WO2017088555A1 - Système de réseau de conduites intelligent reposant sur un robot orbital - Google Patents

Système de réseau de conduites intelligent reposant sur un robot orbital Download PDF

Info

Publication number
WO2017088555A1
WO2017088555A1 PCT/CN2016/098473 CN2016098473W WO2017088555A1 WO 2017088555 A1 WO2017088555 A1 WO 2017088555A1 CN 2016098473 W CN2016098473 W CN 2016098473W WO 2017088555 A1 WO2017088555 A1 WO 2017088555A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
mobile robot
data
network system
pipe network
Prior art date
Application number
PCT/CN2016/098473
Other languages
English (en)
Chinese (zh)
Inventor
宋有聚
宋章军
申红俊
樊太岳
戴功献
王小桂
王秀英
Original Assignee
深圳市施罗德工业测控设备有限公司
重庆市瀚德高科机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市施罗德工业测控设备有限公司, 重庆市瀚德高科机器人有限公司 filed Critical 深圳市施罗德工业测控设备有限公司
Publication of WO2017088555A1 publication Critical patent/WO2017088555A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • G05B19/41855Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by local area network [LAN], network structure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31011Communication network identical to transport network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31022Planner and coordinator, decision and direct control level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31158Wan wide area network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31205Remote transmission of measured values from site, local to host

Definitions

  • the invention belongs to the technical field of pipe network municipal management, and in particular relates to a smart pipe network system based on a track robot.
  • the city underground pipeline integrated pipe gallery is also referred to as "common ditch", which refers to the centralized storage of all kinds of public-type pipelines installed on the ground, underground or overhead, and the tunnel structure for the maintenance personnel to walk. . That is to build a tunnel space underground in the city, integrating municipal, electric power, communication, gas, water supply and drainage, etc., with special inspection ports, lifting ports and monitoring systems, and implement unified planning, design, construction and management. , completely change the chaos of the previous construction and management of each pipeline. All pipelines need to be transported, just inform the relevant responsible department and connect the interface, which is easy to repair and saves the national resources.
  • Using a robot instead of a person to patrol can avoid many problems in the manual inspection process, and can be used to adjust the robot to the designated position, and can detect and patrol in the event of unknown danger, so the robot enters The comprehensive inspection of the pipe profile will gradually replace the person's inspection.
  • the technical problem to be solved by the present invention is to provide a smart pipe network system based on a track robot with simple maintenance, low maintenance cost and wide detection range.
  • the present invention is implemented in this way, a smart pipe network system based on a orbital robot, including a shuttle track
  • the shuttle track is fixed in the cabin of the integrated pipe gallery, is laid along the axis direction of the integrated pipe gallery, and passes through the fire door in the integrated pipe gallery, and is sequentially spliced by the plurality of shuttle track units;
  • the mobile robot is movably fixed on the shuttle track for inspecting a condition in the integrated pipe gallery and repairing a fault occurring inside the integrated pipe gallery;
  • the robot docking station is placed in the cabin of the integrated pipe gallery or at the exit of the cabin, used to charge the mobile robot, assemble the assembly, and communicate as the communication relay station to the control and data exchange platform and the station.
  • the communication between the mobile robots; the control and data interaction platform is respectively connected to the mobile robot and the robot docking station via a wireless or wired network, for analyzing, storing, and receiving the received data.
  • the resulting data and the analyzed results provide a query and display, and the instruction data for executing the task is sent to the mobile robot.
  • the mobile robot has a built-in high-definition camera, a positioning sensor, a temperature sensor, a humidity sensor, and an oxygen sensor.
  • the mobile robot has a mechanical arm for performing a fault occurring inside the repair integrated corridor.
  • the mobile robot includes one or more vehicle body units that are energy-saving on the shuttle track, and the mobile robot is composed of a plurality of car body units, and two adjacent car body units are connected in series. Connected and each car body unit is detachable.
  • control and data interaction platform includes a monitoring device, a storage device, and a manipulation device; [0016] the monitoring device is configured to display the working state of the mobile robot and the video image in the integrated pipe gallery And data collected by the mobile robot;
  • the storage device is configured to store data collected by the mobile robot, and perform data interconnection with other management systems through the Internet;
  • the operating device schedules the mobile robot and controls the mobile robot to perform a task.
  • the shuttle track is installed at an upper middle portion or a top end portion of the inner wall of the integrated pipe gallery.
  • the robot docking station includes a communication device and a charging device; the communication device communicates as a communication relay station to communicate between the control and data exchange platform and the mobile robot;
  • the charging device is configured to charge a mobile robot parked on a shuttle track in the robot docking station
  • the present invention has the beneficial effects that: the intelligent robot network system based on the orbit robot arranges the shuttle track inside the integrated pipe gallery, so that the mobile robot runs on the shuttle track and integrates the pipe gallery
  • the internal conditions are patrolled and repaired, and the same can receive the command data for executing the task and send the patrol data and ⁇ to the control and data interaction platform.
  • the mobile robot is used to inspect along the shuttle track. Once the track is completed, the amount of work required for maintenance is small.
  • the mobile robot can be unloaded for maintenance and maintenance in the inspection bin or exit of the integrated pipe gallery, which is very convenient and low in cost.
  • the smart pipe network system has simple maintenance, low operating cost, wide detection range, and can replace manual inspections.
  • FIG. 1 is a schematic structural view of a smart pipe network system based on a track robot according to the present invention
  • FIG. 2 is a schematic diagram of data and signal flow directions in a smart pipe network system based on a track robot according to the present invention.
  • the intelligent robot network system based on the orbit robot of the present invention is capable of installing a shuttle track in an integrated pipe gallery and is equipped with a mobile robot running on a shuttle track, which can replace the person to complete the inspection task and realize A task that many people cannot accomplish, and it is more reliable and economical than deploying various sensors at a fixed point in a comprehensive pipe corridor. Moreover, since the design life of the shuttle track can be the same as the service life of the integrated pipe gallery, the sensor carried by the mobile robot can be easily replaced and repaired, so the maintenance and maintenance cost is low.
  • the smart pipe network refers to: pipes, wells, manholes, etc. that are internally installed with rails, vehicles that use rails, sensors installed in pipes (including pipe walls), parking stations, communication devices, power supply devices, data
  • An artificial intelligence system with on-site information collection, inspection and repair functions consisting of a collection device, a smart pipe network data acquisition and analysis management software, a smart pipe network monitoring software, and a computer.
  • the smart pipe network data acquisition and analysis management software collects the above sensor data through the communication device, comprehensively analyzes, stores, and queries the sensor data, and outputs sensor data, asset data, and planning data.
  • a smart pipe network system based on a track robot, including a shuttle track 10, a mobile robot 20, a robot docking station 30, and control and data, according to a preferred embodiment of the present invention.
  • the shuttle track 10 is fixed in the compartment of the integrated pipe gallery 50, is laid along the axis of the integrated pipe gallery 50, and passes through the fire door 70 in the integrated pipe gallery 50, which is consistent with the length of the integrated pipe gallery 50, and is driven by a plurality of sections.
  • the units are sequentially stitched together.
  • the integrated pipe gallery 50 is a tunnel structure that is placed under the ground 60 for various types of public pipelines and is provided with a passage for maintenance personnel.
  • the cabin is a closed space for laying the pipeline by dividing the internal structure of the integrated duct 50 by the fire door 70, and the fire door is normally closed in the normal state.
  • the mobile robot 20 is movably fixed to the shuttle rail 10 for inspecting the condition within the integrated duct 50 and repairing faults occurring inside the integrated duct 50.
  • the robot docking station 30 is placed in the compartment of the integrated pipe gallery 50 or at the exit of the cabin, for charging the mobile robot 20, assembling the assembly, and as a communication relay station between the control and data exchange platform 40 and the mobile robot 20 communication.
  • the control and data interaction platform 40 is connected to the mobile robot 20 and the robot docking station 30 via a wireless or wired network, respectively, for analyzing and storing the received data, and providing a query for the received data and the analyzed result. And displaying, and transmitting the instruction data for executing the task to the mobile robot 20.
  • the intelligent pipe network system based on the orbital robot further includes a wireless sensor network, and the wireless sensor network is placed inside the integrated pipe gallery 50 for outputting the inspection data patrolled by the mobile robot 20 to the control and data interaction.
  • Platform 40 The intelligent pipe network system based on the orbital robot further includes a wireless sensor network, and the wireless sensor network is placed inside the integrated pipe gallery 50 for outputting the inspection data patrolled by the mobile robot 20 to the control and data interaction. Platform 40.
  • the mobile robot 20 is mounted on the shuttle track 10 and has a built-in high-definition camera, a positioning sensor, a temperature sensor, a humidity sensor, and an oxygen sensor.
  • the high-definition camera takes a picture of the situation of the integrated pipe gallery 50 during the inspection of the mobile robot.
  • the positioning sensor is used to obtain the positional information of the mobile robot 20 moving in the shuttle track 10, and to know how much the mobile robot 20 has moved, how far it is from the starting point, and the like.
  • a temperature sensor is used to detect the temperature of the air within the integrated duct 50.
  • the humidity sensor is used to detect the humidity of the air inside the integrated duct 50.
  • the oxygen sensor is used to detect the oxygen content in the integrated pipe gallery 50.
  • the mobile robot 20 can also be equipped with a harmful gas detecting sensor and/or a fire extinguisher depending on the needs of performing the work.
  • the harmful gas detecting sensor detects the concentration of harmful gases in the integrated pipe gallery 50.
  • the fire extinguisher can perform emergency fire extinguishing on the fire that occurs in the integrated pipe gallery 50.
  • the local underground power grid is fired due to a short circuit, and the mobile robot 20 can move to the fire source position and perform fire fighting, cooling, and the like through the self-contained fire extinguisher.
  • the wireless sensor network in the integrated pipe gallery 50 Through the wireless sensor network in the integrated pipe gallery 50, the captured high-definition video, the mobile robot's own state information, and the data collected by the sensor on the mobile robot are uploaded to the control and data interaction platform 40.
  • the mobile robot 20 can also be configured with an infrared camera, RFEXRadioFreq uencyldentification, also known as a radio frequency reader) reader, a leak detector, a smoke sensor, a distance sensor, a laser scanner, and the like.
  • the infrared camera is used to scan the cable inside the integrated duct 50 to detect local overheating. It is possible to detect the local overheating caused by the biting of the wire by the mouse, such as small resistance and leakage.
  • the RFID reader is used to identify the information of the RFID cable, establish a cable information database based on the identified information, intelligently identify each piece of cable information, and automatically store it in the cable maintenance inspection report, realizing automatic management of cable maintenance and information collection.
  • the leak detector is used to monitor and locate leaks and seepage in the integrated duct 50.
  • the mobile robot 20 has a robot arm for performing a failure occurring inside the repair integrated pipe gallery 50.
  • the failures occurring inside the integrated pipe gallery 50 include both the failure of the pipe, the leakage of the wall of the integrated pipe gallery 50, the breakage, and the failure of the instrument panel, lighting, exhaust, and the like.
  • the HD camera can be mounted at the end of the robot arm or at the front end of the body.
  • the nozzle of the fire extinguisher is tied to the end of the robot arm, and the robot arm can control the direction of the fire extinguisher nozzle. After the fire extinguisher, the robot controls the position of the fire extinguisher nozzle at the root of the fire.
  • the mobile robot 20 may include one or more vehicle body units that are energy-saving on the shuttle track 10, and when the mobile robot 20 is composed of a plurality of car body units, two adjacent car body units are connected in series and each car is connected The body unit is detachable.
  • the body unit having the different work components can be assembled to the mobile robot 20 at the robot docking station 30 according to the needs of performing the tasks.
  • the integrated duct 50 is relatively straight and the slope is relatively small, the mobile robot 20 can be designed as a section. If the integrated duct 50 has some curvature or has a steep slope, in order to make the mobile robot 20 travel smoothly, the mobile robot 20 needs to be designed in multiple sections.
  • the mobile robot 20 body requires a certain volume including a battery or the like, and the integrated pipe gallery 50 does not allow the mobile robot 20 to occupy a large space in the cross section, the mobile robot 20 can only be elongated, similar to a train on a track. If the track is straight and there is no turn, then a section is sufficient; if the track needs to be turned and climbed, then it needs to be designed in multiple sections.
  • the control and data interaction platform 40 includes a monitoring device, a storage device, and a manipulation device.
  • the monitoring device is used to display the working state of the mobile robot 20, the video image in the integrated pipe gallery 50, and the data collected by the sensor on the mobile robot 20.
  • the storage device is used to store the data collected by the mobile robot 20 during its inspection, its own state information, video images and sensors, and is interconnected with other management systems via the Internet.
  • the operating device schedules the mobile robot 20 and controls the mobile robot 20 to perform tasks, such as controlling the robot arm of the mobile robot 20 to align with the instrument panel for reading.
  • the control and data interaction platform 40 is connected to the mobile robot 20 via a wireless or wired network. If there is no network, it can also be connected via a composite cable.
  • the composite cable includes a coaxial video cable, a 485 control bus and a power cable connection.
  • the shuttle rail 10 is attached to the upper middle portion or the top end portion of the interior wall of the integrated pipe gallery 50.
  • the cross section of the shuttle track 10 is in the shape of "work", which facilitates the passage of the fire door 70 in the integrated pipe gallery 50.
  • the installation of the shuttle track 10 needs to be spatially erroneous with the existing cable racks and the like.
  • the robot docking station 30 includes a communication device and a charging device.
  • the communication device acts as a communication relay station for communication between the communication control and data exchange platform 40 and the mobile robot 20.
  • the charging device is for charging the mobile robot 20 parked on the shuttle track 10 in the robot docking station 30.
  • the mobile robot 20 detects that the battery capacity carried by itself is less than a set threshold (minimum power) ⁇ , and the mobile robot 20 will return to the robot docking station 30 along the shuttle track 10 for self-charging.
  • the set threshold power can ensure that the mobile robot 20 returns to the machine dock 30 with minimal energy consumption.
  • the minimum energy consumption state is similar to the standby state of the mobile phone, and the mobile robot 20 can communicate and can be in the shuttle track. Go on the road 10, but you can't hit the robotic arm.
  • the robot docking station 30 and the control and data interaction platform 40 are generally connected by a network cable, and data is transmitted through a network cable of the local area network.
  • the robot docking station 30 and the mobile robot 20 communicate by wireless communication, usually 3G, 4G and Wifi.
  • the control and data interaction platform 40 issues commands such as forward, backward, and stop, transmitted to the signal repeater of the robot docking station 30 through the network, and then transmitted to the mobile robot 20 for acceptance, thereby realizing motion control of the mobile robot 20.
  • the mobile robot 20 collects data through the sensor, and then transmits it to the wireless transmitting module on the mobile robot 20 through the main control board or without passing through the main control board, and transmits the data through the wireless transmitting module, and the integrated pipe gallery 50
  • the wireless sensor network receives the signal and transmits it to the control and data interaction platform 40.
  • the entire smart pipe network system can be divided into four layers, namely, a cognitive recognition layer, a network construction layer, a management service layer, and a comprehensive application layer.
  • the mobile robot 20 is placed in the perceptual recognition layer for collecting data and repairing faults.
  • the construction of the network building layer facilitates the transfer of data between the mobile robot 20, the robot docking station 30 and the control and data interaction platform 40, and the robot docking station 30 and the control and data interaction platform 40 are placed at the management service layer.
  • the integrated application layer is the uppermost layer.
  • the management departments of various pipes and cables call the inspection data and analysis data of the control and data interaction platform 40 to perform some specific operations. For example: emergency command, safety monitoring, expected forecasting, accident handling, smart drainage, environmental monitoring, simulation, digital inspection, etc.
  • the orbiting robot-based smart pipe network system arranges the shuttle track 10 inside the integrated pipe gallery 50, causes the mobile robot 20 to run on the shuttle track 10, and inspects and repairs the condition in the integrated pipe gallery 50.
  • the mobile robot 20 performs inspection along the shuttle track 10, it is possible to realize no dead angle monitoring inside the integrated pipe gallery 50.
  • equipping the mobile robot 20 with sensors by reading the readings of the sensors in different positions inside the integrated pipe gallery 50, parameters such as temperature, humidity, harmful gases, oxygen concentration, and the like at different positions can be obtained.
  • the mobile robot 20 can also perform hidden trouble investigation, pipeline maintenance, and the like by installing a robot, an infrared camera, a leak detector, and the like.
  • the mobile robot 20 is used for inspection along the shuttle track 10, and the shuttle track 10 is completed, and the amount of work required for maintenance is small; and the mobile robot 20 can be unloaded for maintenance and maintenance at the inspection bin or the exit in the integrated pipe gallery 50.
  • the smart pipe network system has simple maintenance, low operating cost, wide detection range, and can replace manual inspection.
  • the orbital robot-based smart pipe network system of the present invention can be applied to the monitoring and safety maintenance of tunnels, culverts and large pipes with similar narrow and long closed environments, in addition to the integrated pipe gallery.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Manipulator (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

L'invention concerne un système de réseau de conduites intelligent reposant sur un robot orbital comprenant une orbite de navette (10), un robot mobile (20), une station d'accueil de robot (30) et une plateforme de commande et d'échange de données (40), l'orbite de navette (10) étant agencée de manière fixe dans une cabine d'un tunnel de service (50), pavée le long d'une direction axiale du tunnel de service (50) et traversant une porte coupe-feu (70); le robot mobile (20) est agencé de façon mobile et fixe sur l'orbite de navette (10) et est utilisé pour inspecter l'état à l'intérieur du tunnel de service (50) et réparer une défaillance; la station d'accueil de robot (30) assure l'établissement d'opérations de charge et de montage et sert de station de relais de communication pour relier les communications entre la plateforme de commande et d'échange de données (40) et le robot (20); et la plateforme de commande et d'échange de données (40) est utilisée pour analyser et stocker des données reçues, fournir une requête, réaliser un affichage et envoyer des données d'instruction pour exécuter une tâche au robot mobile (20). Le système de réseau de conduites intelligent, par rapport à un réseau de conduites intelligent utilisant un capteur agencé au niveau d'un point fixe, présente les avantages d'un entretien simple, de faibles coûts de fonctionnement et d'une large plage de détection et peut remplacer la main d'œuvre pour réaliser une inspection en toute sécurité.
PCT/CN2016/098473 2015-11-26 2016-09-08 Système de réseau de conduites intelligent reposant sur un robot orbital WO2017088555A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510844114.9A CN105487507A (zh) 2015-11-26 2015-11-26 一种基于轨道机器人的智慧管网系统
CN201510844114.9 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017088555A1 true WO2017088555A1 (fr) 2017-06-01

Family

ID=55674544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098473 WO2017088555A1 (fr) 2015-11-26 2016-09-08 Système de réseau de conduites intelligent reposant sur un robot orbital

Country Status (2)

Country Link
CN (1) CN105487507A (fr)
WO (1) WO2017088555A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170078A (zh) * 2018-02-12 2018-06-15 国家电网公司 一种gil管廊施工安全保障系统
CN108573072A (zh) * 2018-07-02 2018-09-25 青岛华高物联网科技有限公司 一种地下综合管廊设备运用率控制系统
CN109048846A (zh) * 2018-09-25 2018-12-21 五邑大学 一种烟雾巡检机器人及其控制方法
CN109373199A (zh) * 2018-10-29 2019-02-22 上海市政工程设计研究总院(集团)有限公司 一种综合管廊燃气舱安全防控装置
CN109460959A (zh) * 2018-12-20 2019-03-12 中冶京诚工程技术有限公司 基于管廊空间的地下物流系统
CN110737233A (zh) * 2019-10-17 2020-01-31 广州瑞讯达系统科技有限公司 综合管廊智能控制器主控设备、装置、系统及控制方法
CN110809133A (zh) * 2019-11-01 2020-02-18 江苏安防科技有限公司 一种基于物联网与三维可视化技术的智能辅助控制系统
CN111026005A (zh) * 2019-11-15 2020-04-17 河海大学 综合管廊气体监控管理系统及方法
CN112150755A (zh) * 2019-06-27 2020-12-29 国网江苏省电力有限公司南京供电分公司 一种地下管廊机器人及无线自组网系统
CN112583447A (zh) * 2020-11-18 2021-03-30 康威通信技术股份有限公司 一种轨道巡检机器人微波通信系统及方法
CN112767224A (zh) * 2021-01-13 2021-05-07 厦门市建筑科学研究院有限公司 一种图像处理方法及系统
CN114118467A (zh) * 2021-11-17 2022-03-01 中铁建电气化局集团运营管理有限公司 一种基于巡检机器人和智慧采集终端的城市轨道交通变电所无人值守智能运维方法
CN114170703A (zh) * 2021-12-15 2022-03-11 鞍钢集团自动化有限公司 一种通廊巡检系统及激光扫描检测方法
CN114310928A (zh) * 2021-11-30 2022-04-12 杭州申昊科技股份有限公司 一种防爆巡检机器人的智能巡检方法
CN114630719A (zh) * 2019-10-17 2022-06-14 德兰博特公司 用于隧道系统的自动自清洁排水系统
CN117406818A (zh) * 2023-12-15 2024-01-16 南京中鑫智电科技有限公司 一种基于轨道机器人的配电房环境调节方法及系统
CN117726979A (zh) * 2024-02-18 2024-03-19 合肥中盛水务发展有限公司 一种基于神经网络的管廊管线管理方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487507A (zh) * 2015-11-26 2016-04-13 深圳市施罗德工业测控设备有限公司 一种基于轨道机器人的智慧管网系统
CN107390676B (zh) * 2016-05-17 2020-11-20 深圳市朗驰欣创科技股份有限公司 隧道巡检机器人及隧道巡检系统
CN106050308B (zh) * 2016-07-29 2018-07-06 长安大学 一种隧道自动巡检系统及方法
CN106707739B (zh) * 2016-12-06 2019-09-24 山东康威通信技术股份有限公司 一种轨道机器人自动穿越消防门的冗余控制系统及方法
CN106826864A (zh) * 2017-03-29 2017-06-13 张胜雷 吊轨牵引式电通一体化管廊环境监测微型智能机器人
CN107322567A (zh) * 2017-07-11 2017-11-07 丁志国 一种管廊监测机器人
CN107526330A (zh) * 2017-09-11 2017-12-29 中信重工开诚智能装备有限公司 一种用于轨道巡检机器人穿越的地下管廊自动平移窗装置
CN107590876A (zh) * 2017-09-13 2018-01-16 四川君逸数码科技股份有限公司 综合管廊巡检机器人及综合管廊巡检系统
CN107524884B (zh) * 2017-10-18 2019-06-18 丁志国 一种管廊监测系统
CN108170865A (zh) * 2018-01-30 2018-06-15 广州晟能电子科技有限公司 地下综合管廊系统廊体内部环境参数数据场采集及分析方法
EP3750225A1 (fr) * 2018-02-08 2020-12-16 Alert Innovation Inc. Système de charge opportuniste pour système de stockage et de recherche automatisé
CN108197842A (zh) * 2018-02-12 2018-06-22 国家电网公司 一种用于gil管廊的车辆监控系统
CN108494831A (zh) * 2018-02-27 2018-09-04 北京无线电计量测试研究所 一种基于地下管廊的数据处理方法、装置及系统
CN108444529A (zh) * 2018-03-29 2018-08-24 国通广达(北京)技术有限公司 一种管廊移动巡检装置
CN109781174A (zh) * 2018-12-11 2019-05-21 中冶(北京)交通科技发展有限公司 一种市政综合管廊检测系统
CN109754562A (zh) * 2018-12-11 2019-05-14 中冶(北京)交通科技发展有限公司 一种市政综合管廊报警系统
CN109683071A (zh) * 2018-12-24 2019-04-26 中国南方电网有限责任公司超高压输电公司检修试验中心 一种gil设备三支柱绝缘子放电故障后快速定位装置及方法
CN110001956B (zh) * 2019-04-28 2024-01-30 酷黑科技(北京)有限公司 管廊巡检装置及管廊巡检方法
CN110344873A (zh) * 2019-06-25 2019-10-18 国网北京市电力公司 电力隧道灭火装置
CN113304427B (zh) * 2021-06-11 2023-04-07 碧途科技(河北)有限公司 对象异常监控和解除的系统及方法
CN113418965B (zh) * 2021-06-18 2023-06-09 深圳格通无线科技有限公司 一种工程结构健康监测方法
CN114639184A (zh) * 2022-03-22 2022-06-17 珠海思奇科技有限公司 防爆智能轨道巡检系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201164675Y (zh) * 2008-02-01 2008-12-17 山东省科学院自动化研究所 隧道消防应急智能机器人系统
US20100076631A1 (en) * 2008-09-19 2010-03-25 Mian Zahid F Robotic vehicle for performing rail-related actions
CN101995296A (zh) * 2009-08-31 2011-03-30 宋建忠 有轨机器人带电检测平台
CN104158117A (zh) * 2014-08-04 2014-11-19 国家电网公司 一种架空电力线巡检机器人系统
CN104267731A (zh) * 2014-10-21 2015-01-07 山东鲁能智能技术有限公司 基于组合轨道的室内轨道式智能巡检机器人系统
CN105487507A (zh) * 2015-11-26 2016-04-13 深圳市施罗德工业测控设备有限公司 一种基于轨道机器人的智慧管网系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2661777Y (zh) * 2003-12-19 2004-12-08 南京鸿宇市政设施投资管理有限责任公司 市政地下管廊
CN201989147U (zh) * 2010-12-29 2011-09-28 沈阳新松机器人自动化股份有限公司 电缆隧道巡检机器人
CN202735798U (zh) * 2012-06-27 2013-02-13 山东康威通信技术股份有限公司 电缆通道智能巡检机器人监控应用系统
CN102841604B (zh) * 2012-08-28 2016-05-18 华北电力大学 面向隧道电缆巡检机器人的轨道系统及测试方法
CN104122843A (zh) * 2013-04-24 2014-10-29 山东轻工业学院 城市地下轨道智能检测机器人集中控制系统及实现方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201164675Y (zh) * 2008-02-01 2008-12-17 山东省科学院自动化研究所 隧道消防应急智能机器人系统
US20100076631A1 (en) * 2008-09-19 2010-03-25 Mian Zahid F Robotic vehicle for performing rail-related actions
CN101995296A (zh) * 2009-08-31 2011-03-30 宋建忠 有轨机器人带电检测平台
CN104158117A (zh) * 2014-08-04 2014-11-19 国家电网公司 一种架空电力线巡检机器人系统
CN104267731A (zh) * 2014-10-21 2015-01-07 山东鲁能智能技术有限公司 基于组合轨道的室内轨道式智能巡检机器人系统
CN105487507A (zh) * 2015-11-26 2016-04-13 深圳市施罗德工业测控设备有限公司 一种基于轨道机器人的智慧管网系统

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170078A (zh) * 2018-02-12 2018-06-15 国家电网公司 一种gil管廊施工安全保障系统
CN108573072A (zh) * 2018-07-02 2018-09-25 青岛华高物联网科技有限公司 一种地下综合管廊设备运用率控制系统
CN109048846A (zh) * 2018-09-25 2018-12-21 五邑大学 一种烟雾巡检机器人及其控制方法
CN109373199A (zh) * 2018-10-29 2019-02-22 上海市政工程设计研究总院(集团)有限公司 一种综合管廊燃气舱安全防控装置
CN109460959A (zh) * 2018-12-20 2019-03-12 中冶京诚工程技术有限公司 基于管廊空间的地下物流系统
CN112150755A (zh) * 2019-06-27 2020-12-29 国网江苏省电力有限公司南京供电分公司 一种地下管廊机器人及无线自组网系统
CN112150755B (zh) * 2019-06-27 2021-11-02 国网江苏省电力有限公司南京供电分公司 一种地下管廊机器人及无线自组网系统
CN114630719A (zh) * 2019-10-17 2022-06-14 德兰博特公司 用于隧道系统的自动自清洁排水系统
CN110737233A (zh) * 2019-10-17 2020-01-31 广州瑞讯达系统科技有限公司 综合管廊智能控制器主控设备、装置、系统及控制方法
CN110809133A (zh) * 2019-11-01 2020-02-18 江苏安防科技有限公司 一种基于物联网与三维可视化技术的智能辅助控制系统
CN111026005A (zh) * 2019-11-15 2020-04-17 河海大学 综合管廊气体监控管理系统及方法
CN112583447A (zh) * 2020-11-18 2021-03-30 康威通信技术股份有限公司 一种轨道巡检机器人微波通信系统及方法
CN112767224B (zh) * 2021-01-13 2023-09-29 厦门市建筑科学研究院有限公司 一种图像处理方法及系统
CN112767224A (zh) * 2021-01-13 2021-05-07 厦门市建筑科学研究院有限公司 一种图像处理方法及系统
CN114118467A (zh) * 2021-11-17 2022-03-01 中铁建电气化局集团运营管理有限公司 一种基于巡检机器人和智慧采集终端的城市轨道交通变电所无人值守智能运维方法
CN114310928A (zh) * 2021-11-30 2022-04-12 杭州申昊科技股份有限公司 一种防爆巡检机器人的智能巡检方法
CN114310928B (zh) * 2021-11-30 2023-08-04 杭州申昊科技股份有限公司 一种防爆巡检机器人的智能巡检方法
CN114170703A (zh) * 2021-12-15 2022-03-11 鞍钢集团自动化有限公司 一种通廊巡检系统及激光扫描检测方法
CN117406818A (zh) * 2023-12-15 2024-01-16 南京中鑫智电科技有限公司 一种基于轨道机器人的配电房环境调节方法及系统
CN117406818B (zh) * 2023-12-15 2024-03-08 南京中鑫智电科技有限公司 一种基于轨道机器人的配电房环境调节方法及系统
CN117726979A (zh) * 2024-02-18 2024-03-19 合肥中盛水务发展有限公司 一种基于神经网络的管廊管线管理方法

Also Published As

Publication number Publication date
CN105487507A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017088555A1 (fr) Système de réseau de conduites intelligent reposant sur un robot orbital
CN109760837B (zh) 一种电缆沟与隧道巡检无人机系统
CN205377160U (zh) 电缆隧道巡检机器人
CN208606809U (zh) 一种绿色施工环境保护监测系统
CN107390676B (zh) 隧道巡检机器人及隧道巡检系统
WO2017096989A1 (fr) Robot d'inspection se déplaçant sur un rail
CN209218140U (zh) 一种基于物联网的城市消防远程监控管理系统
CN106600887A (zh) 基于变电站巡检机器人的视频监控联动系统及其方法
CN102063746B (zh) 变电站程控巡检机及其程控巡检方法
CN109818416A (zh) 一种多功能变电站智能机器人巡检系统
KR102389013B1 (ko) 지하 공동구 유지 관리 로봇 시스템
CN112043991A (zh) 隧道导轨行进消防机器人系统及使用方法
CN103235562A (zh) 变电站基于巡检机器人的综合参数检测系统及巡检方法
CN211761557U (zh) 一种综合管廊巡检机器人
CN112581645A (zh) 一种电缆隧道协同巡检方法及系统
CN213814926U (zh) 隧道消防机器人
CN212750048U (zh) 一种基于物联网的管廊监控与报警系统
CN110640763A (zh) 一种综合管廊巡检机器人
CN108871457A (zh) 一种管道检测系统
CN102562141A (zh) 地铁隧道环控巡检和消防救援方法
CN115661964A (zh) 一种用于综合管廊的智能巡检系统
CN206192397U (zh) 一种油田消防无线侦查系统
CN113319861A (zh) 地铁车辆段综合管沟的巡检方法及巡检机器人
CN113485324A (zh) 一种巡检机器人
CN109542019A (zh) 一种基于物联网远程监控地下综合管廊火灾探测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867782

Country of ref document: EP

Kind code of ref document: A1