WO2017086763A1 - 정수처리를 위한 활성탄 블록필터의 제조방법 - Google Patents
정수처리를 위한 활성탄 블록필터의 제조방법 Download PDFInfo
- Publication number
- WO2017086763A1 WO2017086763A1 PCT/KR2016/013427 KR2016013427W WO2017086763A1 WO 2017086763 A1 WO2017086763 A1 WO 2017086763A1 KR 2016013427 W KR2016013427 W KR 2016013427W WO 2017086763 A1 WO2017086763 A1 WO 2017086763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- block filter
- resin binder
- stirring
- weight
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 373
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000011230 binding agent Substances 0.000 claims abstract description 104
- 229920005989 resin Polymers 0.000 claims abstract description 91
- 239000011347 resin Substances 0.000 claims abstract description 91
- 238000001125 extrusion Methods 0.000 claims abstract description 50
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 238000000746 purification Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims description 54
- 239000002245 particle Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 3
- 239000011630 iodine Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000009776 industrial production Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 24
- 238000001179 sorption measurement Methods 0.000 abstract description 19
- 238000001914 filtration Methods 0.000 abstract description 5
- 239000008399 tap water Substances 0.000 abstract description 4
- 235000020679 tap water Nutrition 0.000 abstract description 4
- 238000005243 fluidization Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 12
- 229920000573 polyethylene Polymers 0.000 description 12
- 230000005484 gravity Effects 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 241001133760 Acoelorraphe Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical class [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
Definitions
- the present invention improves the efficiency and productivity of the block filter in replacing the activated carbon used in the water purification system of tap water with the activated carbon block filter which is formed by the extrusion method by mixing the binder with the activated carbon by the method of gravity downflow and upflow.
- the binder used in the molding of the block filter is minimized while the extrusion molding is excellent, and the moldability and the filtering efficiency (adsorption rate) are improved.
- water containing soluble organic substances such as potassium permanganate or trihalomethane precursors, or traces of harmful substances such as taste, odorous substances or pesticides are present in the purified water in the state where the suspended components are removed.
- soluble organic substances such as potassium permanganate or trihalomethane precursors
- traces of harmful substances such as taste, odorous substances or pesticides
- the granular activated carbon process has a depth of about 2 to 3m and a gravitational downflow that uses granular activated carbon to fill particles.
- the residence time is applied in the range of 10 to 15m per hour from about 10 to 15 minutes while using the upflow flow method using the activated carbon.
- a powdery resin binder and granular activated carbon having a predetermined size are extruded by an extruder or heated by compression by a press under a constant temperature condition.
- the extrusion molding is a method in which the activated carbon and the binder are continuously stirred in an extruder while the binder is melted under a predetermined temperature condition while stirring by the rotation of the screw, and the compression molding is heated at a constant temperature by a press method in the state of being stirred and evenly mixed. While pressing, put it in the mold and press it.
- productivity is reduced by dipping one by one in the advantage that elementary investment for production is not necessary because a separate extruder which requires a certain line for manufacturing is not required.
- the extrusion method has disadvantages of many elementary investments such as having an extruder having a single line having a cooling system and a cutting system, but has high productivity and uniformity of the product. It has the advantage of being possible.
- a resin binder and activated carbon are used as the basic material (raw material), and polyethylene (PE), which is a thermoplastic resin, is used as the binder.
- PE polyethylene
- the resin binder and the activated carbon particles are extruded by melt mixing through the screw while stirring in the hopper of the extruder to ensure sufficient agitation to prevent agglomeration of the resin binder due to the difference in specific gravity.
- the resin binder is coated with the surface of the micropores of the activated carbon particles during extrusion, thereby facilitating extrusion while blocking the pores, thereby reducing the filter efficiency.
- the extrusion method softens in the process of fluidizing meltable plastic (especially thermoplastic resin) at a certain temperature under a certain temperature by feeding the plastic supplied from the hopper from the rear end to the front end by using a screw into a cylinder equipped with a heating means of the extruder.
- the die of the extruder tip (cylinder tip) (usually the molten plastic of the molten plastic desired) in the state of being melted, kneaded and compressed by screw rotation and transported forward.
- the mold having a cross section through which the product can be passed through, and then, if necessary, it is cooled by water or air cooling to realize a product shape. Therefore, the moisture is contained in the resin binder or activated carbon particles during extrusion.
- the extrusion characteristics are different, and the activated carbon particles and the resin binder (ratio 0.91 ⁇ 0.94 degree) due to each of the specific gravity difference between the difference and a mixture thereof depending on the degree of agitation will be that the problem that the extrusion characteristics vary.
- the activated carbon block filter when the activated carbon block filter is applied in a water purification system and the molding uniformity is not maintained when extrusion is performed to manufacture the block filter, the density difference between the pores of the activated carbon on the inner side and the outer side of the activated carbon block filter is eventually reduced. Is generated and there is a problem in that the adsorption of organic matter having different particle sizes can not be completely achieved due to the difference in clogging of different pores of the inner and outer surfaces of the activated carbon block filter. Can not keep the flow of the problem will be able to use a lot of problems.
- the compounding process has the advantage of maintaining a uniform mixing ratio of the activated carbon and the resin binder, but the compounding process uses a rod-shaped mold at the tip of the extruder, and the compounded polymer mixture from the tank After cooling or air-cooling through the pelletizer, it can be made into small pieces, so that it can be coated or completely mixed. In this way, the surface of the activated carbon is coated with a resin. Since the resin binder is coated on each resin, the filtering is significantly reduced after molding.
- the present invention is to solve this problem, while mixing the resin binder with a minimum content ratio, while being excellent in formability and at the same time to improve the efficiency of the activated carbon block filter.
- acid-treated or acid-treated activated carbon is used to dry the moisture present in the activated carbon to the maximum, and cooled in such a dry state so that the resin binder, which is added for stirring later, is melted before being stirred.
- the resin binder is stirred by indirect heat so that only the surface melts slightly, so that the resin binder is melted on the surface of the activated carbon, and the resin binder is adhered to the surface of the activated carbon in the extruder. It is to be extruded.
- particulate activated carbon and powdered activated carbon to a certain size for molding conditions of the block filter is intended to have moldability as well as economic efficiency.
- the temperature of the stirrer is minimized by heating the oil to generate heat during stirring.
- the use of only a minimum of resin binder is to improve the efficiency of activated carbon, it is possible to maintain a certain strength while using a minimum, and to facilitate extrusion molding.
- the acid treatment of activated carbon and the use of drying process can improve the filter performance, and there is an advantage of preventing agglomeration of the resin binder when the resin binder is stirred by cooling to a predetermined temperature after drying. .
- the resin binder is attached to the surface of the activated carbon in a particulate form, the resin binder can be used to minimize the ease of extrusion molding as well as to improve the filter performance.
- FIG. 1 is an enlarged view showing various embodiments of a resin binder softened to the activated carbon particles of the present invention bonded to a solid body
- Figure 2 is an embodiment of an extruder applied in the present invention
- FIG. 3 is a block diagram showing a molding process of the present invention.
- Figure 4 is a perspective view of an activated carbon block filter molded according to the present invention
- the activated carbon block filter of the present invention is formed by extrusion by heating and stirring the granular and / or powdery phase (which refers to 120 mesh or more) with only the activated carbon and the resin binder at a constant temperature.
- the activated carbon used in the present invention preferably uses activated carbon of 1,100 or more (iodine number) per gram if possible, which means that the more pores in the carbon particles, the better the iodine value is. This is an example of considering the price part. If the price burden is not considered, the higher the iodine, the higher the efficiency, and therefore, the higher one can be used.
- activated carbon is usually more expensive as the surface area is higher and has more pores, so that the adsorption rate is increased, while as the surface area decreases, the adsorption rate decreases as the particles of activated carbon increase, and as the surface area increases, the adsorption rate increases as the particles of activated carbon decrease.
- the activated carbon used in the present invention is to use an acid wash if possible, the acid wash is to make the activated carbon and put it in the "acid” to wash the activated carbon and when the acid wash to remove unnecessary particulates trapped in the pores of the activated carbon As a result, adsorption efficiency is increased.
- the activated carbon used in the present invention should use the same size distribution (the distribution of the particle size should be equal for good performance).
- the distribution of particles used activated carbon in the range of 50-100 mesh is excellent because the adsorption efficiency after molding, the water taste filtered through the filter is good, and the surface area of the filter is equal, ensuring the optimum flow rate Because.
- the activated carbon used in the present invention uses a product made of palm trees, because it ensures excellent adsorption rate as well as water taste.
- activated carbon is a black porous carbonaceous material produced through carbonization and activation process based on charcoal, coal, bone, palm bark, etc. It has the property of adsorbing material, and the characteristics of activated carbon according to the above raw materials are soft powder coals made of wood and sawdust as plant raw materials and hard powder coals made from palm bark and reverse coal as coal raw materials. There are granular coals produced by petroleum, and petroleum-based raw materials are granulated coals produced by pitch, and activation methods of these are activated by water vapor at temperatures around 900 ° C and zinc chloride, sulfuric acid and phosphoric acid. There is chemical activated carbon which is carbonized after chemical treatment, etc .. Most of water purification uses steam activated method.
- micropores of about 10,000 nm to 100 nm are laid three-dimensionally, and micropores of about 10 nm to 0.1 nm are arranged in the micropore wall, and the specific surface area reaches 700 to 1,400 m 2 / g.
- the activated carbon used in the present invention used activated carbon having a water content of 4% -5%, since the activated carbon containing 4-5% water at the time of purchase, but the water content in the distribution process goes up to 10%.
- the moisture must be dried as much as possible by heating to a constant temperature in a dryer or a stirring (stirrer) machine.
- the best effect can be obtained when heated and dried for about 4 hours in a temperature range of 120 to 130 degrees.
- the activated carbon from which the water is removed is lowered to a temperature of 40 to 60 degrees, and then a predetermined amount of a resin binder is added to be stirred as described below.
- the distribution of activated carbon size was used in the range of 50 to 100 mesh, and the size distribution of activated carbon described as an example in the present invention is 50 to 70 when the total weight is 100% by weight.
- the mesh is about 70% by weight, the remaining 30% by weight was used between 70-100 mesh.
- the distribution of activated carbon size is narrower than that of wide (50 ⁇ 100 mesh) (all 100 mesh or 100 ⁇ 105 mesh), but the price is more than 3 times higher price.
- the object of the present invention can be achieved.
- activated carbon of less than 50 mesh particles decreases the surface area and decreases the filter function and adsorption rate.
- the resin binder in the present invention used a low-density PE, or LDPE with good elasticity and flow rate, and 14 to 16% by weight when the total weight is 100% by weight (the amount of resin binder varies depending on the activated carbon particle size. Is finer, the more finer it is, the more it does not exceed 16% by weight).
- the strength after molding may be different, and if the diameter of the activated carbon is large, the resin binder may enter more.
- At least 14% or more should be entered to maintain even stiffness in the molded state and may be more than 16%.
- the resin binder is less than 14%, the uniformity and strength of the particles will be weakened.
- the activated carbon particles are 50 ⁇ 100 mesh standard at 14%, but if you want to make the block filter more densely, after adding the activated carbon powder, Add up to 16% of the binder and allow to stir.
- the resin binder added at the time of stirring is 14 to 16% by weight, which indicates 100% by weight in the state in which the activated carbon and the powdered activated carbon are combined, and based on the weight obtained by removing moisture from the activated carbon of the particles or powder. will be.
- the standard of powdered activated carbon is based on 120 mesh, and is substantially granular activated carbon.
- 120 mesh is referred to as powder because 120 mesh is regarded as powder grade.
- the powder activated carbon may be used in a range of 120 mesh to 200 mesh or may be used in combination thereof. Usually, 120 mesh is used.
- the conditions for forming the block filter by extrusion are produced based on the adsorption efficiency.
- Powdered activated carbon is generally used to make products that can filter as much as 5 microns, but when manufacturing high quality filters, that is, when making compact filters (filters below 5 microns, 4 microns, 3 microns, 2 microns and 1 microns), use.
- the powdered activated carbon in the present invention is 100% by weight of particulate activated carbon, it is preferable to add up to 10% and not exceed 10% based on the total weight of the powdered activated carbon (weight with water removed).
- the particles of the powder activated carbon is less than 120 mesh, there is no effect to put the powder activated carbon.
- the blending of activated carbon is based on the weight distribution of granular activated carbon and powdered activated carbon in order to lower the micron.
- activated carbon has an initial moisture content and a reduced weight when drying, which is added to the weight based on the reduced weight.
- the resin binder PE is used as described above, and the specific gravity of the resin binder is higher than that of the carbon, so that the optimum resin binder is preferably similar to the carbon particles.
- the PP grade binder takes a lot of load on the extruder during extrusion and causes cracking (cracking) in the block filter after molding, and high density HDPE has a problem in manufacturing or molding because the strength is too high.
- the PE of the resin binder used in the present invention is pulverized and produced in the form of spherical from the beginning by chemical decomposition, it is preferable to use a product made of a spherical form if possible.
- the chemical decomposition of the resin binder particles are "spherical", uniform and good when dispersed (stirred), activated carbon (carbon) and resin binder (PE) is rotted well, the filter function is good, the filter surface area is homogeneous, It becomes even and performance is stable.
- the resin binder particles are used (more than 290 mesh), the dispersion (stirring) is not good, the homogeneity of the product (filter) is reduced, and the binder must be added, so that the flow rate drops and the power (strength) decreases. Enters a lot.
- LDPE of the resin binder used in the present invention used 270 ⁇ 20 mesh.
- Stirring of the activated carbon and the resin binder in the present invention is to remove the activated carbon in a stirrer or dryer to remove the moisture while drying the temperature 100 °C 2 hours and drying for 2 to 3 hours at a temperature of 120 degrees.
- the drying is rotated during the drying time, and the same effect can be obtained by drying more time than this, resulting in unnecessary energy loss.
- the powdered activated carbon when stirring in the present invention, if possible, the powdered activated carbon is added from the beginning, and if the weight of the granular activated carbon of 50 to 100 mesh is 100% by weight, the weight ratio is added within a maximum of 15%.
- the problem is that the resin binder melts and becomes lumps when activated carbon and stirring.
- the screw rotation should not be fast or late.
- the temperature of the stirrer is mechanically progressed at 80 ° C., but the resin binder starts to melt at about 95 ° C. and completely melts at 110 ° C., and each resin binder is slightly attached to each activated carbon.
- extrusion may be carried out in an extruder to maintain an even density of surfaces and an even molding strength.
- the speed at which the screw rotates during agitation is fixed to a low speed rotation rather than breaking, so that the stirring is always performed at the same speed.
- the activated carbon in the stirrer and the binder is automatically dissipated heat while the purpose is to stir at a temperature such that only the outer surface of the PE used as a binder to melt slightly.
- the weight of activated carbon in the stirrer is to be described based on the 100 kg capacity, so when more or less is added, there may be a change in stirring time.
- the rotation speed of the stirrer in the present invention is 30 RPM per minute in consideration of the error range as described above.
- the structure of the stirrer is wound around the stirrer, the electric heater coil is wound around 30% of the area around the stirrer, the coil of the electric heater is an indirect heating method to heat the stirrer while heating the oil surrounding the stirrer.
- the direct heating method has a problem that the resin binder is immediately melted and agglomerated can not be stirred.
- the stirrer screw rotational speed is generally rotated to 30 RPM in consideration of the error range as described above, but when the rotation becomes more than 40 RPM, only the central portion of the rotation of the screw is melted.
- the activated carbon 80 to 85% by weight resin binder 15% to 20% by weight is good and the most excellent range is 86% by weight activated carbon to 14% by weight resin binder.
- the method of judging that the agitation is well is set at 80 ° C. and the temperature of the stirrer rises to 85-87 ° C. due to the frictional heat during the stirring of the screw.
- the dust When stirring well as above, the dust is less dusty from activated carbon, and if touched by hand, it feels sticky to activated carbon. If the resin binder is melted on the surface of activated carbon, it becomes dark gray close to black. It becomes grey.
- the stirring step corresponding to the previous step of the extrusion molding in the present invention is a method for minimizing the use of a resin binder, and at the same time, the activated carbon block filter having excellent filterability due to excellent extrusion property and excellent adhesiveness even in the state. Will be provided.
- the activated carbon and the resin binder when the activated carbon and the resin binder are agitated, only the activated carbon should be first stirred and heated for moisture drying in the first and second heating in the stirrer, and the resin binder is cooled to prevent the resin binder from melting in that state. After the resin binder is added and stirred while heating in a second manner, the resin binder is allowed to adhere to the surface of the activated carbon in the form of a solid body while only the surface of the resin melts.
- the resin binder 10 is attached to each activated carbon surface 20 in the form of single or plural forms in the form of point bonding or surface bonding in the state where only the surface is melted. It will be in the form of non-empty chunks (aka: solids).
- the extrusion condition in the state where stirring is completed is forcibly extruded with the screw 250, and the temperature of the extruder 200 is changed to the diameter of the block filter 30 to be molded. Therefore, it is different.
- generally 20-28Pi 20-40Pi 20-42Pi 20-45Pi for water purifier and industrial use 43-63Pi 40-63Pi can be adjusted in units of 10 up to 750MM and the heating device of the extruder It is divided into three heating coils 240 mounted on the cylinder 230 and heated to 175 ° C. at the inlet of the rear end where activated carbon is inserted through the primary hopper 210, that is, the screw 210 is formed, and the secondary cylinder temperature. Is heated to 195 ° C., and is heated to 165 ° C. in a third molding tool to extrude.
- the inlet part of the extruder is 175 ° C and the cylinder part (the part where the activated carbon is mixed with the resin binder and combined is 195 ° C, and the molding hole that is formed in a predetermined shape while being mixed, that is, the discharge hole in which the die 260 is discharged is mounted. It is heated to 165 °C.
- the heating temperature of the extruder 200 is also affected by the weather.
- the extrusion is performed by heating to the first 175 ° C., the second 195 ° C. and the third 165 ° C. as described above.
- the extrusion at the temperature of the first 165 °C, the second 185 °C, the third 155 °C.
- the rotation speed of the extruder screw 210 is 35RPM for the general water purifier and the industrial was found that the best molding conditions and surface condition when extruded at 17-18 RPM.
- the screw 210 of the extruder may not be able to extrude the product because it is inconvenient. If the extrusion screw is slow to about 20 RPM, it comes out later than the prescribed speed and consumes a lot of energy, and the defective rate is high. Increases.
- Extruder 200 in the present invention is to be provided with a lid 220 for preventing the penetration of water on the activated carbon surface 20 is attached to the resin binder 10 is stirred into the hopper 210 if possible, and at the same time By providing the stirring means 270 in the hopper 210 is to enable more excellent molding.
- the extruder's extrusion speed is 63mm in diameter and 250mm long carbon block filter is pushed in at a speed of about 1 minute and 5 seconds, showing the best condition. 5 minutes
- the filter for the water purifier takes about 50 seconds.
- the block filter In order to prevent deformation of the block filter after extrusion, the block filter is cooled by blowing air into the block filter at the exit of the extruder.
- the reason for the cooling is that the block filter is pushed out by a screw in the extruder and compressed with equal energy and then compressed. In this case, by maintaining the compression state by cooling, the shape can be maintained, and the density of the filter and the deformation of the surface state can be prevented.
- the cooling of the extruder has been described as a method of air cooling by forced blow by natural wind, but water cooling and air cooling can be used as chiller system by cooling water operation method, and air cooling is a system that cools air by directly spraying the block filter. Is a system that cools the exit side of the extruder, ie around the aperture of die 260.
- the condition of the screw 210 and the radius of the extruder 200 was confirmed that the LD ratio of the extruder, the screw length and the ratio of the radius is 20: 1 to meet the best molding conditions when used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
본 발명은 수돗물의 정수시스템에서 사용되는 활성탄이 중력식 하향류와 상향류 유동방식으로 사용되던 것을 활성탄에 접착을 위한 수지바인더를 혼합하여 압출방식으로 성형하는 활성탄 블록필터로 대체함에 있어서, 블록필터의 정수 효율향상과 제품의 생산성을 증대시키기 위하여 블록필터의 성형시 사용되는 바인더를 최소로 사용하면서도 압출성형이 우수하면서 성형성과 필터링 효율(흡착율)이 향상토록 한 것이다.
Description
본 발명은 수돗물의 정수시스템에서 사용되는 활성탄이 중력식 하향류와 상향류 유동방식으로 사용되던 것을 활성탄에 바인더를 혼합하여 압출방식으로 성형하는 활성탄 블록필터로 대체함에 있어서, 블록필터의 효율향상과 생산성을 증대시키기 위하여 블록필터의 성형시 사용되는 바인더를 최소로 사용하면서도 압출성형이 우수하면서 성형성과 필터링 효율(흡착율)이 향상토록 한 것이다.
현재 국민들이 사용하는 수돗물의 정수과정은 응집/침전, 여과라는 과정을 거쳐 물리,화학작용에 의하여 주로 현탁성 성분을 제거하게 되는 것이다.
따라서 현탁성 성분이 제거된 상태에서의 정수된 물에는 과망간산칼륨 소비물질 등의 용해성 유기물질 또는 트리할로메탄 전구물질이나 맛, 냄새물질이나 농약성분 등의 미량의 유해물질이 존재하여 이들을 제거하기 위하여 입자상의 활성탄공정을 거치게 되는데 대부분의 수돗물의 정수시스템에서는 정수량에 따라 차이가 있지만 입자상의 활성탄 공정은 깊이가 대략 2~3m정도로 입자상의 활성탄을 충전하여 사용하는 중력식 하향류와 깊이 대략 1m정도로 입자상의 활성탄을 충전하여 사용하는 상향류 유동방식을 사용하면서 체류시간을 대략 10~15분정도에서 시간당 10~15m사이로 적용하고 있는 것이다.
그러나 이러한 입자상의 활성탄을 충전하여 사용하는 공정이 15일 간격으로 역세척을 하여 침적된 입자상의 유해물질 등을 제거하게 되는데 이때 상기와 같은 입자상의 활성탄 층이 교란되면서 흡착대가 교란되어 파과(필터링되지 못하고 바이패스되는 현상)가 일찍 발생하게 되는 문제점이 있는 것이고 이러한 입자상의 활성탄을 수시로 교환하는 과정에서 상당한 비용이 소요된다는 것이다.
따라서 최근에 활성탄과 바이더를 사용하여 압출성형에 의하여 제조되는 블록필터를 사용하여 가압에 의하여 필터링이 가능토록 하는 방식으로 대체함으로서 종래의 활성탄 여과공정에서 중력식 하향류와 상향식 유동방식의 문제점을 제거하기 위하여 이러한 블록필터의 사용이 제안되고 있는 것이다.
그러나 상기의 활성탄 블록 필터는 분말상의 수지바인더와 일정크기를 갖는 입자상의 활성탄을 일정온도 조건하에서 압출기에 의하여 압출 성형하거나 프레스에 의하여 가열 압축 성형하고 있는 것이다.
상기의 압출 성형은 일정온도조건하에서 바인더가 용융되면서 활성탄과 바인더가 스크류의 회전에 의하여 교반되면서 압출기에서 연속으로 성형하는 방식이고 압축성형은 교반되어 골고루 섞여진 상태에서 프레스 방식에 의하여 일정온도에서 가열하면서 프레스를 사용하여 틀에 넣고 가압하여 찍어내는 방식이다.
상기의 프레스에 의한 압축 성형방식은 제조를 위한 일정한 라인이 요구되는 별도의 압출기가 필요치 아니함으로 생산을 위한 초등투자가 불 필요하다라는 장점이 있는 방면에 하나씩 찍어냄으로 생산성이 떨어지고, 제품의 균일성이 떨어지는 단점이 있는 것이고, 반면에 압출 성형방식은 냉각시스템과 절단 시스템을 구비하는 하나의 라인을 구비하는 압출기를 구비하여야 하는 등 많은 초등투자의 단점이 있지만 생산성이 우수하고, 제품의 균일화가 가능하다라는 장점이 있다.
본 발명에서는 연속으로 성형하는 압출방식에 의하여 제조가능한 활성탄 블록필터에 적용되는 것이다.
현재 상기의 압출방식에서 블록 필터를 성형할 경우에는 기본물질(원료)로는 수지 바인더와 활성탄을 사용하게 되고, 상기 바인더로는 열가소성수지인 폴리에틸렌(PE)을 사용하는 것이다.
그러나 압출 성형시 상기 바인더로 사용되는 폴리에틸렌(PE)과 활성탄의 비중의 차이로 인하여 교반에 어려움이 있어 통상적으로 동일한 비중을 갖도록 수지바인더는 미세한 분말상으로 사용하게 되고, 충분하고 균일한 교반이 전제되어야 하는데 통상적으로 바인더로 사용되는 폴리에틸렌(PE)보다 활성탄의 비중이 낮아서 입자의 크기를 가장 작은 것을 사용해야 하는데 이러한 정도의 가공이 불가능하여 대부분 흡착하고자 하는 원수의 상태에 따라 상기 수지바인더와 활성탄입자를 일정비율로 혼합하고, 수지바인더와 활성탄 입자가 서로 다른 비중의 차이로 인하여 수지바인더의 뭉침을 방지하고자 충분한 교반이 이루어지도록 한 후 압출기의 호퍼에서 교반하면서 스크류를 통하여 용융혼합되면서 압출성형하게 되는 것이다.
따라서 압출 성형 시 수지바인더의 양이 활성탄보다 많게 혼합될 경우에는 압출성형이 용이한 반면에 활성탄의 기공을 막아주게 됨으로 필터효율이 저하되는 문제점이 있다.
이는 수지바인더가 압출성형시 활성탄 입자의 마이크로 세공의 표면을 코팅하게 됨으로 압출성형이 용이한 반면에 세공을 막아주게 됨으로 필터효율이 저하되는 것으로 알려져 있다.
따라서 대부분 수지바인더를 활성탄입자보다는 적게 혼합을 하게 되는데 수지바인더를 적게 혼합할수록 필터효율이 향상되어지는 반면에 압출성형시 성형에 어려움이 있고, 특히 수지바인더의 양이 활성탄보다 많이 적을 경우 즉 수지바인더가 활성탄 중량 대비 함유량이 20~30%미만일 경우에는 분말이나 입자상으로 이루어지는 각각의 활성탄의 균일한 접착력이 떨어지는 문제점이 있어 특정부위에서 부서지는 문제점이나 압출성형된 이후에 일정직경을 갖는 활성탄 블록필터의 모든 표면에서의 균일한 필터효율 유지가 어렵다는 문제점이 있는 것이다.
이러한 이유는 압출성형방식이 일정온도하에서는 용융 가능한 플라스틱(특히 열가소성의 수지)을 압출기의 히팅수단이 구비된 실린더내로 스크류를 이용하여 호퍼에서 공급된 플라스틱을 후단에서 전단으로 공급하면서 유동화 시키는 과정에서 연화(軟化) 융해되어 스크루의 회전에 의해 혼련(混練)과 압축을 받으면서 앞쪽으로 수송된 상태에서 압출기 선단(실린더의 선단)의 다이(die)(통상 용융된 플라스틱의 용융수지가 원하고자 하는 형태로 통과되어질 수 있는 단면을 가진 금형)를 통과시켜 필요시 수냉이나 공냉의 방식으로 냉각토록 하면서 제품형태를 구현하는 공정이기 때문에 본 발명에서의 압출성형시 수지바인더나 활성탄입자에 함유되어지는 습기의 제습의 정도에 따라 압출특성이 달라지는 것이고, 또한 활성탄입자와 수지바인더(비중 0.91~0.94 정도)의 혼합의 차이와 이들의 각각의 비중차이로 인하여 교반의 정도에 따라 압출특성이 달라지게 되는 문제가 있는 것이다.
따라서 이를 해결하기 위하여 호퍼에 담겨진 상태에서 교반을 하면서 압출기의 실린더로 투입되기도 하지만 활성탄보다 배 이상으로 높은 수지바인더의 비중으로 인해 균일한 혼합에 어려움이 있고 충분한 교반을 한 상태라고 하여도 스크류의 회전에 의하여 유동화시키는 과정에서 수지바인더가 용융될 경우에 각각으로 분리되어진 수지바인더와 활성탄으로 인하여 결국 비중이 큰 수지가 아랫측으로 몰리게 되면서 일정한 직경을 갖는 활성탄블록필터로 성형된 이후에 블록필터의 내측면과 외측면에서 서로 다른 필터능력의 차이는 물론 성형된 블록필터의 표면에서도 필터능의 차이가 발생되면서 실질적으로 원하는 필터효율을 기대할 수 없게 된다는 문제점이 있는 것이다.
즉 활성탄 블록필터를 정수시스템에서 적용할 경우에 블록필터를 제조하기 위하여 압출성형할 경우에 성형의 균일성이 유지되지 못할 경우에는 결국 활성탄 블록필터의 내측면과 외측면의 활성탄의 세공의 밀도차이가 발생되어 활성탄 블록필터의 내측면과 외측면의 서로 다른 세공의 막힘의 차이로 원하는 서로 다른 입자 크기를 갖는 유기물의 흡착을 완전하게 이룰 수 없다는 문제점이 있는 것이고 균일성이 떨어질 경우에는 결국 충분한 유량의 흐름을 유지하지 못하여 사용에 많은 문제점을 발생할 수 있게 되는 것이다.
이러한 균일성의 문제를 해결하기 위하여 한편 통상적으로 수지를 사출 또는 압출성형할 경우에 균일한 혼합률의 유지를 위하여는 물성이 다른 여러 종류의 수지나 첨가제 등을 투입하여 균등하게 잘 혼합하는 콤파운딩공정을 활성탄과 수지바인더를 콤파운딩 공정으로 할 수 있는 것을 고려할 수 있다.
하지만 상기의 콤파운딩공정에 의하여 활성탄과 수지바인더의 균일한 혼합률을 유지할 수 있는 장점은 있으나 상기 콤파운딩공정이 압출기 선단에 로드(rod)형태의 금형을 사용하고 콤파운딩 되어 나온 고분자 혼합물을 수조를 통하여 냉각시키거나 공랭시킨 후에 펠렛타이저(pelletizer)를 사용하여 작은 조각으로 만드는 것이어서 코팅이나 완전한 혼합이 가능한 방식이어서 이러한 방식을 사용하면 활성탄의 표면에 수지가 코팅된 상태를 나타내게 됨으로 활성탄입자의 각각에 수지바인더가 코팅된 상태를 그대로 유지함으로 성형된 이후에 필터링이 현저하게 감소되는 원인이 되는 것이다.
따라서 콤파운딩공정을 활용하는 것은 활성탄블록필터를 제조할 경우에는 실질적으로 불가능한 것이다.
따라서 본 발명은 이러한 문제점을 해소하면서도 수지바인더를 최소의 함량비로 혼합토록 하면서도 성형성이 우수하게 되고 동시에 활성탄 블록필터의 효율을 우수하게 하는 것이다.
이를 위하여 산처리되거나 또는 산처리한 활성탄을 활용하여 활성탄에 존재하는 수분을 최대한으로 건조토록 하고, 이와 같이 건조된 상태에서 냉각토록 하여 추후에 교반을 위하여 투입되는 수지바인더가 교반되기 이전에 녹어 뭉치는 것을 방지하고, 교반시에는 수지바인더가 표면만이 살짝녹을 수 있도록 간접열로 교반토록 하여 활성탄의 표면에 수지바인더가 녹아서 접착토록 하고 이와 같이 수지바인더가 활성탄의 표면에 접착된 상태에서 압출기에서 압출토록 하는 것이다.
또한 블럭필터의 조밀도를 향상시키기 위하여 입자상의 활성탄에 분말상의 활성탄을 일정비융로 혼합토록 하여 교반토록 함으로서 조밀한 블럭필터의 제공이 가능토록 한 것이다.
또한 블럭필터의 성형조건을 위하여 입자상의 활성탄과 분말상의 활성탄을 일정한 크기로 제한 사용함으로서 성형성은 물론 경제성을 갖도록 한 것이다.
또한 교반시 교반기의 구조를 오일을 가열하여 열을 발생토록 함으로서 온도편차를 최소로 한 것이다.
따라서 최소의 수지바인더만을 사용함으로서 활성탄의 효율이 우수하게 되는 것이고, 최소로 사용하면서도 일정강도유지가 가능하면서 압출성형이 용이토록 할 수 있게 되는 것이다.
또한 분말상의 활성탄을 추가함으로서 조밀도가 높은 블록필터를 제조할 수 있으면서도 압출의 용이성은 물론 필터능이 우수하게 될 수 있는 것이다.
또한 활성탄의 산처리와 건조공정의 사용은 필터능을 우수하게 할 수 있는 것이고, 건조후 일정온도로 냉각과정을 거침으로서 수지바인더를 교반할 경우에 수지바인더의 뭉침을 방지할수 있는 장점이 있는 것이다.
또한 수지바인더가 활성탄의 표면에 입자상으로 부착되어 있어서 수지바인더를 최소로 사용하면서도 압출성형의 용이성은 물론 필터능을 향성시킬 수 있는 장점이 있는 것이다.
도1은 본 발명의 활성탄입자에 연화되어진 수지바인더가 고형체로 접착된 상태의 다양한 일 실시 예를 도시한 확대도
도2는 본 발명에서 적용되는 압출기의 일 실시 예
도3은 본 발명의 성형과정을 도시한 블록도,
도4는 본 발명에 의하여 성형된 활성탄 블록필터의 사시도
발명의 실시를 위한 최선의 형태는 활성탄을 산 세척하여 기공에 끼인 이물질을 제거하는 단계
산 세척된 활성탄을 열을 가하여 교반하면서 수분을 건조하는 단계
건조된 활성탄을 수지바인더가 녹지 않을 정도로 냉각하는 단계
냉각된 활성탄에 수지바인더를 투입하여 수지바인더의 표면만이 용융되도록 가열하여 교반하는 단계
교반후 활성탄에 표면만 녹은 수지바인더가 입자상으로 접착된 상태에서 압출기에서 압출성형하는 단계와
압출성형된 블록필터에 냉각하는 단계로 성형하는 정수처리를 위한 활성탄 블록필터의 제조방법이다.
이하 첨부도면에 의거 본 발명을 상세히 설명하면 다음과 같다.
우선 본 발명의 활성탄 블록필터는 입자상 및/또는 분말상(120메쉬이상을 지칭하는 것)의 활성탄과 수지바인더만으로 일정온도로 가열하여 교반한 후 교반된 것을 압출방식에 의하여 성형되어지는 것이다.
그러나 이러한 혼합은 기본적인 필터기능을 위한 것이고 만일 또 다른 원하는 추가적인 기능이 요구될 경우에는 다양한 성분이 전체중량을 기준으로 추가할 수 있음은 물론 이고 이러한 추가는 압출성형조건에 일치될 수 있는 범위 내에서 가능토록 함은 물론이다.
본 발명에서 사용되는 활성탄은 가능하면 g당 표면적 1,100(요오드가) 이상의 활성탄을 사용하는 것이 좋고, 이는 활성탄을 활성화를 시킬 때 카본 입자에 공극이 많을수록 좋은 것인데 그런 기준에 의해 요오드가 값이 1,100선으로 예시하는 것이고 이는 가격적인 부분을 감안한 것으로 만일 가격적인 부담을 고려치 않는다고 할 경우에는 요오드가 높을수록 효율이 좋기 때문에 높은 것을 사용할 수 있는 것이다.
또한 활성탄은 통상 표면적이 넓을수록 고가격이고, 기공을 많이 가지고 있어 흡착율이 높아지는 반면에 표면적이 줄어들면 활성탄의 입자가 커지면서 흡착율이 떨어지고, 표면적이 늘어나면 활성탄의 입자가 작아지면서 흡착률이 높아지는 반면에 가공에 따라 가격이 상승하게 된다
또한 본 발명에서 사용되는 활성탄은 가능하면 산 세척을 한 것을 사용하는 것이고, 상기 산 세척은 활성탄을 만들어서 “산”에다 넣어서 활성탄을 세척하는 것이고 산 세척을 하면 활성탄의 기공에 끼여 있는 불필요한 미립자가 제거되어 흡착효율이 증대하게 되는 것이다.
그러나 산 세척하지 않은 활성탄을 사용하여 본 발명에서 얻고자 하는 블록필터를 성형하여 사용할 경우에 초기에 높은 알칼리성 물이 나오고 황산화물이 나온다.
이는 활성탄은 제조과정에 산화가 되면서 황산이 발생하여 표면적을 결정하는 기포에 황산화물이 끼게되는 것이고 산 세척에 의하여 이러한 이물질을 제거하는 것이다.
또한 본 발명에서 사용되는 활성탄은 그 사이즈 분포도가 균등한 것 (성능이 잘 나오려면 입자 크기의 분포도가 균등해야 한다)을 사용해야 하는 것이다.
본 발명에서는 입자의 분포도가 50-100 메시의 범위의 활성탄을 사용하였고, 이러한 이유는 성형된 이후에 흡착효율이 뛰어나고 필터로 여과된 물맛도 좋고 필터의 표면적 기공이 균등하여 최적의 유량확보가 가능하기 때문이다.
그러나 메시의 분포도가 95~100메쉬 또는 100-105메시의 좁은 범위로 사용할 경우에는 고비용으로 원자재가격이 상승하게 되는 문제점이 있다.
또한 본 발명에서 사용되는 활성탄은 야자수로 만든 제품을 사용한 것이고, 이는 물맛은 물론 우수한 흡착율을 보장하기 때문이다.
참고적으로 활성탄은 목탄, 석탄, 뼈, 야자나무껍질 등을 원료로 하여 탄화(carbonization)와 활성화(activation)과정을 거쳐서 생산되는 흑색의 다공성 탄소질 물질이어서 기체와 액체 중에서 함유되어 있는 미량의 유기물질을 흡착하는 성질이 있고, 상기의 원료에 따른 활성탄의 특성으로는 식물계 원료로는 목재와 톱밥으로 제조되는 연질의 분말탄과 야자나무껍질로 제조되는 경질의 분말탄과 석탄계 원료로는 역정탄으로 제조되는 입상탄이 있고 석유계 원료로는 피치(pitch)로 제조되는 입상탄이 있고 이러한 것들의 활성화 방법으로는 900℃ 전후의 온도에서 수증기 등으로 활성화시키는 것과 목재를 염화아연, 황산, 인산 등으로 약품처리 한 후 탄화시킨 약품활성탄이 있는데 정수용으로는 대부분 수증기 활성법으로 만든 것을 사용한다.
상기 활성탄의 내부에는 10,000~100nm정도의 마이크로(Macro)세공이 입체적으로 놓여 있으며, 상기 마이크로 세공벽에는 10~0.1nm정도의 마이크로 세공이 배열되어 그 비표면적은 700~1,400m2/g에 이른 것으로 알려져 있다
본 발명에서는 상기와 같이 야자나무를 원료로 제조된 활라성탄을 사용한 것이고, 다른 나무로 만든 활성탄을 사용했을 경우는 물맛이 좋지 않고 필터의 흡착율이 떨어지는 단점이 있지만 사용에 문제점은 없다.
또한 활성탄의 입자분포도가 50~100메쉬의 범위를 벗어날 경우에 입자의 크기가 균등하지 않아 성형된 이후에 필터의 균등한 기공이 만들어지지 않아 흡착효율이 떨어지고, 불량률이 많아짐은 물론 유량확보가 불가능하다.
또한 본 발명에서 사용되는 활성탄은 수분함유량이 4%-5%의 활성탄을 사용하였고, 이는 구입당시는 4~5% 수분함유 된 활성탄이지만 유통과정에 수분함유량은 10%까지 올라가기 때문이다.
따라서 활성탄을 구입하여 교반하기 이전에 반드시 건조기 또는 분산(교반)기에서 일정온도로 가열하여 수분을 최대한 건조하여야 하는 것이다.
본 발명에서는 120~130도의 온도 범위에서 4시간 정도 가열해서 건조시켜 사용할 경우에 가장 좋은 효과를 얻을 수 있었다.
그후 상기와 같이 수분이 제거된 활성탄을 40~60도의 온도로 낮춘 다음에 후술하는 바와 같이 수지바인더를 일정량 투입하여 교반을 하게 되는 것이다.
만일 수분이 있는 활성탄을 사용하여 교반을 하고 압출성형할 경우에 카본 입자 배열이 균등하지 않아서 품질이 떨어지고 성형시 수증기로 인하여 제품에 균열이 생기고 강도가 약해지고 수증기가스가 압출기의 압출과정에서 폭발하여 위험요소가 존재하게 되는 것이다.
본 발명에서 상기한 바와 같이 활성탄 사이즈의 분포도가 50~100 메시의 범위의 것을 혼용사용하였고, 본 발명에서 예시로 설명하고 있는 활성탄의 사이즈분포도는 전체중량을 100중량%라고 할 경우에 50~70메시가 70중량% 정도이고, 나머지 30중량%가 70~100메시 사이를 사용하였다.
그러나 활성탄 사이즈의 분포도가 넓은 것(50~100메시)보다 분포도가 좁은 것(모두 100메시 또는 100~105메쉬)이 좋지만 가격이 3배이상 고가격이고, 이를 사용하여 제품으로 생산했을 경우 가격저항을 받지만 본 발명의 목적을 달성할 수 있음은 물론이다.
그러나 활성탄의 입자를 100메시 이상의 입자를 사용했을 때 문제점은 활성탄 입자가 작으면 작을수록 흡착표면적이 넓어지는 장점은 있으나 압출성형할 경우에 압출기에 부하가 걸려서 일정한 속도로 압출되지 않아 생산성이 떨어지고 이로 인하여 제품의 불량률이 높아지고 성형된 이후의 블록필터의 표면적이 균질하지 않아 제품 성능이 나오지 않는 단점이 있다.
그리고 활성탄이 50메시 입자 이하의 사용은 표면적이 작아지면서 필터기능과 흡착율이 떨어진다.
즉 활성탄 입자의 사이즈가 작으면 작을수록 흡착효율이 높아지고 입자가 굵을수록 흡착효율은 낮아진다.
본 발명에서의 교반시 활성탄 입자가 작을수록 수지바인더가 많이 들어가고, 만일 수지바인더가 교반량의 전체중량을 100중량%라 할 경우에 16중량% 이상 혼합될 경우에는 교반에 어려움이 있고, 교반시 가압 에너지가 높아지고 성형된 이후에 통수량이 낮아지고 흡착효율도 떨어진다.
본 발명에서의 수지바인더는 탄성이 좋고 유량흐름이 좋은 저밀도 PE 즉 LDPE를 사용하였고, 전체중량을 100중량%라 할 경우에 14~16중량%(수지바인더량은 활성탄 입자 사이즈에 따라서 달라지는데 활성탄 사이즈가 미세하면 미세할수록 더 들어간다. 최고 16중량%를 넘지 않는다)를 투입하여 교반한다.
활성탄이 직경이 크거나 작을 경우 성형후의 강도가 차이가 날 수 있고 활성탄의 직경이 커지면 수지바인더가 좀 더 들어갈 수 있다.
수지바인더를 많이 넣으면 넣을수록 카본필터의 효율이 떨어지고 수지바인더는 최소한의 적게 들어가는 게 효율을 높이는 것이다.
본 발명에서는 최소 14% 이상은 들어가야 성형된 상태에서 균등한 강성도 유지되고 16%이상 들어가도 상관은 없지만 더 많이 들어가게 되면 유량 효율이 떨어져서 더 넣지 않는 것이 좋다.
만일 수지바인더가 14% 보다 적게 들어가면 입자의 균등성과 강도가 약해지고, 이는 14%에서 활성탄 입자가 50~100메시가 표준이지만 블럭필터를 좀 더 조밀하게 제조하고자 할 경우에는 활성탄 파우더를 추가한 후 수지바인더를 16%까지 투입한 후 교반토록 한다.
본 발명에서 교반시 투입되는 수지바인더가 14~16중량%로 하는 기준은 입자 활성탄과 파우더활성탄을 합친 상태에서 100중량%를 나타내는 것이고, 상기 입자나 파우더의 활성탄에서 수분을 제거한 무게를 기준으로 하는 것이다.
파우더 활성탄의 기준은 120메시를 기준으로 하는 것이고, 실질적으로는 입상활성탄인데 일반적으로 120메시는 파우더 급으로 인정하기 때문에 120메시를 파우더로 지칭하는 것이다.
본 발명에서 파우더 활성탄은 120메시~200메시의 범위의 것을 선택사용할 수 있거나 이들을 혼용할 수 있는데 보통 120메시를 사용한다.
압출에 의하여 블록필터를 성형하는 조건은 흡착효율 기준으로 제작을 하게 되는 것이고 활성탄의 입자 사이즈가 작으면 작을수록 입자 간의 간격이 없어지게 되고, 그 사이에 파우더 입자가 채워지기 때문에 흡착효율은 상당히 좋아진다.
통상적으로 블록필터의 효율은 수돗물에 있는 염소 제거율로 클로로프룸제거율로 따지는데 염소제거가 90%~95%로 제거되면 효율이 좋다고 평가하고 80%이하로 떨어지면 품질이 저하되는 것으로 간주한다.
파우더활성탄은 일반적으로 5미크론 정도의 필터가 가능한 제품을 만들때 사용되지만 고품질의 필터제조할 경우 즉 조밀한 필터를 만들 때,(5미크론 이하 4미크론 3미크론 2미크론 1미크론 정도의 필터)파우더를 사용한다.
일반적으로는 5미크론 기준이 보편적이지만 좀 더 조밀하게 제조하기 위하여는 파우더 급(120메쉬이상)을 추가한다.
본 발명에서의 파우더활성탄은 입자상의 활성탄을 100중량%라 할 경우에 파우더활성탄을 를 섞은 전체중량(수분이 제거된 무게)로 따져서 최대10%까지 추가하며 10%를 초과하지 않는것이 좋다.
만일 10%이상 추가하면 압출시 기계에 부하가 걸리고 일정한 속도로 압출되지 않고 제품 불량률이 높아짐은 물론 성형 이후에 표면적이 균질해지지 않는다.
그러나 압축방식에서는 가능하지만 압출방식에서는 10%이상을 추가하면 성형이 불가능하다.
또한 파우더 활성탄의 입자가 120메쉬 이하의 것을 사용하면 파우더 활성탄을 넣는 효과가 없다.
활성탄의 배합은 미크론을 낮추기 위해서 입상의 활성탄과 파우더의 활성탄을 합친 무게의 배분율로 따진다.
좀 더 정확하게는 활성탄은 초기에 들어오는 수분함량이 있고 건조를 시킬 때 줄어드는 중량이 있는데 줄어든 중량을 기준으로 무게 대비로 추가한다.
수지바인더의 조건은 상기한 바와 같이 PE를 사용하고, PE비중이 카본비중보다 높아서 최적의 수지바인더는 카본 입자와 비슷한 입자가 좋다.
만일 파우더 급(120메쉬)의 수지바인더(120메쉬)를 사용하게 되면 상기와 같이 입자가 균등해지고 조밀해 지지만 입자가 굵을 경우 편중해서 성형이 됨으로 조밀성이 떨어지고 성형강도가 균등하지 않는다.
또한 PP 등급의 바인더는 압출시 압출기에 부하가 많이 걸리고 성형후의 블록필터에 깨짐성 (균열)이 생기고, 고밀도의 HDPE는 강도가 너무 높아 제조나 성형시 문제점이 있다.
본 발명에서 사용되는 수지바인더의 PE는 분쇄한 것이 있고 화학적분해로 처음부터 구형으로 생산하는 것이 있는데 가능하면 구형으로 만든 제품을 사용하는 것이 좋다.
참고로 화학적분해는 수지바인더의 입자가 “구형”이며 분산(교반)할 때 균등하고 교반이 잘되고 활성탄(카본)과 수지바인더(PE)가 잘 썩이고, 필터기능이 좋아지고 필터 표면적이 균질, 균등해지고, 성능이 안정된다.
물리적분쇄(파쇄)는 입자의 불규칙-활성탄과 수지바인더의 PE가 교반이 잘 안되고, 잘 썩이지 않고, 균등한 바인더 역할이 안된다. 필터기능도 떨어지고 표면적이 균등, 균질해지지 않는다.
만일 수지바인더의 입자가 굵은 것(250메쉬 이하)를 사용했을 경우 균등. 균질한 바인더 역할이 안된다. 그러므로 바인더를 추가할 수 밖에 없으며, 따라서 유수량이 떨어짐은 물론 교반시 파워(강도)가 적게 들어간다.
그러나 수지바인더입자가 가는 것(290메쉬 이상)을 사용했을 경우 분산(교반)이 잘 안되고 제품(필터)의 균질성이 떨어지고 바인더를 추가할 수밖에 없으며, 그로 인하여 유속량이 떨어지 교반할때 파워(강도)가 많이 들어간다.
또한 교반시 바인더의 양이 적게 들어가면 교반도 안되고 활성탄이 많아 성형후 제품의 균질성이 떨어지고 성형된 제품의 수명이 짧아지고 불량률이 높아진다.
본 발명에서 사용되는 수지바인더의 LDPE는 270±20메시를 사용하였다.
그러나 현재 친수성(물하고 친한) 바인더를 사용하여 교반하고 성형할 경우에도 동일하거나 성형시의 우수한 효과가 있음을 확인하였다.
본 발명에서의 활성탄과 수지바인더의 교반은 활성탄을 수분제거를 하기 위하여 교반기 또는 건조기에 넣고 100도 2시간 정도 건조하면서 온도가 올라가고 120도의 온도에서 2~3기간 건조시키면서 수분을 제거하는 것이다.
상기의 건조시간동안 회전시키며 건조시키는 것이고 이보다 더 많은 시간을 건조하여도 동일한 효과를 얻을 수 있어 불필요한 에너지 손실만가져오게 된다.
본 발명에서의 교반시 파우더 활성탄을 사용할 경우에는 가능하면 파우더 활성탄은 처음부터 넣고, 50~100메쉬의 입자상의 활성탄의 무게를 100중량%라고 할 경우에 무게비율로 최대 15% 이내로 추가한다.
상기의 비율과 시간 및 온도로 교반이 완료되면 열을 40~60℃까지 식힌다.
만일 열을 식히지 않았을 때 문제점은 활성탄과 교반시 수지바인더가 녹아서 덩어리가 지게되는 등의 문제점이 있다.
따라서 교반기에서 건조된 활성탄이 식으면 전체중량을 100중량%라고 할 경우에 카본84~86중량%, 수지바인더14~16중량%를 넣고 온도는 최초 40~60℃에서 출발하여 교반기에 달려있는 회전스크루를 천천히 회전시키면서 온도를 가열한다.
이때 기계적으로는 80℃로 설정되지만 자체발열로 인해서 온도가 상승하여 교반이 된다.
이때 스크루의 회전은 빨라도 안 되고 늦어도 안 된다
본 발명에서는 오차범위 20%에서 30RPM으로 할 경우에 가장 최적의 상태로 교반됨을 확인하였다.
이때 교반기의 온도는 기계적으로는 80℃에서 진행되지만 수지바인더가 95℃ 정도에서 녹기 시작해서 110℃에서 완전히 녹게 되고, 각각의 수지바인더는 각각의 활성탄에 살짝 붙어 있는 형식으로 된다.
이런 상태에서 압출기에서 압출 성형해야 표면상태가 균등하게 조밀도가 유지되고 성형 강도도 균등하게 유지될 수 있다.
상기와 같이 교반시 교반기의 온도는 40~60℃에서 시작해서 설정된 기계적 온도가 80℃로 세팅되서 1시간 교반하면 교반열에 의하여 수지 표면이 녹기 시작해서 표면만이 살작 녹은 수지바인더가 활성탄의 표면에 접착되면서 결합이 되기 시작하는데 그 후로 1시간 정도 더 교반하면 교반이 완성된다.
본 발명에서 교반시 스크루가 회전하는 속도는 깨뽂는 것 보다 조금 빠르게 저속회전 하는 것으로 고정되어있어서 항상 동일한 속도로 회전 교반한다.
다만 교반기에서 활성탄)과 바인더가 교반되면서 자동으로 열을 발산하는데 이때 바인더로 사용되는 PE의 겉 표면만 살짝 녹을 정도의 온도로 교반하는 것이 목적이다.
본 발명에서의 교반기에는 활성탄이 들어가는 무게는 100㎏ 용량을 기준으로 설명하는 것이어서 더 많은 용량이 투입되거나 적게 투입될 경우에는 교반시간의 변화가 존재할 수 있는 것이다.
본 발명에서의 교반기의 회전수는 상기와 같이 오차범위를 감안하여 분당 30RPM이다
또한 교반기의 구조는 교반기를 둘러싸서 전기가열기 코일이 감겨져 있으며 교반기 둘레 면적의 30% 정도인데 전기가열기의 코일이 교반기를 둘러싸는 오일을 가열하면서 교반기를 가열하는 간접가열 방식이다.
만일 직접가열방식은 수지바인더가 즉시 용융되어 뭉침이 되면서 교반을 할 수 없는 문제점이 있다.
오일을 사용하는 것은 전기적인 흐름의 변화에 의하여 신속하게 변화되지 않는 (일정온도의 유지가 가능하기 때문임)것이어서 사용한 것이다.
교반기 스크루 회전속도는 상기와 같이 오차범위를 감안하여 통상적으로 30RPM으로 회전시켜고 있는데 회전이 40RPM이상이 될 경우에 스크루가 회전되는 중앙부분만 녹는 현상이 생긴다.
그러나 회전이 20RPM으로 느릴 경우 온도가 일정하지 않아 골고루 교반이 안됨은 물론 교반시간이 너무 오래 걸리게 되는 문제점이 있다.
오차범위를 감안한 30RPM의 교반속도에서 교반기의 운전 시간은 가능하면 2시간 내에서 하는 것이 좋다.
본 발명에서는 활성탄80~85중량% 수지바인더15%~20중량%가 좋고 가장 우수한 범위는 활성탄 86중량%에 수지바인더 14중량%이다.
본 발명에서 교반이 잘 되었다고 판단하는 방법으로는 교반기의 온도는 80℃로 세팅 되어있고 교반하는 과정에 스크루의 교반과정에 마찰열로 인하여 85~87℃ 까지 상승하는데 절대로 87℃를 넘으면 좋지 않다.
그리고 교반된 것을 떠서 압출기에 성형을 위하여 호퍼에 부으면서 햇볕에 비춰보면 입자가 균등한 것이 보이고 옅은 회색이었던 활성탄이 교반이 되면서 점점 더 짙은 회색으로 바뀌는데 검정에 가까운 짙은 회색이 되면 교반이 잘 된 것으로 볼 수 있다.
상기와 같이 교반이 잘 되었을 경우 활성탄에서 분진가루 먼지가 덜나게 되고 손으로 만지면 활성탄에 끈적함이 있는 것이 느껴지고 수지바인더가 활성탄에 표면만 녹아 붙으면 검은색에 가까운 짙은 회색으로 보이고 교반이 잘되지 않으면 옅은 회색이 된다.
교반이 잘되었을 경우에 압출성형이 원활하게 잘 된다
이는 활성탄의 표면에 수지바인더가 어느정도 녹아서 부착되어 있어서 압출기가 밀어내는 압출속도가 빠르고 압출기의 가동시 에너지도 덜 들어가고 기계적인 무리도 덜갈 수 있게 되는 것이다.
그러나 교반이 잘 안되었을 경우 균등한 입자 결합이 되지 않고 기계에 무리도 가고 압출속도도 느리게 된다.
상술한 바와 같이 본 발명에서의 압출성형의 전 단계에 해당되는 교반단계에서는 수지바인더가 최소로 사용되기 위한 방법이고, 동시에 그 상태에서도 압출성형성이 우수하면서 접착성도 우수하여 필터능이 우수한 활성탄 블록필터를 제공하게 되는 것이다.
본 발명에서 활성탄과 수지바인더를 교반할 경우에 교반기에서 제1,2차 가열시먼저 활성탄만이 수분건조를 위하여 1차로 교반 가열되어 져야 하는 것이고, 그 상태에서 수지바인더가 용융되지 않게 냉각토록 한 후 수지바인더를 투입하여 2차로 가열하면서 교반하여 수지바인더가 표면만이 녹게 되면서 활성탄의 표면에 고형체의 형태로 접착토록 하는 것이다.
즉 도1의 a,b,c에 도시된 바와 같이 각각의 활성탄 표면(20)에 단수 또는 복수의 형태로 수지바인더(10)가 표면만이 용융된 상태에서 점 접착 또는 면접착의 형태로 부착되어져 속이 비어 있지 않은 덩어리(일명:고형체)의 형태로 존재하게 되는 것이다.
상기와 같이 교반이 완료돤 상태에서의 압출조건은 스크루(250)로 강제 압출을 하는 것이고, 이때 압출기(200)의 온도는 기계에 따라서 온도 조건이 달라지는데 성형하고자 하는 블록필터(30)의 직경에 따라서 달라진다.
본 발명에서는 일반적으로 20-28파이 20-40파이 20-42파이 20-45파이 정수기용과 산업용으로는 43-63파이 40-63파이 길이는 750MM까지 10인지 단위로 조절가능하고 압출기의 가열장치는 실린더(230)에 장착되는 3개로 가열코일(240)로 나누어지며 1차 호퍼(210)를 통하여 활성탄이 투입된 부분 즉 스크류(210)가 형성된 후단의 투입구에는 175℃로 가열하고, 2차 실린더 온도는 195℃로 가열하고, 3차 성형구에는 165℃로 가열해서 압출한다.
즉 압출기의 투입부분이 175℃이고 실린더부분(활성탄이 수지바인더와 혼합되어 결합되는부분에는 195℃이고 혼합되면서 일정형태로 성형되어지는 성형구 즉블록필터가 배출되는 다이(260)가 장착되는 배출구에는 165℃로 가열하는 것이다.
그러나 여름철에는 10℃씩 온도가 내려가고 겨울에는 175℃,195℃,165℃를 유지하고 내부작업장 습도에 따라 온도의 변화가 존재할 수 있는 것이다.
그러나 항온 항습이 된 장소에서 작업을 하면 일정온도를 유지하게 되면서 작업성이 좋아진다.
본 발명에서 직경63mm 블록필터의 압출의 경우 압출기(200)의 가열온도는 날씨의 영향도 받는데 겨울의 경우 상기와 같이 1차175℃, 2차195℃, 3차165℃로 가열 압출하고, 여름의 경우 1차165℃, 2차185℃, 3차155℃의 온도로 압출한다.
이때 압출기 스크루(210)의 회전속도는 일반 정수기 용은 35RPM 이고 산업용은 17-18 RPM으로 압출성형할 경우에 가장 좋은 성형조건과 표면의 상태가 우수함을 확인할 수 있었다.
그러나 압출기의 스크루(210)회전이 이보다 빠를 경우 50RPM 이상일 경우에는 스크루(210)가 헛돌아 제품 압출이 되지 않는 문제점이 있고 압출 스크루가 20RPM정도로 느릴 경우 규정속도보다 늦게 나오며 에너지도 많이 소비되며 불량률이 높아진다.
본 발명에서의 압출기(200)는 가능하면 호퍼(210)에 투입되는 수지바인더(10)가 교반되어 부착된 활성탄표면(20)에 수분침투를 방지하기 위한 덮개(220)를 구비토록 하고, 동시에 호퍼(210)에 교반수단(270)을 구비함으로서 더욱 우수한 성형이 가능토록 하게 되는 것이다.
이럴 경우에 압출기의 압출속도는 직경 63㎜이면서 길이 250mm의 카본블록필터를 미는데 1분5초 정도의 속도로 밀어낸 상태에서 가장 좋은 상태를 보여주고 있고 통상 정수기는 63파이 10인치기준에 1분 5초 정수기용 필터는 는 50초 정도 걸린다.
압출 성형후 블록필터의 변형을 방지하기 위하여 압출기 출구의 블록필터에 에어를 불어서 블록필터를 냉각시키는데 냉각이유는 블록필터가 압출기내에서 스크루에 의하여 밀려나오며 균등한 에너지로 압축이 되었다가 압출되면서 압축이 풀리는데, 이때 냉각시켜 줌으로써 압축상태를 유지하도록 함으로서 형태유지가 가능하게 되고, 필터의 조밀도유지와 표면상태의 변형을 방지할 수 있는 것이다.
상기 압출기의 냉각을 자연풍에 의한 강제불어줌에 의한 공냉의 방식으로 설명되고 있으나 냉각수운영방법에 의한 칠러시스템으로 수냉식과 공랭식을 사용할 수 있고, 공랭식은 블록필터에 직접 에어를 쏘아 식혀주는 시스템이고 수냉식은 압출기의 출구쪽 즉 다이(260)의 구경 주위를 냉각시켜주는 시스템이다.
압출기(200)의 스크루(210)와 반경의 조건은 압출기의 LD비율은 스크루 길이와 반경의 비율은 20:1로 사용할 경우에 가장 우수한 성형조건을 충족함을 확인하였다.
만일 이보다 작거나 클 경우에 성형성이 나쁘거나 비경제적인 부분이 존재함을 알 수 있었다.
Claims (12)
- 활성탄을 산 세척하여 기공에 끼인 이물질을 제거하는 단계산 세척된 활성탄을 열을 가하여 교반하면서 수분을 건조하는 단계건조된 활성탄을 수지바인더가 녹지 않을 정도로 냉각하는 단계냉각된 활성탄에 수지바인더를 투입하여 수지바인더의 표면만이 용융되도록 가열하여 교반하는 단계교반후 활성탄에 표면만 녹은 수지바인더가 입자상으로 접착된 상태에서 압출기에서 압출성형하는 단계와압출성형된 블록필터에 냉각하는 단계로 성형하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제1항에 있어서,상기 활성탄은 입자상의 활성탄과 분말상의 활성탄을 혼용사용하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제1항에 있어서,상기 입자상의 활성탄는 g당 표면적인 1,100(요오드가)이상의 것이면서 수분함량이 4~5%인 것을 사용하고, 크기는 50~100메쉬의 범위로 혼용사용되어지는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제2항에 있어서,상기 분말상의 활성탄은 120~200메쉬의 범위로 혼용 사용되어지고, 입자상의 활성탄과의 혼용비율은 입자상의 활성탄을 100중량%라 할 경우에 10~16중량%를 초과하지 않게 되는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제1항에 있어서,상기 활성탄의 건조단계는 오차범위를 감안한 100~130℃의 온도에서 4시간동안 가열 교반하여서 건조토록 하고, 교반기는 가열코일에 의한 오일의 가열로 간접가열하게 되는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제1항 또는 제4항에 있어서,상기 활성탄을 수지바인더와 교반시 입상 또는/및 분말상의 활성탄과 수지바인더의 비율은 전체중량을 100중량%라고 할 경우에 활성탄은 84~86중량%이고, 수지바인더는 14~16중량%인 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제6항에 있어서,상기 교반시 40~60℃에서 출발하여 설정된 80℃로 가열하면서 속도는 오차범위를 감안한 30RPM에서 교반하고, 교반시 발생하는 교반열에 의하여 85~87℃까지 상승하면서 수지바인더의 표면만이 살짝 녹은 상태에서 활성탄의 표면에 접착되게 교반하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제1항에 있어서,교반된 활성탄을 압출성형할 경우에 겨울의 경우 1차175℃, 2차195℃, 3차165℃로 가열 압출하고, 여름의 경우 1차165℃, 2차185℃, 3차155℃의 온도로 압출하며, 압출기 스크루의 회전속도는 일반 정수기 용은 35RPM 이고 산업용은 17-18 RPM으로 압출성형하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제8항에 있어서,상기 압출기의 스크루와 반경의 조건은 그 비율이 20:1의 비율로 압출성형하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제3항에 있어서,상기 입자상의 활성탄의 분포도는 전체중량을 100중량%라고 할 경우에 50~70메쉬가 70중량%이고, 70~100매쉬가 30중량%로 이루어지는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제5항에 있어서,상기 건조는 100℃에서 2시간 건조토록 하여 온도가 상승하면서 120℃에서 2~3시간동안 건조토록 하는 정수처리를 위한 활성탄 블록필터의 제조방법.
- 제7항에 있어서,상기 활성탄과 교반되는 수지바인더는 270±20메쉬의 것으로 사용되어 교반된 상태에서 검정에 가가운 짙은 회색으로 교반되어지는 정수처리를 위한 활성탄 블록필터의 제조방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0162185 | 2015-11-19 | ||
KR20150162185 | 2015-11-19 | ||
KR10-2016-0155110 | 2016-11-21 | ||
KR1020160155110A KR101844686B1 (ko) | 2015-11-19 | 2016-11-21 | 정수처리를 위한 활성탄 블록필터의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086763A1 true WO2017086763A1 (ko) | 2017-05-26 |
Family
ID=58717540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/013427 WO2017086763A1 (ko) | 2015-11-19 | 2016-11-21 | 정수처리를 위한 활성탄 블록필터의 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017086763A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109647055A (zh) * | 2019-01-08 | 2019-04-19 | 深圳市乐博维环保科技有限公司 | 一种免冲洗的椰壳活性炭滤芯的制作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050026066A (ko) * | 2002-07-30 | 2005-03-14 | 구라레 케미칼 가부시키가이샤 | 활성탄, 그 제조 방법, 분극성 전극 및 전기 2 중층커패시터 |
KR20090025012A (ko) * | 2007-09-05 | 2009-03-10 | 웅진코웨이주식회사 | 카본블럭 제조 장치 |
US20130032529A1 (en) * | 2011-02-07 | 2013-02-07 | Molycorp Minerals, Llc | Rare earth-containing filter block and method for making and using the same |
KR20130073196A (ko) * | 2011-12-23 | 2013-07-03 | 웅진케미칼 주식회사 | 다층형 활성탄 필터블록, 이를 이용한 정수용 필터 및 그의 제조방법 |
KR20150065294A (ko) * | 2013-12-05 | 2015-06-15 | 이경희 | 정수기 필터용 카본블록 제조방법 |
-
2016
- 2016-11-21 WO PCT/KR2016/013427 patent/WO2017086763A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050026066A (ko) * | 2002-07-30 | 2005-03-14 | 구라레 케미칼 가부시키가이샤 | 활성탄, 그 제조 방법, 분극성 전극 및 전기 2 중층커패시터 |
KR20090025012A (ko) * | 2007-09-05 | 2009-03-10 | 웅진코웨이주식회사 | 카본블럭 제조 장치 |
US20130032529A1 (en) * | 2011-02-07 | 2013-02-07 | Molycorp Minerals, Llc | Rare earth-containing filter block and method for making and using the same |
KR20130073196A (ko) * | 2011-12-23 | 2013-07-03 | 웅진케미칼 주식회사 | 다층형 활성탄 필터블록, 이를 이용한 정수용 필터 및 그의 제조방법 |
KR20150065294A (ko) * | 2013-12-05 | 2015-06-15 | 이경희 | 정수기 필터용 카본블록 제조방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109647055A (zh) * | 2019-01-08 | 2019-04-19 | 深圳市乐博维环保科技有限公司 | 一种免冲洗的椰壳活性炭滤芯的制作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60206271T2 (de) | Verfahren und vorrichtung zum herstellen von gefüllten thermoplastischen polymeren | |
JP5463411B2 (ja) | プラスチック材料のリサイクル方法 | |
DE69910612T3 (de) | Verfahren zur herstellung von pelletiertem polyolefin | |
RU2526277C2 (ru) | Способ получения полимерного материала, наполненного длинными волокнами | |
CN102336947B (zh) | 一种高压交联聚乙烯绝缘电缆超光滑半导电屏蔽料的制备方法 | |
KR101844686B1 (ko) | 정수처리를 위한 활성탄 블록필터의 제조방법 | |
CN111909399A (zh) | 一种高分散性聚烯烃抗菌母粒及其制备方法 | |
KR20230022398A (ko) | 열처리된 리그닌열처리된 리그닌으로부터 탄소를 생산하기 위한 방법 | |
CN107745462A (zh) | 塑料回收系统及方法 | |
WO2017086763A1 (ko) | 정수처리를 위한 활성탄 블록필터의 제조방법 | |
JP2023516884A (ja) | セルロースアセテート含有材料をリサイクルするための方法、ペレット、押出物およびその粒状物、ならびにセルロースアセテート含有材料をリサイクルするためのシステム | |
CN111925588A (zh) | 一种驻极体高熔指聚丙烯母粒及其制备方法 | |
CA3026153C (en) | Method for manufacturing a rubber pellet, a rubber pellet as well as a product manufactured from such rubber pellet | |
JPH09183121A (ja) | ペット樹脂をバインダーとするセルロース粉ペレット及び該セルロース粉ペレットの造粒方法 | |
KR101308153B1 (ko) | 천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법 | |
CN117621298A (zh) | 一种聚氨酯通用塑料挤出造粒处理工艺 | |
KR20230022848A (ko) | 열적으로 안정화된 리그닌의 제조 방법 | |
JP2007039479A (ja) | 塩化ビニル系樹脂廃棄物の処理方法及び再生塩化ビニル系樹脂 | |
WO2003095531A1 (fr) | Procede de reutilisation d'un produit en resine synthetique broye | |
EP2770018A2 (de) | Kohlenstofffaserhaltige Partikel sowie deren Verwendung und Herstellung | |
CN107571422A (zh) | 废旧塑料再生造粒工艺 | |
JP2006305882A (ja) | 樹脂廃材の再利用方法および再利用樹脂製品 | |
US11414612B2 (en) | Process for coal fine aggregation | |
JPH01230670A (ja) | 熱可塑性樹脂組成物の製造方法 | |
JPH10265630A (ja) | 強化ポリプロピレン組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16866715 Country of ref document: EP Kind code of ref document: A1 |