WO2017088562A1 - 一种空调控制方法及智能家居系统 - Google Patents

一种空调控制方法及智能家居系统 Download PDF

Info

Publication number
WO2017088562A1
WO2017088562A1 PCT/CN2016/099197 CN2016099197W WO2017088562A1 WO 2017088562 A1 WO2017088562 A1 WO 2017088562A1 CN 2016099197 W CN2016099197 W CN 2016099197W WO 2017088562 A1 WO2017088562 A1 WO 2017088562A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
sleep
air conditioning
data
conditioning system
Prior art date
Application number
PCT/CN2016/099197
Other languages
English (en)
French (fr)
Inventor
侯辰
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2017088562A1 publication Critical patent/WO2017088562A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to an air conditioner control method and a smart home system.
  • the conventional air conditioner can be controlled by a preset time, temperature, and the like, for example, pre-timing the air conditioner while sleeping. Because the user is in a sleep state, the air conditioner cannot be controlled in real time, and the air conditioner running state can only be controlled by means of pre-timing or the like, or the air conditioner operates according to the state before bedtime. However, the user's sleep depth is different, and the user's body temperature will be different. Therefore, there may be cases where the air conditioning operation mode cannot match the human body demand in real time, and the customer experience is not good. In order to achieve autonomous real-time control of the air conditioning system, those skilled in the art have made improvements to the prior art. As shown in FIG.
  • the prior art discloses an air conditioning system including a controller and an air conditioner, wherein the controller includes a smart bracelet and a server, and the control method of the air conditioning system is monitored by a smart bracelet.
  • the signal is transmitted to the server, which processes and analyzes the signal and then controls the air conditioner.
  • the smart bracelet has a sleep monitoring function. By monitoring the user's body temperature and heart rate, the user senses whether the user is in a sleep state through changes in body temperature and heart rate. When the user is in a sleep state, the smart bracelet transmits the data information in the sleep state to the server.
  • the server controls the air conditioner to adjust the temperature and humidity of the environment.
  • the air conditioning system pre-collects data through the smart bracelet and transmits the data to the server.
  • the server analyzes and processes the data, and automatically controls the air conditioner according to temperature, location and sleep state.
  • this prior art does not disclose how the smart wristband monitors the user's body temperature and heart rate, and how to determine the sleep state, so the operability is not strong.
  • the prior art discloses a healthy sleep adjustment terminal, which includes one or more of a CPU module, a remote control module, a power module, a storage module, and a Bluetooth module or a WIFI module.
  • the terminal monitors the sleep of the human body through smart devices such as smart bracelets. State data, thus remote control of air conditioners, fans and other household appliances, to achieve the effect of improving sleep quality.
  • the terminal does not disclose what kind of sleep data the smart bracelet monitors the user, and how to control the home appliance through the sleep data, so the operability is weak.
  • the automatic air conditioning control method provided by the prior art has the disadvantage that the operability is not strong.
  • An object of the present invention is to provide an air conditioning control method capable of controlling an air conditioner operating state or mode in real time and improving user sleep quality.
  • Another object of the present invention is to provide a smart home system that can adjust the air conditioning operating state in real time according to the user's sleep state to ensure user comfort.
  • an air conditioning control method including the following steps: Step S10: Collecting, by a wearable device, a user's sleep data in real time, the sleep data including at least one of a user's body temperature, heart rate, and activity amount, and setting The time interval is to push the sleep data to the air conditioning system; in step S20, the air conditioning system compares the collected sleep data with data in a pre-established sleep state database to determine a sleep state of the user; step S30, The air conditioning system adjusts the operating state of the air conditioner in real time according to the user's current sleep state.
  • step S10 further includes: collecting ambient temperature and humidity data in real time through the wearable device, and pushing the ambient temperature and humidity data to the air conditioning system at the set time interval;
  • Step S20 further includes: the air conditioning system obtaining a suitable ambient temperature and humidity of the current user from the pre-established environmental temperature and humidity database;
  • Step S30 further includes: the air conditioning system adjusts to the current ambient temperature and humidity data in real time to User-friendly ambient temperature and humidity.
  • a smart home system including a wearable device and an air conditioning system, wherein the air conditioning system includes a controller and an air conditioner, and the wearable device is configured to collect sleep data of the user in real time, the sleep The data includes at least one of a user's body temperature, heart rate, and activity amount, and pushes the sleep data to a controller of the air conditioning system at a set time interval; the controller of the air conditioning system is configured to pre-establish the collected sleep data The data in the sleep state database is compared, the sleep state of the user is judged, and the running state of the air conditioner is adjusted in real time according to the current sleep state of the user.
  • the invention has the beneficial effects that: the wearable device first collects the sleep data, and then pushes the sleep data to the database for screening and pairing, thereby obtaining the real-time sleep state of the user, thereby adjusting to the optimal air conditioner running state, thereby improving the user's sleep.
  • the quality and the energy saving of the air conditioner are achieved.
  • the control method of the present invention is highly operable.
  • FIG. 1 is a schematic structural view of an air conditioning system disclosed in the prior art
  • FIG. 2 is a schematic structural diagram of a healthy sleep adjustment terminal disclosed in the prior art
  • FIG. 3 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • this An embodiment of the present invention provides a method for controlling an air conditioner, including the following steps: Step S10: Providing a wearable device, collecting, by using a wearable device, sleep data of a user, where the sleep data includes at least one of a user's body temperature, heart rate, and activity amount. And pushing the sleep data to the air conditioning system at a set time interval; in step S20, the air conditioning system compares the collected sleep data with data in a pre-established sleep state database to determine a user's sleep state.
  • Step S30 The air conditioning system adjusts the operating state of the air conditioner in real time according to the current sleep state of the user.
  • the operating state of the air conditioner refers to an operation mode of the air conditioner, for example, a silent mode, an ultra-silent mode, a sleep mode, a power saving mode, and the like, but is not limited to the illustrated example.
  • the operation mode of the above air conditioner can be set according to actual needs.
  • the silent mode can reduce the noise to about 21 dB
  • the ultra-quiet mode can reduce the noise to about 18 dB
  • the sleep mode can rise 1 hour after the cooling mode.
  • the air conditioner is in a low-power operation state.
  • the cooling capacity of the 36 GW inverter is changed to 360 to 400 W.
  • the sleep state database is established by counting the data monitored by a certain number of users during sleep, and is relatively universal and comprehensive.
  • the sleep state database has at least four sleep states, which are a non-sleep state, a shallow sleep state, a moderate sleep state, and a deep sleep state, and each sleep state has a reference of a corresponding body temperature, heart rate, and activity amount.
  • the value range when the sleep data collected by the wearable device of the present invention is pushed to the air conditioning system, the air conditioning system automatically matches the collected sleep data to the reference range of the database, thereby obtaining the current user sleep state.
  • the control method of the present invention is operably strong, and the sleep data is first collected by the wearable device, and then the sleep data is pushed to the database for screening and pairing, thereby obtaining the real-time sleep state of the user, thereby adjusting the optimal air conditioner.
  • Operating state which improves the user's sleep quality, and When the air conditioner is adjusted to the energy saving mode, the energy saving of the air conditioner can also be achieved.
  • FIG. 4 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • the air conditioning control method of the present invention includes: Step S10: providing a wearable device, collecting sleep data and ambient temperature and humidity data of the user in real time through a wearable device, wherein the sleep data includes a user.
  • the status and ambient temperature and humidity data adjust the operating state of the air conditioner and the appropriate ambient temperature and humidity in real time.
  • An exemplary adjustment method when the appropriate ambient temperature and humidity to be adjusted conflicts with the temperature and humidity in the operating state of the air conditioner to be adjusted, for example, the conflicting portion may be controlled according to an appropriate ambient temperature and humidity. .
  • the ambient temperature and humidity refers to the ambient temperature and the ambient humidity.
  • Monitoring the user's sleep data can determine the current sleep state of the user, and then adjust the operating state of the air conditioner.
  • the method of the invention further improves the sleep quality of the user by collecting the ambient temperature and humidity data and adjusting the temperature to the optimal environment according to the current ambient temperature and humidity.
  • the user can preset the temperature and humidity of the environment that is most suitable for himself, or set the temperature and humidity suitable for the environment at a certain time.
  • the ambient temperature and humidity are recorded as reference values in the air conditioning system to form an environmental temperature and humidity database.
  • the air conditioning system will adjust in real time so that the ambient temperature and humidity will always match the reference value to achieve the optimal sleeping environment.
  • the air conditioning system can adjust the ambient temperature and humidity through its own temperature regulation and dehumidification function. degree.
  • the ambient humidity is controlled at 40 to 60% and the ambient temperature is controlled at 25 to 28 °C.
  • the method of the present invention does not limit the order of collecting, pushing, and processing the sleep data and the ambient temperature and humidity data, and may be performed simultaneously or sequentially.
  • the time interval set in step S10 is preferably 20 to 40 seconds, and more preferably 30 seconds. Due to the need to monitor the user's sleep state and ambient temperature and humidity in real time, it is not suitable to be separated for too long. Setting the time interval to about 30 seconds can ensure the accuracy of the monitoring results, and truly achieve real-time monitoring and adjustment of the operating state of the air conditioner and the ambient temperature and humidity. .
  • the wearable device pushes the user's sleep data and the ambient temperature and humidity data to the air conditioning system through a radio frequency identification technology (abbreviated as RFID).
  • RFID radio frequency identification technology
  • wireless radio frequency technology for data transmission, it is possible to penetrate objects within a certain range for communication, which can ensure the stability and timeliness of data transmission.
  • those skilled in the art may also use other wireless communication technologies for data transmission, for example, WiFi (Wireless Fidelity), 2G (second generation), 3G (third generation), 4G. (fourth generation) and so on.
  • FIG. 5 is a flowchart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • the sleep state of the user includes an unsleep state, a shallow sleep state, a moderate sleep state, and a deep sleep state.
  • the air conditioning control method of the present embodiment specifically includes the following steps: Step S10: Providing a wearable device, and collecting sleep data of the user in real time through the wearable device, where the sleep data includes the user's body temperature, heart rate, and activity amount.
  • step S201 the air conditioning system compares the collected sleep data with data in a pre-established sleep state database to determine the user
  • Step S202 if the user is currently in the non-sleep state, step S301 is performed; if the user is currently in the shallow sleep state, step S302 is performed; if the user is currently in the moderate sleep state, step S303 is performed; If the current state is a deep sleep state, step S304 is performed; step S301, the air conditioning system will be the air conditioner The operating state is adjusted to the mute and sleep mode; in step S302, the air conditioning system adjusts the operating state of the air conditioner to an ultra-quiet, sleep mode; and in step S303, the air conditioning system adjusts the operating state of the air conditioner to ultra-quiet, sleep, The energy saving mode; in step S304, the air conditioning system adjusts an operating state of the air conditioner to a standby mode.
  • Embodiments of the present invention also provide a smart home system including a wearable device and an air conditioning system, wherein the air conditioning system includes a controller and an air conditioner, and the wearable device is configured to collect user's sleep data and ambient temperature in real time.
  • Humidity data the sleep data including a user's body temperature, heart rate, and activity amount, and pushing the sleep data and the ambient temperature and humidity data to a controller of the air conditioning system at a set time interval; the controller of the air conditioning system is configured to collect
  • the sleep data is compared with the data in the pre-established sleep state database and the ambient temperature and humidity database to determine the sleep state of the user, and to obtain the appropriate ambient temperature and humidity of the current user, and according to the current sleep state and the ambient temperature and humidity data of the user. Adjust the operating status of the air conditioner and the appropriate ambient temperature and humidity in real time.
  • the smart home system of the invention mainly consists of a wearable device and an air conditioning system, and intelligently monitors the user's sleep state and ambient temperature and humidity through the wearable device, controls and adjusts the operating state of the air conditioner and adjusts the temperature and humidity of the environment in real time, and ensures the user. In the best comfort, the energy saving effect of the air conditioning system can also be achieved.
  • the communication connection between the wearable device and the air conditioning system of the present invention can be set according to actual needs, for example, automatic connection between the air conditioning system and the wearable device can be realized when the air conditioning system is powered on, or on the wearable device. Manually open the communication connection with the air conditioning system.
  • the wearable device of the present invention preferably employs a smart bracelet.
  • the smart bracelet can be worn on the user's wrist to monitor data such as temperature, heart rate and activity.
  • the smart bracelet includes an MCU module (MCU refers to a micro control unit or a single-chip microcomputer) for data processing of temperature, heart rate and activity amount, thereby realizing real-time adjustment of the operating state of the air conditioner.
  • MCU refers to a micro control unit or a single-chip microcomputer
  • the traditional bracelet can only record the number of daily movements, intelligently enter sleep monitoring, and intelligence.
  • the function of vibrating alarm clock and Bluetooth unlocked mobile phone is mainly the recording and statistics of data, and it is not effectively combined with smart home.
  • the wearable device of the present invention may also be a device including a foot ring, glasses, and the like of the MCU module, and the object of the present invention can also be achieved.
  • a temperature sensor is disposed on both inner and outer sides of the smart bracelet.
  • a temperature sensor disposed inside the smart bracelet is used to monitor the user's body temperature.
  • a temperature sensor on the outside of the smart bracelet is used to monitor the ambient temperature.
  • a humidity sensor is disposed outside the smart bracelet for monitoring the ambient humidity.
  • a heart rate monitoring module is disposed on an inner side of the smart bracelet for monitoring a heart rate of the user. More preferably, the heart rate monitoring module can employ a reflective photoelectric heart rate sensor.
  • a three-axis acceleration sensor is disposed on the smart bracelet for monitoring the amount of activity of the user.
  • the controller of the present invention is preferably integrated into the air conditioner.
  • the controller and the air conditioner adopt an integrated structure, which can facilitate equipment management and maintenance, as well as ensure the accuracy of information transmission and achieve precise control.
  • the controller can also be designed separately as a control box, disposed outside the air conditioner, and communicatively coupled between the wearable device, the controller and the air conditioner.
  • the controller of the present invention includes an RFID reader and an RFID antenna, the wearable device including an RFID tag to transfer data between the controller and the wearable device via wireless radio frequency technology.
  • an embodiment means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. in.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法及智能家居系统,其中,空调控制方法包括如下步骤:步骤S10、提供可穿戴设备,实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量,并在设定的时间间隔向空调系统推送所述睡眠数据;步骤S20、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;步骤S30、所述空调系统根据用户当前的睡眠状态实时调整空调器的运行状态。通过可穿戴设备先采集睡眠数据,然后将睡眠数据推送到数据库中进行筛选配对,得到用户的实时睡眠状态,从而调整到最佳的空调运行状态,可提高用户的睡眠质量和达到空调的节能性,对比现有技术,该控制方法可操作性强。

Description

一种空调控制方法及智能家居系统 技术领域
本发明涉及空调技术领域,具体涉及一种空调控制方法及智能家居系统。
背景技术
传统的空调可通过预先设定时间、温度等方法进行控制,例如,睡觉时对空调预先定时。因为用户在睡眠状态,无法实时控制空调,只能通过预先定时等方式控制空调运行状态,或者,空调按照睡前状态运行。但是,用户睡眠深度不同,用户体温也会不同,这样就有可能出现空调运行模式不能实时匹配人体需求的情况,客户体验感欠佳。为了实现对空调系统的自主实时控制,本领域技术人员对现有技术作出了改进。如图1所示,现有技术公开一种空调系统,该空调系统包括控制器和空调器,其中,控制器包括智能手环和服务器,该空调系统的控制方法是通过智能手环将监测到的信号传输给服务器,服务器对信号进行处理分析,然后对空调器进行控制。智能手环具有睡眠监测功能,通过监测用户的体温和心率,通过体温与心率的变化来感知用户是否处于睡眠状态,当用户处于睡眠状态时,智能手环将处于睡眠状态的数据信息传输给服务器,服务器控制空调器调节环境的温度与湿度。该空调系统预通过智能手环采集数据,并将数据传输给服务器,服务器对数据进行分析处理,根据温度、位置以及睡眠状态对空调器进行自动控制。但是,该现有技术并没有公开智能手环如何监测用户的体温和心率,以及如何确定睡眠状态,故可操作性不强。如图2所示,现有技术公开一种健康睡眠调节终端,包括CPU模块、遥控模块、电源模块、存储模块,以及蓝牙模块或WIFI模块中的一种或多种。该终端预通过智能手环等智能设备监测到人体睡眠状 态数据,从而遥控空调、风扇等家电设备,达到改善睡眠质量的效果。但是,该终端并没有公开智能手环监测用户的何种睡眠数据,以及如何通过睡眠数据控制家电设备,故可操作性弱。
综上所述,现有技术提供的空调自动控制方法存在可操作性不强的缺陷,针对现有技术的不足之处,亟需提出更利于操作的空调器控制方法。
发明内容
本发明的一个目的在于提供一种空调控制方法,可实时控制空调运行状态或模式,提高用户睡眠质量。
本发明的另一目的在于提供一种智能家居系统,可根据用户睡眠状态,实时调整空调运行状态,保证用户的舒适度。
为达此目的,本发明采用以下技术方案:
一方面,提供一种空调控制方法,包括如下步骤:步骤S10、通过可穿戴设备实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统推送所述睡眠数据;步骤S20、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;步骤S30、所述空调系统根据用户当前的睡眠状态实时调整空调器的运行状态。
优选地,步骤S10还包括:通过可穿戴设备实时采集环境温湿度数据,并在设定的时间间隔向空调系统推送所述环境温湿度数据;
步骤S20还包括:所述空调系统从预先建立的环境温湿度数据库中得到当前用户适宜的环境温湿度;
步骤S30还包括:所述空调系统根据当前的环境温湿度数据实时调整至 用户适宜的环境温湿度。
另一方面,还提供一种智能家居系统,包括可穿戴设备和空调系统,其中,所述空调系统包括控制器和空调器,所述可穿戴设备用于实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统的控制器推送所述睡眠数据;所述空调系统的控制器用于将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,判断用户的睡眠状态,并根据用户当前的睡眠状态实时调整空调器的运行状态。
本发明的有益效果为:通过可穿戴设备先采集睡眠数据,然后将睡眠数据推送到数据库中进行筛选配对,得到用户的实时睡眠状态,从而调整到最佳的空调运行状态,可提高用户的睡眠质量和达到空调的节能性,对比现有技术,本发明的控制方法可操作性强。
附图说明
图1是现有技术公开的一种空调系统的结构示意图;
图2是现有技术公开的一种健康睡眠调节终端的结构示意图;
图3是本发明一实施例提供的空调控制方法的流程图;
图4是本发明一实施例提供的空调控制方法的流程图;
图5是本发明一实施例提供的空调控制方法的流程图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图3是本发明一实施例提供的空调控制方法的流程图。如图3所示,本 发明的实施例提供一种空调控制方法,包括如下步骤:步骤S10、提供可穿戴设备,通过可穿戴设备实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统推送所述睡眠数据;步骤S20、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;步骤S30、所述空调系统根据用户当前的睡眠状态实时调整空调器的运行状态。
本发明的描述中,空调器的运行状态是指空调器的运行模式,例如,静音模式、超静音模式、睡眠模式、节能模式等,但不限于所举示例。上述的空调器的运行模式可根据实际需要进行设置,例如,静音模式可使噪音降至21dB左右;超静音模式可使噪音降至18dB左右;睡眠模式可使在制冷模式下1小时后上升1℃,再过2小时再上升2℃,之后保持此温度运行;睡眠模式可使在制热模式下1小时后下降1℃,再过2小时后下降2℃,之后保持此温度运行;节能模式是指空调器处于低功率运行状态,例如,36GW变频的制冷量变化为360~400W。
睡眠状态数据库是对一定数量的用户睡眠时监测得到的数据进行统计后建立的,具有相对普遍性和全面性。所述的睡眠状态数据库中具有至少四种睡眠状态,分别为未睡眠状态、浅度睡眠状态、中度睡眠状态和深度睡眠状态,每种睡眠状态均有对应的体温、心率和活动量的参考值范围,当本发明的可穿戴设备采集的睡眠数据被推送至空调系统后,空调系统会自动将采集的睡眠数据匹配数据库的参考值范围,从而得到当前的用户睡眠状态。
对比现有技术,本发明的控制方法可操作性强,通过可穿戴设备先采集睡眠数据,然后将睡眠数据推送到数据库中进行筛选配对,得到用户的实时睡眠状态,从而调整到最佳的空调运行状态,可提高用户的睡眠质量,并且 当空调器调整到节能模式时,还可以达到空调的节能性。
图4是本发明一实施例提供的空调控制方法的流程图。如图4所示,于本实施例中,本发明的空调控制方法包括:步骤S10、提供可穿戴设备,通过可穿戴设实时采集用户的睡眠数据和环境温湿度数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统推送所述睡眠数据和所述环境温湿度数据;步骤S20、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库进行比对,以判断用户的睡眠状态;并且,所述空调系统从预先建立的环境温湿度数据库中得到用户适宜的环境温湿度;步骤S30、所述空调系统根据用户当前的睡眠状态和环境温湿度数据实时调整空调器的运行状态和适宜的环境温湿度。一种示例性的调整方法,当需要调整到的适宜的环境温湿度与需要调整到的空调器的运行状态中的温湿度发生冲突时,例如可以规定冲突的部分按照适宜的环境温湿度进行控制。
本发明的描述中,所述的环境温湿度是指环境温度和环境湿度。对用户的睡眠数据的监测可实现对用户当前睡眠状态进行判断,进而调整空调器的运行状态,但由于每个用户的体质不同,为了尽可能提高睡眠质量,还应克服环境因素的影响,因此,本发明的方法还通过对环境温湿度数据采集,并根据当前的环境温湿度实时调整到最佳环境温湿度,可进一步提高用户睡眠质量。
用户可以预先设定最适宜自身的环境温湿度,或者,设定某时间点适宜自身的环境温湿度,该环境温湿度作为参考值被记录于空调系统内,形成环境温湿度数据库,当采集到的环境温湿度与数据库中的参考值不同时,空调系统会进行实时调整,以使环境温湿度始终保持匹配所述参考值,从而达到最佳睡眠环境。空调系统可通过其自身的调温和除湿功能实现调整环境温湿 度。优选地,环境湿度控制在40~60%,环境温度控制在25~28℃。
可以理解的是,本发明的方法对睡眠数据、环境温湿度数据的采集、推送及处理的顺序并不作限制,可同时进行或按照先后顺序进行。
步骤S10中设定的时间间隔优选为20~40秒,更加优选为30秒。由于需要实时监测用户的睡眠状态和环境温湿度,不宜间隔太长时间,将时间间隔设定在30秒左右可以保证监测结果的准确性,真正达到实时监测并调整空调的运行状态和环境温湿度。
本发明的步骤S10中可穿戴设备通过无线射频识别技术(英文缩写为RFID)向空调系统推送用户的睡眠数据和环境温湿度数据。通过采用无线射频技术进行数据传输,可在一定范围内穿透物体进行通信,可以保证数据传输的稳定性和及时性。当然,作为本发明备选的实施例,本领域技术人员也可以采用其他无线通信技术进行数据的传输,例如,WiFi(Wireless Fidelity)、2G(第二代)、3G(第三代)、4G(第四代)等。
图5是本发明一实施例提供的空调控制方法的流程图。于本实施例中,用户的睡眠状态包括未睡眠状态、浅度睡眠状态、中度睡眠状态和深度睡眠状态。如图5所示,本实施例的空调控制方法具体包括如下步骤:步骤S10、提供可穿戴设备,通过可穿戴设备实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统推送所述睡眠数据;步骤S201、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;步骤S202、若用户当前为未睡眠状态,则实施步骤S301;若用户当前为浅度睡眠状态,则实施步骤S302;若用户当前为中度睡眠状态,则实施步骤S303;若用户当前为深度睡眠状态,则实施步骤S304;步骤S301、所述空调系统将空调器的 运行状态调整为静音、睡眠模式;步骤S302、所述空调系统将空调器的运行状态调整为超静音、睡眠模式;步骤S303、所述空调系统将空调器的运行状态调整为超静音、睡眠、节能模式;步骤S304、所述空调系统将空调器的运行状态调整为待机模式。
本发明的实施例还提供一种智能家居系统,包括可穿戴设备和空调系统,其中,所述空调系统包括控制器和空调器,所述可穿戴设备用于实时采集用户的睡眠数据和环境温湿度数据,所述睡眠数据包括用户体温、心率和活动量,并在设定的时间间隔向空调系统的控制器推送所述睡眠数据和环境温湿度数据;所述空调系统的控制器用于将收集的睡眠数据与预先建立的睡眠状态数据库和环境温湿度数据库中的数据进行比对,判断用户的睡眠状态,以及得到当前用户适宜的环境温湿度,并根据用户当前的睡眠状态和环境温湿度数据实时调整空调器的运行状态和适宜的环境温湿度。
本发明的智能家居系统主要由可穿戴设备与空调系统组成,通过可穿戴设备智能监测用户的睡眠状态和环境温湿度,实时控制并调整空调器的运行状态和调整环境的温湿度,在保证用户最佳舒适的情况下,还可达到空调系统的节能效果。本发明的可穿戴设备与空调系统之间的通信连接方式可根据实际需求进行设置,例如,可在空调系统上电时,实现空调系统与可穿戴设备的自动连接;也可在可穿戴设备上手动开启与空调系统的通信连接。
本发明的可穿戴设备优选采用智能手环。智能手环可以佩戴于用户的手腕上,用以监测温度、心率和活动量等数据。作为本发明的示例,所述智能手环包括MCU模块(MCU指微控制单元或单片微型计算机),用于温度、心率和活动量的数据处理,从而实现对空调器运行状态的实时调整,相比传统的智能手环,传统手环只能实现记录每天的运动数、智能进入睡眠监控、智能 震动闹钟和蓝牙解锁的手机功能,主要是对数据的记录和统计,并没有与智能家居有效结合。当然,本领域技术人员容易联想到的是,本发明的可穿戴设备还可以是包含MCU模块的脚环、眼镜等设备,同样可以实现本发明的目的。
优选地,所述智能手环的内、外两侧均设置温度传感器,当用户佩戴所述智能手环时,设置于所述智能手环内侧的温度传感器用于监测用户的体温,设置于所述智能手环外侧的温度传感器用于监测环境温度。所述智能手环的外侧设置湿度传感器,用于监测环境湿度。
优选地,所述智能手环的内侧设置心率监测模块,用于监测用户的心跳速率。更加优选地,所述心率监测模块可采用反射式光电心率传感器。
优选地,所述智能手环上设置三轴加速度传感器,用于监测用户的活动量。
本发明的控制器优选的集成于空调器内。控制器与空调器采用一体结构,可便于设备管理和维护,以及保证信息传递的准确性,达到精准控制的目的。当然,在本发明的备选实施例中,控制器也可单独设计成控制盒,设置于空调器外部,可穿戴设备、控制器和空调器之间通信连接。
本发明的控制器包括RFID阅读器和RFID天线,所述可穿戴设备包括RFID标签,以使控制器与所述可穿戴设备之间通过无线射频技术传输数据。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (11)

  1. 一种空调控制方法,其特征在于,包括如下步骤:
    步骤S10、通过可穿戴设备实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统推送所述睡眠数据;
    步骤S20、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;
    步骤S30、所述空调系统根据用户当前的睡眠状态实时调整空调器的运行状态。
  2. 根据权利要求1所述的空调控制方法,其特征在于,
    步骤S10还包括:通过可穿戴设备实时采集环境温湿度数据,并在设定的时间间隔向空调系统推送所述环境温湿度数据;
    步骤S20还包括:所述空调系统从预先建立的环境温湿度数据库中得到当前用户适宜的环境温湿度;
    步骤S30还包括:所述空调系统根据当前的环境温湿度数据实时调整至用户适宜的环境温湿度。
  3. 根据权利要求1所述的空调控制方法,其特征在于,步骤S20和步骤S30具体包括如下步骤:
    步骤S201、所述空调系统将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,以判断用户的睡眠状态;
    步骤S202、若用户当前为未睡眠状态,则实施步骤S301;若用户当前为浅度睡眠状态,则实施步骤S302;若用户当前为中度睡眠状态,则实施步骤 S303;若用户当前为深度睡眠状态,则实施步骤S304;
    步骤S301、所述空调系统将空调器的运行状态调整为静音、睡眠模式;
    步骤S302、所述空调系统将空调器的运行状态调整为超静音、睡眠模式;
    步骤S303、所述空调系统将空调器的运行状态调整为超静音、睡眠、节能模式;
    步骤S304、所述空调系统将空调器的运行状态调整为待机模式。
  4. 根据权利要求1至3之一所述的空调控制方法,其特征在于,所述步骤S10中可穿戴设备通过无线射频技术向空调系统推送数据;
    或者,所述步骤S10中设定的时间间隔为20~40秒。
  5. 根据权利要求1至3之一所述的空调控制方法,其特征在于,所述睡眠状态数据库中的数据包括:睡眠状态以及每种睡眠状态对应的睡眠数据参考值范围。
  6. 根据权利要求2所述的空调控制方法,其特征在于,所述环境温湿度数据库中的数据包括:预先设定的用户适宜的环境温湿度,或者,预先设定的各时间点对应的用户适宜的环境温湿度。
  7. 一种智能家居系统,其特征在于,包括可穿戴设备和空调系统,其中,所述空调系统包括控制器和空调器,
    所述可穿戴设备用于实时采集用户的睡眠数据,所述睡眠数据包括用户体温、心率和活动量中的至少一项,并在设定的时间间隔向空调系统的控制器推送所述睡眠数据;
    所述空调系统的控制器用于将收集的睡眠数据与预先建立的睡眠状态数据库中的数据进行比对,判断用户的睡眠状态,并根据用户当前的睡眠状态实时调整所述空调器的运行状态。
  8. 根据权利要求7所述的智能家居系统,其特征在于,所述可穿戴设备采用智能手环。
  9. 根据权利要求8所述的智能家居系统,其特征在于,所述智能手环的内、外两侧均设置温度传感器,当用户佩戴所述智能手环时,设置于所述智能手环内侧的温度传感器用于监测用户的体温,设置于所述智能手环外侧的温度传感器用于监测环境温度;和/或,
    所述智能手环的外侧设置湿度传感器,用于监测环境湿度;和/或;
    所述智能手环的内侧设置心率监测模块,用于监测用户的心跳速率。
  10. 根据权利要求8所述的智能家居系统,其特征在于,所述智能手环上设置三轴加速度传感器,用于监测用户的活动量。
  11. 根据权利要求7至10之一所述的智能家居系统,其特征在于,所述控制器包括无线射频识别RFID阅读器和RFID天线,所述可穿戴设备包括RFID标签,以使所述控制器与所述可穿戴设备之间通过无线射频技术传输数据。
PCT/CN2016/099197 2015-11-24 2016-09-18 一种空调控制方法及智能家居系统 WO2017088562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510825003.3 2015-11-24
CN201510825003.3A CN105352127A (zh) 2015-11-24 2015-11-24 一种空调控制方法及智能家居系统

Publications (1)

Publication Number Publication Date
WO2017088562A1 true WO2017088562A1 (zh) 2017-06-01

Family

ID=55328146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099197 WO2017088562A1 (zh) 2015-11-24 2016-09-18 一种空调控制方法及智能家居系统

Country Status (2)

Country Link
CN (1) CN105352127A (zh)
WO (1) WO2017088562A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829007A (zh) * 2018-07-06 2018-11-16 西安原子方舟智能科技有限责任公司 一种环境温湿度及ch2o多参数在线监测终端
CN111637610A (zh) * 2020-06-24 2020-09-08 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统
CN113832644A (zh) * 2020-06-23 2021-12-24 青岛海尔洗衣机有限公司 用于智能家居系统的控制方法
CN114035443A (zh) * 2021-11-22 2022-02-11 上海富芮坤微电子有限公司 一种基于蓝牙通讯的智能家居控制系统及方法
CN114838472A (zh) * 2022-03-30 2022-08-02 海尔(深圳)研发有限责任公司 用于控制空调器的方法及装置、空调器、存储介质
CN114967897A (zh) * 2021-02-19 2022-08-30 深圳市万普拉斯科技有限公司 一种功耗优化方法、装置及移动终端
CN115426212A (zh) * 2022-09-01 2022-12-02 深圳市心流科技有限公司 基于睡眠状态的智能设备的适应性调整方法及终端设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352127A (zh) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 一种空调控制方法及智能家居系统
CN105605750B (zh) * 2016-03-21 2018-12-28 北京晶海科技有限公司 一种智能睡眠空调控制方法、智能可穿戴设备及系统
CN105650833A (zh) * 2016-03-28 2016-06-08 广东美的制冷设备有限公司 空调睡眠模式的控制方法及装置
CN105843065A (zh) * 2016-05-11 2016-08-10 南京邮电大学 一种基于可穿戴设备的情景感知系统及控制方法
WO2018045483A1 (zh) * 2016-09-06 2018-03-15 深圳市赛亿科技开发有限公司 睡眠辅助系统
CN106547905A (zh) * 2016-10-31 2017-03-29 北京小米移动软件有限公司 信息处理方法及装置
CN106371330B (zh) * 2016-11-11 2023-08-18 深圳市艾特智能科技有限公司 智能睡眠控制方法、智能睡眠控制装置及智能家居系统
CN106491101A (zh) * 2016-12-28 2017-03-15 杭州联络互动信息科技股份有限公司 一种智能穿戴设备通过体温监测进行功能操作的方法和装置
CN106679087A (zh) * 2016-12-30 2017-05-17 广东美的制冷设备有限公司 舒睡控制方法、空调器以及舒睡控制系统
CN106556122B (zh) * 2016-12-30 2019-11-08 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN106871340A (zh) * 2017-01-22 2017-06-20 美的集团股份有限公司 基于Widget的控制装置、方法和系统
CN107450331A (zh) * 2017-07-31 2017-12-08 山东浪潮云服务信息科技有限公司 一种智能家电控制方法、装置及系统
CN111102643A (zh) * 2018-10-26 2020-05-05 芜湖美的厨卫电器制造有限公司 一种壁挂炉的控制方法、控制系统和一种壁挂炉
CN109186048A (zh) * 2018-10-29 2019-01-11 珠海格力电器股份有限公司 一种家电控制方法、装置和介质
CN110780595A (zh) * 2019-10-17 2020-02-11 北京小米移动软件有限公司 电子设备的控制方法及装置、电子设备、存储介质
CN110604859B (zh) * 2019-10-24 2022-03-22 深圳易嘉恩科技有限公司 基于智能家居设备的辅助睡眠控制方法及系统
CN111219845A (zh) * 2020-01-15 2020-06-02 珠海格力电器股份有限公司 一种温度控制方法、装置、存储介质及空调
CN111426026A (zh) * 2020-04-03 2020-07-17 广东美的暖通设备有限公司 控制方法、换热组件和计算机可读存储介质
CN111426025A (zh) * 2020-04-03 2020-07-17 广东美的暖通设备有限公司 控制方法、室内机和计算机可读存储介质
CN114061051B (zh) * 2021-11-02 2023-01-13 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调
CN115105720A (zh) * 2022-07-11 2022-09-27 珠海格力电器股份有限公司 睡眠质量改善方法、装置、智能空调、系统及存储介质
CN117731245A (zh) * 2024-02-20 2024-03-22 深圳市星迈科技有限公司 基于智能手表的睡眠监测方法、系统和可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083590A (ja) * 2001-09-06 2003-03-19 Sanyo Electric Co Ltd 空気調和システム
CN203704244U (zh) * 2013-11-20 2014-07-09 黄志海 一种空调控制系统
CN104154633A (zh) * 2014-08-19 2014-11-19 珠海格力电器股份有限公司 空调智能控制方法、装置和系统
CN104748328A (zh) * 2015-03-31 2015-07-01 美的集团股份有限公司 空调器的控制系统及方法
CN104791957A (zh) * 2015-04-23 2015-07-22 惠州Tcl移动通信有限公司 一种基于智能手表的智能空调调节方法及系统
CN104879886A (zh) * 2015-04-30 2015-09-02 广东美的制冷设备有限公司 家电设备的控制方法、装置及终端
CN105352127A (zh) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 一种空调控制方法及智能家居系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083590A (ja) * 2001-09-06 2003-03-19 Sanyo Electric Co Ltd 空気調和システム
CN203704244U (zh) * 2013-11-20 2014-07-09 黄志海 一种空调控制系统
CN104154633A (zh) * 2014-08-19 2014-11-19 珠海格力电器股份有限公司 空调智能控制方法、装置和系统
CN104748328A (zh) * 2015-03-31 2015-07-01 美的集团股份有限公司 空调器的控制系统及方法
CN104791957A (zh) * 2015-04-23 2015-07-22 惠州Tcl移动通信有限公司 一种基于智能手表的智能空调调节方法及系统
CN104879886A (zh) * 2015-04-30 2015-09-02 广东美的制冷设备有限公司 家电设备的控制方法、装置及终端
CN105352127A (zh) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 一种空调控制方法及智能家居系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829007A (zh) * 2018-07-06 2018-11-16 西安原子方舟智能科技有限责任公司 一种环境温湿度及ch2o多参数在线监测终端
CN113832644A (zh) * 2020-06-23 2021-12-24 青岛海尔洗衣机有限公司 用于智能家居系统的控制方法
CN113832644B (zh) * 2020-06-23 2024-02-09 上海海尔洗涤电器有限公司 用于智能家居系统的控制方法
CN111637610A (zh) * 2020-06-24 2020-09-08 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统
CN111637610B (zh) * 2020-06-24 2022-04-01 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统
CN114967897A (zh) * 2021-02-19 2022-08-30 深圳市万普拉斯科技有限公司 一种功耗优化方法、装置及移动终端
CN114035443A (zh) * 2021-11-22 2022-02-11 上海富芮坤微电子有限公司 一种基于蓝牙通讯的智能家居控制系统及方法
CN114035443B (zh) * 2021-11-22 2023-10-31 上海富芮坤微电子有限公司 一种基于蓝牙通讯的智能家居控制系统及方法
CN114838472A (zh) * 2022-03-30 2022-08-02 海尔(深圳)研发有限责任公司 用于控制空调器的方法及装置、空调器、存储介质
CN114838472B (zh) * 2022-03-30 2024-01-16 海尔(深圳)研发有限责任公司 用于控制空调器的方法及装置、空调器、存储介质
CN115426212A (zh) * 2022-09-01 2022-12-02 深圳市心流科技有限公司 基于睡眠状态的智能设备的适应性调整方法及终端设备

Also Published As

Publication number Publication date
CN105352127A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2017088562A1 (zh) 一种空调控制方法及智能家居系统
CN105650815B (zh) 空调风扇联动控制方法、装置及系统
CN104483953B (zh) 一种控制方法及穿戴式电子设备
US10340972B2 (en) Ultra low power sensing platform with multimodal radios
US11668480B2 (en) Sleep enhancement in an HVAC system
CN110553358A (zh) 一种基于智能穿戴设备的空调控制方法、系统及空调器
CN110313901A (zh) 一种睡眠监控方法、装置及电子设备
CN105656679B (zh) 智能家居设备的控制方法、控制装置和智能家居设备
CN105115101A (zh) 一种夜间睡眠时自动控制空调温度的方法及设备
WO2018072490A1 (zh) 一种智能家电的控制方法、装置及存储介质
CN107606754A (zh) 基于用户深度睡眠的自动调温空调、空调系统和控制方法
CN104896657A (zh) 一种家用空调的自动控制方法
WO2021135287A1 (zh) 空调器调整方法、空调器及可读存储介质
CN107248957A (zh) 一种路由器的自动控制方法及系统
WO2017118418A1 (zh) 一种带智能检测和物联功能的毯或被及其应用的智能家居系统
CN106162278A (zh) 一种低能耗终端控制系统及方法
CN112671623B (zh) 基于投影的叫醒方法、装置、投影设备和计算机存储介质
CN110488628A (zh) 一种基于睡眠状态的智能家居控制系统
CN207782853U (zh) 新型睡眠监测枕头
CN111193912A (zh) 一种低功耗电池摄像机套装系统
CN113028605B (zh) 一种温度控制方法及系统
CN205229790U (zh) 一种环境控制装置
CN111459042B (zh) 家电设备的控制方法、系统、电视机与存储介质
CN206037332U (zh) 用于控制空调的可穿戴智能设备
CN205862125U (zh) 一种带智能检测和物联功能的被子及其应用的智能家居系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867789

Country of ref document: EP

Kind code of ref document: A1