を樹脂で成型したときに、樹脂圧によって金型200の内周面201に外側コア3の外周部を押し付け、分割コア3a同士の間の径方向内側の隙間に樹脂を流入させ、分割コア3a同士の間の径方向外側部分を密着させることができる。これにより、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。
この構成によれば、連結部材4を樹脂で成型するときに、樹脂圧によって金型200の内周面201に外側コア3の外周部を押し付け、分割コア3a同士の間の径方向外側部分を密着させることができる。これにより、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。
この構成によれば、連結部材4を樹脂で成型したときに、樹脂圧によって金型200の内周面201に外側コア3の外周部を押し付け、分割コア3a同士の間の接続構造30よりも径方向内側の隙間に樹脂を流入させ、分割コア3a同士の間の接続構造30よりも径方向外側部分を密着させることができる。これにより、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。
この構成によれば、分割コア3a同士の間の接続構造30よりも径方向内側の隙間に樹脂を流入させ、分割コア3a同士の間の接続構造30よりも径方向外側部分を密着させることができる。
また、分割コア3a同士の接続が外れ難くなり、製造が容易になる。
この構成によれば、SPMモータの回転子として利用することができる。
特に、永久磁石12は、外側コア3を構成する分割コア3a同士を接続した分割部にまたがらずに配置される。すなわち、永久磁石12は、外側コア3を構成する分割コア3aの数に合わせて分割コア3aの各外周面に配置される。
この構成によれば、外側コア3の分割数がモータ極数に合わせられており、磁束の影響を抑制することができる。また、分割コア3aを接続した分割部の表面に段差がある場合の、永久磁石12の貼り付け時の接着強度が十分に獲れないことが防止できる。
この構成によれば、回転子10の構造が安定し、生産性および信頼性の向上を図れているため、モータ100の長寿命化を図ることができる。
この構成によれば、モータ100の長寿命化に伴い、装置としての信頼性が向上できる。
この構成によれば、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。
この構成によれば、分割コア3a同士の間の径方向外側部分を密着させるため、永久磁石12が外側コア3に均等間隔で配置でき、回転子10に必要な真円度が出せる。
この構成によれば、連結部材4が外側コア3のシャフト11の軸方向の両端面に被さるため、分割コア3aの表面を均一に覆うことができ、回転子10の高さが一定に安定し、歩留まりが向上し、生産性が高い。
Claims (11)
- シャフトと、
前記シャフトが挿入される内側コアと、
前記内側コアの径方向外側に設けられ、薄板材が複数積層された複数の分割コアを円環状に接続させた外側コアと、
前記内側コアと前記外側コアとを連結し、前記外側コアの前記シャフトの軸方向の両端面に被さった樹脂製の連結部材と、
を備え、
前記外側コアは、前記分割コア同士の間の径方向外側部分を密着させた回転子。 - 前記外側コアは、前記分割コア同士の間の径方向内側の隙間に樹脂が流入しており、前記分割コア同士の間の径方向外側部分を密着させた請求項1に記載の回転子。
- 前記外側コアは、前記連結部材を樹脂で成型したときの樹脂圧によって金型の内周面に前記外側コアの外周部を押し付けた状態で、前記分割コア同士の間の径方向外側部分を密着させた請求項1または2に記載の回転子。
- 前記分割コア同士を接続する接続構造を有し、
前記外側コアは、前記分割コア同士の間の前記接続構造よりも径方向内側の隙間に樹脂が流入しており、前記分割コア同士の間の前記接続構造よりも径方向外側部分を密着させた請求項2または3に記載の回転子。 - 前記接続構造は、あり溝と、前記あり溝に嵌まり込む凸部と、を有した請求項4に記載の回転子。
- 前記外側コアは、露出した外周面に永久磁石を配置した請求項1~5のいずれか1項に記載の回転子。
- 請求項1~6のいずれか1項に記載の回転子と、
前記回転子の径方向外側に配置される固定子と、
を備えたモータ。 - 請求項7に記載のモータと、
前記モータに駆動されるファンと、
前記ファンによって発生させた気流で空気と冷媒とを熱交換させる熱交換器と、
を備えた空気調和装置。 - シャフトと、前記シャフトが挿入される内側コアと、前記内側コアの径方向外側に設けられ、薄板材が複数積層された複数の分割コアを円環状に接続させた外側コアと、前記内側コアと前記外側コアとを連結し、前記外側コアの前記シャフトの軸方向の両端面に被さった樹脂製の連結部材と、を備えた回転子の製造方法であって、
前記連結部材を樹脂で成型する成型工程を含み、
前記成型工程では、前記連結部材を樹脂で成型するときの樹脂圧によって金型の内周面に前記外側コアの外周部を押し付け、前記分割コア同士の間の径方向外側部分を密着させる回転子の製造方法。 - 前記外側コアは、前記分割コア同士を接続する接続構造を有し、
前記分割コア同士を前記接続構造で接続する接続工程を含み、
前記成型工程では、前記接続工程で前記分割コア同士を接続された前記外側コアを金型内に配置し、前記連結部材を樹脂で成型するときの樹脂圧によって金型の内周面に前記外側コアの外周部を押し付け、前記分割コア同士の間の前記接続構造よりも径方向内側の隙間に樹脂を流入させ、前記分割コア同士の間の前記接続構造よりも径方向外側部分を密着させる請求項9に記載の回転子の製造方法。 - 前記成型工程では、前記分割コアの厚み偏差に応じた設定量の樹脂を金型内に供給し、樹脂を前記外側コアの前記シャフトの軸方向の両端面に被せた後の前記外側コアの前記軸方向の高さを一致させる請求項9または10に記載の回転子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/083221 WO2017090149A1 (ja) | 2015-11-26 | 2015-11-26 | 回転子、モータ、空気調和装置および回転子の製造方法 |
JP2017552608A JP6498315B2 (ja) | 2015-11-26 | 2015-11-26 | 回転子、モータ、空気調和装置および回転子の製造方法 |
CN201580084711.4A CN108292872B (zh) | 2015-11-26 | 2015-11-26 | 转子、马达、空调装置及转子的制造方法 |
US15/763,202 US10862359B2 (en) | 2015-11-26 | 2015-11-26 | Rotor, motor, air-conditioning apparatus, and method for manufacturing rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/083221 WO2017090149A1 (ja) | 2015-11-26 | 2015-11-26 | 回転子、モータ、空気調和装置および回転子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090149A1 true WO2017090149A1 (ja) | 2017-06-01 |
Family
ID=58763276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083221 WO2017090149A1 (ja) | 2015-11-26 | 2015-11-26 | 回転子、モータ、空気調和装置および回転子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10862359B2 (ja) |
JP (1) | JP6498315B2 (ja) |
CN (1) | CN108292872B (ja) |
WO (1) | WO2017090149A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950994B (zh) * | 2019-04-12 | 2020-08-11 | 新疆金风科技股份有限公司 | 电机转子及电机 |
KR102238237B1 (ko) * | 2019-08-05 | 2021-04-16 | 뉴모텍(주) | 무접지 모터 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012120828A1 (ja) * | 2011-03-07 | 2012-09-13 | パナソニック株式会社 | 電動機およびそれを備えた電気機器 |
JP2015056984A (ja) * | 2013-09-12 | 2015-03-23 | 三菱電機株式会社 | 回転電機及びそれを備えた空調機器 |
JP2015106928A (ja) * | 2013-11-28 | 2015-06-08 | 三菱電機株式会社 | 回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0854558A3 (en) * | 1997-01-21 | 2000-07-12 | Isuzu Ceramics Research Institute Co., Ltd. | Structure of a rotor for generators and method of manufacturing the same rotor |
JP3808641B2 (ja) | 1998-10-15 | 2006-08-16 | 三菱電機株式会社 | 固定子鉄心の製造方法および固定子鉄心の絶縁層被覆用モールド金型、並びに固定子鉄心 |
KR100739408B1 (ko) * | 2004-11-25 | 2007-07-18 | 가부시끼가이샤 도시바 | 영구 자석형 모터 및 세탁기 |
JP2006187176A (ja) | 2004-12-28 | 2006-07-13 | Toshiba Corp | アウターロータの製造方法 |
CN1881745A (zh) * | 2005-05-26 | 2006-12-20 | 株式会社东芝 | 马达及半导体用连接装置 |
CN101553971B (zh) * | 2006-08-14 | 2012-07-04 | 博泽汽车部件有限公司及两合公司,乌茨堡 | 用于电动机的转子 |
JP4176121B2 (ja) * | 2006-10-13 | 2008-11-05 | 株式会社三井ハイテック | 回転子積層鉄心およびその製造方法 |
JP2008259359A (ja) | 2007-04-06 | 2008-10-23 | Toshiba Corp | 外転型永久磁石電動機の回転子 |
US7816830B2 (en) * | 2007-08-16 | 2010-10-19 | Gary Dickes | Permanent magnet alternator with segmented construction |
JP5398512B2 (ja) * | 2009-12-18 | 2014-01-29 | 株式会社日立製作所 | アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法 |
JP5111548B2 (ja) * | 2010-04-08 | 2013-01-09 | 三菱電機株式会社 | 電動機の固定子の製造方法、及び、電動機の固定子 |
WO2012067896A2 (en) * | 2010-11-17 | 2012-05-24 | Motor Excellence, Llc | Transverse and/or commutated flux systems having laminated and powdered metal portions |
TWI493835B (zh) * | 2013-01-11 | 2015-07-21 | Bigbest Solutions Inc | Honeycomb motor rotor |
EP2793365A1 (de) * | 2013-04-16 | 2014-10-22 | Siemens Aktiengesellschaft | Einzelsegmentläufer mit durch Biegeträger gehaltenen Einzelsegmenten und Herstellungsverfahren |
-
2015
- 2015-11-26 JP JP2017552608A patent/JP6498315B2/ja active Active
- 2015-11-26 WO PCT/JP2015/083221 patent/WO2017090149A1/ja active Application Filing
- 2015-11-26 CN CN201580084711.4A patent/CN108292872B/zh active Active
- 2015-11-26 US US15/763,202 patent/US10862359B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012120828A1 (ja) * | 2011-03-07 | 2012-09-13 | パナソニック株式会社 | 電動機およびそれを備えた電気機器 |
JP2015056984A (ja) * | 2013-09-12 | 2015-03-23 | 三菱電機株式会社 | 回転電機及びそれを備えた空調機器 |
JP2015106928A (ja) * | 2013-11-28 | 2015-06-08 | 三菱電機株式会社 | 回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材 |
Also Published As
Publication number | Publication date |
---|---|
US20180278107A1 (en) | 2018-09-27 |
CN108292872B (zh) | 2020-04-24 |
US10862359B2 (en) | 2020-12-08 |
JPWO2017090149A1 (ja) | 2018-06-21 |
CN108292872A (zh) | 2018-07-17 |
JP6498315B2 (ja) | 2019-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10731658B2 (en) | Axial fan | |
JP5584669B2 (ja) | 回転電機の回転子 | |
US20130009494A1 (en) | Motor and method of manufacturing motor | |
US10415586B2 (en) | Axial fan | |
JP6689416B2 (ja) | 回転子、電動機、空気調和装置、および回転子の製造方法 | |
WO2019026273A1 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 | |
CN105099041A (zh) | 无刷电机、无刷电机的外转子及其制造方法 | |
JP5993602B2 (ja) | 送風機 | |
JP6584331B2 (ja) | 単相ブラシレスモータおよび単相ブラシレスモータの製造方法 | |
WO2014141987A1 (ja) | ロータ構造および電動流体ポンプ | |
JP5771958B2 (ja) | ポンプ装置 | |
JP6498315B2 (ja) | 回転子、モータ、空気調和装置および回転子の製造方法 | |
JPWO2016063371A1 (ja) | 回転電機の回転子、回転電機、及び空調機器 | |
JP7000650B2 (ja) | モータ | |
JPWO2020129210A1 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 | |
JP6210003B2 (ja) | ステータコア、回転電機およびステータコアの製造方法 | |
US20190093668A1 (en) | Axial fan | |
JP6462714B2 (ja) | アキシャルギャップ型回転電機及び絶縁部材 | |
CN101552515A (zh) | 风扇电动机 | |
WO2021171435A1 (ja) | ステータ、電動機、送風機、空気調和装置およびステータの製造方法 | |
JP2015056984A (ja) | 回転電機及びそれを備えた空調機器 | |
JP2012105543A (ja) | 電動機の固定子 | |
US20170271931A1 (en) | Rotor, motor, air-conditioning apparatus, and rotor manufacturing method | |
WO2018142465A1 (ja) | アキシャルギャップ型回転電機 | |
JP7012878B2 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15909268 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017552608 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15763202 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15909268 Country of ref document: EP Kind code of ref document: A1 |