WO2017086717A1 - 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017086717A1
WO2017086717A1 PCT/KR2016/013278 KR2016013278W WO2017086717A1 WO 2017086717 A1 WO2017086717 A1 WO 2017086717A1 KR 2016013278 W KR2016013278 W KR 2016013278W WO 2017086717 A1 WO2017086717 A1 WO 2017086717A1
Authority
WO
WIPO (PCT)
Prior art keywords
edrx
terminal
mme
tau
procedure
Prior art date
Application number
PCT/KR2016/013278
Other languages
English (en)
French (fr)
Inventor
류진숙
박상민
김재현
김태훈
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US15/776,375 priority Critical patent/US20190342940A1/en
Priority to KR1020187014909A priority patent/KR102105053B1/ko
Priority to EP16866669.1A priority patent/EP3379892B1/en
Priority to CN201680073877.0A priority patent/CN108370604B/zh
Publication of WO2017086717A1 publication Critical patent/WO2017086717A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/16Mobility data transfer selectively restricting mobility data tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for supporting activation of an extended idle mode discontinuous reception (eDRX) and an apparatus for supporting the same.
  • eDRX extended idle mode discontinuous reception
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to propose a method for supporting activation of an eDRX for a terminal in which an emergency bearer service is activated.
  • An aspect of the present invention provides a method for supporting extended idle mode discontinuous reception (eDRX) activation in a wireless communication system, the terminal comprising: a tracking area update (TAU) procedure; When the triggering condition is satisfied, transmitting a tracking area update request (TAU Request) message to a mobility management entity (MME) and the terminal receives a TAU Accept message from the MME in response to the TAU Request message. And the TAU Request message and the TAU Accept message between the UE and the MME while the UE has a Packet Data Network (PDN) connection for an emergency bearer service.
  • PDN Packet Data Network
  • Another aspect of the present invention is a method for supporting extended idle mode discontinuous reception (eDRX) activation in a wireless communication system, wherein a mobility management entity (MME) requests a tracking area update request from a terminal Receiving a TAU Request) message and transmitting, by the MME, a TAU Accept message to the UE in response to the TAU Request message, wherein the UE provides an emergency bearer service.
  • MME mobility management entity
  • PDN packet data network
  • the eDRX parameter is provided during the last TAU procedure from the MME, and if the terminal does not have a PDN connection for emergency bearer service, the eDRX may be used by the terminal.
  • the use of the eDRX of the terminal is based on the eDRX parameter provided by the MME. Can be resumed.
  • the first eDRX parameter in the TAU Reqeust message is included by the terminal, and when the eDRX use of the terminal is approved by the MME, the TAU Accept message By including a second eDRX parameter, the eDRX parameter may be negotiated.
  • the UE transmits an attach request message indicating an emergency attach in an Evolved Packet System (EPS) attach type information element to the MME.
  • EPS Evolved Packet System
  • the terminal initiates a PDN connectivity procedure by sending a PDN Connectivity Request message with a request type set to an emergency to the MME, and the PDN connectivity. If the PDN Connectivity procedure is successfully completed, a PDN connection for the emergency bearer service may be established.
  • the terminal initiates a PDN disconnect procedure by sending a PDN Disconnect Request message to the MME to request the disconnection of the PDN connection for the emergency bearer service, the PDN disconnect procedure If the PDN Disconnect procedure is successfully completed, the PDN connection for the emergency bearer service may be released.
  • an EPS bearer context deactivation request message is transmitted to the terminal in order to deactivate the bearer associated with the PDN connection for the emergency bearer service by the MME.
  • the PDN connection for the emergency bearer service may be released.
  • the terminal even when the emergency bearer service is activated, the terminal also negotiates the eDRX parameter with the network, so that when the emergency bearer service is deactivated, a separate procedure for negotiation of the eDRX parameter does not need to be performed. Can be applied.
  • the UE even when the emergency bearer service is activated, the UE also negotiates the eDRX parameter with the network, so that eDRX activation is not necessary because a separate procedure for negotiation of the eDRX parameter does not need to be performed when the emergency bearer service is deactivated. Can reduce control signaling overhead.
  • FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 7 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
  • FIG. 8 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating a Machine-Type Communication (MTC) architecture in a wireless communication system to which the present invention may be applied.
  • MTC Machine-Type Communication
  • FIG. 10 illustrates an architecture for Service Capability Exposure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates an attach procedure and a PDN connection procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 12 illustrates a PDN disconnection procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram for explaining an eDRX activation related operation within an emergency bearer service activation interval in a wireless communication system to which the present invention can be applied.
  • FIG. 14 is a diagram illustrating a method for supporting eDRX activation according to an embodiment of the present invention.
  • FIG. 15 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 16 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • the MTC user uses a service provided by the MTC server.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • MTC-IWF MTC InterWorking Function
  • HPLMN Home PLMN
  • SCS provides the capability for use by one or more MTC applications.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
  • EPC evolved packet core
  • the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
  • MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
  • EWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE.
  • PCH paging channel
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • PDFICH physical control format indicator channel informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
  • Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
  • CCCH is used by a UE that does not have an RRC connection with the network.
  • the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
  • DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
  • MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
  • the DCCH may be mapped to the UL-SCH
  • the DTCH may be mapped to the UL-SCH
  • the CCCH may be mapped to the UL-SCH.
  • the BCCH may be mapped with the BCH or DL-SCH
  • the PCCH may be mapped with the PCH
  • the DCCH may be mapped with the DL-SCH.
  • the DTCH may be mapped with the DL-SCH
  • the MCCH may be mapped with the MCH
  • the MTCH may be mapped with the MCH.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
  • One subframe having a length of 1.0 ms is composed of a plurality of symbols.
  • the specific symbol (s) of the subframe eg, the first symbol of the subframe
  • the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
  • MCS modulation and coding scheme
  • the UE performs an RRC connection re-establishment procedure. Cases are performed.
  • a contention-based random access procedure in which the UE randomly selects and uses one preamble within a specific set And a non-contention based random access procedure using a random access preamble allocated by a base station only to a specific terminal.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
  • RACH preamble random access preamble
  • PRACH physical RACH
  • the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
  • the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
  • the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
  • the random access response includes a random access preamble identifier (RA preamble index / identifier), an uplink grant (UL grant) indicating an uplink radio resource, a temporary cell identifier (TC-RNTI), and a time synchronization value ( TAC: time alignment commands) may be included.
  • the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
  • the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
  • the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
  • TPC transmit power command
  • the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
  • the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
  • the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
  • MAC PDU MAC packet data unit
  • the monitoring stops the random access response.
  • the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, the data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
  • the RRC layer is generated in the RRC layer and CCCH.
  • the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
  • the third message should include the identifier of the terminal.
  • C-RNTI valid cell identifier allocated in the corresponding cell before the random access procedure
  • the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
  • the base station When the base station receives the C-RNTI of the terminal through the third message from the terminal, the base station transmits a fourth message to the terminal using the received C-RNTI.
  • the unique identifier ie, S-TMSI or random number
  • the fourth message is transmitted using the TC-RNTI allocated to the terminal in the random access response.
  • the fourth message may include an RRC connection setup message.
  • the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the third message transmitted in response to the UL grant is its C-RNTI
  • the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
  • the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
  • the random access procedure is terminated by only transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
  • the random access procedure is terminated by receiving.
  • EMM EPS mobility management
  • ECM EPS connection management
  • EMM-REGISTERED EMM registered state
  • EMM deregistered state depending on whether the terminal is attached or detached from the network
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the EMM-REGISTERED state and the EMM-DEREGISTERED state may be applied to the terminal and the MME.
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the access procedure is successfully performed, the UE and the MME are transitioned to the EMM-REGISTERED state. In addition, when the terminal is powered off or the radio link fails (when the packet error rate exceeds the reference value on the wireless link), the terminal is detached from the network and transitioned to the EMM-DEREGISTERED state.
  • ECM-connected state and an ECM idle state may be defined to manage a signaling connection between the terminal and the network.
  • ECM-CONNECTED state and ECM-IDLE state may also be applied to the UE and the MME.
  • the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME. In other words, when the ECM connection is set / released, it means that both the RRC connection and the S1 signaling connection are set / released.
  • the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in the RRC connected state (RRC_CONNECTED). If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle state (RRC_IDLE).
  • the network can grasp the existence of the terminal in the ECM-CONNECTED state in units of cells and can effectively control the terminal.
  • the network cannot grasp the existence of the UE in the ECM-IDLE state, and manages the core network (CN) in a tracking area unit that is a larger area than the cell.
  • the terminal When the terminal is in the ECM idle state, the terminal performs a discontinuous reception (DRX) set by the NAS using a uniquely assigned identifier in the tracking area. That is, the terminal receives a broadcast of system information and paging information by monitoring a paging signal for receiving a mobile terminated call (MT) at a specific paging occasion every terminal-specific paging DRX cycle. can do.
  • DRX discontinuous reception
  • the terminal determines whether the terminal call arrives, if the paging channel includes its identifier, the terminal switches to the RRC_CONNECTE mode through a service request procedure.
  • the network does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state may perform a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the UE in the ECM-IDLE state may perform a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the ECM idle state when the location of the UE is different from the location known by the network or periodically, the UE corresponds to the network through a tracking area update (TAU) procedure for network reachability update with the MME. It can inform the location of the terminal.
  • TAU tracking area update
  • the network knows the cell to which the UE belongs. Accordingly, the network may transmit and / or receive data to or from the terminal, control mobility such as handover of the terminal, and perform cell measurement on neighbor cells.
  • the terminal needs to transition to the ECM-CONNECTED state in order to receive a normal mobile communication service such as voice or data.
  • the initial terminal is in the ECM-IDLE state as in the EMM state.
  • the terminal and the MME are in the ECM connection state. Transition is made.
  • the terminal is registered in the network but the traffic is inactivated and the radio resources are not allocated, the terminal is in the ECM-IDLE state, and if a new traffic is generated uplink or downlink to the terminal, a service request procedure UE and MME is transitioned to the ECM-CONNECTED state through.
  • FIG. 7 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
  • PDN packet date network
  • EPS Packet Data Network
  • the EPS bearer is a transmission path of traffic generated between the UE and the PDN GW in order to deliver user traffic in EPS.
  • One or more EPS bearers may be set per terminal.
  • Each EPS bearer may be divided into an E-UTRAN radio access bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB is divided into a radio bearer (RB: radio bearer) and an S1 bearer. Can lose. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
  • E-RAB E-UTRAN radio access bearer
  • S5 / S8 bearer an S5 / S8 bearer
  • RB radio bearer
  • the E-RAB delivers the packet of the EPS bearer between the terminal and the EPC. If there is an E-RAB, the E-RAB bearer and the EPS bearer are mapped one-to-one.
  • a data radio bearer (DRB) transfers a packet of an EPS bearer between a terminal and an eNB. If the DRB exists, the DRB and the EPS bearer / E-RAB are mapped one-to-one.
  • the S1 bearer delivers the packet of the EPS bearer between the eNB and the S-GW.
  • the S5 / S8 bearer delivers an EPS bearer packet between the S-GW and the P-GW.
  • the UE binds a service data flow (SDF) to the EPS bearer in the uplink direction.
  • SDF is an IP flow or collection of IP flows that classifies (or filters) user traffic by service.
  • a plurality of SDFs may be multiplexed onto the same EPS bearer by including a plurality of uplink packet filters.
  • the terminal stores mapping information between the uplink packet filter and the DRB in order to bind between the SDF and the DRB in the uplink.
  • P-GW binds SDF to EPS bearer in downlink direction.
  • a plurality of SDFs may be multiplexed on the same EPS bearer by including a plurality of downlink packet filters.
  • the P-GW stores the mapping information between the downlink packet filter and the S5 / S8 bearer to bind between the SDF and the S5 / S8 bearer in the downlink.
  • the eNB stores a one-to-one mapping between the DRB and the S1 bearer to bind between the DRB and the S1 bearer in the uplink / downlink.
  • S-GW stores one-to-one mapping information between S1 bearer and S5 / S8 bearer in order to bind between S1 bearer and S5 / S8 bearer in uplink / downlink.
  • EPS bearers are classified into two types: a default bearer and a dedicated bearer.
  • the terminal may have one default bearer and one or more dedicated bearers per PDN.
  • the minimum default bearer of the EPS session for one PDN is called a default bearer.
  • the EPS bearer may be classified based on an identifier.
  • EPS bearer identity is assigned by the terminal or the MME.
  • the dedicated bearer (s) is combined with the default bearer by Linked EPS Bearer Identity (LBI).
  • LBI Linked EPS Bearer Identity
  • a PDN connection is generated by receiving an IP address and a default bearer is generated in the EPS section. Even if there is no traffic between the terminal and the corresponding PDN, the default bearer is not released unless the terminal terminates the PDN connection, and the default bearer is released when the corresponding PDN connection is terminated.
  • the bearer of all sections constituting the terminal and the default bearer is not released, the S5 bearer directly connected to the PDN is maintained, the E-RAB bearer (ie DRB and S1 bearer) associated with the radio resource is Is released.
  • the E-RAB bearer is reset to deliver the traffic.
  • the terminal uses a service (for example, the Internet, etc.) through the default bearer
  • the terminal may use an insufficient service (for example, Video on Demand (VOD), etc.) to receive a Quality of Service (QoS) with only the default bearer.
  • Dedicated bearer is generated when the terminal requests (on-demand). If there is no traffic of the terminal dedicated bearer is released.
  • the terminal or the network may generate a plurality of dedicated bearers as needed.
  • the TAU procedure is one of mobility management procedures performed by the MME and is one of important functions for managing mobility of UEs in EPS.
  • the mobility based TAU detects that it has entered a new tracking area (TA) that does not exist in the list of tracking area identity (TAI) (ie, the tracking area is If changed).
  • TA tracking area
  • TAI tracking area identity
  • a periodic TAU procedure may be performed.
  • This periodic TAU can be said to be a method for checking reachability (reachability) to check whether the terminal validly exists in the network in the network.
  • FIG. 8 illustrates a tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • the UE initiates the TAU procedure by sending a TAU Request message to the MME.
  • the TAU Request message is included in the RRC Connection Setup Complete message in the RRC connection and transmitted, and is included in the Initial UE message in the S1 signaling connection.
  • eDRX extended idle mode DRX
  • IE information element
  • the new MME (new MME) In order to obtain user information (or UE context) from the previous MME / SGSN, a context request message is transmitted to the previous MME / SGSN.
  • the context response message may include a UE context.
  • the UE and the new MME and HSS perform an authentication function and security (or ciphering) procedure.
  • the new MME decides whether to relocate the S-GW. When the previous S-GW can no longer provide service to the UE, the S-GW is relocated. In addition, the new MME may be expected that the new S-GW will serve the UE longer and / or the P-GW path will be more suitable for the UE or the new S-GW is located in the same position as the P-GW. If you locate it, you can also decide to move the S-GW.
  • the MME sends a Create Session Request message to the new S-GW selected for each PDN connection.
  • the new S-GW sends a Modify Bearer Request message to the P-GW for each PDN connection.
  • the P-GW may perform a PCRF and IP connectivity access network (IP-CAN) session modification procedure.
  • IP-CAN IP connectivity access network
  • the P-GW When the P-GW receives a Modify Bearer Request message from the new S-GW, the P-GW sends a Modify Bearer Response message to the new S-GW in response.
  • the new S-GW updates its bearer context. This allows the new S-GW to route to the P-GW when it receives a bearer PDU from the base station.
  • the new S-GW sends a Create Session Response message to the new MME in response to the Create Session Request.
  • the new MME sends a context acknowledgment message to the old MME / SGSN.
  • the MME When the MME selects a new S-GW, the MME transfers the change indication information of the S-GW to the previous MME / SGSN through a context acknowledgment message.
  • the change indication information of the S-GW indicates that a new S-GW is selected.
  • the new MME sends an Update Location Request message to the HSS.
  • the new MME may check whether it has subscription data for the corresponding terminal, and if there is no subscription data for the corresponding terminal, may transmit an update location request message to the HSS.
  • the HSS sends a Cancel Location message to the previous MME / SGSN.
  • the previous MME / SGSN sends a Cancel Location Acknowledge message to the HSS in response to the Cancel Location message.
  • the previous SGSN If the previous SGSN receives the context acknowledgment (Context Acknowledge) message and the terminal is connected via the Iu interface, the previous SGSN transmits an Iu Release Command message to the RNC.
  • Context Acknowledge Context Acknowledge
  • the RNC sends an Iu Release Complete message to the previous SGSN in response to an Iu Release Command message.
  • the HSS sends an Update Location Acknowledge message to the new MME in response to an Update Location Request message.
  • the update location acknowledgment message may include subscription data for the corresponding terminal.
  • the previous MME / SGSN sends a Delete Session Request message to the previous S-GW to send the MME or SGSN EPS. Release bearer resources.
  • the previous S-GW sends a Delete Session Response message to the previous MME / SGSN in response to the Delete Session Request message.
  • the new MME sends a TAU Accept message to the UE.
  • the new MME allocates a new globally unique temporary identifier (GUTI) to the UE, the allocated GUTI may be included in a TAU Accept message.
  • GUI globally unique temporary identifier
  • the MME determines to activate the eDRX, the MME includes the eDRX parameter (s) IE in the TAU Accept message.
  • the UE sets the TIN to a Globally Unique Temporary Identity (GUTI).
  • GUI Globally Unique Temporary Identity
  • the UE transmits a TAU Complete message to the MME in response to the TAU Accept message.
  • Power Saving Mode is one of 3GPP Release-12 (rel-12) advanced MTC (Enhancements for MTC) features, which allows the terminal to receive paging and mobility management.
  • TAU the network agrees or is provided with an active time and a periodic TAU timer (P-TAU).
  • the UE When receiving the Active Time value in the network, the UE receives the paging by maintaining the ECM-IDLE state for the corresponding Active Time when the switch from ECM-CONNECTED to ECM-IDLE.
  • the PSM enters into the PSM and stops all AS (Access Stratrum) operations.
  • the MME starts an active timer with an Active Time value whenever the UE enters the ECM-IDLE mode.
  • the active timer expires, the MME infers that the terminal is unreachable.
  • the active time means a time for which a terminal supporting a state using a power saving function (eg, a power saving mode (PSM), etc.) maintains an ECM-IDLE (or RRC_IDLE) state.
  • a power saving function eg, a power saving mode (PSM), etc.
  • the UE When the UE expires the periodic TAU timer, the UE enables the AS operation again and performs the TAU, and the network stops the implicit detach timer of the UE.
  • the UE may wake up whenever desired for a mobile originated call (eg, uplink data packet transfer).
  • the user wakes up every P-TAU cycle to perform a TAU, and during this time, the paging reception operation is performed. After executing, it enters PSM mode again and sleeps.
  • the MME When the MME recognizes that the UE enters the PSM mode, the MME clears a packet processed flag (PPF).
  • PPF packet processed flag
  • the S-GW When receiving the downlink packet data, the S-GW transmits downlink data notification (DDN) to the MME when there is no active S1-U connection of the corresponding UE. However, when the PPF is cleared, the MME transmits a response message including a reject cause to the corresponding DDN, and the received S-GW discards the corresponding downlink packet data. . That is, when the AS transmits downlink packet data without knowing whether the UE sleeps (ie, whether to enter the PSM), the AS is discarded in the S-GW, and the AS does not receive a response and thus performs a retransmission operation. Can be drunk
  • FIG. 9 is a diagram illustrating a Machine-Type Communication (MTC) architecture in a wireless communication system to which the present invention may be applied.
  • MTC Machine-Type Communication
  • An end-to-end application between a terminal (or MTC terminal) used for MTC and an MTC application may use services provided by the 3GPP system and optional services provided to the MTC server.
  • the 3GPP system may provide transport and communication services (including 3GPP bearer services, IMS and SMS) including various optimizations to facilitate MTC.
  • FIG. 9 shows that a terminal used for MTC is connected to a 3GPP network (UTRAN, E-UTRAN, GERAN, I-WLAN, etc.) through a Um / Uu / LTE-Uu interface.
  • the architecture of FIG. 7 includes various MTC models (Direct Model, Indirect Model, Hybrid Model).
  • the application server is a server on a network on which an MTC application is executed.
  • the MTC application server the above-described technology for implementing various MTC applications may be applied, and a detailed description thereof will be omitted.
  • the MTC application server may access the MTC server through a reference point API, and a detailed description thereof will be omitted.
  • the MTC Application Server may be collocated with the MTC Server.
  • An MTC server (eg, the SCS server of FIG. 9) is a server on a network managing an MTC terminal and may be connected to a 3GPP network to communicate with terminals and PLMN nodes used for MTC.
  • the MTC-Interworking Function manages the interworking between the MTC server and the operator core network and may serve as a proxy for the MTC operation.
  • the MTC-IWF can relay or interpret the signaling protocol on the reference point Tsp to activate certain functions in the PLMN.
  • the MTC-IWF performs the functions of authenticating the MTC server before the MTC server establishes communication with the 3GPP network, authenticating the control plane request from the MTC server, and various functions related to trigger instructions described below. can do.
  • SMS-SC Short Message Service-Service Center
  • IP-SM-GW Internet Protocol Short Message GateWay
  • SME Short Message Entity
  • IP-SM-GW Internet Protocol Short Message GateWay
  • the charging data function (CDF) / charging gateway function (CGF) may perform an operation related to charging.
  • the HLR / HSS may function to store subscriber information (IMSI, etc.), routing information, configuration information, and the like and provide the MTC-IWF.
  • IMSI subscriber information
  • HSS may function to store subscriber information (IMSI, etc.), routing information, configuration information, and the like and provide the MTC-IWF.
  • the MSC / SGSN / MME may perform a control function such as mobility management, authentication, resource allocation, etc. for the UE's network connection.
  • a function of receiving a trigger instruction from the MTC-IWF and processing the message in the form of a message provided to the MTC terminal may be performed.
  • the Gateway GPRS Support Node (GGSN) / Serving-Gateway (S-GW) + Packet Date Network-Gateway (P-GW) may function as a gateway that manages the connection between the core network and the external network.
  • T5a one or more reference points of T5a, T5b, and T5c are referred to as T5.
  • user plane communication with the MTC server in the case of indirect and hybrid models, and communication with the MTC application server in the case of direct and hybrid models may be performed using existing protocols through reference points Gi and SGi. .
  • FIG. 10 illustrates an architecture for Service Capability Exposure in a wireless communication system to which the present invention can be applied.
  • the architecture for Service Capability Exposure illustrated in FIG. 10 allows the 3GPP network to securely expose its services and capabilities provided by the 3GPP network interface to external 3rd party service provider applications. Makes it possible to do
  • SCEF Service Capability Exposure Function
  • SCEF is a key entity within the 3GPP architecture for service capability exposure that provides a means to securely expose the services and capabilities provided by the 3GPP network interface. )to be.
  • the SCEF is a key entity for providing a service function belonging to a trust domain operated by a mobile communication operator.
  • SCEF provides an API interface to third party service providers and provides 3GPP service functions to third party service providers through connection with various entities of 3GPP.
  • SCEF functionality may be provided by the SCS.
  • the MTC-IWF may be co-located with the SCEF.
  • a protocol eg DIAMETER, RESTful APIs, XML over HTTP, etc.
  • DIAMETER e.g. DIAMETER, RESTful APIs, XML over HTTP, etc.
  • Emergency bearer service An emergency bearer service is provided to support an IMS emergency session (or call). When the network is set up to provide emergency services, emergency bearer service means the functions provided by the serving network.
  • Attached for emergency bearer services If the terminal only has a PDN connection for established emergency bearer services, the terminal is attached for emergency bearer services.
  • a terminal having only bearer (s) associated with an emergency bearer service is transferred to an emergency attached UE (or an UE attached for emergency bearer services). May be referred to.
  • Emergency EPS bearer context Means a default EPS bearer context in which a request type is activated with an 'emergency' or a dedicated EPS bearer context associated with the default EPS bearer context.
  • Non-emergency EPS bearer context means an EPS bearer context, not an emergency EPS bearer context.
  • PDN connection for emergency bearer services PDN connection for which the default EPS bearer context or the default PDP context is activated with a request type of 'emergency'.
  • the emergency bearer service may be a normal attach UE (i.e., a PDN connection is established through a normal attach procedure) or an emergency attach UE (i.e., a PDN through an emergency attach procedure). Terminal to which a connection is established).
  • a normal attach UE i.e., a PDN connection is established through a normal attach procedure
  • an emergency attach UE i.e., a PDN through an emergency attach procedure
  • UEs in limited service state may be provided to UEs in limited service state according to local regulation.
  • UEs are in limited service state are defined in 3GPP TS 23.122.
  • the reception of the emergency service does not require subscription of the terminal.
  • the MME may allow or deny an emergency attach request for a terminal in a limited service state.
  • MME Emergency Configuration Data applied to all emergency bearer services established by the MME at the terminal request is set in the MME.
  • the MME Emergency Configuration Data may include an Emergency Access Point Name (APN) used to derive the PDN GW, or may include a PDN GW statically configured for the emergency APN.
  • APN Emergency Access Point Name
  • the PDN GW selection function for general bearer service (see 3GPP TS 23.401) is applied to the emergency APN (Emergency APN) or the MME directly sends the PDN GW from the MME Emergency Configuration Data. Choose.
  • APN means a PDN identifier (ie, PDN ID), and means a string for referring to or distinguishing a PDN.
  • the APN may determine the P-GW that the UE should use, and in addition, the APN may define a tunnel for connecting the UE to the PDN.
  • Each PDN may have an APN for identifying the corresponding PDN and one or more P-GWs associated with the corresponding PDN.
  • the UE in the restricted service state may initiate an attach procedure while indicating that the attach is for receiving an emergency service.
  • the UE may initiate an attach procedure while indicating that the corresponding attach is for receiving an emergency service.
  • TA tracking area
  • the UE may include an Attach Type parameter indicating whether it is a general attach or an emergency attach in an Attach Request message and transmit the same to an MME.
  • a terminal camping in a cell ie, a terminal not in a limited service state
  • a normal attach UE initiates a UE Requested PDN Connectivity procedure to receive an emergency EPS bearer service.
  • Default and dedicated EPS bearers for PDN connections associated with emergency APNs are dedicated for IMS emergency sessions and are not allowed for any other type of traffic.
  • the emergency bearer context does not change to a non-emergency bearer context and vice versa.
  • the terminal does not request another emergency PDN connection.
  • the MME rejects any additional PDN connection request.
  • Networks supporting emergency services for terminals in a limited service state are urgent bearers to these terminals according to local regulations regardless of whether the terminals can be authenticated, roamed, have mobility restrictions, or are valid subscribed terminals. Provide service.
  • the terminal in the limited service state may determine whether the cell supports emergency service through the E-UTRAN from a broadcast indicator in an access stratum (AS).
  • AS access stratum
  • UEs that typically camp in the cell receive an Emergency Service Support Indicator from the MME during the Attach and TAU procedures to determine if the PLMN supports emergency bearer services through the E-UTRAN. Can be.
  • the emergency attached UE When the periodic TAU update timer expires, the emergency attached UE does not initiate a periodic TAU procedure and enters an EMM-DEREGISTERED state.
  • the MME drives a mobile reachable timer to a value similar to a periodic TAU timer of the UE.
  • the MME may change the EMM state of the emergency attached UE to EMM-DEREGISTERED.
  • the MME assigns a periodic TAU timer value to an emergency attached UE. This timer keeps the emergency attached state even after the emergency attached UE changes to the EMM-IDLE state. This is to allow the terminal to receive the next emergency service without having to perform the emergency attach procedure again.
  • FIG. 11 illustrates an attach procedure and a PDN connection procedure in a wireless communication system to which the present invention can be applied.
  • the attach procedure illustrated in FIG. 11A is a procedure used for attaching to an EPC for packet service in EPS.
  • the UE initiates an attach procedure by transmitting an ATTACH REQUEST message to the MME (S1101).
  • the terminal When the terminal initiates an attach procedure for a normal service, the terminal may display an "EPS word” in an EPS attach type information element (EPS) in an ATTACH REQUEST message. "EPS attach”.
  • EPS EPS attach type information element
  • the terminal when the terminal initiates the attach procedure for the emergency bearer service, the terminal is in the EPS attach type IE (EPS attach type IE) in the ATTACH REQUEST message "EPS emergency attach (EPS emergency attach) ".
  • EPS attach type IE EPS attach type IE
  • the MME transmits an ATTACH ACCEPT message to the UE in response to the ATTACH REQUEST message (S1102).
  • the MME approves the attach request to activate the default EPS bearer (ATTACH ACCEPT).
  • a default EPS bearer context request message is sent to the terminal along with the message.
  • the MME If not restricted by local regulation, during the attach procedure for the emergency bearer service, the MME handles mobility and access restrictions, locality when processing the ATTACH REQUEST message. Do not check regional restrictions or subscription restrictions.
  • the network does not apply subscribed APNs based on congestion control during the attach procedure for emergency bearer services. That is, as described above, the PDN connection may be generated to the emergency APN.
  • the MME rejects any attach request that sets the attach type as "EPS emergency attach". That is, the MME may transmit an ATTACH REJECT message to the UE in response to the ATTACH REQUEST message.
  • the purpose of the UE requested PDN connectivity procedure illustrated by the UE illustrated in FIG. 11B is for the UE to request setup of a default EPS bearer to the PDN.
  • the UE requests a connectivity to the PDN by transmitting a PDN CONNECTIVITY REQUEST message to the network. If accepted by the network, this procedure initiates the establishment of a default EPS bearer context.
  • the terminal does not request an additional PDN connection for the emergency bearer service from the network.
  • the UE attached for the emergency bearer service does not request a PDN connection to any other PDN.
  • the UE In order to request connectivity to the PDN, the UE transmits a PDN CONNECTIVITY REQUEST message to the MME (S1103).
  • the UE when the UE establishes a new PDN connection to the PDN in an attach procedure or a stand-alone PDN connection procedure, the UE requests a type in a PDN CONNECTIVITY REQUEST message. Set the (request type) to "initial request.”
  • the terminal when the terminal requests a new PDN connection for the emergency bearer service, the terminal sets the request type in the PDN CONNECTIVITY REQUEST message to "emergency.”
  • the UE does not include the APN in the PDN CONNECTIVITY REQUEST message.
  • the MME Upon receiving a PDN CONNECTIVITY REQUEST message, the MME checks whether a connection with the requested PDN can be established.
  • the MME responds to the PDN CONNECTIVITY REQUEST message in response to a default EPS bearer context activation request (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) message.
  • ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST a default EPS bearer context activation request
  • the default EPS bearer context activation procedure (default EPS bearer context activation procedure) is initiated (S1104).
  • the MME uses an APN configured for an emergency bearer service or an unauthorized terminal. Select the statically configured PDN GW.
  • the default EPS bearer context activation procedure is a procedure for establishing a default EPS bearer context between the UE and the EPC.
  • the MME may assign an EPS bearer identity (EBI) and include an assigned EBI in a default EPS bearer context activation request (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) message.
  • EBI EPS bearer identity
  • ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST a default EPS bearer context activation request
  • the UE transmits the EPS Bearer Context Activation Approval (ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT) message to the MME in response to the EPS Bearer Context Activation Request (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) message to activate the EPS bearer context (S1105).
  • ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT
  • ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST
  • the MME may transmit a PDN CONNECTIVITY REJECT message to the terminal.
  • a PDN connection for the emergency bearer service is established (that is, bearer setup to the emergency APN (PDN)). / Activated).
  • FIG. 12 illustrates a PDN disconnection procedure in a wireless communication system to which the present invention can be applied.
  • the UE requested PDN disconnection procedure requested by the terminal is a procedure used by the terminal to request disconnection from one PDN.
  • the UE In order to request a PDN disconnection from the PDN, the UE transmits a PDN DISCONNECT REQUEST message to the MME (S1201).
  • the PDN DISCONNECT REQUEST message includes an EPS bearer identifier (EBI) associated with the corresponding PDN.
  • EBI EPS bearer identifier
  • step S1202 an EPS bearer context deactivation procedure is initiated by transmitting a message to the UE.
  • the DEACTIVATE EPS BEARER CONTEXT REQUEST message includes an EPS bearer identifier (EBI) of the default bearer associated with the PDN to be disconnected.
  • EBI EPS bearer identifier
  • the EPS bearer context deactivation procedure is a procedure used to disconnect from the PDN by deactivating the EPS bearer context or deactivating all EPS bearer contexts to the PDN.
  • the EPS bearer context deactivation procedure may be triggered from the terminal by the UE requested PDN disconnect procedure as shown in FIG. 12.
  • an EPS bearer context deactivation procedure may be initiated by the network.
  • the MME sends a DEB CARD message request message for all bearers not allocated for emergency services (DEACTIVATE EPS BEARER CONTEXT REQUEST). May be transmitted to the terminal.
  • the terminal When the terminal receives the EPS bearer context deactivation request (DEACTIVATE EPS BEARER CONTEXT REQUEST) message, it deletes the EPS bearer context identified by the EPS bearer identifier (EBI). After deactivating the identified EPS bearer context, the UE transmits a DEACTIVATE EPS BEARER CONTEXT ACCEPT message to the MME in response to the DEACTIVATE EPS BEARER CONTEXT REQUEST message (S1203).
  • the MME may transmit a PDN DISCONNECT REJECT message to the terminal.
  • the PDN connection for the emergency bearer service is established. Released (ie, bearer deactivation associated with a PDN connection for emergency bearer service).
  • Extended children mode DRX ( eDRX : Extended Idle mode DRX )
  • the 3GPP LTE / LTE-A system uses a discontinuous reception (DRX) technique of the terminal to minimize the power of the terminal.
  • DRX discontinuous reception
  • the DRX defined in the 3GPP LTE / LTE-A system may be used in both the sleep mode of the UE and the RRC_IDLE state.
  • the UE may monitor the PDCCH based on an RNTI (eg, C-RNTI, SI-RNTI, P-RNTI, etc.) which is a unique identifier of the UE.
  • RNTI eg, C-RNTI, SI-RNTI, P-RNTI, etc.
  • Monitoring of the PDCCH can be controlled by the DRX operation, the parameters related to the DRX is transmitted by the base station to the terminal by the RRC message. If the terminal has a DRX parameter configured in the RRC connected state, the terminal performs discontinuous monitoring on the PDCCH based on the DRX operation. On the other hand, if the DRX parameter is not configured, the UE monitors the continuous PDCCH.
  • the terminal receiving the paging message may perform DRX for the purpose of reducing power consumption.
  • the network configures a plurality of paging occasions (paging occasions) for each time period called a paging cycle, a specific terminal receives a paging message only at a time of a specific paging time, and a terminal at a time other than the specific paging time. Do not receive a paging channel.
  • one paging time point may correspond to one TTI.
  • Extended Idle Mode DRX extends the existing maximum 2.56s paging DRX cycle from minutes to minutes to minimize power consumption at the terminal. It is a function for.
  • the eDRX may be applied to an idle mode and a connected mode. Extended idle mode DRX for connected mode is relatively shorter than DRX for idle mode up to 10.24s.
  • an unreachable state of the UE may mean an unreachable state (that is, a DRX interval in which the UE does not monitor a paging channel) by paging.
  • the accessible state of the terminal is immediately accessible to the terminal by the ECM-CONNECTED mode and / or paging (that is, the terminal monitors a paging channel). Section).
  • the eDRX may determine that the DRX interval is relatively longer than the normal DRX mode and thus may not be temporarily accessible even in the idle interval.
  • support for generic DRX (2.56 seconds) enables data delivery after a maximum of 2.56 seconds, but immediate data delivery is possible because eDRX (for example, 10 minutes) has a maximum delay of 10 minutes. You can think of this as impossible and practically unreachable.
  • the UE and the core network can negotiate the use of eDRX.
  • the UE determines the request of the eDRX, the UE includes the eDRX parameter information element in an attach request and / or a TAU request message.
  • the UE may also include UE specific DRX parameters for regular idle mode DRX.
  • the MME determines whether to accept or reject the UE request to activate the eDRX.
  • the MME may also provide a value of the eDRX parameter that is different from the value requested by the UE based on the operator policy. If the MME approves the eDRX, the UE applies the eDRX based on the received eDRX parameter. If the SGSN / MME rejects the UE's request or the SGSN / MME does not support the eDRX and receives the request, if the UE does not receive the eDRX parameter information element in the associated acknowledgment message, then the UE is in normal idle mode DRX (regular). Idle mode DRX) is applied.
  • normal idle mode DRX regular
  • the UE If the UE still wants to use eDRX, it must include an eDRX parameter information element in each TAU message.
  • the eDRX parameter is a new core node from the old CN node as part of the Mobility Management (MM) context information. It is not sent to (new CN node).
  • MM Mobility Management
  • the UE and the network may negotiate the use of eDRX to reduce power consumption of the UE through non-access stratum (NAS) signaling.
  • NAS non-access stratum
  • Mobile terminating data and / or network originated procedures are available within a specific delay dependent on the DRX cycle value.
  • Network-end applications can send end-to-end data, SMS or device triggers and need to know if the eDRX can be properly prepared.
  • the UE In order to negotiate the use of the eDRX, the UE requests the eDRX parameters during the attach procedure and the RAU / TAU procedure. SGSN / MME may reject or approve the UE request to activate eDRX.
  • the SGSN / MME may provide a different value than the eDRX parameter requested by the UE. If the SGSN / MME approves the use of the eDRX, the UE applies the eDRX based on the received eDRX parameter. If the SGSN / MME rejects the UE's request or the SGSN / MME does not support the eDRX request, and the UE does not receive the eDRX parameter information element in the associated acknowledgment message, then the UE will receive a regular DRX (regular DRX). ).
  • regular DRX regular DRX
  • SGSN / MME determines one of the following.
  • the decision among the three operations, the active time provided to the UE, the P-TAU timer and / or the eDRX cycle value depend on the implementation based on local configuration and other information available in SGSN / MME. do.
  • the selected method is used until the next attach or RAU / TAU procedure is initiated (when a new method is determined). If both eDRX and PSM are enabled, the eDRX cycle must be set to have multiple paging occasions while the active timer is running.
  • the SGSN / MME may activate both the PSM and the eDRX. This allows the UE to minimize power consumption during the active time (for example, when the active time is a few minutes longer than the normal active time).
  • the network may control mobile terminated data by using a high latency communication characteristic.
  • a technique for controlling mobile terminated SMS can be applied.
  • the UE may request the use of an eDRX cycle by including an eDRX parameter in an attach request or a TAU request.
  • the network When the network approves the attach request or the TAU request, the network grants the request for use of the eDRX cycle by providing an eDRX parameter.
  • the UE repeats the request for use of the eDRX cycle in each TAU request.
  • the UE can use the eDRX cycle only if the network has approved a request for the use of the eDRX cycle during the last (ie, previously) successful attach or TAU procedure.
  • the eDRX Parameter Information Element is used to indicate that the UE wants to use eDRX, and also to indicate a paging time window length value and an eDRX cycle value to be used for the eDRX by the network. Is used.
  • the eDRX parameter includes an eDRX Parameter IE-Identifier (IEI), a length of an eDRX parameter, a paging time window, and an eDRX value.
  • IEI eDRX Parameter IE-Identifier
  • the eDRX cycle length duration value and / or the eDRX cycle parameter T_eDRX are derived from the eDRX value.
  • the terminal sets a paging hyper-frame PH for each eDRX cycle T_eDRX, H (ie, 5.12, 10.24, ..., 2621.44 seconds) expressed as a hyper-frame.
  • PH refers to a specific set of Hyper-System Frame Number (H-SFN) values.
  • the PH may be calculated using an extended idle mode DRX cycle, terminal specific identifier (eg IMSI).
  • the H-SFN frame structure is defined as the highest value of the SFN used for general idle mode DRX. That is, one hyper-frame consists of 1024 radio frames (ie, 10.24 seconds). Thus, the H-SFN is increased by one when the SFN wraps around.
  • a paging time window (or a paging window (PW)) is set from PW_start to PW_end in PH.
  • the MME / SGSN allocates the PTW length and provides the terminal with the PTW length value along with the extended idle mode DRX cycle length during the attach and / or TAU procedure.
  • the UE and the MME follows the regular DRX, it is defined not to use eDRX.
  • the UE may request the use of the eDRX during the attach procedure or the TAU procedure by including the eDRX parameter IE.
  • the UE may not request the use of eDRX during the TAU procedure of the attach procedure for the emergency bearer service or the UE attached to the emergency bearer service (that is, when the UE has a PDN connection for the emergency bearer service). It is defined.
  • FIG. 13 is a diagram for explaining an eDRX activation related operation within an emergency bearer service activation interval in a wireless communication system to which the present invention can be applied.
  • the UE when a triggering condition of a tracking area update (TAU) procedure is satisfied, the UE initiates a TAU procedure by transmitting a tracking area update request message to the MME (S1301).
  • TAU tracking area update
  • the triggering condition of the tracking area update (TAU) procedure is entered when a periodic TAU timer expires or enters a tracking area not included in the tracking area list that the UE has previously registered in the MME.
  • TAU tracking area update
  • the UE when the UE supports the eDRX and requests the use of the eDRX, the UE includes an eDRX parameter information element (IE) in a TRACKING AREA UPDATE REQUEST message.
  • IE eDRX parameter information element
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S1302).
  • the MME determines whether to accept or reject the UE request for activating the eDRX.
  • the MME If the TRACKING AREA UPDATE REQUEST message includes the eDRX parameter, the MME supports eDRX, and you approve the use of eDRX, the MME sends the eDRX parameter IE to the TRACKING AREA UPDATE ACCEPT message. Include it.
  • the MME may provide a value of an eDRX parameter different from the value requested by the UE.
  • the MME approves the eDRX (ie, if the eDRX parameter IE is included in the TRACKING AREA UPDATE ACCEPT message), the UE uses the eDRX based on the received eDRX parameter. That is, when the UE enters the idle mode, the eDRX is used based on the eDRX parameter.
  • MME also uses eDRX based on the eDRX parameters provided to the UE.
  • the UE establishes a PDN connection (or bearer) for emergency bearer service through the procedure of the example of FIG. 11.
  • the UE and the MME follow a regular DRX and are defined not to use eDRX. Accordingly, when the PDN connection for the emergency bearer service is established as shown in FIG. 13, the UE does not use the eDRX since the PDN connection is established.
  • the UE when the eDRX is already activated before the PDN connection for the emergency bearer service is established, if the UE performs the emergency bearer service, the UE does not apply the eDRX, and is a normal / regular DRX (eg, By applying a DRX value of 2.56 seconds), a mobile terminated emergency bearer service can be successfully applied. That is, the UE and the MME deactivate the eDRX locally.
  • a normal / regular DRX eg, By applying a DRX value of 2.56 seconds
  • a triggering condition of a tracking area update (TAU) procedure may be satisfied within an activation period of an emergency bearer service (that is, a period until a PDN connection for an emergency bearer service is established and released).
  • the UE initiates a TAU procedure by transmitting a TRACKING AREA UPDATE REQUEST message to the MME (S1303).
  • the UE If the UE is still using eDRX by receiving eDRX parameters from the MME and the triggering condition of the TAU procedure is satisfied and the UE performs the TAU procedure again, if the UE still wants to use eDRX, update the tracking area of the eDRX parameter IE. It should be included in the TRACKING AREA UPDATE REQUEST message and sent to the MME.
  • the UE cannot request the use of eDRX during the TAU procedure. Accordingly, the UE cannot include the eDRX parameter in the TRACKING AREA UPDATE REQUEST message within the activation interval of the emergency bearer service as shown in FIG. 13.
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S1304).
  • the MME since the eDRX parameter is not included in the TRACKING AREA UPDATE REQUEST message, the MME does not determine whether to approve activation of the eDRX.
  • the reason why the eDRX is not applied within the activation period of the emergency bearer service and is also defined to not request eDRX parameters during the TAU procedure triggered within the activation period of the emergency bearer service is while the PDN connection for the emergency bearer service is maintained.
  • the UE uses the eDRX inevitably there will be a delay in the transmission of the MT data, so the application of the eDRX is not suitable in a situation where an urgent service is required.
  • the UE transmits the eDRX parameter to the MME and the MME approves the use of the eDRX and transmits the eDRX parameter to the UE, the UE is regarded as immediately applying the eDRX mode (that is, without any conditions). Currently, it is defined that the UE does not request the use of eDRX within the activation period of the emergency bearer service.
  • the terminal and the MME do not apply eDRX, but apply normal (normal / regular DRX). That is, eDRX is deactivated.
  • the eDRX is deactivated to the UE regardless of the activation period of the emergency bearer service.
  • the UE updates the tracking area including the eDRX parameter IE to request the use of the eDRX.
  • the TAU procedure is started by transmitting a TRACKING AREA UPDATE REQUEST message to the MME (S1305).
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S1306).
  • the MME determines whether to accept or reject the UE request for activating the eDRX.
  • the MME If the TRACKING AREA UPDATE REQUEST message includes the eDRX parameter, the MME supports eDRX, and you approve the use of eDRX, the MME sends the eDRX parameter IE to the TRACKING AREA UPDATE ACCEPT message. Include it.
  • the MME may provide a value of an eDRX parameter different from the value requested by the UE.
  • the UE applies the eDRX based on the received eDRX parameter. That is, when the UE enters the idle mode, the eDRX is applied based on the eDRX parameter.
  • the UE and the MME do not apply the eDRX and apply normal (normal / regular DRX). Done. That is, a problem arises in that the UE and the MME deactivate the eDRX.
  • the UE that wants to use the eDRX inevitably performs the eDRX again by performing the TAU procedure again as in steps S1305 and S1306. It is necessary to request the use of, which increases the signaling overhead between the terminal and the network.
  • the present invention proposes an operation of a terminal and a network related to activation of eDRX when the terminal has a PDN connection for emergency bearer service while the terminal is already activated.
  • FIG. 14 is a diagram illustrating a method for supporting eDRX activation according to an embodiment of the present invention.
  • FIG. 14 it is assumed that a UE establishes a PDN connection (or bearer) for emergency bearer service through the procedure of the example of FIG. 11.
  • the UE and the network may negotiate eDRX parameters during the TAU procedure.
  • the UE may still request eDRX even if the emergency bearer service is in progress.
  • the UE when the UE has a PDN connection (or bearer) for emergency bearer service, if a triggering condition of the TAU procedure is satisfied, the UE transmits a TRACKING AREA UPDATE REQUEST message to the MME.
  • the TAU procedure is started (S1401).
  • the triggering condition of the tracking area update (TAU) procedure is entered when a periodic TAU timer expires or enters a tracking area not included in the tracking area list that the UE has previously registered in the MME.
  • TAU tracking area update
  • the UE when the UE supports the eDRX and requests the use of the eDRX, the UE may include the eDRX parameter IE in the TRACKING AREA UPDATE REQUEST message.
  • the UE receives eDRX parameters from the network through the previous TAU / Attach procedure and still uses eDRX, but still wants to use eDRX, either within the TRACKING AREA UPDATE REQUEST message or every Attach procedure.
  • the eDRX parameter may be included in an ATTACH REQUEST message. That is, this operation may be performed regardless of whether the UE receives emergency bearer service.
  • the eDRX parameter is part of the Mobility Management (MM) context information from the old core network (CN) node to the new CN node. Is not sent as.
  • MM Mobility Management
  • the MME transmits a TRACKING AREA UPDATE ACCEPT message to the UE (S1402).
  • the MME determines whether to accept or reject the UE request for activating the eDRX.
  • the MME If the TRACKING AREA UPDATE REQUEST message includes the eDRX parameter, the MME supports eDRX, and you approve the use of eDRX, the MME sends the eDRX parameter IE to the TRACKING AREA UPDATE ACCEPT message. Include it.
  • the MME may provide a value of an eDRX parameter different from the value requested by the UE.
  • the eDRX parameter may be negotiated between the UE and the network (eg, MME) while the UE has a bearer (or PDN connection) for emergency bearer service.
  • the UE and the MME do not apply the eDRX while the UE has a PDN connection (or bearer) for emergency bearer service.
  • the UE may use the eDRX.
  • the network provided the eDRX parameter IE during the last attach procedure or the last TAU procedure, the PDN disconnect procedure for the emergency bearer service or the EPS bearer context deactivation procedure for the EPS bearer context for emergency.
  • the procedure is successfully completed, the UE and the network resume the eDRX (S1403 and S1404).
  • the UE and the network may reuse the eDRX parameter negotiated within the last TAU / Attach procedure.
  • the UE and the network are in an emergency bearer.
  • the eDRX may be used based on the eDRX parameter negotiated in the TAU procedure (that is, steps S1401 and S1402) in the service-activated section.
  • the UE and the MME do not use the eDRX based on the negotiated eDRX parameter in the interval in which the emergency bearer service is activated, but may store the negotiated eDRX parameter.
  • the UE and the network may use the eDRX based on the eDRX parameter negotiated in the last TAU procedure before the emergency bearer service is activated. .
  • the UE and the MME will use the normal DRX in the interval in which the emergency bearer service is activated, but may store the previously negotiated eDRX parameters.
  • the UE and the MME may use the eDRX based on the eDRX parameters negotiated in the previous (ie, last) Attach procedure or the previous (ie, last) TAU procedure.
  • the eDRX is released. Therefore, when the TAU procedure is triggered while the UE has a PDN connection for the emergency bearer service, the eDRX is released if the UE and the network do not negotiate the eDRX parameter via the corresponding TAU procedure.
  • the UE requests the use of the eDRX through a separate attach procedure or a TAU procedure as shown in FIG. 13, and authorizes the use of the eDRX from the network. Should receive That is, signaling overhead may be increased by performing an operation of negotiating eDRX parameters between the UE and the network through a separate attach procedure or a TAU procedure.
  • the present invention even when the TAU procedure is triggered while the UE has a PDN connection for the emergency bearer service, since the eDRX parameter can be negotiated between the UE and the network within the corresponding TAU procedure (even if the eDRX is not applied), If the UE wants to use the eDRX after the PDN connection for the bearer service is released, signaling overhead may be reduced since the UE does not need to perform a separate TAU procedure to request the use of the eDRX.
  • FIG. 15 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 1510 and a plurality of terminals (UEs) 1520.
  • UEs terminals
  • the network node 1510 includes a processor 1511, a memory 1512, and a communication module 1513.
  • the processor 1511 implements the functions, processes, and / or methods proposed in FIGS. 1 to 14. Layers of the wired / wireless interface protocol may be implemented by the processor 1511.
  • the memory 1512 is connected to the processor 1511 and stores various information for driving the processor 1511.
  • the communication module 1513 is connected to the processor 1511 and transmits and / or receives a wired / wireless signal.
  • a base station, an MME, an HSS, an SGW, a PGW, an SCEF, or an SCS / AS may correspond to this.
  • the communication module 1513 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 1520 includes a processor 1521, a memory 1522, and a communication module (or RF unit) 1523.
  • the processor 1521 implements the functions, processes, and / or methods proposed in FIGS. 1 to 14. Layers of the air interface protocol may be implemented by the processor 1521.
  • the memory 1522 is connected to the processor 1521 and stores various information for driving the processor 1521.
  • the communication module 1523 is connected to the processor 1521 and transmits and / or receives a radio signal.
  • the memories 1512 and 1522 may be inside or outside the processors 1511 and 1521 and may be connected to the processors 1511 and 1521 by various well-known means.
  • the network node 1510 (when the base station) and / or the terminal 1520 may have a single antenna or multiple antennas.
  • FIG. 16 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 16 illustrates the terminal of FIG. 15 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 1610, an RF module (or an RF unit) 1635, and a power management module 1605). ), Antenna 1640, battery 1655, display 1615, keypad 1620, memory 1630, SIM card Subscriber Identification Module card) 1625 (this configuration is optional), a speaker 1645 and a microphone 1650.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 1610 implements the functions, processes, and / or methods proposed in FIGS. 1 to 14.
  • the layer of the air interface protocol may be implemented by the processor 1610.
  • the memory 1630 is connected to the processor 1610 and stores information related to the operation of the processor 1610.
  • the memory 1630 may be inside or outside the processor 1610 and may be connected to the processor 1610 by various well-known means.
  • the processor 1610 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1625 or the memory 1630. In addition, the processor 1610 may display command information or driving information on the display 1615 for the user's knowledge and convenience.
  • the RF module 1635 is coupled to the processor 1610 to transmit and / or receive an RF signal.
  • the processor 1610 passes command information to the RF module 1635 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 1635 is comprised of a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 1640 functions to transmit and receive wireless signals. Upon receiving the wireless signal, the RF module 1635 may communicate the signal and convert the signal to baseband for processing by the processor 1610. The processed signal may be converted into audible or readable information output through the speaker 1645.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • An embodiment of the present invention has been described with reference to an example applied to a 3GPP LTE / LTE-A system, but it is possible to apply to various wireless communication systems in addition to the 3GPP LTE / LTE-A system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신(eDRX: Extended idle mode Discontinuous Reception) 활성화를 지원하기 위한 방법에 있어서, 단말이, 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차의 트리거링 조건이 만족되면, 트래킹 영역 업데이트 요청(TAU Request) 메시지를 MME(Mobility Management Entity)에게 전송하는 단계 및 상기 단말이 상기 TAU Request 메시지에 대한 응답으로 상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 패킷 데이터 네트워크(PDN: Packet Data Network) 연결을 가지는 동안, 상기 단말과 상기 MME 간에 상기 TAU Request 메시지 및 상기 TAU Accept 메시지를 이용하여 eDRX 파라미터가 협상되나, 상기 단말에 의해 eDRX가 사용되지 않을 수 있다.

Description

무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 확장된 아이들 모드 불연속 수신 모드(eDRX: Extended Idle mode Discontinuous Reception)의 활성화를 지원하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, 긴급한 베어러 서비스(emergency bearer service)가 활성화된 단말에 대하여, eDRX의 활성화를 지원하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신(eDRX: Extended idle mode Discontinuous Reception) 활성화를 지원하기 위한 방법에 있어서, 단말이, 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차의 트리거링 조건이 만족되면, 트래킹 영역 업데이트 요청(TAU Request) 메시지를 MME(Mobility Management Entity)에게 전송하는 단계 및 상기 단말이 상기 TAU Request 메시지에 대한 응답으로 상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 패킷 데이터 네트워크(PDN: Packet Data Network) 연결을 가지는 동안, 상기 단말과 상기 MME 간에 상기 TAU Request 메시지 및 상기 TAU Accept 메시지를 이용하여 eDRX 파라미터가 협상되나, 상기 단말에 의해 eDRX가 사용되지 않을 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신(eDRX: Extended idle mode Discontinuous Reception) 활성화를 지원하기 위한 방법에 있어서, MME(Mobility Management Entity)가 단말로부터 트래킹 영역 업데이트 요청(TAU Request) 메시지를 수신하는 단계 및 상기 MME가 상기 TAU Request 메시지에 대한 응답으로 TAU 승인(TAU Accept) 메시지를 상기 단말에게 전송하는 단계를 포함하고, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 패킷 데이터 네트워크(PDN: Packet Data Network) 연결을 가지는 동안, 상기 단말과 상기 MME 간에 상기 TAU Request 메시지 및 상기 TAU Accept 메시지를 이용하여 eDRX 파라미터가 협상되나, 상기 단말에 의해 eDRX가 사용되지 않을 수 있다.
바람직하게, 상기 MME로부터 마지막의 TAU 절차 동안에 상기 eDRX 파라미터가 제공되었으며, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 PDN 연결을 가지지 않으면, 상기 단말에 의해 eDRX가 사용될 수 있다.
바람직하게, 상기 긴급 베어러 서비스를 위한 PDN 연결이 해제될 때, 마지막의 TAU 절차 동안에 상기 MME로부터 상기 eDRX 파라미터가 상기 단말에게 제공되었으면, 상기 MME에 의해 제공된 eDRX 파라미터를 기반으로 상기 단말의 eDRX 사용이 재개될 수 있다.
바람직하게, 상기 단말이 eDRX의 사용을 요청하는 경우, 상기 단말에 의해 상기 TAU Reqeust 메시지 내 제1 eDRX 파라미터가 포함되고, 상기 MME에 의해 상기 단말의 eDRX 사용이 승인되는 경우, 상기 TAU Accept 메시지 내 제2 eDRX 파라미터가 포함됨으로써, 상기 eDRX 파라미터가 협상될 수 있다.
바람직하게, 상기 단말이 EPS(Evolved Packet System) 어태치 타입 정보 요소(EPS attach type information element) 내 긴급 어태치(emergency attach)가 지시된 어태치 요청(Attach Request) 메시지를 상기 MME에게 전송함으로써 어태치 절차(Attach procedure)가 개시되고, 상기 어태치 절차(Attach procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 확립될 수 있다.
바람직하게, 상기 단말이 요청 타입(request type)이 긴급(emergency)으로 셋팅된 PDN 연결 요청(PDN Connectivity Request) 메시지를 상기 MME에게 전송함으로써 PDN 연결 절차(PDN Connectivity procedure)가 개시되고, 상기 PDN 연결 절차(PDN Connectivity procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 확립될 수 있다.
바람직하게, 상기 단말이 상기 긴급 베어러 서비스를 위한 PDN 연결의 단절을 요청하기 위해 상기 MME에게 PDN 단절 요청(PDN Disconnect Request) 메시지를 전송함으로써 PDN 단절 절차(PDN Disconnect procedure)가 개시되고, 상기 PDN 단절 절차(PDN Disconnect procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 해제될 수 있다.
바람직하게, 상기 MME에 의해 상기 긴급 베어러 서비스를 위한 PDN 연결과 연관된 베어러를 비활성화하기 위하여 EPS 베어러 컨텍스트 비활성화 요청(Deactivate EPS Bearer Context Request) 메시지가 상기 단말에게 전송됨으로써, EPS 베어러 컨텍스트 비활성화 절차(EPS Bearer Context Deactivation procedure)가 개시되고, 상기 EPS 베어러 컨텍스트 비활성화 절차(EPS Bearer Context Deactivation procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 해제될 수 있다.
본 발명의 실시예에 따르면, 긴급 베어러 서비스가 활성화되는 중에도 단말도 네트워크와 eDRX 파라미터를 협상함으로써, 긴급 베어러 서비스가 비활성화될 때 eDRX 파라미터의 협상을 위한 별도의 절차가 수행될 필요가 없으므로 즉시 eDRX가 적용될 수 있다.
본 발명의 실시예에 따르면, 긴급 베어러 서비스가 활성화되는 중에도 단말도 네트워크와 eDRX 파라미터를 협상함으로써, 긴급 베어러 서비스가 비활성화될 때 eDRX 파라미터의 협상을 위한 별도의 절차가 수행될 필요가 없으므로 eDRX 활성화를 위한 제어 시그널링 오버헤드를 감소시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 MTC(Machine-Type Communication) 아키텍처(architecture)를 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐를 예시한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 어태치 절차 및 PDN 연결 절차를 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PDN 단절 절차를 예시한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 긴급 베어러 서비스 활성화 구간 내에서 eDRX 활성화 관련 동작을 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따른 eDRX 활성화를 지원하기 위한 방법을 예시하는 도면이다.
도 15는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 16은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)를 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2016013278-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 SGW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PDFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
EMM 및 ECM 상태
EMM(EPS mobility management), ECM(EPS connection management) 상태에 대하여 살펴본다.
단말과 MME의 제어 평면에 위치한 NAS 계층에서 단말의 이동성을 관리하기 위하여 단말이 네트워크에 어태치(attach)되었는지 디태치(detach)되었는지에 따라 EMM 등록 상태(EMM-REGISTERED) 및 EMM 등록 해제 상태(EMM-DEREGISTERED)가 정의될 수 있다. EMM-REGISTERED 상태 및 EMM-DEREGISTERED 상태는 단말과 MME에게 적용될 수 있다.
단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM-DEREGISTERED 상태에 있으며, 이 단말이 네트워크에 접속하기 위해서 초기 접속(initial attach) 절차를 통해 해당 네트워크에 등록하는 과정을 수행한다. 접속 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태로 천이(transition)된다. 또한, 단말의 전원이 꺼지거나 무선 링크 실패인 경우(무선 링크 상에서 패킷 에러율이 기준치를 넘은 경우), 단말은 네트워크에서 디태치(detach)되어 EMM-DEREGISTERED 상태로 천이된다.
또한, 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM 연결 상태(ECM-CONNECTED) 및 ECM 아이들 상태(ECM-IDLE)가 정의될 수 있다. ECM-CONNECTED 상태 및 ECM-IDLE 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. 즉, ECM 연결이 설정/해제되었다는 것은 RRC 연결과 S1 시그널링 연결이 모두 설정/해제되었다는 것을 의미한다.
RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결 상태(RRC_CONNECTED)에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은 경우, 단말은 RRC 아이들 상태(RRC_IDLE)에 있게 된다.
네트워크는 ECM-CONNECTED 상태에 있는 단말의 존재를 셀 단위에서 파악할 수 있고, 단말을 효과적으로 제어할 수 있다.
반면, 네트워크는 ECM-IDLE 상태에 있는 단말의 존재를 파악할 수 없으며, 코어 네트워크(CN: core network)가 셀보다 더 큰 지역 단위인 트래킹 영역(tracking area) 단위로 관리한다. 단말이 ECM 아이들 상태에 있을 때에는 단말은 트래킹 영역에서 유일하게 할당된 식별자를 이용하여 NAS에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 즉, 단말은 단말-특정 페이징 DRX 사이클(cycle) 마다 특정 페이징 시점(paging occasion)에 단말 종단 호(MT: Mobile Terminated call) 수신을 위한 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다.
또한, 단말 종단 호의 도착 여부를 확인하여 페이징 채널에 자신의 식별자가 포함된 경우 단말은 서비스 요청(Service Request) 절차를 통해 RRC_CONNECTE 모드로 전환된다. 이와 같은 네트워크 상태 정의를 통해 활성화된 서비스가 없는 단말은 자신의 전력 소모를 최소화하고 기지국은 자원을 효율적으로 사용할 수 있다.
또한, 단말이 ECM-IDLE 상태에 있을 때에는 네트워크는 단말의 컨텍스트(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(cell reselection)과 같은 단말 기반의 이동성 관련 절차를 수행할 수 있다. ECM 아이들 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라지는 경우 혹은 주기적으로, MME와의 네트워크 접근성 업데이트(network reachability update)를 위하여 단말은 트래킹 영역 업데이트(TAU: tracking area update) 절차를 통해 네트워크에 해당 단말의 위치를 알릴 수 있다.
반면, 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-CONNECTED 상태에서 네트워크는 단말이 속한 셀을 안다. 따라서, 네트워크는 단말로 또는 단말로부터 데이터를 전송 및/또는 수신하고, 단말의 핸드오버와 같은 이동성을 제어하고, 주변 셀에 대한 셀 측정을 수행할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM-CONNECTED 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 상태와 마찬가지로 ECM-IDLE 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM-IDLE 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM-CONNECTED 상태로 천이(transition)된다.
EPS 베어러 ( EPB Bearer)
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
단말이 패킷 데이터 네트워크(PDN: Packet Date Network)(도 7에서 피어 엔티티(peer entity))에 연결될 때 PDN 연결(PDN connection)이 생성되고, PDN connection은 EPS 세션(session)으로도 불릴 수 있다. PDN은 사업자 외부 또는 내부 IP (internet protocol) 망으로 인터넷이나 IMS(IP Multimedia Subsystem)와 같은 서비스 기능을 제공한다.
EPS session은 하나 이상의 EPS 베어러(bearer)를 가진다. EPS bearer는 EPS에서 사용자 트래픽을 전달하기 위하여 단말과 PDN GW 간에 생성되는 트래픽의 전송 경로(transmission path)이다. EPS bearer는 단말 당 하나 이상 설정될 수 있다.
각 EPS bearer는 E-UTRAN 무선 액세스 베어러(E-RAB: E-UTRAN Radio Access Bearer) 및 S5/S8 bearer로 나누어질 수 있고, E-RAB 는 무선 베어러(RB: radio bearer), S1 bearer로 나누어질 수 있다. 즉, 하나의 EPS bearer는 각각 하나의 RB, S1 bearer, S5/S8 bearer 에 대응된다.
E-RAB 는 단말과 EPC 간에 EPS bearer의 패킷을 전달한다. E-RAB가 존재하면, E-RAB bearer와 EPS bearer는 일대일로 매핑된다. 데이터 무선 베어러(DRB: data radio bearer)는 단말과 eNB 간에 EPS bearer의 패킷을 전달한다. DRB가 존재하면, DRB와 EPS bearer/E-RAB 는 일대일로 매핑된다. S1 bearer는 eNB와 S-GW 간에 EPS bearer의 패킷을 전달한다. S5/S8 bearer는 S-GW와 P-GW 간에 EPS bearer 패킷을 전달한다.
단말은 상향링크 방향의 EPS bearer 에 서비스 데이터 플로우(SDF: service data flow)를 바인딩(binding) 한다. SDF는 사용자 트래픽을 서비스 별로 분류(또는 필터링) 한 IP 플로우(flow) 또는 IP flow들의 모임이다. 복수의 SDF들은 복수의 상향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. 단말은 상향링크에서 SDF와 DRB 간 binding하기 위하여 상향링크 패킷 필터와 DRB 간 매핑 정보를 저장한다.
P-GW 은 하향링크 방향의 EPS bearer에 SDF를 binding한다. 복수의 SDF들은 복수의 하향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. P-GW는 하향링크에서 SDF와 S5/S8 bearer 간 binding 하기 위하여 하향링크 패킷 필터와 S5/S8 bearer 간 매핑 정보를 저장한다.
eNB은 상/하향링크에서 DRB와 S1 bearer 간 binding 하기 위하여 DRB와 S1 bearer 간 일대일 매핑을 저장한다. S-GW는 상/하향링크에서 S1 bearer와 S5/S8 bearer 간 binding 하기 위하여 S1 bearer와 S5/S8 bearer 간 일대일 매핑 정보를 저장한다.
EPS bearer는 기본 베어러(default bearer)와 전용 베어러(dedicated bearer) 두 종류로 구분된다. 단말은 PDN 당 하나의 default bearer와 하나 이상의 dedicated bearer 를 가질 수 있다. 하나의 PDN에 대하여 EPS 세션이 갖는 최소한의 기본 베어러를 default bearer라 한다.
EPS bearer는 식별자(identity)를 기반으로 구분될 수 있다. EPS bearer identity는 단말 또는 MME에 의해 할당된다. dedicated bearer(s)은 LBI(Linked EPS Bearer Identity)에 의해 default bearer와 결합된다.
단말은 초기 어태치 절차(initial attach procedure)를 통해 네트워크에 초기 접속하면, IP(Internet Protocol) 주소를 할당 받아 PDN connection이 생성되고, EPS 구간에서 default bearer가 생성된다. default bearer는 단말과 해당 PDN 간 트래픽이 없는 경우에도 단말이 PDN 연결이 종료되지 않는 한 해제되지 않고 유지되며, 해당 PDN 연결을 종료될 때 default bearer도 해제된다. 여기서, 단말과 default bearer를 구성하는 모든 구간의 bearer가 해제되는 것은 아니고, PDN과 직접 연결되어 있는 S5 bearer는 유지되고, 무선 자원과 연관이 있는 E-RAB bearer (즉, DRB and S1 bearer)는 해제된다. 그리고, 해당 PDN에서 새로운 트래픽이 발생되면 E-RAB bearer가 재설정되어 트래픽을 전달한다.
단말이 default bearer를 통해 서비스(예를 들어, 인터넷 등)를 이용하는 중에, default bearer만으로 QoS(Quality of Service)를 제공 받기 불충분한 서비스(예를 들어, VoD(Video on Demand) 등)를 이용하게 되면 단말에서 요구할 때(on-demand)로 dedicated bearer가 생성된다. 단말의 트래픽이 없는 경우 dedicated bearer는 해제된다. 단말이나 네트워크는 필요에 따라 복수의 dedicated bearer를 생성할 수 있다.
트래킹 영역 업데이트 (TAU: Tracking Area Update) 절차
TAU 절차는 MME에서 수행하는 이동성 관리 절차(mobility management procedure) 중 하나로 EPS에서 단말의 이동성(mobility)을 관리하는 중요한 기능 중 하나이다.
이동성 기반의(mobility based) TAU는 TAI(Tracking Area Identity)(들)의 리스트 내 존재하지 않는 새로운 트래킹 영역(TA: Tracking Area)에 진입한 것을 감지할 때(즉, 트래킹 영역(Tracking area)이 변경되는 경우) 수행될 수 있다.
또한, 단말이 아이들 모드(Idle mode)로 진입 후, 단말에 설정된 주기적 TAU(P-TAU: Periodic TAU) 타이머가 만료될 때, 주기적 TAU 절차가 수행될 수도 있다. 이 주기적 TAU는 네트워크에서 단말이 유효하게 자신의 네트워크에 존재하는 지를 확인하는 접근가능성(reachability) 체크를 위한 방법이라고 할 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트래킹 영역 업데이트 절차를 예시한다.
도 8에서는 SGW가 변경되는 경우에서의 TAU 절차를 예시한다.
1-3. ECM-IDLE 상태인 단말(UE)의 TAU 타이머가 경과 하거나 단말 다른 트래킹 영역으로 이동한 경우, MME에게 트래킹 영역(TA)를 보고하기 위한 TAU 절차가 트리거(trigger)된다.
단말은 TAU 요청(TAU Request) 메시지를 MME에게 전송함으로써 TAU 절차를 개시한다.
TAU 요청(TAU Request) 메시지는 RRC 연결에서 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 초기 UE 메시지(Initial UE message)에 포함되어 전달된다.
단말은 확장된 아이들 모드 DRX(eDRX: extended idle mode DRX) 이용 가능한 필요가 있으면, eDRX 파라미터가 이전에(예를 들어, 이전 어태치(Attach) 절차 또는 이전 TAU 절차 등을 통해) 이미 협상되었더라도, eDRX 파라미터(들) 정보 요소(IE: Information Element)를 TAU Request 메시지에 포함시킨다.
4. TAU 요청(TAU Request) 메시지를 수신한 MME가 이전 노드(old node)(즉, MME 또는 SGSN)와 (타입이) 상이하면(즉, MME가 변경된 경우), 새로운 MME(new MME)는 이전 MME/SGSN로부터 사용자 정보(user information)(또는 단말 컨텍스트(UE context))를 획득하기 위하여 이전 MME/SGSN에게 컨텍스트 요청(Context Request) 메시지를 전송한다.
5. 컨텍스트 요청(Context Request) 메시지가 이전 MME/SGSN에게 전송되면, 이전 MME/SGSN는 컨텍스트 응답(Context Response) 메시지로 응답한다. 컨텍스트 응답(Context Response) 메시지는 단말 컨텍스트(UE context)를 포함할 수 있다.
6. UE과 새로운 MME 및 HSS는 인증 기능(authentication fuction) 및 보안(Security)(또는 암호화(Ciphering)) 절차를 수행한다.
새로운 MME는 S-GW를 이전(relocate)할지 결정한다. 이전 S-GW가 더 이상 UE에게 서비스를 제공할 수 없을 때, S-GW는 이전(relocate)된다. 또한, 새로운 MME는 새로운 S-GW가 UE에게 더 오래 서비스를 제공하고 및/또는 UE에게 P-GW 경로가 더 적합할 것으로 예상되거나 또는 새로운 S-GW가 P-GW와 동일하게 위치(co-locate)한다면 S-GW의 이전을 결정할 수도 있다.
7. MME가 새로운 S-GW를 선택한 경우, MME는 세션 생성 요청(Create Session Request) 메시지를 PDN 연결 별로 선택된 새로운 S-GW에게 전송한다.
8. 필요한 경우, 새로운 S-GW는 P-GW에게 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다.
9a. 필요한 경우, P-GW는 PCRF와 IP-CAN(IP connectivity access network) 세션 수정(modification) 절차를 수행할 수 있다.
9. P-GW는 새로운 S-GW로부터 수정 베어러 요청(Modify Bearer Request) 메시지를 수신한 경우, 이에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 새로운 S-GW에게 전송한다.
10. 새로운 S-GW는 자신의 베어러 컨텍스트를 업데이트한다. 이로 인하여 새로운 S-GW는 베어러 PDU를 기지국으로부터 수신할 때 P-GW에게 라우팅할 수 있다.
새로운 S-GW는 세션 생성 요청(Create Session Request)에 대한 응답으로 세션 생성 응답(Create Session Response) 메시지를 새로운 MME에게 전송한다.
11. 새로운 MME는 이전 MME/SGSN에게 컨텍스트 확인(Context Acknowledge) 메시지를 전송한다.
MME가 새로운 S-GW를 선택한 경우, MME는 컨텍스트 확인(Context Acknowledge) 메시지를 통해 이전 MME/SGSN에게 S-GW의 변경 지시 정보를 전달한다. S-GW의 변경 지시 정보는 새로운 S-GW가 선택되었음을 지시한다.
12. 새로운 MME는 위치 업데이트 요청(Update Location Request) 메시지를 HSS에게 전송한다.
이때, 새로운 MME는 해당 단말에 대한 가입 데이터(subscription data)를 가지고 있는지 확인하고, 해당 단말에 대한 가입 데이터가 존재하지 않는 경우 위치 업데이트 요청(Update Location Request) 메시지를 HSS에게 전송할 수 있다.
13. HSS는 위치 취소(Cancel Location) 메시지를 이전 MME/SGSN에게 전송한다.
14. 이전 MME/SGSN는 위치 취소(Cancel Location) 메시지에 대한 응답으로 위치 취소 확인(Cancel Location Acknowledge) 메시지를 HSS에게 전송한다.
15. 이전 SGSN이 컨텍스트 확인(Context Acknowledge) 메시지를 수신하고 단말이 Iu 인터페이스를 통해 연결된 경우, 이전 SGSN은 Iu 해제 명령(Iu Release Command) 메시지를 RNC에게 전송한다.
16. RNC는 Iu 해제 명령(Iu Release Command) 메시지에 대한 응답으로 Iu 해제 완료(Iu Release Complete) 메시지를 이전 SGSN에게 전송한다.
17. HSS는 위치 업데이트 요청(Update Location Request) 메시지에 대한 응답으로 위치 업데이트 확인(Update Location Acknowledge) 메시지를 새로운 MME에게 전송한다.
위치 업데이트 확인(Update Location Acknowledge) 메시지는 해당 단말에 대한 가입 데이터를 포함할 수 있다.
18. 11 단계의 컨텍스트 확인(Context Acknowledge) 메시지 내에서 S-GW 변경 지시가 수신된 경우, 이전 MME/SGSN은 세션 삭제 요청(Delete Session Request) 메시지를 이전 S-GW에게 전송함으로써 MME 또는 SGSN EPS 베어러 자원을 해제한다.
19. 이전 S-GW는 세션 삭제 요청(Delete Session Request) 메시지에 대한 응답으로 세션 삭제 응답(Delete Session Response) 메시지를 이전 MME/SGSN에게 전송한다.
20. 새로운 MME는 TAU 승인(TAU Accept) 메시지를 단말에게 전송한다. 이때, 새로운 MME가 새로운 전역적 고유 임시 식별자(GUTI: Globally Unique Temporary Identity)를 단말에게 할당한 경우, 할당된 GUTI가 TAU 승인(TAU Accept) 메시지에 포함될 수 있다.
단말이 TAU Request 메시지에 eDRX 파라미터(들) 정보를 포함시켰으면, 그리고 만약 MME가 eDRX를 활성화하도록 결정하면, MME는 eDRX 파라미터(들) IE를 TAU Accept 메시지에 포함시킨다.
TAU Accept 메시지를 수신하고, TAU Accept 메시지에 ISR 활성 지시(ISR Activated indication)가 존재하지 않으면, UE는 TIN을 전역적 고유 임식 식별자(GUTI: Globally Unique Temporary Identity)로 셋팅한다.
21. GUTI가 TAU 승인(TAU Accept) 메시지에 포함되면, 단말은 TAU 승인(TAU Accept) 메시지에 대한 응답으로 TAU 완료(TAU Complete) 메시지를 MME에게 전송한다.
파워 세이빙 모드 (Power Saving Mode)
파워 세이빙 모드(PSM: Power Saving Mode)는 3GPP 릴리즈-12(rel-12) 진보된 MTC(MTCe(Enhancements for MTC) 특징(feature) 중 하나로 단말이 페이징(paging) 수신 및 이동성 관리(mobility management) 등의 액세스 스트라텀(AS: Access Stratum) 동작을 모두 비활성화(disable)하는 구간을 정의하여 단말의 파워 소모를 최소화 하는 기능이다. 즉, PSM을 지원하는 단말은 어태치(Attach) 및 트래킹 영역 업데이트(TAU) 시에 네트워크와 액티브 시간(Active Time) 및 주기적 TAU 타이머(P-TAU(Periodic TAU) timer)를 합의하거나 또는 제공받는다.
네트워크에서 Active Time 값을 수신한 경우, 단말은 ECM-CONNECTED에서 ECM-IDLE로 전환 된 경우 해당 Active Time 동안 ECM-IDLE 상태를 유지하여 페이징을 수신한다. 그리고, Active Time이 만료되면 PSM으로 진입하고, 모든 AS(Access Stratrum) 동작을 중지한다.
또한, MME는 단말이 ECM-IDLE 모드로 진입할 때마다 Active Time 값으로 액티브 타이머(Active timer)를 시작한다. 그리고, Active timer가 만료하면, MME는 단말이 접근 가능하지 않다(unreachable)고 추론(deduce)한다.
즉, Active Time은 파워 세이빙 기능을 이용하는 상태(예를 들어, 파워 세이빙 모드(PSM) 등)를 지원하는 단말이 ECM-IDLE(또는 RRC_IDLE) 상태를 유지하는 시간을 의미한다.
단말은 주기적 TAU 타이머가 만료되면, 다시 단말은 AS 동작을 활성화(enable)하고 TAU를 수행하고, 네트워크는 해당 단말의 암묵적인 디태치 타이머(Implicit detach timer)를 중단(stop)한다. 단말은 단말 발신호(Mobile originated Call)(예를 들어, 상향링크 데이터 패킷 전송(Uplink Data packet transfer)) 등을 위해서 원하는 때에 언제나 깨어날 수 있다.
반면, 단말 수신호(Mobile terminated Call)(예를 들어, 하향링크 데이터 패킷 수신(Downlink Data packet receiving)) 등을 위해서는 P-TAU 주기마다 깨어나 TAU를 수행하고 이 때 수신 받은 Active Time 동안 페이징 수신 동작을 수행한 후, 다시 PSM 모드로 들어가 슬립(Sleep)한다.
MME는 단말이 PSM 모드로 진입한 것을 인지한 경우 PPF(Packet Proceed Flag)를 삭제(clear)한다. S-GW는 하향링크 패킷 데이터를 수신한 경우, 해당 단말의 활성화(active)된 S1-U 연결이 없으면, MME로 DDN(Downlink Data Notification)을 전송한다. 하지만 MME는 PPF가 삭제(clear)되어 있는 경우 해당 DDN에 대해 거절 원인(reject cause)을 포함하는 응답 메시지를 전송하며, 이를 수신한 S-GW는 해당 하향링크 패킷 데이터를 폐기(discard)하게 된다. 즉, AS가 단말의 슬립(Sleep)여부 (즉, PSM 진입 여부)를 알지 못한 채 하향링크 패킷 데이터를 송신하는 경우 S-GW에서 폐기되고, AS는 그에 대한 응답을 받지 못하기 때문에 재전송 동작을 취하게 될 수 있다.
MTC (Machine-Type Communication)
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 MTC(Machine-Type Communication) 아키텍처(architecture)를 예시하는 도면이다.
MTC를 위해서 사용되는 단말(또는, MTC 단말)과 MTC 어플리케이션 간의 단-대-단(end-to-end) 어플리케이션은 3GPP 시스템에서 제공되는 서비스들과 MTC 서버에게 제공되는 선택적인 서비스들을 이용할 수 있다. 3GPP 시스템은 MTC를 용이하게 하는 다양한 최적화를 포함하는 수송 및 통신 서비스들(3GPP 베어러 서비스, IMS 및 SMS 포함)을 제공할 수 있다.
도 9에서는 MTC를 위해 사용되는 단말이 Um/Uu/LTE-Uu 인터페이스를 통하여 3GPP 네트워크(UTRAN, E-UTRAN, GERAN, I-WLAN 등)으로 연결되는 것을 도시한다. 도 7의 아키텍처는 다양한 MTC 모델(Direct 모델, Indirect 모델, Hybrid 모델)들을 포함한다.
먼저, 도 9에서 도시하는 개체(entity)들에 대하여 설명한다.
도 9에서 어플리케이션 서버는 MTC 어플리케이션이 실행되는 네트워크 상의 서버이다. MTC 어플리케이션 서버에 대해서는 전술한 다양한 MTC 어플리케이션의 구현을 위한 기술이 적용될 수 있으며, 이에 대한 구체적인 설명은 생략한다. 또한, 도 9에서 MTC 어플리케이션 서버는 레퍼런스 포인트 API를 통하여 MTC 서버에 액세스할 수 있으며, 이에 대한 구체적인 설명은 생략한다. 또는, MTC 어플리케이션 서버는 MTC 서버와 함께 위치될(collocated) 수도 있다.
MTC 서버(예를 들어, 도 9의 SCS 서버)는 MTC 단말을 관리하는 네트워크 상의 서버이며, 3GPP 네트워크에 연결되어 MTC를 위하여 사용되는 단말 및 PLMN 노드들과 통신할 수 있다.
MTC-IWF(MTC-InterWorking Function)는 MTC 서버와 오퍼레이터 코어 네트워크 간의 상호 동작(interworking)을 관장하고, MTC 동작의 프록시 역할을 할 수 있다. MTC 간접 또는 하이브리드 모델을 지원하기 위해서, MTC-IWF는 레퍼런스 포인트 Tsp 상의 시그널링 프로토콜을 중계하거나 해석하여 PLMN에 특정 기능을 작동시킬 수 있다. MTC-IWF는, MTC 서버가 3GPP 네트워크와의 통신을 수립하기 전에 MTC 서버를 인증(authenticate)하는 기능, MTC 서버로부터의 제어 플레인 요청을 인증하는 기능, 후술하는 트리거 지시와 관련된 다양한 기능 등을 수행할 수 있다.
SMS-SC(Short Message Service-Service Center)/IP-SM-GW(Internet Protocol Short Message GateWay)는 단문서비스(SMS)의 송수신을 관리할 수 있다. SMS-SC는 SME(Short Message Entity)(단문을 송신 또는 수신하는 개체)와 단말 간의 단문을 중계하고, 저장 및 전달하는 기능을 담당할 수 있다. IP-SM-GW는 IP 기반의 단말과 SMS-SC 간의 프로토콜 상호 동작을 담당할 수 있다.
CDF(Charging Data Function)/CGF(Charging Gateway Function)는 과금에 관련된 동작을 할 수 있다.
HLR/HSS는 가입자 정보(IMSI 등), 라우팅 정보, 설정 정보 등을 저장하고 MTC-IWF에게 제공하는 기능을 할 수 있다.
MSC/SGSN/MME는 단말의 네트워크 연결을 위한 이동성 관리, 인증, 자원 할당 등의 제어 기능을 수행할 수 있다. 후술하는 트리거링과 관련하여 MTC-IWF로부터 트리거 지시를 수신하여 MTC 단말에게 제공하는 메시지의 형태로 가공하는 기능을 수행할 수 있다.
GGSN(Gateway GPRS Support Node)/S-GW(Serving-Gateway)+P-GW(Packet Date Network-Gateway)는 코어 네트워크와 외부 네트워크의 연결을 담당하는 게이트웨이 기능을 할 수 있다.
표 2는 도 9에서의 주요 레퍼런스 포인트를 정리한 것이다.
Figure PCTKR2016013278-appb-T000002
표 2에서 T5a, T5b, T5c 중 하나 이상의 레퍼런스 포인트를 T5라고 지칭한다.
한편, 간접 및 하이브리드 모델의 경우에 MTC 서버와의 사용자 플레인 통신, 및 직접 및 하이브리드 모델의 경우에 MTC 어플리케이션 서버와의 통신은, 레퍼런스 포인트 Gi 및 SGi를 통해서 기존의 프로토콜을 사용하여 수행될 수 있다.
도 9에서 설명한 내용과 관련된 구체적인 사항은 3GPP TS 23.682 문서를 참조함으로써 본 문서에 병합될 수 있다(incorporated by reference).
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐를 예시한다.
도 10에서 예시하고 있는 서비스 능력 노출(Service Capability Exposure)을 위한 아키텍쳐는 3GPP 네트워크가 3GPP 네트워크 인터페이스에 의해 제공되는 자신의 서비스 및 능력을 외부의 서드 파티 서비스 제공자(3rd party Service Provider) 어플리케이션에게 안전하게 노출하는 것을 가능하게 한다.
서비스 능력 노출 기능(SCEF: Service Capability Exposure Function)는 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력을 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 핵심적인 엔티티(entity)이다. 다시 말해, SCEF는 이동통신 사업자가 운용하는 트러스트 도메인(Trust Domain)에 속하는 서비스 기능 제공을 위한 핵심 엔티티이다. SCEF는 서드 파티 서비스 제공자에게 API 인터페이스를 제공하고, 3GPP의 각종 엔티티와 연결을 통해 서드 파티 서비스 제공자에게 3GPP의 서비스 기능들을 제공한다. SCEF 기능은 SCS에 의해 제공될 수도 있다.
Tsp 기능이 어플리케이션 프로그램 인터페이스(API: application program interface)를 통해 노출될 수 있는 경우, MTC-IWF는 SCEF와 동일하게 위치(co-located)할 수 있다. 다중의 인자에 의존하여 새로운 3GPP 인터페이스를 특정하기 위한 프로토콜(예를 들어, DIAMETER, RESTful APIs, XML over HTTP, 등)이 선택되며, 여기서 다중의 인자는 요청된 정보의 노출의 용이함 또는 특정 인터페이스의 필요를 포함하나 이에 한정되는 것은 아니다.
긴급 베어러 서비스(Emergency Bearer Service)
이하 설명에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- 긴급 베어러 서비스: 긴급 베어러 서비스는 IMS 긴급 세션(또는 호)을 지원하기 위하여 제공된다. 네트워크가 긴급 서비스를 제공하도록 설정될 때, 긴급 베어러 서비스는 서빙 네트워크에 의해 제공되는 기능들을 의미한다.
- 긴급 베어러 서비스를 위한 어태치(Attached for emergency bearer services): 단말이 확립된 긴급 베어러 서비스를 위한 PDN 연결만을 가지고 있으면, 단말은 긴급 베어러 서비스를 위해 어태치된다.
이처럼 긴급 베어러 서비스(emergency bearer service)와 관련된 베어러(들)만을 가지는 단말을 긴급 어태치된 단말(emergency attached UE)(또는 긴급 베어러 서비스를 위해 어태치된 단말(UE attached for emergency bearer services))로 지칭할 수 있다.
- 긴급 EPS 베어러 컨텍스트(Emergency EPS bearer context): 요청 타입(request type)이 '긴급(emergency)'로 활성화된 디폴트 EPS 베어러 컨텍스트 또는 상기 디폴트 EPS 베어러 컨텍스트와 연관된 전용 EPS 베어러 컨텍스트를 의미한다.
- 넌-긴급 EPS 베어러 컨텍스트(Non-emergency EPS bearer context): 긴급 EPS 베어러 컨텍스트가 아닌 EPS 베어러 컨텍스트를 의미한다.
- 긴급 베어러 서비스를 위한 PDN 연결(PDN connection for emergency bearer services): 디폴트 EPS 베어러 컨텍스트 또는 디폴트 PDP 컨텍스트가 요청 타입(request type)이 '긴급(emergency)'으로 활성화된 PDN 연결을 의미한다.
긴급 베어러 서비스는 일반적인 어태치 단말(normal attached UE)(즉, 일반적인 어태치 절차를 통해 PDN 연결이 확립된 단말) 또는 긴급 어태치된 단말(emergency attached UE)(즉, 긴급 어태치 절차를 통해 PDN 연결이 확립된 단말)에게 제공될 수 있다.
또한 지역 규정(local regulation)에 따라 제한된 서비스 상태인 단말(UEs are in limited service state)에게 제공될 수 있다. 제한된 서비스 상태인 단말(UEs are in limited service state)은 3GPP TS 23.122에서 정의된다. 제한된 서비스 상태 하에서는 긴급 서비스의 수신은 단말의 가입을 요구하지 않는다. 지역 규정 및 운영자의 정책에 따라, MME는 제한된 서비스 상태인 단말에 대한 긴급 어태치 요청(emergency attach request)를 허락하거나 거절할 수 있다.
긴급 베어러 서비스를 제공하기 위하여, 단말 요청 시 MME에 의해 확립되는 모든 긴급 베어러 서비스에 적용되는 MME 긴급 설정 데이터(MME Emergency Configuration Data)가 MME에 설정된다. MME Emergency Configuration Data는 PDN GW를 도출하기 위하여 사용되는 긴급 APN(Emergency APN(Access Point Name))를 포함하거나, 또는 긴급 APN을 위하여 정적으로(statically) 설정되는 PDN GW를 포함할 수 있다.
PDN GW가 IMS 긴급 서비스 지원을 위해 선택될 때, 일반 베어러 서비스를 위한 PDN GW 선택 기능(3GPP TS 23.401 참조)이 긴급 APN(Emergency APN)에 적용되거나 또는 MME는 MME Emergency Configuration Data로부터 PDN GW를 직접 선택한다.
여기서, APN은 PDN 식별자(즉, PDN ID)를 의미하며, PDN을 지칭하거나 구분하기 위한 문자열을 의미한다. APN에 의해 UE가 사용해야 하는 P-GW가 결정될 수 있으며, 또한 APN에 의해 UE가 PDN에 연결하기 위한 터널(tunnel)이 정의될 수 있다. 각 PDN 별로 해당 PDN을 식별하기 위한 APN과 해당 PDN과 연관된 하나 이상의 P-GW를 가질 수 있다.
제한된 서비스 상태인 단말은 해당 어태치가 긴급 서비스를 수신하기 위한 것임을 지시하면서 어태치 절차(Attach procedure)를 개시할 수 있다.
또한, 일반 서비스를 위해 어태치되었고, 긴급 베어러가 확립되어 있지 않으며, 제한된 서비스 상태(예를 들어, 제한된 트래킹 영역(TA: Tracking Area) 등의 이유로)인 셀에 캠프-온(camp on)하고 있는 단말은 해당 어태치가 긴급 서비스를 수신하기 위한 것임을 지시하면서 어태치 절차(Attach procedure)를 개시할 수 있다.
즉, 단말은 일반적인 어태치인지 긴급 어태치인지 여부를 지시하는 어태치 타입(Attach Type) 파라미터를 어태치 요청(Attach Request) 메시지 내 포함시켜 MME에게 전송할 수 있다.
일반적으로 셀에 캠핑(camp)하는 단말(즉, 제한된 서비스 상태가 아닌 단말)은, 아직 네트워크에 어태치 되지 않았을 때, 일반적인 최초 어태치 절차(normal initial attach procedure)를 개시한다. 그리고, 일반적인 어태치 단말(normal attached UE)는 긴급 EPS 베어러 서비스를 수신하기 위해서 단말 요청 PDN 연결 절차(UE Requested PDN Connectivity procedure)를 개시한다.
긴급 APN과 연관된 PDN 연결을 위한 디폴트 및 전용 EPS 베어러는 IMS 긴급 세션을 위해서 전용되고(dedicated), 어떠한 다른 타입의 트래픽을 위해 허용되지 않는다. 긴급 베어러 컨텍스트는 넌-긴급 베어러 컨텍스트로 변경되지 않으며, 반대로 변경되지도 않는다.
이미 긴급 PDN GW 연결이 있다면, 단말은 또 다른 긴급 PDN 연결을 요청하지 않는다. MME는 어떠한 추가적인 PDN 연결 요청을 거절한다.
제한된 서비스 상태인 단말을 위한 긴급 서비스를 지원하는 네트워크는 단말이 인증될 수 있는지, 로밍하였는지, 이동성 제한을 가졌는지, 유효한 가입된 단말인지 등과 무관하게 지역 규정(local regulation)에 따라 이들 단말에게 긴급 베어러 서비스를 제공한다.
제한된 서비스 상태인 단말은 AS(Access Stratum) 내 브로드캐스트 지시자(broadcast indicator)로부터 E-UTRAN을 통해 셀이 긴급 서비스를 지원하는지 결정할 수 있다.
셀에 일반적으로 캠핑(camp)하는 단말은 어태치(Attach) 및 TAU 절차 중에 MME로부터 긴급 서비스 지원 지시자(Emergency Service Support indicator)를 수신함으로써 해당 PLMN이 E-UTRAN을 통해 긴급 베어러 서비스를 지원하는지 알 수 있다.
주기적인 TAU 업데이트 타이머(periodic TAU update timer)가 만료될 때, 긴급 어태치된 단말(emergency attached UE)는 주기적인 TAU 절차를 개시하지 않으며, EMM 해제 상태(EMM-DEREGISTERED state)로 진입한다.
긴급 어태치된 단말(emergency attached UE)의 경우, MME는 단말의 주기적인 TAU 타이머(periodic TAU timer)와 유사한 값으로 단말 접근가능 타이머(mobile reachable timer)를 구동시킨다. 이 단말 접근가능 타이머(mobile reachable timer)가 만료된 후에 언제든 MME는 긴급 어태치된 단말(emergency attached UE)의 EMM 상태를 EMM-DEREGISTERED로 변경할 수 있다. MME는 주기적인 TAU 타이머(periodic TAU timer) 값을 긴급 어태치된 단말(emergency attached UE)에게 할당한다. 이 타이머는 긴급 어태치된 단말(emergency attached UE)이 EMM-IDLE 상태로 변화한 후에도 긴급 어태치된 상태를 유지하도록 한다. 이는 단말이 다시 긴급 어태치 절차를 수행할 필요 없이 다음의 긴급 서비스를 받을 수 있도록 허락하기 위한 것이다.
이하, 긴급 베어러 서비스를 위한 PDN 연결의 확립(즉, 긴급 APN(PDN)으로의 베어러 셋업/활성화)을 위한 어태치 절차, PDN 연결 절차를 살펴본다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 어태치 절차 및 PDN 연결 절차를 예시한다.
도 11(a)에서 예시되는 어태치(Attach) 절차는 EPS 내 패킷 서비스를 위한 EPC로의 어태치(attach)를 위해 사용되는 절차이다.
단말은 어태치 요청(ATTACH REQUEST) 메시지를 MME에게 전송함으로써 어태치 절차(attach procedure)를 개시한다(S1101).
단말이 일반적인 서비스(normal service)를 위한 어태치 절차를 개시할 때, 단말은 어태치 요청(ATTACH REQUEST) 메시지 내 EPS 어태치 타입 정보 요소(EPS attach type IE(Information Element)) 내에서 "EPS 어태치(EPS attach)"를 지시한다.
반면, 단말이 긴급 베어러 서비스를 위한 어태치 절차를 개시할 때, 단말은 어태치 요청(ATTACH REQUEST) 메시지 내 EPS 어태치 타입 정보 요소(EPS attach type IE) 내에서 "EPS 긴급 어태치(EPS emergency attach)"를 지시한다.
어태치 요청이 네트워크에 의해 승인(accept)되면, MME는 어태치 요청(ATTACH REQUEST) 메시지에 대한 응답으로 단말에게 어태치 승인(ATTACH ACCEPT) 메시지를 전송한다(S1102).
어태치 요청이 PDN 연결(connectivity)를 요청하기 위한 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지를 포함하였다면, MME는 어태치 요청을 승인할 때, 디폴트 EPS 베어러를 활성화하기 위하여 어태치 승인(ATTACH ACCEPT) 메시지와 함께 디폴트 EPS 베어러 컨텍스트 요청(ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) 메시지를 단말에게 전송한다.
만약, 지역 규정(local regulation)에 의해 제한되지 않는다면, 긴급 베어러 서비스를 위한 어태치 절차 중에, MME는 어태치 요청(ATTACH REQUEST) 메시지를 처리할 때 이동성 및 접속 제한(mobility and access restrictions), 지역적 제한(regional restrictions), 가입 제한(subscription restrictions)을 체크하지 않는다.
또한, 네트워크는 긴급 베어러 서비스를 위한 어태치 절차 중에, 혼잡 제어(congestion control)에 기반한 가입된 APN(subscribed APN)를 적용하지 않는다. 즉, 상술한 바와 같이 긴급 APN으로 PDN 연결이 생성될 수 있다.
만약, MME가 긴급 베어러 서비스를 위한 어태치를 지원하지 않으면, MME는 어태치 타입(attach type)을 "EPS 긴급 어태치(EPS emergency attach)"로 셋팅한 어떠한 어태치 요청을 거절한다. 즉, MME는 단말에게 어태치 요청(ATTACH REQUEST) 메시지에 대한 응답으로 단말에게 어태치 거절(ATTACH REJECT) 메시지를 전송할 수 있다.
도 11(b)에서 예시되는 단말에 의해 요청된 PDN 연결 절차(UE requested PDN connectivity procedure)의 목적은 단말이 PDN으로의 디폴트 EPS 베어러의 셋업을 요청하기 위함이다. 단말은 네트워크에게 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지를 전송함으로써 PDN으로의 연결(connectivity)을 요청한다. 네트워크에 의해 승인(accept)되면, 이 절차는 디폴트 EPS 베어러 컨텍스트의 확립을 개시한다.
만약, 이미 긴급 베어러 서비스를 위한 PDN 연결이 확립되었으면, 단말은 네트워크에게 긴급 베어러 서비스를 위한 추가적인 PDN 연결을 요청하지 않는다. 또한, 긴급 베어러 서비스를 위해 어태치된 단말은 어떠한 다른 PDN으로의 PDN 연결을 요청하지 않는다.
PDN으로의 연결(connectivity)를 요청하기 위하여, 단말은 MME에게 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지를 전송한다(S1103).
이때, 단말이 어태치 절차(attach procedure) 또는 단독의(stand-alone)의 PDN 연결 절차 내에서 PDN으로의 새로운 PDN 연결을 확립할 때, 단말은 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지 내 요청 타입(request type)을 "최초 요청(initial request)"으로 셋팅한다.
반면, 단말이 긴급 베어러 서비스를 위하여 새로운 PDN 연결을 요청할 때, 단말은 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지 내 요청 타입(request type)을 "긴급(emergency)"로 셋팅한다.
또한, 긴급 베어러 서비스를 위한 PDN 연결을 요청하기 위하여, 단말은 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지 내 APN을 포함시키지 않는다.
PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지를 수신하면, MME는 요청된 PDN과의 연결의 확립될 수 있는지 여부를 체크한다.
그리고, 네트워크에 의해 요청된 PDN과의 연결이 승인(accept)될 수 있으면, MME는 PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지에 대한 응답으로 디폴트 EPS 베어러 컨텍스트 활성화 요청(ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) 메시지를 단말에게 전송함으로써, 디폴트 EPS 베어러 컨텍스트 활성화 절차(default EPS bearer context activation procedure)를 개시한다(S1104).
PDN 연결 요청(PDN CONNECTIVITY REQUEST) 메시지 내 APN이 포함되지 않고, 요청 타입(request type)이 "긴급(emergency)"이면, MME는 긴급 베어러 서비스를 위해 설정된 APN을 사용하거나, 또는 인증되지 않은 단말을 위해 정적으로(statically) 설정된 PDN GW를 선택한다.
디폴트 EPS 베어러 컨텍스트 활성화 절차(default EPS bearer context activation procedure)는 단말과 EPC 간에 디폴트 EPS 베어러 컨텍스트를 확립하기 위한 절차이다.
MME는 EPS 베어러 식별자(EBI: EPS Bearer Identity)를 할당하고, 디폴트 EPS 베어러 컨텍스트 활성화 요청(ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) 메시지 내 할당된 EBI를 포함시킬 수 있다.
단말이 EPS 베어러 컨텍스트 활성화 요청(ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST) 메시지에 대한 응답으로 EPS 베어러 컨텍스트 활성화 승인(ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT) 메시지를 MME에게 전송함으로써, EPS 베어러 컨텍스트가 활성화된다(S1105).
한편, 네트워크에 의해, 단말로부터 요청된 PDN과의 연결이 승인(accept)될 수 없으면, MME는 단말에게 PDN 연결 거절(PDN CONNECTIVITY REJECT) 메시지를 전송할 수 있다.
앞서 설명한 바와 같이 긴급 베어러 서비스에 대하여 어태치(Attach) 절차 또는 PDN 연결(PDN connectivity) 절차가 성공적으로 완료되면, 긴급 베어러 서비스를 위한 PDN 연결이 확립(즉, 긴급 APN(PDN)으로의 베어러 셋업/활성화)된다.
이하, 긴급 서비스를 위한 PDN 연결의 해제를 위한 PDN 단절(PDN disconnect) 절차, EPS 베어러 컨텍스트 비활성화(EPS bearer context deactivation) 절차를 살펴본다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PDN 단절 절차를 예시한다.
단말에 의해 요청된 PDN 단절 절차(UE requested PDN disconnection procedure)는 단말이 하나의 PDN으로부터의 단절을 요청하기 위하여 이용되는 절차이다.
PDN으로부터 PDN 단절(disconnection)을 요청하기 위하여, 단말은 MME에게 PDN 단절 요청(PDN DISCONNECT REQUEST) 메시지를 전송한다(S1201).
이때, PDN 단절 요청(PDN DISCONNECT REQUEST) 메시지는 해당 PDN과 연관된 EPS 베어러 식별자(EBI)를 포함한다.
PDN 단절 요청(PDN DISCONNECT REQUEST) 메시지를 수신하고 네트워크에 의해 PDN 단절이 승인(accept)되면, MME는 PDN 단절 요청(PDN DISCONNECT REQUEST) 메시지에 대한 응답으로 EPS 베어러 컨텍스트 비활성화 요청(DEACTIVATE EPS BEARER CONTEXT REQUEST) 메시지를 단말에게 전송함으로써, EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)를 개시한다(S1202).
이때, EPS 베어러 컨텍스트 비활성화 요청(DEACTIVATE EPS BEARER CONTEXT REQUEST) 메시지는 단절될 PDN과 연관된 디폴트 베어러의 EPS 베어러 식별자(EBI)를 포함한다.
EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)는 EPS 베어러 컨텍스트를 비활성화하거나 또는 PDN으로의 모든 EPS 베어러 컨텍스트를 비활성화함으로써 PDN으로부터 단절하기 위하여 이용되는 절차이다.
EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)는 도 12와 같은 단말 요청 PDN 단절 절차(UE requested PDN disconnect procedure) 등에 의해 단말로부터 트리거될 수 있다.
또는 EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)는 네트워크에 의해 개시될 수도 있다.
만약, HSS에 의해 긴급 서비스를 위한 베어러를 가지는 단말에 대한 디태치(detach)가 요청되면, MME는 긴급 서비스를 위해 할당되지 않은 모든 베어러에 대하여 EPS 베어러 컨텍스트 비활성화 요청(DEACTIVATE EPS BEARER CONTEXT REQUEST) 메시지를 단말에게 전송할 수 있다.
단말은 EPS 베어러 컨텍스트 비활성화 요청(DEACTIVATE EPS BEARER CONTEXT REQUEST) 메시지를 수신할 때, EPS 베어러 식별자(EBI)에 의해 식별된 EPS 베어러 컨텍스트를 삭제한다. 식별된 EPS 베어러 컨텍스트를 비활성화한 후, 단말은 EPS 베어러 컨텍스트 비활성화 요청(DEACTIVATE EPS BEARER CONTEXT REQUEST) 메시지에 대한 응답으로 EPS 베어러 컨텍스트 비활성화 승인(DEACTIVATE EPS BEARER CONTEXT ACCEPT) 메시지를 MME에게 전송한다(S1203).
이 절차가 완료되면, 해당 PDN에 향한 디폴트 EPS 베어러 컨텍스트를 포함한 모든 EPS 베어러 컨텍스트가 해제(release)된다.
한편, 네트워크에 의해, 단말로부터 요청된 PDN과의 단절이 승인(accept)될 수 없으면, MME는 단말에게 PDN 단절 거절(PDN DISCONNECT REJECT) 메시지를 전송할 수 있다.
앞서 설명한 바와 같이 긴급 베어러 서비스를 위한 PDN 연결에 대하여 PDN 단절 절차(UE requested PDN disconnection procedure) 또는 EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)가 성공적으로 완료되면, 긴급 베어러 서비스를 위한 PDN 연결이 해제(즉, 긴급 베어러 서비스를 위한 PDN 연결과 연관된 베어러 비활성화)된다.
확장된 아이들 모드 DRX ( eDRX : Extended Idle mode DRX )
3GPP LTE/LTE-A 시스템은 단말의 전력을 최소화하기 위해 단말의 불연속 수신(DRX: discontinuous reception) 기법을 사용한다.
3GPP LTE/LTE-A 시스템에서 정의된 DRX는 단말의 휴면 모드와 RRC_IDLE 상태에서 모두 사용될 수 있다.
단말은 단말의 고유한 식별자인 RNTI(예를 들어, C-RNTI, SI-RNTI, P-RNTI 등)를 기반으로 PDCCH의 모니터링(monitoring)을 수행할 수 있다.
PDCCH의 모니터링은 DRX 동작에 의해 제어될 수 있으며, DRX에 관한 파라미터는 기지국이 RRC 메시지에 의해 단말로 전송해준다. 단말이 RRC 연결 상태(connected state)에서 DRX 파라미터가 구성되어 있다면, 단말은 DRX 동작에 기반하여 PDCCH에 대한 불연속적인(discontinuous) 모니터링을 수행한다. 반면, 만일 DRX 파라미터가 구성되어 있지 않다면 단말은 연속적인 PDCCH의 모니터링을 수행한다.
또한, 상술한 바와 같이 페이징 메시지를 수신하는 단말은 전력 소비 감소를 목적으로 DRX을 수행할 수 있다.
이를 위해 네트워크는 페이징 사이클(paging cycle)라 불리는 시간 주기마다 복수의 페이징 시점(paging occasion)을 구성하고, 특정 단말은 특정 페이징 시점의 시간에만 페이징 메시지를 수신하고, 단말은 특정 페이징 시점 외의 시간에는 페이징 채널을 수신하지 않는다. 또한, 하나의 페이징 시점은 하나의 TTI에 대응될 수 있다.
확장된 아이들 모드 DRX(eDRX: Extended Idle mode DRX)는 기존의 최대의 2.56s 페이징 DRX 사이클(paging DRX cycle)을 수 분(minute)에서 최대 수십 분(minute)로 늘려 단말의 전력 소모를 최소화하기 위한 기능이다. eDRX는 아이들 모드(Idle mode) 및 연결 모드(Connected Mode)에 적용될 수 있다. 연결 모드에 적용되는 확장된 아이들 모드 DRX는 최대 10.24s 등 아이들 모드에서 적용되는 DRX에 비해 상대적으로 짧다.
eDRX 모드를 지원하는 단말의 경우 단말이 접근 가능하지 않은(unreachable) 상태는 페이징에 의해 접근 가능하지 않은(unreachable) 상태(즉, 단말이 페이징 채널을 모니터링하지 않는 DRX 구간)를 의미할 수 있다.
반대로, eDRX 모드를 지원하는 단말의 경우, 단말이 접근 가능(reachable)한 상태는 ECM-CONNECTED 모드 및/또는 페이징에 의해 단말에 즉각적으로 접근 가능한(reachable) 상태(즉, 단말이 페이징 채널을 모니터링 하는 구간)를 의미할 수 있다.
다시 말해, eDRX는 DRX 구간이 일반 DRX 모드에 비하여 상대적으로 길어 아이들(idle) 구간에서도 일시적으로 접근 가능(reachable)하지 않다고 판단할 수 있다. 즉, 일반 DRX (2.56 초)을 지원하면 최대 2.56 초 후에 데이터 전달(data delivery)이 가능하지만 eDRX (예를 들어, 10 분)을 적용하면 최대 지연이 10분이기 때문에 즉각적인 데이터 전달(data delivery)이 불가능하고 이를 실질적으로 접근 가능하지 않다(unreachable)고 간주할 수 있다.
UE와 코어 네트워크는 eDRX의 사용을 협상할 수 있다. UE가 eDRX의 요청을 결정하면, UE는 어태치 요청(attach request) 및/또는 TAU 요청(TAU request) 메시지에 eDRX 파라미터 정보 요소를 포함시킨다. UE는 또한 보통의 아이들 모드 DRX(regular idle mode DRX)를 위한 UE 특정한 DRX 파라미터를 포함시킬 수 있다.
MME는 eDRX를 활성화하기 위한 UE 요청을 승인(accept)할지 거절할지 결정한다.
MME가 eDRX를 승인한 경우, 운영자 정책에 기반하여 MME는 또한 UE에 의해 요청된 값과 상이한 eDRX 파라미터의 값을 제공할 수 있다. MME가 eDRX를 승인하면, UE는 수신한 eDRX 파라미터를 기반으로 eDRX를 적용한다. SGSN/MME가 UE의 요청을 거절하거나 eDRX를 지원하지 않는 SGSN/MME가 요청을 수신한 이유 때문에, UE가 eDRX 파라미터 정보 요소를 관련된 승인 메시지 내에서 수신하지 못하면, UE는 정규 아이들 모드 DRX(regular idle mode DRX)를 적용한다.
UE는 eDRX를 여전히 사용하길 원한다면, eDRX 파라미터 정보 요소를 각 TAU 메시지 내 포함시켜야 한다. UE가 MME에서 MME로, MME에서 SGSN으로, SGSN에서 MME로의 이동할 때, eDRX 파라미터는 이동성 관리(MM: Mobility Management) 컨텍스트(context) 정보의 일부로서 이전 코어 노드(old CN node)로부터 새로운 코어 노드(new CN node)로 전송되지 않는다.
UE와 네트워크는 NAS(non-access stratum) 시그널링을 통해 UE의 파워 소모를 감소시키기 위하여 eDRX의 사용을 협상할 수 있다. 단말 종단 데이터(mobile terminating data) 및/또는 네트워크에 의해 발생된 절차(network originated procedure)는 DRX 사이클 값에 종속된 특정 지연 내에 이용 가능하다.
eDRX의 사용을 원하는 어플리케이션은 단말 종단 서비스(mobile terminating service) 또는 데이터 전달의 명확한(specific) 제어를 고려해야 할 필요가 있고, 특히 해당 어플리케이션은 단말 종단 데이터에 대한 지연 용인(delay tolerance)을 고려할 필요가 있다.
네트워크 단 어플리케이션은 단말 종단 데이터, SMS 또는 장치 트리거(device trigger)를 전송할 수 있으며, eDRX가 적절히 준비될 수 있는지 알아야 할 필요가 있다.
eDRX의 사용을 협상하기 위하여, UE는 어태치(attach) 절차 및 RAU/TAU 절차 동안에 eDRX 파라미터를 요청한다. SGSN/MME는 eDRX를 활성화하기 위한 UE 요청을 거절하거나 승인할 수 있다.
SGSN/MME가 eDRX를 승인한 경우, 운영자(operator) 정책에 기반하여 SGSN/MME는 UE에 의해 요청된 eDRX 파라미터와 상이한 값을 제공할 수 있다. SGSN/MME가 eDRX의 사용을 승인하면, UE는 수신한 eDRX 파라미터에 기반하여 eDRX를 적용한다. SGSN/MME가 UE의 요청을 거절하거나 eDRX를 지원하지 않는 SGSN/MME가 요청을 수신한 이유 때문에, UE가 eDRX 파라미터 정보 요소를 관련된 승인 메시지 내에서 수신하지 못하면, UE는 정규적인 DRX(regular DRX)를 적용한다.
UE가 NAS를 통해 PSM(활성 시간(active time) 및 P-TAU 타이머 요청)과 eDRX(특정 eDRX 사이클 값과 함께)의 활성화를 모두 요청하면, SGSN/MME는 다음 중 어느 하나를 결정한다.
1) PSM만을 활성화한다. 즉, eDRX의 요청을 승인하지 않는다.
2) eDRX만을 활성화한다. 즉, active time의 요청을 승인하지 않는다.
3) PSM(즉, active time 제공) 및 eDRX(즉, eDRX 파라미터 제공) 모두 활성화한다.
상기 3가지의 동작 중에서의 결정, UE에게 제공되는 active time, P-TAU 타이머 및/또는 eDRX 사이클 값은 로컬 설정(local configuration)과 SGSN/MME 내 가용한 다른 정보에 기반한 구현(implementation)에 종속된다. 선택된 방법은 다음 어태치(Attach) 또는 RAU/TAU 절차가 개시될 때까지(새로운 방법이 결정될 때) 사용된다. eDRX 및 PSM이 모두 활성화되면, eDRX 사이클은 active timer가 동작되는 동안 다중의 페이징 시점(paging occasion)을 가지도록 셋팅되어야 한다.
UE에 의해 제공되는 PSM active time이 UE에 의해 제공되는 eDRX 사이클 값보다 큰 경우, SGSN/MME는 PSM과 eDRX 모두 활성화시킬 수 있다. 이로 인하여 UE는 active time 동안 파워 소모를 최소화할 수 있다(예를 들어, active time이 수 분 정도 일반적인 active time 보다 약간 긴 경우).
eDRX가 활성화되는 경우, 네트워크는 높은 레이턴시(latency) 통신 특성을 이용하여 mobile terminated data를 제어할 수 있다. mobile terminated SMS를 제어하기 위한 기술을 적용할 수 있다.
UE는 어태치 요청(attach request) 또는 TAU 요청(TAU request) 내 eDRX 파라미터를 포함시킴으로써 eDRX 사이클의 사용을 요청할 수 있다.
네트워크는 어태치 요청 또는 TAU 요청을 승인할 때, eDRX 파라미터를 제공함으로써 eDRX 사이클의 사용에 대한 요청을 승인한다. UE는 각 TAU 요청 시 eDRX 사이클의 사용을 위한 요청을 반복한다. 네트워크가 마지막으로(즉, 이전에) 성공적인 어태치 또는 TAU 절차 동안에 eDRX 사이클의 사용에 대한 요청을 승인한 경우에만, UE가 eDRX 사이클을 사용할 수 있다.
eDRX 파라미터 정보 요소(IE: Information Element)는 단말이 eDRX를 사용하길 원한다는 것을 지시하기 위하여 이용되며, 또한 네트워크가 eDRX를 위해 사용될 페이징 시간 윈도우(Paging Time Window) 길이 값과 eDRX 사이클 값을 지시하기 위하여 이용된다.
eDRX 파라미터는 eDRX 파라미터 IE 식별자(IEI: Information-Element-Identifier), eDRX 파라미터의 길이, 페이징 시간 윈도우(Paging Time Window), eDRX 값(eDRX value)을 포함한다. eDRX 사이클 길이 구간 값(eDRX cycle length duration value) 및/또는 eDRX 사이클 파라미터(eDRX cycle parameter, T_eDRX)는 eDRX value로부터 도출된다.
단말은 하이퍼-프레임으로 표현된 eDRX 사이클(T_eDRX,H)(즉, 5.12, 10.24,... , 2621.44 초) 별로 페이징 하이퍼-프레임(PH)가 설정된다. PH는 하이퍼-시스템 프레임 번호(H-SFN: Hyper-System Frame Number) 값의 특정 세트를 의미한다. PH는 확장된 아이들 모드 DRX 사이클, 단말 특정 식별자(예를 들어, IMSI)를 이용하여 계산될 수 있다. H-SFN 프레임 구조는 일반적인 아이들 모드 DRX를 위해 사용되는 SFN의 최고값으로 정의된다. 즉, 하나의 하이퍼 프레임(Hyper-frame)은 1024개 무선 프레임(즉, 10.24 초)으로 구성된다. 따라서, SFN이 랩-어라운드(wrap around)될 때 H-SFN은 1씩 증가된다.
그리고, PH 내 PW_start부터 PW_end까지 페이징 시간 윈도우(PTW: Paging Time Window)(또는 페이징 윈도우(PW: Paging Window))가 설정된다. MME/SGSN은 PTW 길이를 할당하고, 어태치(Attach) 및/또는 TAU 절차 동안에 확장된 아이들 모드 DRX 사이클 길이와 함께 PTW 길이 값을 단말에게 제공한다.
그리고, 설정된 페이징 윈도우 내에서 단말의 eDRX 사이클을 기반으로 계산된 페이징 시점(PO)(즉, eDRX 사이클이 512 무선 프레임인 경우) 또는 일반적인 DRX 사이클과 기본 페이징 사이클을 기반으로 계산된 페이징 시점(PO)(즉, eDRX 사이클이 512 무선 프레임이 아닌 경우)에서 페이징을 모니터링한다.
긴급 베어러 서비스가 활성화된 UE의 eDRX 활성화 지원 방법
현재, UE가 긴급 베어러 서비스(emergency bearer service)를 받고 있는 경우, UE는 eDRX를 활성화할 수 없도록 정의되어 있다.
보다 구체적으로 살펴보면, UE가 긴급 베어러 서비스를 위한 베어러(들)을 가질 때, UE와 MME는 정규적인 DRX를 따르며, eDRX를 사용하지 못하도록 정의되어 있다.
또한, 앞서 설명한 바와 같이, UE는 eDRX 파라미터 IE를 포함시킴으로써 어태치 절차 또는 TAU 절차 동안에 eDRX의 사용을 요청할 수 있다. 다만, UE는 긴급 베어러 서비스를 위한 어태치 절차 또는 긴급 베어러 서비스를 위해 어태치된 UE(즉, UE가 긴급 베어러 서비스를 위한 PDN 연결을 가질 때)의 TAU 절차 중에 UE는 eDRX 사용을 요청할 수 없도록 정의되어 있다.
UE가 eDRX를 사용하지 않는 중에(즉, 정규적인 DRX를 사용하는 중에) UE가 긴급 베어러 서비스를 위한 PDN 연결이 확립되는 경우에는 문제가 되지 않는다. 다만, UE가 이미 eDRX를 사용하는 중에, UE가 긴급 베어러 서비스를 위한 PDN 연결이 확립되면, 이전 TAU/어태치 절차에서 활성화되어 있던 eDRX의 사용이 가능한지 여부 등 UE의 동작이 명확하게 정의되어 있지 않다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 긴급 베어러 서비스 활성화 구간 내에서 eDRX 활성화 관련 동작을 설명하기 위한 도면이다.
도 13을 참조하면, 트래킹 영역 업데이트(TAU) 절차의 트리거링 조건이 만족되면, UE는 MME에게 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지를 전송함으로써 TAU 절차를 개시한다(S1301).
여기서, 트래킹 영역 업데이트(TAU) 절차의 트리거링 조건은 주기적인 TAU 타이머(Periodic TAU timer)가 만료될 때 또는 UE가 이전에 MME 내 등록하였던 트래킹 영역(tracking area) 리스트 내 포함되지 않은 트래킹 영역에 진입하였음을 감지할 때, UE가 eDRX의 사용을 요청할 필요가 있거나 eDRX의 사용을 중단할 필요가 있을 때, eDRX 사용 조건(condition)이 변경되어 다른 eDRX 파라미터가 요구될 때 등을 포함한다.
이때, UE가 eDRX를 지원하며, eDRX의 사용을 요청하는 경우, UE는 eDRX 파라미터 정보 요소(IE: Information Element)를 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 포함시킨다.
트래킹 영역 요청이 네트워크에 의해 승인(accept)되면, MME는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지를 UE에게 전송한다(S1302).
또한, 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함된 경우, MME는 eDRX를 활성화하기 위한 UE 요청을 승인(accept)할지 거절할지 결정한다.
트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함되고, MME가 eDRX를 지원하며, eDRX 사용을 승인한 경우, MME는 eDRX 파라미터 IE를 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지에 포함시킨다.
이때, MME가 eDRX를 승인하는 경우, MME는 UE에 의해 요청된 값과 상이한 eDRX 파라미터의 값을 제공할 수 있다.
위와 같이, MME가 eDRX를 승인하면(즉, 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지에 eDRX 파라미터 IE가 포함되면), UE는 수신한 eDRX 파라미터를 기반으로 eDRX를 사용한다. 즉, UE가 아이들 모드에 진입하면, eDRX 파라미터를 기반으로 eDRX를 사용한다. 또한, MME도 UE에게 제공한 eDRX 파라미터를 기반으로 eDRX를 사용한다.
이후, 단말이 앞서 도 11의 예시 등의 절차를 통해 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)이 확립된 경우를 가정한다.
상술한 바와 같이 현재에는 UE가 긴급 베어러 서비스를 위한 PDN 연결을 가지게 되면, UE와 MME는 정규적인 DRX를 따르며, eDRX를 사용하지 못하도록 정의되어 있다. 따라서, 도 13과 같이 긴급 베어러 서비스를 위한 PDN 연결이 확립되면, 해당 PDN 연결이 확립된 이후부터 UE는 eDRX를 사용하지 않는다.
다시 말해, 단말은 긴급 베어러 서비스를 위한 PDN 연결이 확립되기 전에 이미 eDRX가 활성화된 경우, 긴급 베어러 서비스를 수행하게 되면, eDRX를 적용하지 않고, 일반(normal/regular DRX)(예를 들어, 최대 DRX 값 2.56 초)를 적용함으로써, 단말 종단 긴급 베어러 서비스(mobile terminated emergency bearer service)가 성공적으로 적용될 수 있도록 한다. 즉, 단말과 MME는 eDRX를 지역적으로(locally) 비활성화(deactivation)하게 된다.
긴급 베어러 서비스의 활성화 구간(즉, 긴급 베어러 서비스를 위한 PDN 연결이 확립된 후 해제되기까지의 구간) 내에서 트래킹 영역 업데이트(TAU) 절차의 트리거링 조건이 만족될 수 있다. 이 경우, UE는 MME에게 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지를 전송함으로써 TAU 절차를 개시한다(S1303).
UE가 eDRX 파라미터를 MME로부터 수신함으로써 eDRX를 사용하고 있는 중에 TAU 절차의 트리거링 조건이 만족되어 UE가 TAU 절차를 다시 수행하게 되는 경우, UE가 eDRX를 여전히 사용하길 원한다면, eDRX 파라미터 IE를 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 포함시켜 MME에게 전송하여야 한다.
다만, 상술한 바와 같이 현재에는 UE가 긴급 베어러 서비스를 위한 PDN 연결을 가지게 되면, TAU 절차 중에 UE는 eDRX 사용을 요청할 수 없도록 정의되어 있다. 따라서, 도 13과 같이 긴급 베어러 서비스의 활성화 구간 내에서는 UE는 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지 내 eDRX 파라미터를 포함시킬 수가 없다.
트래킹 영역 요청이 네트워크에 의해 승인(accept)되면, MME는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지를 UE에게 전송한다(S1304).
또한, 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함되지 않았으므로, MME는 eDRX를 활성화 승인 여부를 판단하지 않는다.
긴급 베어러 서비스의 활성화 구간 내에서 eDRX를 적용하지 않으며, 또한 긴급 베어러 서비스의 활성화 구간 내에서 트리거링된 TAU 절차 중에 eDRX 파라미터를 요청하지 못하도록 정의된 이유는, 긴급 베어러 서비스를 위한 PDN 연결이 유지되는 동안, UE가 eDRX를 사용하게 되면 불가피하게 MT 데이터의 전송에 지연(delay)가 생기게 될 수 밖에 없으므로 긴급한 서비스의 제공이 요청되는 상황에서는 eDRX 적용이 적합하지 않게 때문이다.
따라서, 기존에는 UE가 MME에게 eDRX 파라미터를 전송하고, eDRX의 사용을 MME가 승인하여 UE에게 eDRX 파라미터를 전송하면, 해당 UE가 바로(즉, 별도의 조건 없이) eDRX 모드를 적용하는 것으로 간주하였으므로, 현재에는 UE가 긴급 베어러 서비스의 활성화 구간 내에서는 eDRX의 사용을 요청하지 않도록 정의되어 있다.
이후, 단말이 앞서 도 12의 예시 등의 절차를 통해 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)이 해제된 경우를 가정한다.
상술한 바와 같이, 긴급 베어러 서비스가 수행되면, 단말과 MME는 eDRX를 적용하지 않고, 일반(normal/regular DRX)를 적용하게 된다. 즉, eDRX가 비활성화된다.
또한, 앞서 S1303 단계에서 UE가 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지 내 eDRX 파라미터를 포함시키지 않았으므로, 긴급 베어러 서비스의 활성화 구간과 무관하게, 해당 UE에게 eDRX는 비활성화 된다.
따라서, 긴급 베어러 서비스를 위한 PDN 연결이 해제된 후, UE가 eDRX의 사용을 원하면(이는 TAU 절차의 트리거링 조건에 해당하므로), UE는 eDRX 사용을 요청하기 위해서 eDRX 파라미터 IE를 포함하는 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지를 MME에게 전송함으로써 TAU 절차를 개시하게 된다(S1305).
트래킹 영역 요청이 네트워크에 의해 승인(accept)되면, MME는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지를 UE에게 전송한다(S1306).
상술한 바와 같이, 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함된 경우, MME는 eDRX를 활성화하기 위한 UE 요청을 승인(accept)할지 거절할지 결정한다.
트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함되고, MME가 eDRX를 지원하며, eDRX 사용을 승인한 경우, MME는 eDRX 파라미터 IE를 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지에 포함시킨다.
이때, MME가 eDRX를 승인하는 경우, MME는 UE에 의해 요청된 값과 상이한 eDRX 파라미터의 값을 제공할 수 있다.
위와 같이, MME가 eDRX를 승인하면(즉, 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지에 eDRX 파라미터 IE가 포함되면), UE는 수신한 eDRX 파라미터를 기반으로 eDRX를 적용한다. 즉, UE가 아이들 모드에 진입하면, eDRX 파라미터를 기반으로 eDRX를 적용한다.
도 13의 예시와 같이, 긴급 베어러 서비스의 활성화 구간 내에서는 불가피하게 MT 데이터의 전송에 지연(delay)가 생기게 될 수 밖에 없으므로, 긴급 베어러 서비스의 활성화 구간 내에서 UE가 eDRX를 적용하지 않는 것이 바람직할 수 있다.
다만, 긴급 베어러 서비스를 위한 PDN 연결이 확립되기 전에 이미 eDRX가 활성화된 경우라도, 그 이후에 긴급 베어러 서비스가 수행되면, 단말과 MME는 eDRX를 적용하지 않고, 일반(normal/regular DRX)를 적용하게 된다. 즉, 단말과 MME는 eDRX를 비활성화(deactivation)하게 되는 문제가 발생된다.
또한, 긴급 베어러 서비스의 활성화 구간 내에서 TAU 트리거링 조건이 만족하여 UE가 TAU 절차를 개시하더라도, 기존에는 UE가 eDRX를 요청하지 못하도록 정의하였으므로, UE가 계속하여 eDRX의 사용을 원하는지 여부와 무관하게, 해당 UE에게 eDRX가 비활성화되는 문제가 발생된다.
결국, 긴급 베어러 서비스의 활성화 구간이 종료하면(즉, 긴급 베어러 서비스를 위한 PDN 연결이 해제되면), eDRX의 사용을 원하는 UE는 불가피하게 앞서 S1305 단계 및 S1306 단계와 같이 TAU 절차를 다시 수행함으로써 eDRX의 사용을 요청하여야 하며, 이로 인하여 단말과 네트워크 간의 시그널링 오버헤드가 증가하게 된다.
이러한 문제점을 해결하기 위하여, 본 발명에서는 단말이 이미 eDRX가 활성화되어 있는 중에 단말이 긴급 베어러 서비스를 위한 PDN 연결을 가질 때, eDRX 활성화와 관련된 단말 및 네트워크의 동작을 제안한다.
도 14는 본 발명의 일 실시예에 따른 eDRX 활성화를 지원하기 위한 방법을 예시하는 도면이다.
도 14에서는 단말이 앞서 도 11의 예시 등의 절차를 통해 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)이 확립된 경우를 가정한다.
본 발명의 일 실시예에 따르면, UE가 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)을 가질 때, UE와 네트워크는 TAU 절차 동안에 eDRX 파라미터를 협상할 수 있다.
다시 말해, UE가 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)을 가질 때, 긴급 베어러 서비스가 진행 중이더라도 UE는 여전히 eDRX를 요청할 수 있다.
도 14를 참조하면, UE가 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)을 가질 때, TAU 절차의 트리거링 조건이 만족되면, UE는 MME에게 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지를 전송함으로써 TAU 절차를 개시한다(S1401).
여기서, 트래킹 영역 업데이트(TAU) 절차의 트리거링 조건은 주기적인 TAU 타이머(Periodic TAU timer)가 만료될 때 또는 UE가 이전에 MME 내 등록하였던 트래킹 영역(tracking area) 리스트 내 포함되지 않은 트래킹 영역에 진입하였음을 감지할 때, UE가 eDRX의 사용을 요청할 필요가 있거나 eDRX의 사용을 중단할 필요가 있을 때, eDRX 사용 조건(condition)이 변경되어 다른 eDRX 파라미터가 요구될 때 등을 포함할 수 있다.
이때, UE가 eDRX를 지원하며, eDRX의 사용을 요청하는 경우, UE는 eDRX 파라미터 IE를 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 포함시킬 수 있다.
UE가 이전의 TAU/Attach 절차를 통해 네트워크로부터 eDRX 파라미터를 제공 받아 eDRX를 사용하고 있더라도, 여전히 eDRX를 사용하길 원한다면, 매 TAU 절차의 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지 내 또는 매 Attach 절차의 어태치 요청(ATTACH REQUEST) 메시지 내 eDRX 파라미터를 포함시킬 수 있다. 즉, 이러한 동작은 UE가 긴급 베어러 서비스를 받는지 여부와 무관하게 수행될 수 있다.
MME에서 MME로, MME에서 SGSN으로, SGSN에서 MME로의 이동성에서, eDRX 파라미터는 이전(old) 코어 네트워크(CN: Core Network) 노드로부터 새로운 CN 노드로 이동성 관리(MM: Mobility Management) 컨텍스트 정보의 일부로서 전송되지 않는다.
트래킹 영역 요청이 네트워크에 의해 승인(accept)되면, MME는 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지를 UE에게 전송한다(S1402).
또한, 트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함된 경우, MME는 eDRX를 활성화하기 위한 UE 요청을 승인(accept)할지 거절할지 결정한다.
트래킹 영역 업데이트 요청(TRACKING AREA UPDATE REQUEST) 메시지에 eDRX 파라미터가 포함되고, MME가 eDRX를 지원하며, eDRX 사용을 승인한 경우, MME는 eDRX 파라미터 IE를 트래킹 영역 업데이트 승인(TRACKING AREA UPDATE ACCEPT) 메시지에 포함시킨다.
이때, MME가 eDRX를 승인하는 경우, MME는 UE에 의해 요청된 값과 상이한 eDRX 파라미터의 값을 제공할 수 있다.
앞서 S1401 단계 및 S1402 단계와 같이, eDRX 파라미터는 UE가 긴급 베어러 서비스를 위한 베어러(또는 PDN 연결)를 가지는 동안에도 UE와 네트워크(예를 들어, MME) 간에 협상될 수 있다.
다만, 위와 같이 TAU 절차 중에 eDRX 파라미터가 협상되더라도, UE가 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)을 가지는 동안에는 UE와 MME는 eDRX를 적용하지 않는다.
다시 말해, 네트워크가 eDRX 파라미터 IE를 마지막 Attach 절차 또는 마지막 TAU 절차 동안에 제공하였으며, UE가 긴급 베어러 서비스를 위한 PDN 연결을 가지지 않는 경우에만, UE는 eDRX를 사용할 수 있다.
이후, 단말이 앞서 도 12의 예시 등의 절차를 통해 긴급 베어러 서비스를 위한 PDN 연결(또는 베어러)이 해제된 경우를 가정한다.
네트워크가 마지막 Attach 절차 또는 마지막 TAU 절차 동안에 eDRX 파라미터 IE를 제공하였으면, 긴급 베어러 서비스를 위한 PDN 연결의 단절 절차(PDN disconnect procedure) 또는 긴급을 위한 EPS 베어러 컨텍스트의 EPS 베어러 컨텍스트 비활성화 절차(EPS bearer context deactivation procedure)가 성공적으로 완료될 때, UE와 네트워크는 eDRX를 재개한다(S1403, S1404).
즉, 긴급 베어러 서비스를 위한 베어러(또는 PDN 연결)가 해제되면, UE와 네트워크(예를 들어, MME)는 마지막 TAU/Attach 절차 내에서 협상된 eDRX 파라미터를 재사용할 수 있다.
이때, 도 14의 예시와 같이, 긴급 베어러 서비스가 활성화된 구간 내에서 TAU 절차가 트리거링 되어, TAU 절차 내에서 eDRX 파라미터가 협상된 경우에는, 긴급 베어러 서비스가 종료된 후, UE와 네트워크는 긴급 베어러 서비스가 활성화된 구간 내 TAU 절차(즉, S1401 단계 및 S1402 단계)에서 협상된 eDRX 파라미터를 기반으로 eDRX를 사용할 수 있다. 이를 위해, UE와 MME는 긴급 베어러 서비스가 활성화된 구간 내에서는 협상된 eDRX 파라미터를 기반으로 eDRX를 이용하지 않지만, 협상된 eDRX 파라미터를 저장하고 있을 수 있다.
만약, 도 14와 달리 긴급 베어러 서비스가 활성화된 구간 내에서 TAU 절차가 트리거링 되지 않은 경우, UE와 네트워크는 긴급 베어러 서비스가 활성화되기 전 마지막 TAU 절차에서 협상된 eDRX 파라미터를 기반으로 eDRX를 사용할 수 있다. 이를 위해, UE와 MME는 긴급 베어러 서비스가 활성화된 구간 내에서는 일반 DRX를 사용하게 되지만, 이전에 협상되었던 eDRX 파라미터를 저장하고 있을 수 있다.
결국, 긴급 베어러 서비스가 해제될 때, UE와 MME는 이전(즉, 마지막) Attach 절차 또는 이전(즉, 마지막) TAU 절차에서 협상되었던 eDRX 파라미터를 기반으로 eDRX를 사용할 수 있다.
앞서 설명한 바와 같이, UE와 네트워크가 Attach 절차 또는 TAU 절차 내에서 eDRX 파라미터를 협상하지 않는다면, eDRX가 해제된다. 따라서, UE가 긴급 베어러 서비스를 위한 PDN 연결을 가지는 중에 TAU 절차가 트리거링될 때, 해당 TAU 절차를 통해 UE와 네트워크가 eDRX 파라미터를 협상하지 않는다면, eDRX가 해제되게 된다.
이 경우, UE가 긴급 베어러 서비스를 위한 PDN 연결이 해제된 후에 eDRX의 사용을 원한다면, 앞서 도 13과 같이 별도의 Attach 절차 또는 TAU 절차를 통해 네트워크에게 eDRX 사용을 요청하고, 네트워크로부터 eDRX 사용을 승인 받아야 한다. 즉, 별도의 Attach 절차 또는 TAU 절차를 통해 UE와 네트워크 간에 eDRX 파라미터를 협상하는 동작이 수행됨으로써 시그널링 오버헤드가 증가될 수 있다.
반면, 본 발명에서는 UE가 긴급 베어러 서비스를 위한 PDN 연결을 가지는 중에 TAU 절차가 트리거링되는 경우에도, 해당 TAU 절차 내에서 UE와 네트워크 간에 eDRX 파라미터를 협상할 수 있으므로(eDRX를 적용하지 않더라도), 긴급 베어러 서비스를 위한 PDN 연결이 해제된 후에 UE가 eDRX 사용을 원하는 경우에, UE가 eDRX 사용을 요청하기 위하여 별도의 TAU 절차를 수행하지 않아도 무방하므로 시그널링 오버헤드가 감소될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 15는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 15를 참조하면, 무선 통신 시스템은 네트워크 노드(1510)와 다수의 단말(UE)(1520)을 포함한다.
네트워크 노드(1510)는 프로세서(processor, 1511), 메모리(memory, 1512) 및 통신 모듈(communication module, 1513)을 포함한다. 프로세서(1511)는 앞서 도 1 내지 도 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1511)에 의해 구현될 수 있다. 메모리(1512)는 프로세서(1511)와 연결되어, 프로세서(1511)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1513)은 프로세서(1511)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(1510)의 일례로, 기지국, MME, HSS, SGW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(1510)가 기지국인 경우, 통신 모듈(1513)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1520)은 프로세서(1521), 메모리(1522) 및 통신 모듈(또는 RF부)(1523)을 포함한다. 프로세서(1521)는 앞서 도 1 내지 도 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1521)에 의해 구현될 수 있다. 메모리(1522)는 프로세서(1521)와 연결되어, 프로세서(1521)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1523)는 프로세서(1521)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1512, 1522)는 프로세서(1511, 1521) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1511, 1521)와 연결될 수 있다. 또한, 네트워크 노드(1510)(기지국인 경우) 및/또는 단말(1520)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 16은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 16에서는 앞서 도 15의 단말을 보다 상세히 예시하는 도면이다.
도 16을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1610), RF 모듈(RF module)(또는 RF 유닛)(1635), 파워 관리 모듈(power management module)(1605), 안테나(antenna)(1640), 배터리(battery)(1655), 디스플레이(display)(1615), 키패드(keypad)(1620), 메모리(memory)(1630), 심카드(SIM(Subscriber Identification Module) card)(1625)(이 구성은 선택적임), 스피커(speaker)(1645) 및 마이크로폰(microphone)(1650)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1610)는 앞서 도 1 내지 도 14에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1610)에 의해 구현될 수 있다.
메모리(1630)는 프로세서(1610)와 연결되고, 프로세서(1610)의 동작과 관련된 정보를 저장한다. 메모리(1630)는 프로세서(1610) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1610)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1620)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1650)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1610)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1625) 또는 메모리(1630)로부터 추출할 수 있다. 또한, 프로세서(1610)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1615) 상에 디스플레이할 수 있다.
RF 모듈(1635)는 프로세서(1610)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1610)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1635)에 전달한다. RF 모듈(1635)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1640)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1635)은 프로세서(1610)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1645)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 실시예는 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신(eDRX: Extended idle mode Discontinuous Reception) 활성화를 지원하기 위한 방법에 있어서,
    단말이, 트래킹 영역 업데이트(TAU: Tracking Area Update) 절차의 트리거링 조건이 만족되면, 트래킹 영역 업데이트 요청(TAU Request) 메시지를 MME(Mobility Management Entity)에게 전송하는 단계; 및
    상기 단말이 상기 TAU Request 메시지에 대한 응답으로 상기 MME로부터 TAU 승인(TAU Accept) 메시지를 수신하는 단계를 포함하고,
    상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 패킷 데이터 네트워크(PDN: Packet Data Network) 연결을 가지는 동안, 상기 단말과 상기 MME 간에 상기 TAU Request 메시지 및 상기 TAU Accept 메시지를 이용하여 eDRX 파라미터가 협상되나, 상기 단말에 의해 eDRX가 사용되지 않는 eDRX 활성화 지원 방법.
  2. 제1항에 있어서,
    상기 MME로부터 마지막의 TAU 절차 동안에 상기 eDRX 파라미터가 제공되었으며, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 PDN 연결을 가지지 않으면, 상기 단말에 의해 eDRX가 사용되는 eDRX 활성화 지원 방법.
  3. 제1항에 있어서,
    상기 긴급 베어러 서비스를 위한 PDN 연결이 해제될 때, 마지막의 TAU 절차 동안에 상기 MME로부터 상기 eDRX 파라미터가 상기 단말에게 제공되었으면, 상기 MME에 의해 제공된 eDRX 파라미터를 기반으로 상기 단말의 eDRX 사용이 재개되는 eDRX 활성화 지원 방법.
  4. 제1항에 있어서,
    상기 단말이 eDRX의 사용을 요청하는 경우, 상기 단말에 의해 상기 TAU Reqeust 메시지 내 제1 eDRX 파라미터가 포함되고, 상기 MME에 의해 상기 단말의 eDRX 사용이 승인되는 경우, 상기 TAU Accept 메시지 내 제2 eDRX 파라미터가 포함됨으로써, 상기 eDRX 파라미터가 협상되는 eDRX 활성화 지원 방법.
  5. 제1항에 있어서,
    상기 단말이 EPS(Evolved Packet System) 어태치 타입 정보 요소(EPS attach type information element) 내 긴급 어태치(emergency attach)가 지시된 어태치 요청(Attach Request) 메시지를 상기 MME에게 전송함으로써 어태치 절차(Attach procedure)가 개시되고,
    상기 어태치 절차(Attach procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 확립되는 eDRX 활성화 지원 방법.
  6. 제1항에 있어서,
    상기 단말이 요청 타입(request type)이 긴급(emergency)으로 셋팅된 PDN 연결 요청(PDN Connectivity Request) 메시지를 상기 MME에게 전송함으로써 PDN 연결 절차(PDN Connectivity procedure)가 개시되고,
    상기 PDN 연결 절차(PDN Connectivity procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 확립되는 eDRX 활성화 지원 방법.
  7. 제1항에 있어서,
    상기 단말이 상기 긴급 베어러 서비스를 위한 PDN 연결의 단절을 요청하기 위해 상기 MME에게 PDN 단절 요청(PDN Disconnect Request) 메시지를 전송함으로써 PDN 단절 절차(PDN Disconnect procedure)가 개시되고,
    상기 PDN 단절 절차(PDN Disconnect procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 해제되는 eDRX 활성화 지원 방법.
  8. 제1항에 있어서,
    상기 MME에 의해 상기 긴급 베어러 서비스를 위한 PDN 연결과 연관된 베어러를 비활성화하기 위하여 EPS 베어러 컨텍스트 비활성화 요청(Deactivate EPS Bearer Context Request) 메시지가 상기 단말에게 전송됨으로써, EPS 베어러 컨텍스트 비활성화 절차(EPS Bearer Context Deactivation procedure)가 개시되고,
    상기 EPS 베어러 컨텍스트 비활성화 절차(EPS Bearer Context Deactivation procedure)가 성공적으로 완료되면, 상기 긴급 베어러 서비스를 위한 PDN 연결이 해제되는 eDRX 활성화 지원 방법.
  9. 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신(eDRX: Extended idle mode Discontinuous Reception) 활성화를 지원하기 위한 방법에 있어서,
    MME(Mobility Management Entity)가 단말로부터 트래킹 영역 업데이트 요청(TAU Request) 메시지를 수신하는 단계; 및
    상기 MME가 상기 TAU Request 메시지에 대한 응답으로 TAU 승인(TAU Accept) 메시지를 상기 단말에게 전송하는 단계를 포함하고,
    상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 패킷 데이터 네트워크(PDN: Packet Data Network) 연결을 가지는 동안, 상기 단말과 상기 MME 간에 상기 TAU Request 메시지 및 상기 TAU Accept 메시지를 이용하여 eDRX 파라미터가 협상되나, 상기 단말에 의해 eDRX가 사용되지 않는 eDRX 활성화 지원 방법.
  10. 제9항에 있어서,
    상기 MME가 마지막의 TAU 절차 동안에 상기 eDRX 파라미터를 제공하였으며, 상기 단말이 긴급 베어러 서비스(emergency bearer service)를 위한 PDN 연결을 가지지 않으면, 상기 단말에 의해 eDRX가 사용되는 eDRX 활성화 지원 방법.
  11. 제9항에 있어서,
    상기 긴급 베어러 서비스를 위한 PDN 연결이 해제될 때, 마지막의 TAU 절차 동안에 상기 MME가 eDRX 파라미터를 상기 단말에게 제공하였으면, 상기 MME에 의해 제공된 eDRX 파라미터를 기반으로 상기 단말의 eDRX 사용이 재개되는 eDRX 활성화 지원 방법.
  12. 제9항에 있어서,
    상기 단말이 eDRX의 사용을 요청하는 경우, 상기 단말에 의해 상기 TAU Reqeust 메시지 내 제1 eDRX 파라미터가 포함되고, 상기 MME에 의해 상기 단말의 eDRX 사용이 승인되는 경우, 상기 TAU Accept 메시지 내 제2 eDRX 파라미터가 포함됨으로써, 상기 eDRX 파라미터가 협상되는 eDRX 활성화 지원 방법.
PCT/KR2016/013278 2015-11-17 2016-11-17 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치 WO2017086717A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/776,375 US20190342940A1 (en) 2015-11-17 2016-11-17 Method for supporting extended idle mode discontinuous reception activation in wireless communication system and apparatus therefor
KR1020187014909A KR102105053B1 (ko) 2015-11-17 2016-11-17 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치
EP16866669.1A EP3379892B1 (en) 2015-11-17 2016-11-17 Methods for supporting extended idle mode discontinuous reception activation in wireless communication system and apparatus therefor
CN201680073877.0A CN108370604B (zh) 2015-11-17 2016-11-17 无线通信系统中支持扩展空闲模式不连续接收激活的方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562256644P 2015-11-17 2015-11-17
US62/256,644 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017086717A1 true WO2017086717A1 (ko) 2017-05-26

Family

ID=58719056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013278 WO2017086717A1 (ko) 2015-11-17 2016-11-17 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US20190342940A1 (ko)
EP (1) EP3379892B1 (ko)
KR (1) KR102105053B1 (ko)
CN (1) CN108370604B (ko)
WO (1) WO2017086717A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275186A (zh) * 2017-07-18 2019-01-25 展讯通信(上海)有限公司 寻呼消息的配置方法、网络侧设备、用户设备及可读介质
CN109905415A (zh) * 2017-12-07 2019-06-18 中国电信股份有限公司 获取用户位置信息的方法、网络侧设备、用户终端和系统
US11259357B2 (en) * 2017-01-14 2022-02-22 Huawei Technologies Co., Ltd. Management of discontinuous reception (DRX) for a terminal having a voice service

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050435A (ja) * 2016-01-19 2019-03-28 シャープ株式会社 端末装置、c−sgnおよび通信制御方法
WO2018175378A1 (en) * 2017-03-20 2018-09-27 Convida Wireless, Llc Service capability exposure at the user equipment
CN110447296B (zh) 2017-03-23 2023-07-11 Lg电子株式会社 执行随机接入过程的方法及其设备
US10314105B2 (en) * 2017-05-18 2019-06-04 At&T Intellectual Property I, L.P. Command for extended idle mode discontinuous reception
KR102372494B1 (ko) * 2018-03-30 2022-03-10 삼성전자 주식회사 무인증으로 접속한 단말에 대한 셀룰라 네트워크 접속 해지 방법 및 장치
JP6847892B2 (ja) * 2018-06-21 2021-03-24 シャープ株式会社 Ue及び通信制御方法
CN110831209B (zh) * 2018-08-09 2023-03-24 中国电信股份有限公司 下行报文发送方法和装置、业务平台及通信系统
CN112806089A (zh) * 2018-10-18 2021-05-14 华为技术有限公司 一种终端设备接入方法和装置
WO2020118718A1 (zh) * 2018-12-14 2020-06-18 Oppo广东移动通信有限公司 一种配置参数的确定方法及装置、终端
WO2021217553A1 (en) * 2020-04-30 2021-11-04 Qualcomm Incorporated Recovering user equipment from call failure in new radio
CN113645716B (zh) * 2020-05-11 2023-08-29 北京小米移动软件有限公司 一种分组数据网络连接方法、装置及存储介质
US11343742B2 (en) * 2020-05-22 2022-05-24 Blackberry Limited Preserving emergency call during failure to transfer
US20240179791A1 (en) * 2021-01-11 2024-05-30 Nokia Technologies Oy Rrc state transition reporting
CN117016022A (zh) * 2021-04-01 2023-11-07 深圳传音控股股份有限公司 激活连接的方法、设备、系统及存储介质
US20230254738A1 (en) * 2022-02-09 2023-08-10 Mediatek Inc. Enhanced handling for session continuity
WO2024164300A1 (en) * 2023-02-10 2024-08-15 Huawei Technologies Co., Ltd. Regulating the use of paging during emergency sessions in a telecommunications network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110003399A (ko) * 2008-04-07 2011-01-11 다 탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 긴급 서비스 정보의 획득 방법, 시스템 및 설비
KR20140106665A (ko) * 2011-12-08 2014-09-03 인터디지탈 패튼 홀딩스, 인크 크로스 링크 설정을 제어하기 위한 방법 및 장치
US20150056959A1 (en) * 2009-10-27 2015-02-26 Samsung Electronics Co., Ltd. Method and system for managing security in mobile communication system
US20150237577A1 (en) * 2012-11-06 2015-08-20 Huawei Technologies Co., Ltd. UE Paging Method, Base Station, and UE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077432A (ko) * 2010-12-30 2012-07-10 주식회사 팬택 셀 간 간섭 조정 요청 방법과 장치 및 간섭 조정 요청의 처리 장치 및 방법
US20120250601A1 (en) * 2011-03-28 2012-10-04 Hyung-Nam Choi Communication terminal, method for exchanging data, communication device and method for establishing a communication connection
JP5782504B2 (ja) * 2011-04-04 2015-09-24 京セラ株式会社 移動通信方法及び無線端末
US20120289183A1 (en) * 2011-05-13 2012-11-15 Kundan Tiwari Methods for requesting emergency bearer services for low priority devices, and apparatuses using the same
CN102257859B (zh) * 2011-06-01 2013-08-07 华为技术有限公司 混合非连续接收方法及基站和用户设备
EP2824981B1 (en) * 2012-03-08 2019-02-27 Samsung Electronics Co., Ltd. Method for controlling service in radio communication system
US9564958B2 (en) * 2013-08-08 2017-02-07 Intel IP Corporation Power saving mode optimizations and related procedures
TWI632788B (zh) * 2015-10-12 2018-08-11 宏達國際電子股份有限公司 處理尋呼程序的裝置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110003399A (ko) * 2008-04-07 2011-01-11 다 탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 긴급 서비스 정보의 획득 방법, 시스템 및 설비
US20150056959A1 (en) * 2009-10-27 2015-02-26 Samsung Electronics Co., Ltd. Method and system for managing security in mobile communication system
KR20140106665A (ko) * 2011-12-08 2014-09-03 인터디지탈 패튼 홀딩스, 인크 크로스 링크 설정을 제어하기 위한 방법 및 장치
US20150237577A1 (en) * 2012-11-06 2015-08-20 Huawei Technologies Co., Ltd. UE Paging Method, Base Station, and UE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Power Saving Enhancements for UMTS", RP-151291, 3GPP TSG RAN MEETING #69, 8 September 2015 (2015-09-08), Phoenix, USA, XP051653160 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259357B2 (en) * 2017-01-14 2022-02-22 Huawei Technologies Co., Ltd. Management of discontinuous reception (DRX) for a terminal having a voice service
CN109275186A (zh) * 2017-07-18 2019-01-25 展讯通信(上海)有限公司 寻呼消息的配置方法、网络侧设备、用户设备及可读介质
CN109275186B (zh) * 2017-07-18 2021-11-30 展讯通信(上海)有限公司 寻呼消息的配置方法、网络侧设备、用户设备及可读介质
CN109905415A (zh) * 2017-12-07 2019-06-18 中国电信股份有限公司 获取用户位置信息的方法、网络侧设备、用户终端和系统
CN109905415B (zh) * 2017-12-07 2021-12-03 中国电信股份有限公司 获取用户位置信息的方法、网络侧设备、用户终端和系统

Also Published As

Publication number Publication date
CN108370604A (zh) 2018-08-03
KR20180067690A (ko) 2018-06-20
EP3379892B1 (en) 2021-03-17
KR102105053B1 (ko) 2020-04-27
CN108370604B (zh) 2021-08-17
EP3379892A4 (en) 2019-07-31
EP3379892A1 (en) 2018-09-26
US20190342940A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2017086717A1 (ko) 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2018080230A1 (ko) 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치
WO2017048042A1 (ko) 무선 통신 시스템에서의 페이징 절차를 수행하는 방법 및 이를 위한 장치
WO2017078485A1 (ko) 무선 통신 시스템에서 서빙 노드 이전 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2017126884A1 (ko) 무선 통신 시스템에서 혼잡 제어 방법 및 이를 위한 장치
WO2017119802A1 (ko) 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치
WO2017126922A1 (ko) 무선 통신 시스템에서 연결 재개 방법 및 이를 위한 장치
WO2018174525A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
WO2017082682A1 (ko) 무선 통신 시스템에서의 데이터 전송 모드 선택 방법 및 이를 위한 장치
WO2016153316A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2016114611A1 (ko) 무선 통신 시스템에서 영역 업데이트 방법 및 이를 위한 장치
WO2018044144A1 (ko) 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치
WO2018155908A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2017171451A1 (ko) 무선 통신 시스템에서의 버퍼링된 데이터 전송 방법 및 이를 위한 장치
WO2017069598A1 (ko) 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치
WO2016163723A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 타이밍을 조절하기 위한 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014909

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016866669

Country of ref document: EP