WO2021217553A1 - Recovering user equipment from call failure in new radio - Google Patents

Recovering user equipment from call failure in new radio Download PDF

Info

Publication number
WO2021217553A1
WO2021217553A1 PCT/CN2020/088027 CN2020088027W WO2021217553A1 WO 2021217553 A1 WO2021217553 A1 WO 2021217553A1 CN 2020088027 W CN2020088027 W CN 2020088027W WO 2021217553 A1 WO2021217553 A1 WO 2021217553A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
counter value
connection
base station
deactivation
Prior art date
Application number
PCT/CN2020/088027
Other languages
French (fr)
Inventor
Jian Li
Fojian ZHANG
Chaofeng HUI
Hao Zhang
Yi Liu
Yuankun ZHU
Pan JIANG
Jing Zhou
Wei He
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/088027 priority Critical patent/WO2021217553A1/en
Publication of WO2021217553A1 publication Critical patent/WO2021217553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer

Definitions

  • the following relates generally to wireless communications and more specifically to recovering one or more user equipments from call failure in new radio.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a user equipment may connect to an LTE cell in a non-standalone (NSA) mode.
  • the UE may support dual connectivity (DC) with NR and LTE.
  • DC dual connectivity
  • the UE may enter a loop where it continually tries to activate an evolved packet system (EPS) bearer, and continually has to release the connection again and again-causing significant adverse resource and messaging overhead.
  • EPS evolved packet system
  • a user equipment may connect to an LTE cell in a non-standalone (NSA) mode.
  • the UE may support dual connectivity (DC) with NR and LTE.
  • the UE may transmit a service request to the LTE cell, and the LTE cell may transmit a message indicating that an evolved packet system (EPS) bearer is deactivated.
  • the UE may attempt to re-activate the EPS bearer by transmitting a connectivity request (e.g., a packet data network (PDN) connectivity request) to the LTE cell.
  • a connectivity request e.g., a packet data network (PDN) connectivity request
  • the UE may transmit an additional service request, and receive an additional message indicating that the EPS bearer has been deactivated again. In such cases, the UE may enter a loop where it continually tries to activate the EPS bearer, and continually has to release the connection again and again-causing significant adverse resource and messaging overhead.
  • the described techniques herein relate to improved methods, systems, devices, and apparatuses that support recovering user equipment from call failure in new radio.
  • the described techniques provide for disabling dual connectivity operation within cells which experience a deactivation of an EPS bearer when dual connectivity is enabled.
  • a UE may track attempts to re-establish the EPS bearer, for example, via a counter or a timer, to prevent the UE from operating in a loop where it continually tries to activate the EPS bearer, and continually has to release the connection.
  • a method of wireless communication at a UE may include establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, performing a setup procedure for a second cell associated with a second radio access technology, receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, updating a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detaching from the cell based on the counter value satisfying a threshold counter value.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
  • the apparatus may include means for establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, performing a setup procedure for a second cell associated with a second radio access technology, receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, updating a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detaching from the cell based on the counter value satisfying a threshold counter value.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
  • connection with the cell may include operations, features, means, or instructions for transmitting, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an attach accept message, where the second connection may be established with the cell based on the attach accept message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating information with the cell associated with the first radio access technology via the second connection.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a deactivation accept message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and deactivating the evolved packet system bearer at the UE based on transmitting the deactivation accept message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based on transmitting the connectivity request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer may be received based on transmitting the service request message.
  • updating the counter value may include operations, features, means, or instructions for incrementing the counter value from a first counter value to a second counter value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for comparing the second counter value to the threshold counter value, where the second counter value may be less than the threshold counter value, and maintaining the connection with the cell based on the second counter value being less than the threshold counter value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, receiving, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer, incrementing the counter value from the second counter value to a third counter value, and comparing the third counter value to the threshold counter value, where the connection with the cell may be based on comparing the third counter value to the threshold counter value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an additional service request message to the base station supporting the cell, where the additional configuration message indicating the deactivation of the evolved packet system bearer may be received based on transmitting the additional service request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a timer may be inactive, and activating the timer based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detaching from the cell may be further based on the timer being activated.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an expiry of the timer, resetting the counter value to a counter start value based on the expiry of the timer, resetting the timer to a timer start value based on the expiry of the timer, and deactivating the timer based on the expiry of the timer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring an active duration for the timer, where the expiry of the timer may be determined based on the timer running for at least the active duration.
  • the cell may include operations, features, means, or instructions for switching the connection from the first cell to a third cell, resetting the timer to a timer start value based on switching the connection to the third cell, and deactivating the timer based on switching the connection to the third cell.
  • the cell may include operations, features, means, or instructions for switching the connection from the first cell to a third cell, and resetting the counter value to a counter start value based on switching the connection to the third cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring the threshold counter value based on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
  • performing the setup procedure for the second cell associated with the second radio access technology may include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell, and receiving a tracking area update accept based on transmitting the tracking area update request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a detach request message to the base station supporting the cell, and receiving, from the base station supporting the cell, a detach accept message, where detaching from the cell includes may be based on receiving the detach accept message.
  • the first radio access technology includes a long term evolution technology, a 4G technology, or both
  • the second radio access technology includes a new radio technology, a 5G technology, or both.
  • a method of wireless communication at a base station may include establishing a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and performing a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the apparatus may include means for establishing a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and performing a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the connection with the UE via the cell may include operations, features, means, or instructions for receiving, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on performing the detach procedure with the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing the second connection with the UE via the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an attach accept message, where the second connection may be established with the UE based on the attach accept message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating information with the UE via the cell associated with the first radio access technology via the second connection.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a deactivation accept message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer may be transmitted based on receiving the service request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer, and transmitting, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an additional service request message from the UE, where the additional configuration message indicating the deactivation of the evolved packet system bearer may be transmitted based on receiving the additional service request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a setup procedure with the UE via the second cell supported by the base station, where the second cell may be associated with the second radio access technology, where determining the indication that the UE may have performed a setup procedure with the second cell associated with the second radio access technology may be based on performing the setup procedure with the UE via the second cell supported by the base station.
  • performing the setup procedure with the UE via the second cell may include operations, features, means, or instructions for receiving, from the UE, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell, and transmitting a tracking area update accept based on receiving the tracking area update request.
  • performing the detach procedure with the UE may include operations, features, means, or instructions for receiving, from the UE, a detach request message, and transmitting, to the UE, a detach accept message.
  • the first radio access technology includes a long term evolution technology, a 4G technology, or both
  • the second radio access technology includes a new radio technology, a 5G technology, or both.
  • FIG. 1 illustrates an example of a wireless communications system that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • FIGs. 13 through 16 show flowcharts illustrating methods that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • a user equipment may connect to a Long Term Evolution (LTE) cell in a non-standalone (NSA) mode.
  • the UE may support dual connectivity (DC) with New Radio (NR) and LTE.
  • the UE may transmit a service request to the LTE cell, and the LTE cell may transmit a message indicating that an evolved packet system (EPS) bearer is deactivated.
  • the UE may attempt to re-activate the EPS bearer by transmitting a connectivity request (e.g., packet data network (PDN) connectivity request) to the LTE cell.
  • a connectivity request e.g., packet data network (PDN) connectivity request
  • the UE may transmit an additional service request, and receive an additional message indicating that the EPS bearer has been deactivated again (e.g., due to a deployment issue with the network or for some other reason) .
  • the UE may unfortunately enter a loop where it continually tries to activate the EPS bearer, and continually has to release the connection. Accordingly, there is a need in the art for systems and methods which may address the issues associated with EPS bearer deactivation with dual connectivity new radio (DCNR) .
  • DCNR dual connectivity new radio
  • a UE may limit the number of attempts for this process, for example by tracking a counter, to break out of the loop. For example, each time the UE receives a message indicating EPS bearer deactivation, the UE may track this by updating (e.g., incrementing) the counter. If the counter reaches a threshold counter value, the UE may detach from the cell and re-attach with an LTE connection (e.g., by indicating no support for DCNR) . By indicating no support for DCNR, this new connection may prevent the UE from re-entering the adverse loop procedure. Additionally, by disabling DCNR and re-establishing a connection with the LTE cell, the UE may resume other operations, such as data transfer, with the LTE cell.
  • an LTE connection e.g., by indicating no support for DCNR
  • the UE may additionally or alternatively use a timer to track if the threshold counter value is reached with a particular duration. For example, the UE may activate a timer based on, as an example, receiving a configuration message indicating the deactivation of the EPS bearer. In some cases, the UE may be configured to reset the counter value after expiry of the timer, or upon establishing a connection with a new cell, or both. By resetting the counter value based on expiry of the timer, or establishing a connection with a new cell, or both, the UE may be configured to reset attempts to re-establish the EPS bearer with a given cell, which may improve the likelihood of a successful connection.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of example process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to recovering user equipment from call failure in new radio.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the UEs 115 and the base stations of the wireless communications system 100 may support communications to enable deactivation of DCNR within cells which experience a deactivation of an EPS bearer when DCNR is enabled.
  • the wireless communications system 100 may support communications which enable the UEs 115 to track attempts to re-establish the EPS bearer with a counter value, and to detach from the cell and disable DCNR once the counter value reaches a threshold counter value.
  • a UE 115 may establish a connection with a first cell (e.g., first base station 105-a) , such as an LTE cell.
  • the UE 115 may perform a setup procedure for a second cell (e.g., second base station 105-b) , such as an NR cell.
  • the UE 115 may transmit a service request to the first cell, and receive a configuration message indicating a deactivation of an EPS bearer.
  • the configuration message indicating the deactivation of the EPS bearer may be received based on the service request.
  • the configuration message indicating the deactivation of the EPS bearer may be based on the UE 115 operating in an NSA mode of operation, and establishing a connection with both the LTE cell and the NR cell.
  • the UE 115 may update a counter value based on receiving the configuration message indicating the deactivation of the EPS bearer, and may detach from the cell based on the counter value satisfying a threshold counter value.
  • the UE 115 may update the counter value by incrementing the counter value from a first counter value to a second counter value.
  • the UE 115 may compare the second counter value to the threshold counter value, and may determine to maintain a connection with the LTE cell or to detach from the LTE cell based on the comparing the second counter value to the threshold counter value. For instance, if the second counter value does not satisfy the threshold counter value, the UE 115 may maintain the connection with the LTE cell, and may attempt to re-establish the EPS bearer for DCNR. Alternatively, if the second counter value satisfies the threshold counter value, the UE 115 may detach from the LTE cell.
  • the UE 115 may transmit an attach request for a connection with the LTE cell restricting dual connectivity.
  • the UE 115 may disable dual connectivity, and attempt to re-establish a connection with the LTE cell to resume data transfer via LTE.
  • the UE 115 may additionally use a timer to track if the threshold counter value is reached with a particular duration. For example, the UE 115 may activate a timer based on receiving a configuration message indicating the deactivation of the EPS bearer. In some cases, the UE 115 may be configured to reset the counter value after expiry of the timer, or upon establishing a connection with a new cell, or both. By resetting the counter value based on expiry of the timer, or establishing a connection with a new cell, or both, the UE 115 may be configured to reset attempts to re-establish the EPS bearer with a given cell, which may improve the likelihood of a successful connection.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a UE 115-a, a first base station 105-a, and a second base station 105 b, which may be examples of UE 115 and base stations 105, as described with reference to FIG. 1.
  • the UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an LTE link between the UE 115-a and the first base station 105-a.
  • the UE 115-a may communicate with the second base station 105-b using a communication link 205-b, which may be an example of an NR/5G link between the UE 115-a and the second base station 105-b.
  • the communication links 205-a, 205-b may include examples of an access link (e.g., a Uu link) .
  • the communication links 205-a, 205-b may include a bi-directional link that includes both uplink and downlink communication.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
  • the first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c.
  • the communication link 205-c may include an example of a link between two base stations (e.g., an Xn link) .
  • the first base station 105-a and the second base station 105-b may, in some cases, be collocated.
  • the communication link 205-c may include a bi-directional link.
  • the first base station 105-a and the second base station 105-b may be associated with one or more cells.
  • the first base station 105-a may be associated with a first cell and the second base station 105-b may be associated with a second cell different than the first cell.
  • the first base station 105-a may be associated with an LTE cell
  • the second base station 105-b may be associated with an NR cell.
  • the first base station 105-a or the second base station 105-b may facilitate communications between the UE 115-a and the other respective base station 105-a, 105-b.
  • the first base station 105-a may carry out communications with the UE 115-a to facilitate the establishment of a connection between the UE 115-a and a cell supported by the second base station 105-b.
  • data transfer and EPS bearer activation at the UE 115-a may be successfully carried out within a particular cell (e.g., LTE cell) while the UE 115-a is operating in a single connectivity mode.
  • data transfer may be successfully carried out when the UE 115-a establishes a connection with the first base station 105-a (e.g., first cell) .
  • an EPS bearer may be successfully activated when the UE 115-a is communicatively coupled to the first base station 105-a.
  • the EPS bearer may be deactivated when the UE 115-a enters a dual connectivity mode of operation with NR5G wireless communications. For example, upon establishing a connection with a second cell (e.g., second base station 105-b) supporting NR/5G communications, the UE 115-a may transmit a service request to the first base station 105-a, and the first base station 105-a may transmit a configuration message indicating deactivation of the EPS bearer based on the service request.
  • a second cell e.g., second base station 105-b
  • the wireless communications system 200 may enable the UE 115-a to break out of the loop associated with EPS bearer reactivation by tracking information, such as tracking a counter value, and comparing the counter value to a threshold counter value.
  • the UE 115-a may establish a connection with a first cell associated with a first radio access technology (e.g., 4G, LTE) .
  • the UE 115 a may establish the first connection with the first cell while operating in an NSA mode of operation.
  • the UE 115 b may establish a first connection with a first cell associated with the base station 105 c while in an NSA mode of operation.
  • the UE 115-a may establish the first connection with the first cell associated with the base station 105-a via the communication link 205-a illustrated in FIG. 2.
  • the UE 115-a may establish the connection with the first cell associated with the base station 105-a, for example, by performing an attachment procedure.
  • the UE 115-a may transmit an attachment request to the base station 105-a, and the base station 105-a may transmit an attachment acknowledgement to the UE 115-a in response to the attachment request.
  • the UE 115-a may perform a setup procedure for a second cell associated with a second radio access technology (e.g., NR 5G) .
  • a second radio access technology e.g., NR 5G
  • the UE 115-a may perform a setup procedure with a second cell associated with the second base station 105-b.
  • the UE 115-a may perform the setup procedure directly with the second base station 105-b via the communication link 205-b.
  • the UE 115-a may perform the setup procedure with the second base station 105-b through alternative communications, such as with the first base station 105-a.
  • the first cell may facilitate the connection between the UE 115-a and the second base station 105-b.
  • the UE 115-a may be configured to operate in a dual connectivity mode associated with a non-standalone mode of 5G in which the first base station 105-a provides an LTE cell for various operations, such as control plane signaling, and the second base station 105-b provides a 5G cell for various operations, such as transmitting and receiving user data.
  • the UE 115-a may transmit a service request to the first cell.
  • the service request may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like.
  • the base station 105-a may transmit a configuration message 210 which indicates a deactivation of an EPS bearer.
  • the configuration message 210 may be transmitted based on the service request received from the UE 115-a.
  • the configuration message 210 may be based on the UE 115-a operating in the NSA mode of operation, or the dual connectivity mode of operation, or both.
  • the configuration message 210 indicating the deactivation of the EPS bearer may be based on the UE 115-a performing the setup procedure, or establishing a connection with the second cell (e.g., second base station 105-b) after establishing the connection with the first cell (e.g., first base station 105-a) , or both.
  • the UE 115-a may update a counter value based on receiving the configuration message 210.
  • the counter value may be configured to track EPS bearer reactivation attempts at the UT 115-a.
  • the UE 115-a may further compare the updated counter value to a threshold counter value to determine whether to detach from the first cell (e.g., first base station 105-a) or maintain the connection with the first cell. For example, in cases where the updated counter value satisfies the threshold counter value, the UE 115-a may detach from the first cell to break the loop associated with EPS bearer re-establishment.
  • the UE 115-a may transmit a detach request message 215 in response to the configuration message 210 indicating a deactivation of the EPS bearer.
  • the UE 115-a may then transmit an attach request to the first cell (e.g., first base station 105-a) restricting dual connectivity operation.
  • the UE 115-a may detach from the first cell while operating in the dual connectivity mode of operation via the detach request message 215, and attempt to re-establish a connection with the first cell while operating in the single connectivity mode of operation.
  • the UE 115-a may transmit a connectivity request message 220 (e.g., a PDN connectivity request message 220) to the base station 105-a based on the configuration message 210.
  • the UE 115-a may attempt to re-establish the EPS bearer upon receiving the configuration message 210.
  • the UE 115-a may receive an additional configuration message 210 from the base station 105-a indicating deactivation of the EPS bearer, at which point the UE 115-a may be configured to update the counter again, and compare the updated counter to the threshold counter value to determine whether to detach from the first cell or maintain the connection with the first cell.
  • aspects of the present disclosure may reduce signaling overhead associated with establishing the EPS bearer for an NSA mode of operation. Additionally, aspects of the present disclosure may expedite data transfer at the UE 115-a by restricting/disabling dual connectivity operation at the UE 115-a and establishing a connection with the first cell (e.g., LTE cell) in a single connectivity mode of operation based on one or more conditions or circumstances as described herein. Aspects of the present disclosure may be further explained and understood with reference to FIG. 3 and FIG. 4, among other sections.
  • FIG. 3 illustrates an example of a process flow 300 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communications system 100 or 200.
  • the process flow 300 may illustrate establishing a connection with a first cell, performing a setup procedure with a second cell, receiving a configuration message indicating a deactivation of an EPS bearer, updating a counter value, and detaching from the first cell based on the counter satisfying a threshold counter value., as described with reference to FIGs. 1–2.
  • process flow 300 may include a UE 115-b and a base station 105-c which may be examples of corresponding devices as described herein.
  • the UE 115-b and the base station 105-c illustrated in FIG. 3 may be examples of the UE 115-a and the base station 105-a illustrated in FIG. 2.
  • the base station 105-c may support a cell associated with a first radio access technology.
  • the base station 105-c may support a 4G or LTE cell.
  • process flow 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-b may establish a first connection with a first cell associated with a first radio access technology (e.g., 4G, LTE) .
  • the UE 115-a may establish the first connection with the first cell while operating in an NSA mode of operation.
  • the UE 115-b may establish a first connection with a first cell associated with the base station 105-c while in an NSA mode of operation.
  • the UE 115-b may establish the first connection with the first cell associated with the base station 105-c via the communication link 205-a illustrated in FIG. 2.
  • the UE 115-b may establish the first connection with the first cell associated with the base station 105-c by performing an attachment procedure.
  • the UE 115-b may transmit an attachment request to the base station 105-c, and the base station 105-c may transmit an attachment acknowledgement to the UE 115-b in response to the attachment request.
  • the UE 115-b may establish a connection with a first cell associated with a first radio access technology.
  • the base station 105-c may support an LTE cell (e.g., a 4G cell) , and the UE 115-b may establish a connection with the first cell (e.g., LTE cell, 4G cell) via the base station 105-c.
  • LTE cell e.g., a 4G cell
  • the UE 115-b may establish a connection with the first cell (e.g., LTE cell, 4G cell) via the base station 105-c.
  • the UE 115-b may perform a setup procedure with a second cell associated with a second radio access technology.
  • the UE 115-b may perform the setup procedure with the second cell through the connection with the first cell.
  • the UE 115-a may transmit a tracking area update (TAU) request to the base station 105-c, where the TAU request includes a request for the UE 115-b to enter a dual connectivity mode of operation with the second cell supported by the base station 105-c.
  • the first cell e.g., base station 105-c
  • the UE 115-c may perform the setup procedure with a second base station supporting the second cell.
  • the UE 115-b may enter dual connectivity operation.
  • the UE 115-b may enter the dual connectivity operation by establishing a second connection with a second cell in addition to the first connection with the first cell.
  • the UE 115-b may enter dual connectivity operation by establishing a second connection with a second cell different than the first cell.
  • the UE 115-b may enter the dual connectivity operation by establishing a second connection with a second cell associated with a second base station which is different than the base station 105-c.
  • the UE 115-b may transmit a service request message to the base station 105-c supporting the first cell.
  • the service request message may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like.
  • the base station 105-c supporting the first cell may transmit a configuration message indicating a deactivation of an EPS bearer, among other aspects.
  • the base station 105-c may transmit the configuration message based on the service request. Additionally or alternatively, the base station 105-c may transmit the configuration message indicating a deactivation of an EPS bearer based on the UE 115-c performing the setup procedure with the second cell at 310, or entering the dual connectivity operation at 315, or both.
  • the base station 105-c may be configured to determine an indication that the UE 115-c performed the setup procedure with the second cell different than the first cell, and may transmit the configuration message indicating a deactivation of an EPS bearer based on determining the UE 115-b performed the setup procedure with the second cell.
  • the UE 115-b may update a counter value, and may compare the updated counter value to a threshold counter value.
  • the UE 115-b may be configured to track instances in which the EPS bearer is deactivated, or instances where the UE 115-b has attempted to re-establish the EPS bearer, /or instances in which the first cell has deactivated the EPS bearer, or any combination thereof.
  • the UE 115-b may be configured to update the counter value based on receiving the configuration message at 325.
  • the UE 115-b may be configured to update a first counter value (e.g., initial counter value) to a second counter value based on receiving the configuration message at 325.
  • the UE 115-b may update the counter value using any techniques.
  • the UE 115-b may be configured to update the counter value by incrementing a first counter value (e.g., initial counter value, or counter start value) from a first counter value to a second counter value.
  • a first counter value e.g., initial counter value, or counter start value
  • the UE 115-b may be configured to increment the first counter value to a second counter value of “2. ”
  • the UE 115-b may be configured to compare the second counter value to the threshold counter value.
  • the threshold counter value may be set, initialized, or otherwise configured using any techniques.
  • the threshold counter value may include a default threshold counter value.
  • the UE 115-b and/or the network e.g., wireless communications system 200
  • the threshold counter value may be statically, semi- statically, or dynamically configured based on any characteristics including, but not limited to, the connection with the first cell, characteristics of the first cell (e.g., SNR, SINR) , a previous connection with the first cell, past connection information between the UE 115-b and the cell, past connection information between the UE 115-b and another cell, or any combination thereof.
  • the UE 115-b may detach from the first cell based on the updated counter value satisfying the threshold counter value. For example, at 340, the UE 115-b may transmit a detach request to the base station 105-c supporting the first cell based on the updated counter value satisfying the threshold counter value. In this example, the base station 105-c supporting the first cell may transmit a detach accept to the UE 115-b based on the detach request received from the UE 115-b at 345.
  • the UE 115-b may transmit an attach request message for a second connection with the first cell.
  • the UE 115-b may transmit the attach request based on detaching from the first cell at 340-355.
  • the UE 115-b may transmit the attach request for the second connection which restricts dual connectivity operation with the second radio access technology (e.g., 5G, NR) .
  • the attach request at 350 may include an indication that dual connectivity (e.g., DCNR) is not supported.
  • the base station 105-c supporting the first cell may transmit an attach accept based on receiving the attach request.
  • the UE 115-b may establish a second connection with the first cell based on receiving the attach request.
  • the second connection may restrict dual connectivity operation at the UE 115-b.
  • the UE 115-b may transmit the attach request including an indication that DCNR is not supported, and may subsequently establish the second connection with the first cell (e.g., LTE cell) based on the attach accept at 355.
  • the first cell e.g., LTE cell
  • the second connection with the first cell may restrict dual connectivity operation with the second radio access technology (e.g., 5G, NR) .
  • the second connection with the first cell may be established with the UE 115-b operating in a single connectivity mode of operation, and the UE 115-b may communicate information with the first cell (e.g., base station 105-c) associated with the first radio access technology via the second connection.
  • the first cell e.g., base station 105-c
  • the UE 115-b may maintain the connection with the first cell based on the updated counter value failing to satisfy the threshold counter value. For example, the UE 115-b may determine that the updated counter value does not satisfy the threshold counter value at 330, and may maintain the connection with the first cell at 360 based on that determination.
  • the UE 115-b may transmit a connectivity request message (e.g., PDN connectivity request message) to the base station 105-b.
  • a connectivity request message e.g., PDN connectivity request message
  • the UE 115-b may transmit the connectivity request message based on determining the updated counter value does not satisfy the threshold counter value, or based on determining to maintain the connection with the first cell, or both.
  • the UE 115-b may be configured to maintain the connection with the first cell and may attempt to re-establish the EPS bearer with the first cell by transmitting the PDN connectivity request message.
  • the techniques described with respect to FIG. 3 may prevent the UE 115-b from becoming stuck in an EPS bearer re-establishment loop where the UE 115-b continually tries to activate the EPS bearer, and continually has to release the connection again and again.
  • the techniques described herein may enable the UE 115-b to reduce the number of times the UE 115-b unsuccessfully attempts to re-establish the EPS bearer, and may reduce the time required to resume data transfer with the first cell (e.g., LTE cell) associated with the first radio access technology.
  • the first cell e.g., LTE cell
  • FIG. 4 illustrates an example of a process flow 400 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications system 100 or 200, and process flow 300.
  • the process flow 400 may illustrate establishing a connection with a first cell, performing a setup procedure with a second cell, receiving a configuration message indicating a deactivation of an EPS bearer, updating a counter value, and detaching from the first cell based on the counter satisfying a threshold counter value, as described with reference to FIGs. 1–3, among other sections.
  • process flow 400 may include a UE 115-c and a base station 105-d which may be examples of corresponding devices as described herein.
  • the UE 115-c and the base station 105-d illustrated in FIG. 4 may be examples of the UE 115-a and the base station 105-a illustrated in FIG. 2.
  • process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-c may transmit a TAU request to the base station 105-d where the TAU request includes a request for the UE 115-c to establish a connection with a second cell associated with a second radio access technology (e.g., NR, 5G) .
  • the TAU request may include an indication of a dual connectivity operation with the first cell and the second cell (e.g., DCNR support request) .
  • the UE 115-c may establish a connection with a first cell supported by the base station 105-d in an NSA mode of operation.
  • the first cell may be associated with a first radio access technology (e.g., 4G, LTE) .
  • the UE 115-b may transmit the TAU request at 405.
  • the TAU request may include a request for the UE 115-c to establish a second connection with a second cell supported by the base station 105-d.
  • the TAU request may include a request for the UE 115-d to enter a dual connectivity mode of operation.
  • the UE 115-b may transmit the TAU request to a base station associated with the first cell and/or a base station associated with the second cell.
  • the UE 115-c may receive a TAU accept from the base station 105-d.
  • the base station 105-d may transmit the TAU accept based on the TAU request.
  • the TAU accept may include an acceptance for the UE 115-c to perform a setup procedure with the second cell.
  • the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell in addition to the first connection with the first cell.
  • the TAU accept may include an acceptance for dual connectivity operation with the first cell and the second cell (e.g., acceptance for the UE 115-c to operate in the dual connectivity mode) .
  • the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell associated with a second base station different than the base station 105-d.
  • the UE 115-c may be configured to perform a setup procedure with the second cell associated with the second radio access technology (e.g., NR, 5G) based on receiving the TAU accept at 410.
  • the second radio access technology e.g., NR, 5G
  • the UE 115-c may transmit a service request message to the base station 105-d supporting the first cell.
  • the service request message may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like.
  • the base station 105-d supporting the first cell may transmit a request to deactivate an EPS bearer.
  • the base station 105-d may transmit configuration message indicating a deactivation of a default EPS bearer.
  • the base station 105-c may transmit the configuration message at 420 based on the service request message received at 415.
  • the base station 105-c may be configured to transmit the configuration message at 420 based on the dual connectivity operation at the UE 115-c with the first cell and the second cell.
  • the base station 105-d may be configured to determine an indication that the UE 115-c established a connection with the second cell, and may be configured to transmit the configuration message indicating a deactivation of an EPS bearer based on the indication that the UE 115-c established the connection with the second cell.
  • the base station 105-d may be configured to determine an indication that the UE 115-c performed a setup procedure with the second cell, and may be configured to transmit the configuration message indicating a deactivation of an EPS bearer based on the determination that the UE 115-c performed the setup procedure with the second cell. In some cases, the base station 105-d may be configured to determine the indication that the UE 115-c established a connection with the second cell or performed the setup procedure with the second cell based on the TAU request received at 405.
  • the UE 115-c may transmit a deactivation accept message to the base station 105-d.
  • the UE 115-c may transmit the deactivation accept message based on receiving the configuration message indicating the deactivation of the EPS bearer at 420.
  • the UE 115-c may deactivate the EPS bearer at the UE 115-c.
  • the UE 115-c may be configured to deactivate the EPS bearer at the UE 115-c based on transmitting the deactivation accept message at 425.
  • the UE 115-c may update a counter value based on receiving the configuration message indicating deactivation of the EPS bearer, and may determine whether the updated counter value satisfies a threshold counter value.
  • the UE 115-c may be configured to track instances in which the EPS bearer is deactivated and/or instances where the UE 115-c has attempted to re-establish the EPS bearer.
  • the UE 115-b may be configured to update the counter value based on receiving the configuration message at 420. For instance, the UE 115-b may be configured to update a first counter value (e.g., initial counter value) to a second counter value based on receiving the configuration message at 420.
  • a first counter value e.g., initial counter value
  • the threshold counter value may be set, initialized, or otherwise configured using any techniques.
  • the threshold counter value may include a default threshold counter value.
  • the UE 115-c and/or the network e.g., wireless communications system 200
  • the threshold counter value may be statically, semi-statically, or dynamically configured based on any characteristics including, but not limited to, the connection with the first cell, characteristics of the first cell (e.g., SNR, SINR) , a previous connection with the first cell, past connection information between the UE 115-c and the cell, past connection information between the UE 115-c and another cell, or any combination thereof.
  • the UE 115-c may update the counter value using any techniques.
  • the UE 115-c may be configured to update the counter value by incrementing a first counter value (e.g., initial counter value) from a first counter value to a second counter value.
  • a first counter value e.g., initial counter value
  • the UE 115-c may be configured to increment the first counter value to a second counter value of “2. ”
  • the UE 115-c may be configured to compare the second counter value to the threshold counter value at 435.
  • a counter value may satisfy the threshold counter value when it is equal or greater than the threshold counter value.
  • a counter value may not satisfy the threshold counter value when the counter value is less than the threshold counter value.
  • process flow 400 may proceed to 440 if the updated counter value does not satisfy the threshold counter value.
  • process flow 400 may proceed to 460 if the updated counter value does satisfy the threshold counter value.
  • the UE 115-c may be configured to maintain the connection with the first cell, and the flow diagram may proceed to 440.
  • the UE 115-c may be configured to 460 to detach from the first cell.
  • the UE 115-c may initiate a data call request.
  • the UE 115-c may transmit a connectivity request message (e.g., PDN connectivity request message) to the base station 105-d.
  • the UE 115-c may transmit the connectivity request message based on receiving the configuration message indicating deactivation of the EPS bearer at 420.
  • the UE 115-c may transmit the connectivity request message based on determining the updated counter value does not satisfy the threshold counter value and/or based on determining to maintain the connection with the first cell.
  • the UE 115-c may be configured to maintain the connection with the first cell and may attempt to re-establish the EPS bearer with the first cell by transmitting the PDN connectivity request message.
  • the UE 115-c may activate the EPS bearer which was deactivated at 420-425 and/or a second EPS bearer at the UE 115-c.
  • the UE 115-c may perform an activate EPS bearer context procedure.
  • the UE 115-c may be configured to activate the default EPS bearer.
  • the UE 115-c may be configured to activate the EPS bearer at 450 based on transmitting the connectivity request message at 445.
  • the UE 115-c may be configured to perform a loop procedure, where the loop procedure causes the UE 115-c to perform at least a subset of the steps of the process flow 400 illustrated in FIG. 4.
  • the UE 115-c may be configured to perform the loop procedure at 455 and transmit an additional service request at 415.
  • the UE 115-c may receive an additional configuration message indicating deactivation of the EPS bearer based on the service request.
  • the UE 115-c may transmit a deactivation accept message to the base station 105-d at 425 based on receiving the configuration message at 420, and may deactivate the EPS bearer at the UE 115-c at 430 based on transmitting the deactivation accept message at 425.
  • the UE 115-c may be configured to update the counter value, and may determine whether the updated counter value satisfies a threshold counter value at 435. For instance, the UE 115-c may be configured to update/increment the counter value from the second counter value to a third counter value based on receiving the configuration message indicating deactivation of the EPS bearer. In this example, the UE 115-c may compare the third counter value to the threshold counter value to determine whether the third counter value satisfies the threshold counter value.
  • connection with the first cell may be determined based on comparing the third counter value with the threshold counter value. For example, as noted previously herein, process flow 400 may proceed to 440 if the third counter value does not satisfy the threshold counter value, and may proceed to 460 if the third counter value does satisfy the threshold counter value. For example, upon determining that the third counter value does not satisfy the threshold counter value at 435 (e.g., third counter value is less than the threshold counter value) , the UE 115-c may be configured to maintain the connection with the first cell, and the flow diagram may proceed to 440.
  • the threshold counter value e.g., third counter value is less than the threshold counter value
  • the UE 115-c may be configured to proceed to 460 to detach from the first cell.
  • the UE 115-c may transmit a detach request message to the base station 105-d.
  • the detach request message may include a request to detach from the first cell supported by the base station 105-d.
  • the UE 115-c may be configured to transmit the detach request message to initiate a detach procedure from the first cell, where the detach request message is transmitted based on determining that the updated counter value satisfies the threshold counter value at 435.
  • the base station 105-d may transmit a detach accept message to the UE 115-c.
  • the base station 105-d may transmit the detach accept message based on receiving the detach request message at 460.
  • the UE 115-c may be configured to detach from the first cell based on receiving the detach accept message from the base station 105-d at 465.
  • the UE 115-c may transmit an attach request message for a second connection with the first cell.
  • the UE 115-c may transmit the attach request message for a second connection with the first cell restricting dual connectivity operation with the second radio access technology (e.g., NR, 5G) .
  • the attach request message may include an indication that dual connectivity (e.g., DCNR) is not supported.
  • the base station 105-d may transmit an attach accept message to the UE 115-c based on the attach request message received at 470.
  • the UE 115-c may establish the second connection with the first cell supported by the base station 105-d based on the attach request message transmitted at 470 and/or the attach accept message received at 475.
  • the UE 115-c may establish the second connection with the first cell associated with the first radio access technology (e.g., 4G, LTE) based on the attach accept message.
  • the second connection with the first cell may restrict dual connectivity operation with the second radio access technology (e.g., NR, 5G) .
  • the UE 115-c may communicate information with the first cell associated with the first radio access technology (e.g., 4G, LTE) via the second connection.
  • the UE 115-c may activate the EPS bearer.
  • the UE 115-c may perform an activate EPS bearer context procedure.
  • the UE 115-c may be configured to activate the default EPS bearer.
  • the UE 115-c may be configured to activate the EPS bearer at 480 based on receiving the attach accept message at 475.
  • the UE 115-c may additionally or alternatively be configured to utilize a timer to track and/or control the EPS reactivation procedure.
  • the UE 115 may use a timer to track if the threshold counter value is reached with a particular duration. For example, upon receiving the configuration message indicating deactivation of the EPS bearer at 420, the UE 115-c may determine that a timer is inactive, and may activate the timer based on receiving the configuration message.
  • the configuration message indicating deactivation of the EPS bearer may be configured to trigger/initiate the timer at the UE 115-c.
  • the UE 115-c may detach from the first cell at 460-465 based on the activation of the timer.
  • the UE 115-c may configure an active duration for the timer.
  • the UE 115-c may be configured to determine the active duration for the timer using any techniques or characteristics. For example, in some cases, the UE 115-c may configure the active duration for the timer based on a default active duration. By way of another example, the UE 115-c may configure the active duration for the timer based on network conditions or characteristics, characteristics of the first cell, a previous connection with the first cell, past connection information, and the like.
  • the UE 115-c may determine an expiry of the timer.
  • the UE 115-c may be configured to determine the expiry of the timer based on the active duration. For example, the UE 115-c may determine the expiry of the timer based on the timer running for at least the active duration. In some cases, the UE 115-c may reset the timer to a timer start value based on the expiry of the timer. Additionally or alternatively, the UE 115-c may deactivate the timer based on the expiry of the timer.
  • counter value used throughout the process flow 400 may be initialized, reset, or otherwise modified based on the timer.
  • the UE 115-c may be configured to reset the counter value to a counter start value (e.g., initial counter value) based on the expiry of the timer. For example, after one or more iterations through the loop procedure at 455, the UE 115-c may have updated/incremented the counter value at 435 one or more iterations from the start counter value to another counter value. In this example, after the expiry of the timer, the UE 115-c may be configured to reset the counter value to the start counter value.
  • a counter start value e.g., initial counter value
  • the UE 115-c may be able to restart the attempts to re-establish the EPS bearer with the first cell supported by the base station 105-d. In some cases, resetting the counter value to a counter start value may improve the likelihood of a successful connection.
  • the UE 115-c may be configured to reset the counter value to a counter start value and/or reset the timer based on the UE 115-c switching connections between cells. For example, the UE 115-c may move or otherwise switch a connection from the first cell supported by the base station 105-d to a third cell different than the first cell. The third cell may be supported by the base station 105-d or another base station. In this example, the UE 115-c may reset the timer to a start timer value based on switching the connection from the first cell to the second cell.
  • the UE 115-c may additionally or alternatively deactivate the timer based on switching the connection from the first cell to the second cell. In some aspects, the UE 115-c may also reset the counter value to the counter start value based on switching the connection from the first cell to the third cell. In these examples, by resetting the timer and/or counter value upon switching connections between cells, the UE 115-c may attempt to establish the EPS bearer a given number of instances for each cell. Furthermore, by resetting the timer and/or counter value upon switching connections between cells, previous attempts to re-establish the EPS bearer with the first cell may not prevent the UE 115-c from attempting to re-establish the EPS bearer with the third cell.
  • the techniques described with respect to FIG. 4 may enable the UE 115-c to more efficiently and effectively recover from a call failure in DCNR. More specifically, the techniques described herein with respect to FIG. 4 may prevent the UE 115-c from becoming stuck in an EPS bearer re-establishment loop where the UE 115-c continually tries to activate the EPS bearer, and continually has to release the connection again and again. In particular, the techniques described herein may enable the UE 115-c to reduce the number of times the UE 115-c unsuccessfully attempts to re-establish the EPS bearer, and may reduce the time required to resume data transfer with the first cell (e.g., LTE cell) associated with the first radio access technology.
  • the first cell e.g., LTE cell
  • FIG. 5 shows a block diagram 500 of a device 505 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. For example, utilizing a counter value to track attempts to re-establish an EPS bearer at the UE 115 may improve the efficiency and reliability of wireless communications.
  • detaching from a cell and restricting dual connectivity operation may reduce attempts by the UE 115 to re-establish the EPS bearer, and may thereby reduce power consumption at the UE.
  • the UE 115 may expedite the return of data transfer at the UE 115, thereby improving user experience with the UE 115.
  • a processor of the UE 115 may reduce processing resources used for uplink and downlink communications. For example, by reducing the number of attempts to re-establish the EPS bearer, the processor of the UE 115 may reduce the number of retransmissions and signaling resources used by the UE 115, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle uplink transmission and/or downlink reception.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 645.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a cell connectivity manager 620, a setup procedure manager 625, a configuration message receiving manager 630, an EPS counter manager 635, and a cell detachment manager 640.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the cell connectivity manager 620 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation.
  • the setup procedure manager 625 may perform a setup procedure for a second cell associated with a second radio access technology.
  • the configuration message receiving manager 630 may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the EPS counter manager 635 may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • the cell detachment manager 640 may detach from the cell based on the counter value satisfying a threshold counter value.
  • the transmitter 645 may transmit signals generated by other components of the device 605.
  • the transmitter 645 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 645 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 645 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a cell connectivity manager 710, a setup procedure manager 715, a configuration message receiving manager 720, an EPS counter manager 725, a cell detachment manager 730, an attach request transmitting manager 735, an attach accept receiving manager 740, an information manager 745, a deactivation accept transmitting manager 750, an EPS bearer manager 755, a service request transmitting manager 760, a timer manager 765, a TAU transmitting manager 770, and a TAU receiving manager 775. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the cell connectivity manager 710 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. In some examples, the cell connectivity manager 710 may establish the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology. In some examples, the cell connectivity manager 710 may transmit, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the cell connectivity manager 710 may switch the connection from the first cell to a third cell.
  • the first radio access technology includes a long term evolution technology, a fourth generation (4G) technology, or both.
  • the second radio access technology includes a new radio technology, a fifth generation (5G) technology, or both.
  • the configuration message receiving manager 720 may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. In some examples, the configuration message receiving manager 720 may receive, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer.
  • the EPS counter manager 725 may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the EPS counter manager 725 may increment the counter value from a first counter value to a second counter value. In some examples, the EPS counter manager 725 may compare the second counter value to the threshold counter value, where the second counter value is less than the threshold counter value. In some examples, the EPS counter manager 725 may maintain the connection with the cell based on the second counter value being less than the threshold counter value. In some examples, the EPS counter manager 725 may increment the counter value from the second counter value to a third counter value.
  • the EPS counter manager 725 may compare the third counter value to the threshold counter value, where the connection with the cell is based on comparing the third counter value to the threshold counter value. In some examples, the EPS counter manager 725 may configure the threshold counter value based on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
  • the cell detachment manager 730 may detach from the cell based on the counter value satisfying a threshold counter value. In some examples, the cell detachment manager 730 may detach from the cell is further based on the timer being activated. In some examples, the cell detachment manager 730 may transmit a detach request message to the base station supporting the cell.
  • the attach request transmitting manager 735 may transmit, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell.
  • the attach accept receiving manager 740 may receive, from the base station, an attach accept message, where the second connection is established with the cell based on the attach accept message.
  • the information manager 745 may communicate information with the cell associated with the first radio access technology via the second connection.
  • the deactivation accept transmitting manager 750 may transmit, to the base station supporting the cell, a deactivation accept message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • the EPS bearer manager 755 may deactivate the evolved packet system bearer at the UE based on transmitting the deactivation accept message. In some examples, the EPS bearer manager 755 may activate at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based on transmitting the connectivity request message.
  • the service request transmitting manager 760 may transmit, to the base station supporting the cell, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer is received based on transmitting the service request message. In some examples, the service request transmitting manager 760 may transmit an additional service request message to the base station supporting the cell, where the additional configuration message indicating the deactivation of the evolved packet system bearer is received based on transmitting the additional service request message.
  • the timer manager 765 may determine that a timer is inactive. In some examples, the timer manager 765 may activate the timer based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the timer manager 765 may determine an expiry of the timer. In some examples, the timer manager 765 may reset the counter value to a counter start value based on the expiry of the timer. In some examples, the timer manager 765 may reset the timer to a timer start value based on the expiry of the timer. In some examples, the timer manager 765 may deactivate the timer based on the expiry of the timer.
  • the timer manager 765 may configure an active duration for the timer, where the expiry of the timer is determined based on the timer running for at least the active duration. In some examples, the timer manager 765 may reset the timer to a timer start value based on switching the connection to the third cell. In some examples, the timer manager 765 may deactivate the timer based on switching the connection to the third cell. In some examples, the timer manager 765 may reset the counter value to a counter start value based on switching the connection to the third cell.
  • the TAU transmitting manager 770 may transmit, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell.
  • the TAU receiving manager 775 may receive a tracking area update accept based on transmitting the tracking area update request.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting recovering user equipment from call failure in new radio) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the actions performed by the communications manager 915 as described herein may be implemented to realize one or more potential advantages. For example, performing a detach procedure with the UE 115 based on the configuration message indicating deactivation of the EPS bearer may improve the efficiency and reliability of wireless communications. In particular, performing the detach procedure with the UE 115 may reduce attempts by the UE 115 to re-establish the EPS bearer, and may thereby reduce power consumption at the base station 105. Moreover, by performing the detach procedure and resuming data transfer with the UE 115 via a connection which restricts dual connectivity operation at the UE 115 may expedite the return of data transfer thereby improving user experience.
  • a processor of the base station 105 may reduce processing resources used for uplink and downlink communications. For example, by reducing the number of attempts to re-establish the EPS bearer, the processor of the base station 105 may reduce the number of retransmissions and signaling resources used by the base station 105, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle downlink transmission and/or uplink reception.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a connectivity manager 1020, a setup procedure manager 1025, a configuration message transmitting manager 1030, and a detach procedure manager 1035.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the connectivity manager 1020 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology.
  • the setup procedure manager 1025 may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology.
  • the configuration message transmitting manager 1030 may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the detach procedure manager 1035 may perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the transmitter 1040 may transmit signals generated by other components of the device 1005.
  • the transmitter 1040 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1040 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a connectivity manager 1110, a setup procedure manager 1115, a configuration message transmitting manager 1120, a detach procedure manager 1125, an attach request receiving manager 1130, an attach accept transmitting manager 1135, an information manager 1140, a deactivation accept receiving manager 1145, a service request receiving manager 1150, a TAU receiving manager 1155, and a TAU transmitting manager 1160.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the connectivity manager 1110 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology. In some examples, the connectivity manager 1110 may establish the second connection with the UE via the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology. In some examples, the connectivity manager 1110 may receive, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the connectivity manager 1110 may receive, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the first radio access technology includes a long term evolution technology, a fourth generation (4G) technology, or both.
  • the second radio access technology includes a new radio technology, a fifth generation (5G) technology, or both.
  • the setup procedure manager 1115 may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology. In some examples, the setup procedure manager 1115 may perform a setup procedure with the UE via the second cell supported by the base station, where the second cell is associated with the second radio access technology, where determining the indication that the UE has performed a setup procedure with the second cell associated with the second radio access technology is based on performing the setup procedure with the UE via the second cell supported by the base station.
  • the configuration message transmitting manager 1120 may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer. In some examples, the configuration message transmitting manager 1120 may transmit, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
  • the detach procedure manager 1125 may perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the detach procedure manager 1125 may receive, from the UE, a detach request message. In some examples, the detach procedure manager 1125 may transmit, to the UE, a detach accept message.
  • the attach request receiving manager 1130 may receive, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on performing the detach procedure with the UE.
  • the attach accept transmitting manager 1135 may transmit, to the UE, an attach accept message, where the second connection is established with the UE based on the attach accept message.
  • the information manager 1140 may communicate information with the UE via the cell associated with the first radio access technology via the second connection.
  • the deactivation accept receiving manager 1145 may receive, from the UE, a deactivation accept message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the service request receiving manager 1150 may receive, from the UE, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer is transmitted based on receiving the service request message.
  • the service request receiving manager 1150 may receive an additional service request message from the UE, where the additional configuration message indicating the deactivation of the evolved packet system bearer is transmitted based on receiving the additional service request message.
  • the TAU receiving manager 1155 may receive, from the UE, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell.
  • the TAU transmitting manager 1160 may transmit a tracking area update accept based on receiving the tracking area update request.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • the memory 1230 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting recovering user equipment from call failure in new radio) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may perform a setup procedure for a second cell associated with a second radio access technology.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may detach from the cell based on the counter value satisfying a threshold counter value.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may perform a setup procedure for a second cell associated with a second radio access technology.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may detach from the cell based on the counter value satisfying a threshold counter value.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell.
  • the operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by an attach request transmitting manager as described with reference to FIGs. 5 through 8.
  • the UE may establish the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology.
  • the operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may perform a setup procedure for a second cell associated with a second radio access technology.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
  • the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may increment the counter value from a first counter value to a second counter value.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may compare the second counter value to the threshold counter value, where the second counter value is less than the threshold counter value.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may maintain the connection with the cell based on the second counter value being less than the threshold counter value.
  • the operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
  • the UE may detach from the cell based on the counter value satisfying a threshold counter value.
  • the operations of 1540 may be performed according to the methods described herein. In some examples, aspects of the operations of 1540 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a setup procedure manager as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a configuration message transmitting manager as described with reference to FIGs. 9 through 12.
  • the base station may perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a detach procedure manager as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may establish a connection with a first cell associated with a first radio access technology in a non-standalone (NSA) mode of operation. The UE may further perform a setup procedure for a second cell associated with a second radio access technology. The UE may receive, from the first cell, a configuration message indicating a deactivation of an evolved packet system (EPS) bearer. The UE may be configured to update a counter value based on receiving the configuration message indicating the deactivation of the EPS bearer. In some cases, the UE may be configured to detach from the first cell and re-attach to the first cell with DCNR not supported if the counter value satisfies a threshold counter value, and maintain a connection with the first cell if the counter value does not satisfy the threshold counter value.

Description

RECOVERING USER EQUIPMENT FROM CALL FAILURE IN NEW RADIO
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to recovering one or more user equipments from call failure in new radio.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some systems, a user equipment (UE) may connect to an LTE cell in a non-standalone (NSA) mode. The UE may support dual connectivity (DC) with NR and LTE. In some cases, however, the UE may enter a loop where it continually tries to activate an evolved packet system (EPS) bearer, and continually has to release the connection again and again-causing significant adverse resource and messaging overhead.
SUMMARY
In some systems, a user equipment (UE) may connect to an LTE cell in a non-standalone (NSA) mode. The UE may support dual connectivity (DC) with NR and LTE. The UE may transmit a service request to the LTE cell, and the LTE cell may transmit a message indicating that an evolved packet system (EPS) bearer is deactivated. The UE may attempt to  re-activate the EPS bearer by transmitting a connectivity request (e.g., a packet data network (PDN) connectivity request) to the LTE cell. However, in some cases, the UE may transmit an additional service request, and receive an additional message indicating that the EPS bearer has been deactivated again. In such cases, the UE may enter a loop where it continually tries to activate the EPS bearer, and continually has to release the connection again and again-causing significant adverse resource and messaging overhead.
The described techniques herein relate to improved methods, systems, devices, and apparatuses that support recovering user equipment from call failure in new radio. Generally, the described techniques provide for disabling dual connectivity operation within cells which experience a deactivation of an EPS bearer when dual connectivity is enabled. In some examples, a UE may track attempts to re-establish the EPS bearer, for example, via a counter or a timer, to prevent the UE from operating in a loop where it continually tries to activate the EPS bearer, and continually has to release the connection.
A method of wireless communication at a UE is described. The method may include establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, performing a setup procedure for a second cell associated with a second radio access technology, receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, updating a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detaching from the cell based on the counter value satisfying a threshold counter value.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, performing a setup procedure for a second cell associated with a second radio access technology, receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, updating a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detaching from the cell based on the counter value satisfying a threshold counter value.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the connection with the cell may include operations, features, means, or instructions for transmitting, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an attach accept message, where the second connection may be established with the cell based on the attach accept message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating information with the cell associated with the first radio access technology via the second connection.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a deactivation accept message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and deactivating the evolved packet system bearer at the UE based on transmitting the deactivation accept message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based on transmitting the connectivity request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer may be received based on transmitting the service request message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, updating the counter value may include operations, features, means, or instructions for incrementing the counter value from a first counter value to a second counter value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  comparing the second counter value to the threshold counter value, where the second counter value may be less than the threshold counter value, and maintaining the connection with the cell based on the second counter value being less than the threshold counter value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, receiving, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer, incrementing the counter value from the second counter value to a third counter value, and comparing the third counter value to the threshold counter value, where the connection with the cell may be based on comparing the third counter value to the threshold counter value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an additional service request message to the base station supporting the cell, where the additional configuration message indicating the deactivation of the evolved packet system bearer may be received based on transmitting the additional service request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a timer may be inactive, and activating the timer based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detaching from the cell may be further based on the timer being activated.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an expiry of the timer, resetting the counter value to a counter start value based on the expiry of the timer, resetting the timer to a timer start value based on the expiry of the timer, and deactivating the timer based on the expiry of the timer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring an active duration for the timer, where the expiry of the timer may be determined based on the timer running for at least the active duration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the cell may include operations, features, means, or instructions for switching the connection from the first cell to a third cell, resetting the timer to a timer start value based on switching the connection to the third cell, and deactivating the timer based on switching the connection to the third cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the cell may include operations, features, means, or instructions for switching the connection from the first cell to a third cell, and resetting the counter value to a counter start value based on switching the connection to the third cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring the threshold counter value based on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the setup procedure for the second cell associated with the second radio access technology may include operations, features, means, or instructions for transmitting, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell, and receiving a tracking area update accept based on transmitting the tracking area update request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a detach request message to the base station supporting the cell, and receiving, from the base station supporting the cell, a detach accept message, where detaching from the cell includes may be based on receiving the detach accept message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first radio access technology includes a long term evolution technology, a 4G technology, or both, and the second radio access technology includes a new radio technology, a 5G technology, or both.
A method of wireless communication at a base station is described. The method may include establishing a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and performing a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for establishing a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and performing a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the connection with the UE via the cell may include operations, features, means, or instructions for receiving, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on performing the detach procedure with the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing the second connection with the UE via the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an attach accept message, where the second connection may be established with the UE based on the attach accept message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating information with the UE via the cell associated with the first radio access technology via the second connection.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a deactivation accept message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer may be transmitted based on receiving the service request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer, and transmitting, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an additional service request message from the UE, where the additional configuration message indicating the deactivation of the evolved packet system bearer may be transmitted based on receiving the additional service request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a setup procedure with the UE via the second cell supported by the base station, where the second cell may be associated with the second radio access technology, where determining the indication that the UE may have performed a setup procedure with the second cell associated with the second radio access technology may be based on performing the setup procedure with the UE via the second cell supported by the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the setup procedure with the UE via the second cell may include operations, features, means, or instructions for receiving, from the UE, a tracking area update request including an indication of a dual connectivity operation  with the cell and the second cell, and transmitting a tracking area update accept based on receiving the tracking area update request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the detach procedure with the UE may include operations, features, means, or instructions for receiving, from the UE, a detach request message, and transmitting, to the UE, a detach accept message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first radio access technology includes a long term evolution technology, a 4G technology, or both, and the second radio access technology includes a new radio technology, a 5G technology, or both.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
FIGs. 13 through 16 show flowcharts illustrating methods that support recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some systems, a user equipment (UE) may connect to a Long Term Evolution (LTE) cell in a non-standalone (NSA) mode. The UE may support dual connectivity (DC) with New Radio (NR) and LTE. The UE may transmit a service request to the LTE cell, and the LTE cell may transmit a message indicating that an evolved packet system (EPS) bearer is deactivated. The UE may attempt to re-activate the EPS bearer by transmitting a connectivity request (e.g., packet data network (PDN) connectivity request) to the LTE cell. However, in some cases, the UE may transmit an additional service request, and receive an additional message indicating that the EPS bearer has been deactivated again (e.g., due to a deployment issue with the network or for some other reason) . In such cases, the UE may unfortunately enter a loop where it continually tries to activate the EPS bearer, and continually has to release the connection. Accordingly, there is a need in the art for systems and methods which may address the issues associated with EPS bearer deactivation with dual connectivity new radio (DCNR) .
To address the issues associated with EPS bearer deactivation with dual connectivity, a UE may limit the number of attempts for this process, for example by tracking a counter, to break out of the loop. For example, each time the UE receives a message indicating EPS bearer deactivation, the UE may track this by updating (e.g., incrementing) the counter. If the counter reaches a threshold counter value, the UE may detach from the cell  and re-attach with an LTE connection (e.g., by indicating no support for DCNR) . By indicating no support for DCNR, this new connection may prevent the UE from re-entering the adverse loop procedure. Additionally, by disabling DCNR and re-establishing a connection with the LTE cell, the UE may resume other operations, such as data transfer, with the LTE cell.
In some aspects, the UE may additionally or alternatively use a timer to track if the threshold counter value is reached with a particular duration. For example, the UE may activate a timer based on, as an example, receiving a configuration message indicating the deactivation of the EPS bearer. In some cases, the UE may be configured to reset the counter value after expiry of the timer, or upon establishing a connection with a new cell, or both. By resetting the counter value based on expiry of the timer, or establishing a connection with a new cell, or both, the UE may be configured to reset attempts to re-establish the EPS bearer with a given cell, which may improve the likelihood of a successful connection.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of example process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to recovering user equipment from call failure in new radio.
FIG. 1 illustrates an example of a wireless communications system 100 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate  via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT)  device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may  refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control  channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may  support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to  receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .  Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station  105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
The UEs 115 and the base stations of the wireless communications system 100 may support communications to enable deactivation of DCNR within cells which experience a deactivation of an EPS bearer when DCNR is enabled. In particular, the wireless communications system 100 may support communications which enable the UEs 115 to track attempts to re-establish the EPS bearer with a counter value, and to detach from the cell and disable DCNR once the counter value reaches a threshold counter value. For example, a UE 115 may establish a connection with a first cell (e.g., first base station 105-a) , such as an LTE  cell. The UE 115 may perform a setup procedure for a second cell (e.g., second base station 105-b) , such as an NR cell. The UE 115 may transmit a service request to the first cell, and receive a configuration message indicating a deactivation of an EPS bearer. In some cases, the configuration message indicating the deactivation of the EPS bearer may be received based on the service request. Moreover, the configuration message indicating the deactivation of the EPS bearer may be based on the UE 115 operating in an NSA mode of operation, and establishing a connection with both the LTE cell and the NR cell. In this example, the UE 115 may update a counter value based on receiving the configuration message indicating the deactivation of the EPS bearer, and may detach from the cell based on the counter value satisfying a threshold counter value.
In some aspects, the UE 115 may update the counter value by incrementing the counter value from a first counter value to a second counter value. The UE 115 may compare the second counter value to the threshold counter value, and may determine to maintain a connection with the LTE cell or to detach from the LTE cell based on the comparing the second counter value to the threshold counter value. For instance, if the second counter value does not satisfy the threshold counter value, the UE 115 may maintain the connection with the LTE cell, and may attempt to re-establish the EPS bearer for DCNR. Alternatively, if the second counter value satisfies the threshold counter value, the UE 115 may detach from the LTE cell. In some aspects, upon detaching from the LTE cell, the UE 115 may transmit an attach request for a connection with the LTE cell restricting dual connectivity. In this regard, once the counter value satisfies the threshold counter value, the UE 115 may disable dual connectivity, and attempt to re-establish a connection with the LTE cell to resume data transfer via LTE.
In some aspects, the UE 115 may additionally use a timer to track if the threshold counter value is reached with a particular duration. For example, the UE 115 may activate a timer based on receiving a configuration message indicating the deactivation of the EPS bearer. In some cases, the UE 115 may be configured to reset the counter value after expiry of the timer, or upon establishing a connection with a new cell, or both. By resetting the counter value based on expiry of the timer, or establishing a connection with a new cell, or both, the UE 115 may be configured to reset attempts to re-establish the EPS bearer with a given cell, which may improve the likelihood of a successful connection.
FIG. 2 illustrates an example of a wireless communications system 200 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include a UE 115-a, a first base station 105-a, and a second base station 105 b, which may be examples of UE 115 and base stations 105, as described with reference to FIG. 1.
The UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an LTE link between the UE 115-a and the first base station 105-a. Similarly, the UE 115-a may communicate with the second base station 105-b using a communication link 205-b, which may be an example of an NR/5G link between the UE 115-a and the second base station 105-b. In some cases, the communication links 205-a, 205-b may include examples of an access link (e.g., a Uu link) . The communication links 205-a, 205-b may include a bi-directional link that includes both uplink and downlink communication. For example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a. By way of another example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
The first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c. In some cases, the communication link 205-c may include an example of a link between two base stations (e.g., an Xn link) . The first base station 105-a and the second base station 105-b may, in some cases, be collocated. The communication link 205-c may include a bi-directional link. In some aspects, the first base station 105-a and the second base station 105-b may be associated with one or more cells. For example, the first base station 105-a may be associated with a first cell and the second base station 105-b may be associated with a second cell different than the first cell. For instance, the first base station 105-a may be associated with an LTE cell, and the second base station  105-b may be associated with an NR cell. In some aspects, the first base station 105-a or the second base station 105-b (or both) may facilitate communications between the UE 115-a and the other respective base station 105-a, 105-b. For example, upon establishing a connection with a cell supported by the UE 115-a via the communication link 205-a, the first base station 105-a may carry out communications with the UE 115-a to facilitate the establishment of a connection between the UE 115-a and a cell supported by the second base station 105-b.
As noted previously herein, while operating in an NSA mode of operation, it has been found that data transfer and EPS bearer activation at the UE 115-a may be successfully carried out within a particular cell (e.g., LTE cell) while the UE 115-a is operating in a single connectivity mode. For example, data transfer may be successfully carried out when the UE 115-a establishes a connection with the first base station 105-a (e.g., first cell) . In particular, an EPS bearer may be successfully activated when the UE 115-a is communicatively coupled to the first base station 105-a. However, it has been found that the EPS bearer may be deactivated when the UE 115-a enters a dual connectivity mode of operation with NR5G wireless communications. For example, upon establishing a connection with a second cell (e.g., second base station 105-b) supporting NR/5G communications, the UE 115-a may transmit a service request to the first base station 105-a, and the first base station 105-a may transmit a configuration message indicating deactivation of the EPS bearer based on the service request.
This issue associated with EPS bearer deactivation has not yet been addressed by any network configuration or update. Accordingly, in some wireless communications systems, a UE may become stuck in a loop where it continually tries to activate the EPS bearer, and continually has to release the connection again and again-causing significant adverse resource and messaging overhead. Accordingly, some aspects of the disclosure are directed to techniques which address these identified issues with EPS bearer deactivation. In particular, the wireless communications system 200 may enable the UE 115-a to break out of the loop associated with EPS bearer reactivation by tracking information, such as tracking a counter value, and comparing the counter value to a threshold counter value.
For example, the UE 115-a may establish a connection with a first cell associated with a first radio access technology (e.g., 4G, LTE) . In some aspects, the UE 115 a may establish the first connection with the first cell while operating in an NSA mode of operation.  For example, the UE 115 b may establish a first connection with a first cell associated with the base station 105 c while in an NSA mode of operation. In some aspects, the UE 115-a may establish the first connection with the first cell associated with the base station 105-a via the communication link 205-a illustrated in FIG. 2. The UE 115-a may establish the connection with the first cell associated with the base station 105-a, for example, by performing an attachment procedure. For example, the UE 115-a may transmit an attachment request to the base station 105-a, and the base station 105-a may transmit an attachment acknowledgement to the UE 115-a in response to the attachment request.
After establishing the connection with the first cell (e.g., first base station 105-a) , the UE 115-a may perform a setup procedure for a second cell associated with a second radio access technology (e.g., NR 5G) . For example, the UE 115-a may perform a setup procedure with a second cell associated with the second base station 105-b. In some cases, the UE 115-a may perform the setup procedure directly with the second base station 105-b via the communication link 205-b. Additionally or alternatively, the UE 115-a may perform the setup procedure with the second base station 105-b through alternative communications, such as with the first base station 105-a. In this regard, the first cell (e.g., first base station 105-a) may facilitate the connection between the UE 115-a and the second base station 105-b. Accordingly, the UE 115-a may be configured to operate in a dual connectivity mode associated with a non-standalone mode of 5G in which the first base station 105-a provides an LTE cell for various operations, such as control plane signaling, and the second base station 105-b provides a 5G cell for various operations, such as transmitting and receiving user data.
After establishing the connection with the first cell (e.g., first base station 105-a) and performing the setup procedure with the second cell (e.g., second base station 105-b) , the UE 115-a may transmit a service request to the first cell. The service request may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like. The base station 105-a may transmit a configuration message 210 which indicates a deactivation of an EPS bearer. The configuration message 210 may be transmitted based on the service request received from the UE 115-a. In some cases, the configuration message 210 may be based on the UE 115-a operating in the NSA mode of operation, or the dual connectivity mode of operation, or both. In particular, the configuration message 210 indicating the deactivation of the EPS bearer may be based on the UE 115-a  performing the setup procedure, or establishing a connection with the second cell (e.g., second base station 105-b) after establishing the connection with the first cell (e.g., first base station 105-a) , or both.
The UE 115-a may update a counter value based on receiving the configuration message 210. The counter value may be configured to track EPS bearer reactivation attempts at the UT 115-a. The UE 115-a may further compare the updated counter value to a threshold counter value to determine whether to detach from the first cell (e.g., first base station 105-a) or maintain the connection with the first cell. For example, in cases where the updated counter value satisfies the threshold counter value, the UE 115-a may detach from the first cell to break the loop associated with EPS bearer re-establishment. For instance, the UE 115-a may transmit a detach request message 215 in response to the configuration message 210 indicating a deactivation of the EPS bearer. The UE 115-a may then transmit an attach request to the first cell (e.g., first base station 105-a) restricting dual connectivity operation. In this regard, the UE 115-a may detach from the first cell while operating in the dual connectivity mode of operation via the detach request message 215, and attempt to re-establish a connection with the first cell while operating in the single connectivity mode of operation.
In cases where the updated counter value does not satisfy the threshold counter value, the UE 115-a may transmit a connectivity request message 220 (e.g., a PDN connectivity request message 220) to the base station 105-a based on the configuration message 210. In this regard, the UE 115-a may attempt to re-establish the EPS bearer upon receiving the configuration message 210. In some cases, the UE 115-a may receive an additional configuration message 210 from the base station 105-a indicating deactivation of the EPS bearer, at which point the UE 115-a may be configured to update the counter again, and compare the updated counter to the threshold counter value to determine whether to detach from the first cell or maintain the connection with the first cell.
The techniques described herein may prevent the UE 115-a from becoming stuck in an EPS bearer re-establishment loop where the UE 115-a continually tries to activate the EPS bearer, and continually has to release the connection again and again. Accordingly, aspects of the present disclosure may reduce signaling overhead associated with establishing the EPS bearer for an NSA mode of operation. Additionally, aspects of the present disclosure  may expedite data transfer at the UE 115-a by restricting/disabling dual connectivity operation at the UE 115-a and establishing a connection with the first cell (e.g., LTE cell) in a single connectivity mode of operation based on one or more conditions or circumstances as described herein. Aspects of the present disclosure may be further explained and understood with reference to FIG. 3 and FIG. 4, among other sections.
FIG. 3 illustrates an example of a process flow 300 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of  wireless communications system  100 or 200. For example, the process flow 300 may illustrate establishing a connection with a first cell, performing a setup procedure with a second cell, receiving a configuration message indicating a deactivation of an EPS bearer, updating a counter value, and detaching from the first cell based on the counter satisfying a threshold counter value., as described with reference to FIGs. 1–2.
In some cases, process flow 300 may include a UE 115-b and a base station 105-c which may be examples of corresponding devices as described herein. In particular, the UE 115-b and the base station 105-c illustrated in FIG. 3 may be examples of the UE 115-a and the base station 105-a illustrated in FIG. 2. For example, in some cases, the base station 105-c may support a cell associated with a first radio access technology. For instance, the base station 105-c may support a 4G or LTE cell.
In some examples, the operations illustrated in process flow 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 305, the UE 115-b may establish a first connection with a first cell associated with a first radio access technology (e.g., 4G, LTE) . In some aspects, the UE 115-a may establish the first connection with the first cell while operating in an NSA mode of operation. For example, the UE 115-b may establish a first connection with a first cell associated with the base station 105-c while in an NSA mode of operation. In some aspects, the UE 115-b  may establish the first connection with the first cell associated with the base station 105-c via the communication link 205-a illustrated in FIG. 2. In some aspects, the UE 115-b may establish the first connection with the first cell associated with the base station 105-c by performing an attachment procedure. For example, the UE 115-b may transmit an attachment request to the base station 105-c, and the base station 105-c may transmit an attachment acknowledgement to the UE 115-b in response to the attachment request.
In some aspects, the UE 115-b may establish a connection with a first cell associated with a first radio access technology. For example, the base station 105-c may support an LTE cell (e.g., a 4G cell) , and the UE 115-b may establish a connection with the first cell (e.g., LTE cell, 4G cell) via the base station 105-c.
At 310, the UE 115-b may perform a setup procedure with a second cell associated with a second radio access technology. In some cases, the UE 115-b may perform the setup procedure with the second cell through the connection with the first cell. For example, in some cases, the UE 115-a may transmit a tracking area update (TAU) request to the base station 105-c, where the TAU request includes a request for the UE 115-b to enter a dual connectivity mode of operation with the second cell supported by the base station 105-c. In this regard, the first cell (e.g., base station 105-c) may be said to facilitate the setup procedure between the UE 115-c and the second cell. Additionally or alternatively, the UE 115-c may perform the setup procedure with a second base station supporting the second cell.
At 315, the UE 115-b may enter dual connectivity operation. In some aspects, the UE 115-b may enter the dual connectivity operation by establishing a second connection with a second cell in addition to the first connection with the first cell. For example, the UE 115-b may enter dual connectivity operation by establishing a second connection with a second cell different than the first cell. For instance, the UE 115-b may enter the dual connectivity operation by establishing a second connection with a second cell associated with a second base station which is different than the base station 105-c.
At 320, the UE 115-b may transmit a service request message to the base station 105-c supporting the first cell. The service request message may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like.
At 325, the base station 105-c supporting the first cell may transmit a configuration message indicating a deactivation of an EPS bearer, among other aspects. The base station 105-c may transmit the configuration message based on the service request. Additionally or alternatively, the base station 105-c may transmit the configuration message indicating a deactivation of an EPS bearer based on the UE 115-c performing the setup procedure with the second cell at 310, or entering the dual connectivity operation at 315, or both. For example, the base station 105-c may be configured to determine an indication that the UE 115-c performed the setup procedure with the second cell different than the first cell, and may transmit the configuration message indicating a deactivation of an EPS bearer based on determining the UE 115-b performed the setup procedure with the second cell.
At 330, the UE 115-b may update a counter value, and may compare the updated counter value to a threshold counter value. In some aspects, the UE 115-b may be configured to track instances in which the EPS bearer is deactivated, or instances where the UE 115-b has attempted to re-establish the EPS bearer, /or instances in which the first cell has deactivated the EPS bearer, or any combination thereof. In this regard, the UE 115-b may be configured to update the counter value based on receiving the configuration message at 325. For instance, the UE 115-b may be configured to update a first counter value (e.g., initial counter value) to a second counter value based on receiving the configuration message at 325.
The UE 115-b may update the counter value using any techniques. For example, the UE 115-b may be configured to update the counter value by incrementing a first counter value (e.g., initial counter value, or counter start value) from a first counter value to a second counter value. For instance, in cases where the first counter value is “1, ” the UE 115-b may be configured to increment the first counter value to a second counter value of “2. ” In this example, the UE 115-b may be configured to compare the second counter value to the threshold counter value.
The threshold counter value may be set, initialized, or otherwise configured using any techniques. For example, in some cases, the threshold counter value may include a default threshold counter value. For instance, the UE 115-b and/or the network (e.g., wireless communications system 200) may set the threshold counter value to some integer, such as five. Additionally or alternatively, the threshold counter value may be statically, semi- statically, or dynamically configured based on any characteristics including, but not limited to, the connection with the first cell, characteristics of the first cell (e.g., SNR, SINR) , a previous connection with the first cell, past connection information between the UE 115-b and the cell, past connection information between the UE 115-b and another cell, or any combination thereof.
At 335, the UE 115-b may detach from the first cell based on the updated counter value satisfying the threshold counter value. For example, at 340, the UE 115-b may transmit a detach request to the base station 105-c supporting the first cell based on the updated counter value satisfying the threshold counter value. In this example, the base station 105-c supporting the first cell may transmit a detach accept to the UE 115-b based on the detach request received from the UE 115-b at 345.
At 350, upon detaching from the first cell, the UE 115-b may transmit an attach request message for a second connection with the first cell. The UE 115-b may transmit the attach request based on detaching from the first cell at 340-355. In some aspects, the UE 115-b may transmit the attach request for the second connection which restricts dual connectivity operation with the second radio access technology (e.g., 5G, NR) . In this regard, the attach request at 350 may include an indication that dual connectivity (e.g., DCNR) is not supported.
At 355, the base station 105-c supporting the first cell may transmit an attach accept based on receiving the attach request. The UE 115-b may establish a second connection with the first cell based on receiving the attach request. In some cases, the second connection may restrict dual connectivity operation at the UE 115-b. For example, the UE 115-b may transmit the attach request including an indication that DCNR is not supported, and may subsequently establish the second connection with the first cell (e.g., LTE cell) based on the attach accept at 355.
In this example, the second connection with the first cell may restrict dual connectivity operation with the second radio access technology (e.g., 5G, NR) . In this regard, the second connection with the first cell may be established with the UE 115-b operating in a single connectivity mode of operation, and the UE 115-b may communicate information with the first cell (e.g., base station 105-c) associated with the first radio access technology via the second connection.
At 360, the UE 115-b may maintain the connection with the first cell based on the updated counter value failing to satisfy the threshold counter value. For example, the UE 115-b may determine that the updated counter value does not satisfy the threshold counter value at 330, and may maintain the connection with the first cell at 360 based on that determination.
At 365, the UE 115-b may transmit a connectivity request message (e.g., PDN connectivity request message) to the base station 105-b. In some cases, the UE 115-b may transmit the connectivity request message based on determining the updated counter value does not satisfy the threshold counter value, or based on determining to maintain the connection with the first cell, or both. In this regard, the UE 115-b may be configured to maintain the connection with the first cell and may attempt to re-establish the EPS bearer with the first cell by transmitting the PDN connectivity request message.
The techniques described with respect to FIG. 3 may prevent the UE 115-b from becoming stuck in an EPS bearer re-establishment loop where the UE 115-b continually tries to activate the EPS bearer, and continually has to release the connection again and again. In particular, the techniques described herein may enable the UE 115-b to reduce the number of times the UE 115-b unsuccessfully attempts to re-establish the EPS bearer, and may reduce the time required to resume data transfer with the first cell (e.g., LTE cell) associated with the first radio access technology.
FIG. 4 illustrates an example of a process flow 400 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communications system  100 or 200, and process flow 300. For example, the process flow 400 may illustrate establishing a connection with a first cell, performing a setup procedure with a second cell, receiving a configuration message indicating a deactivation of an EPS bearer, updating a counter value, and detaching from the first cell based on the counter satisfying a threshold counter value, as described with reference to FIGs. 1–3, among other sections.
In some cases, process flow 400 may include a UE 115-c and a base station 105-d which may be examples of corresponding devices as described herein. In particular, the UE 115-c and the base station 105-d illustrated in FIG. 4 may be examples of the UE 115-a and the base station 105-a illustrated in FIG. 2.
In some examples, the operations illustrated in process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 405, the UE 115-c may transmit a TAU request to the base station 105-d where the TAU request includes a request for the UE 115-c to establish a connection with a second cell associated with a second radio access technology (e.g., NR, 5G) . In this regard, the TAU request may include an indication of a dual connectivity operation with the first cell and the second cell (e.g., DCNR support request) . For example, the UE 115-c may establish a connection with a first cell supported by the base station 105-d in an NSA mode of operation. The first cell may be associated with a first radio access technology (e.g., 4G, LTE) . In some examples, after establishing the connection with the first cell, the UE 115-b may transmit the TAU request at 405. In some aspects, the TAU request may include a request for the UE 115-c to establish a second connection with a second cell supported by the base station 105-d. The TAU request may include a request for the UE 115-d to enter a dual connectivity mode of operation. The UE 115-b may transmit the TAU request to a base station associated with the first cell and/or a base station associated with the second cell.
At 410, the UE 115-c may receive a TAU accept from the base station 105-d. In some aspects, the base station 105-d may transmit the TAU accept based on the TAU request. The TAU accept may include an acceptance for the UE 115-c to perform a setup procedure with the second cell. Accordingly, the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell in addition to the first connection with the first cell. In this regard, the TAU accept may include an acceptance for dual connectivity operation with the first cell and the second cell (e.g., acceptance for the UE 115-c to operate in the dual connectivity mode) . For example, in cases where the base station 105-d is associated with the first cell, the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell associated with a second base station different than the base station 105-d. In some aspects, the UE 115-c may be  configured to perform a setup procedure with the second cell associated with the second radio access technology (e.g., NR, 5G) based on receiving the TAU accept at 410.
At 415, the UE 115-c may transmit a service request message to the base station 105-d supporting the first cell. The service request message may include a request associated with data traffic, such as a request for an internet browser, a request for an application, and the like.
At 420, the base station 105-d supporting the first cell may transmit a request to deactivate an EPS bearer. For example, the base station 105-d may transmit configuration message indicating a deactivation of a default EPS bearer. In some aspects, the base station 105-c may transmit the configuration message at 420 based on the service request message received at 415.
Additionally or alternatively, the base station 105-c may be configured to transmit the configuration message at 420 based on the dual connectivity operation at the UE 115-c with the first cell and the second cell. For example, in some cases, the base station 105-d may be configured to determine an indication that the UE 115-c established a connection with the second cell, and may be configured to transmit the configuration message indicating a deactivation of an EPS bearer based on the indication that the UE 115-c established the connection with the second cell. Similarly, by way of various examples, the base station 105-d may be configured to determine an indication that the UE 115-c performed a setup procedure with the second cell, and may be configured to transmit the configuration message indicating a deactivation of an EPS bearer based on the determination that the UE 115-c performed the setup procedure with the second cell. In some cases, the base station 105-d may be configured to determine the indication that the UE 115-c established a connection with the second cell or performed the setup procedure with the second cell based on the TAU request received at 405.
At 425, the UE 115-c may transmit a deactivation accept message to the base station 105-d. The UE 115-c may transmit the deactivation accept message based on receiving the configuration message indicating the deactivation of the EPS bearer at 420.
At 430, the UE 115-c may deactivate the EPS bearer at the UE 115-c. In some aspects, the UE 115-c may be configured to deactivate the EPS bearer at the UE 115-c based on transmitting the deactivation accept message at 425.
At 435, the UE 115-c may update a counter value based on receiving the configuration message indicating deactivation of the EPS bearer, and may determine whether the updated counter value satisfies a threshold counter value. In some aspects, the UE 115-c may be configured to track instances in which the EPS bearer is deactivated and/or instances where the UE 115-c has attempted to re-establish the EPS bearer. In this regard, the UE 115-b may be configured to update the counter value based on receiving the configuration message at 420. For instance, the UE 115-b may be configured to update a first counter value (e.g., initial counter value) to a second counter value based on receiving the configuration message at 420.
The threshold counter value may be set, initialized, or otherwise configured using any techniques. For example, in some cases, the threshold counter value may include a default threshold counter value. For instance, the UE 115-c and/or the network (e.g., wireless communications system 200) may set the threshold counter value to some integer, such as five. Additionally or alternatively, the threshold counter value may be statically, semi-statically, or dynamically configured based on any characteristics including, but not limited to, the connection with the first cell, characteristics of the first cell (e.g., SNR, SINR) , a previous connection with the first cell, past connection information between the UE 115-c and the cell, past connection information between the UE 115-c and another cell, or any combination thereof.
The UE 115-c may update the counter value using any techniques. For example, the UE 115-c may be configured to update the counter value by incrementing a first counter value (e.g., initial counter value) from a first counter value to a second counter value. For instance, in cases where the first counter value is “1, ” the UE 115-c may be configured to increment the first counter value to a second counter value of “2. ” In this example, the UE 115-c may be configured to compare the second counter value to the threshold counter value at 435. In some aspects, a counter value may satisfy the threshold counter value when it is equal or greater than the threshold counter value. Alternatively, a counter value may not satisfy the threshold counter value when the counter value is less than the threshold counter value.
In some aspects, process flow 400 may proceed to 440 if the updated counter value does not satisfy the threshold counter value. Comparatively, process flow 400 may  proceed to 460 if the updated counter value does satisfy the threshold counter value. For example, upon determining that the updated counter value does not satisfy the threshold counter value at 435 (e.g., updated counter value is less than the threshold counter value) , the UE 115-c may be configured to maintain the connection with the first cell, and the flow diagram may proceed to 440. Alternatively, upon determining that the updated counter value satisfies the threshold counter value at 435 (e.g., updated counter value is greater than or equal to the threshold counter value) , the UE 115-c may be configured to 460 to detach from the first cell.
At 440, the UE 115-c may initiate a data call request. At 445, the UE 115-c may transmit a connectivity request message (e.g., PDN connectivity request message) to the base station 105-d. The UE 115-c may transmit the connectivity request message based on receiving the configuration message indicating deactivation of the EPS bearer at 420. In some cases, the UE 115-c may transmit the connectivity request message based on determining the updated counter value does not satisfy the threshold counter value and/or based on determining to maintain the connection with the first cell. In this regard, the UE 115-c may be configured to maintain the connection with the first cell and may attempt to re-establish the EPS bearer with the first cell by transmitting the PDN connectivity request message.
At 450, the UE 115-c may activate the EPS bearer which was deactivated at 420-425 and/or a second EPS bearer at the UE 115-c. For example, the UE 115-c may perform an activate EPS bearer context procedure. In some aspects, the UE 115-c may be configured to activate the default EPS bearer. In some aspects, the UE 115-c may be configured to activate the EPS bearer at 450 based on transmitting the connectivity request message at 445.
At 455, the UE 115-c may be configured to perform a loop procedure, where the loop procedure causes the UE 115-c to perform at least a subset of the steps of the process flow 400 illustrated in FIG. 4. For example, in some aspects, the UE 115-c may be configured to perform the loop procedure at 455 and transmit an additional service request at 415. In this example, the UE 115-c may receive an additional configuration message indicating deactivation of the EPS bearer based on the service request. Additionally, the UE 115-c may transmit a deactivation accept message to the base station 105-d at 425 based on receiving the configuration message at 420, and may deactivate the EPS bearer at the UE 115-c at 430 based on transmitting the deactivation accept message at 425.
Continuing with the same example, the UE 115-c may be configured to update the counter value, and may determine whether the updated counter value satisfies a threshold counter value at 435. For instance, the UE 115-c may be configured to update/increment the counter value from the second counter value to a third counter value based on receiving the configuration message indicating deactivation of the EPS bearer. In this example, the UE 115-c may compare the third counter value to the threshold counter value to determine whether the third counter value satisfies the threshold counter value.
In some aspects, the connection with the first cell (e.g., base station 105-d) may be determined based on comparing the third counter value with the threshold counter value. For example, as noted previously herein, process flow 400 may proceed to 440 if the third counter value does not satisfy the threshold counter value, and may proceed to 460 if the third counter value does satisfy the threshold counter value. For example, upon determining that the third counter value does not satisfy the threshold counter value at 435 (e.g., third counter value is less than the threshold counter value) , the UE 115-c may be configured to maintain the connection with the first cell, and the flow diagram may proceed to 440. Alternatively, upon determining that the third counter value satisfies the threshold counter value at 435 (e.g., third counter value is greater than or equal to the threshold counter value) , the UE 115-c may be configured to proceed to 460 to detach from the first cell.
At 460, the UE 115-c may transmit a detach request message to the base station 105-d. The detach request message may include a request to detach from the first cell supported by the base station 105-d. The UE 115-c may be configured to transmit the detach request message to initiate a detach procedure from the first cell, where the detach request message is transmitted based on determining that the updated counter value satisfies the threshold counter value at 435.
At 465, the base station 105-d may transmit a detach accept message to the UE 115-c. The base station 105-d may transmit the detach accept message based on receiving the detach request message at 460. Furthermore, the UE 115-c may be configured to detach from the first cell based on receiving the detach accept message from the base station 105-d at 465.
At 470, the UE 115-c may transmit an attach request message for a second connection with the first cell. In some aspects, the UE 115-c may transmit the attach request message for a second connection with the first cell restricting dual connectivity operation  with the second radio access technology (e.g., NR, 5G) . In this regard, the attach request message may include an indication that dual connectivity (e.g., DCNR) is not supported.
At 475, the base station 105-d may transmit an attach accept message to the UE 115-c based on the attach request message received at 470. In some aspects, the UE 115-c may establish the second connection with the first cell supported by the base station 105-d based on the attach request message transmitted at 470 and/or the attach accept message received at 475. For example, the UE 115-c may establish the second connection with the first cell associated with the first radio access technology (e.g., 4G, LTE) based on the attach accept message. In this example, the second connection with the first cell may restrict dual connectivity operation with the second radio access technology (e.g., NR, 5G) . Furthermore, the UE 115-c may communicate information with the first cell associated with the first radio access technology (e.g., 4G, LTE) via the second connection.
At 480, the UE 115-c may activate the EPS bearer. For example, the UE 115-c may perform an activate EPS bearer context procedure. In some aspects, the UE 115-c may be configured to activate the default EPS bearer. In some aspects, the UE 115-c may be configured to activate the EPS bearer at 480 based on receiving the attach accept message at 475.
In some aspects, the UE 115-c may additionally or alternatively be configured to utilize a timer to track and/or control the EPS reactivation procedure. In some aspects, the UE 115 may use a timer to track if the threshold counter value is reached with a particular duration. For example, upon receiving the configuration message indicating deactivation of the EPS bearer at 420, the UE 115-c may determine that a timer is inactive, and may activate the timer based on receiving the configuration message. In this regard, the configuration message indicating deactivation of the EPS bearer may be configured to trigger/initiate the timer at the UE 115-c. In some aspects, the UE 115-c may detach from the first cell at 460-465 based on the activation of the timer.
In some aspects, the UE 115-c may configure an active duration for the timer. The UE 115-c may be configured to determine the active duration for the timer using any techniques or characteristics. For example, in some cases, the UE 115-c may configure the active duration for the timer based on a default active duration. By way of another example, the UE 115-c may configure the active duration for the timer based on network conditions or  characteristics, characteristics of the first cell, a previous connection with the first cell, past connection information, and the like.
In some aspects, the UE 115-c may determine an expiry of the timer. The UE 115-c may be configured to determine the expiry of the timer based on the active duration. For example, the UE 115-c may determine the expiry of the timer based on the timer running for at least the active duration. In some cases, the UE 115-c may reset the timer to a timer start value based on the expiry of the timer. Additionally or alternatively, the UE 115-c may deactivate the timer based on the expiry of the timer.
In some cases, counter value used throughout the process flow 400 may be initialized, reset, or otherwise modified based on the timer. For example, the UE 115-c may be configured to reset the counter value to a counter start value (e.g., initial counter value) based on the expiry of the timer. For example, after one or more iterations through the loop procedure at 455, the UE 115-c may have updated/incremented the counter value at 435 one or more iterations from the start counter value to another counter value. In this example, after the expiry of the timer, the UE 115-c may be configured to reset the counter value to the start counter value. By resetting the counter value to a counter start value after a given period of time (e.g., timer active duration) , the UE 115-c may be able to restart the attempts to re-establish the EPS bearer with the first cell supported by the base station 105-d. In some cases, resetting the counter value to a counter start value may improve the likelihood of a successful connection.
Additionally or alternatively, the UE 115-c may be configured to reset the counter value to a counter start value and/or reset the timer based on the UE 115-c switching connections between cells. For example, the UE 115-c may move or otherwise switch a connection from the first cell supported by the base station 105-d to a third cell different than the first cell. The third cell may be supported by the base station 105-d or another base station. In this example, the UE 115-c may reset the timer to a start timer value based on switching the connection from the first cell to the second cell.
The UE 115-c may additionally or alternatively deactivate the timer based on switching the connection from the first cell to the second cell. In some aspects, the UE 115-c may also reset the counter value to the counter start value based on switching the connection from the first cell to the third cell. In these examples, by resetting the timer and/or counter  value upon switching connections between cells, the UE 115-c may attempt to establish the EPS bearer a given number of instances for each cell. Furthermore, by resetting the timer and/or counter value upon switching connections between cells, previous attempts to re-establish the EPS bearer with the first cell may not prevent the UE 115-c from attempting to re-establish the EPS bearer with the third cell.
The techniques described with respect to FIG. 4 may enable the UE 115-c to more efficiently and effectively recover from a call failure in DCNR. More specifically, the techniques described herein with respect to FIG. 4 may prevent the UE 115-c from becoming stuck in an EPS bearer re-establishment loop where the UE 115-c continually tries to activate the EPS bearer, and continually has to release the connection again and again. In particular, the techniques described herein may enable the UE 115-c to reduce the number of times the UE 115-c unsuccessfully attempts to re-establish the EPS bearer, and may reduce the time required to resume data transfer with the first cell (e.g., LTE cell) associated with the first radio access technology.
FIG. 5 shows a block diagram 500 of a device 505 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving  the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. For example, utilizing a counter value to track attempts to re-establish an EPS bearer at the UE 115 may improve the efficiency and reliability of wireless communications. In particular, detaching from a cell and restricting dual connectivity operation may reduce attempts by the UE 115 to re-establish the EPS bearer, and may thereby reduce power consumption at the UE. Moreover, by detaching from the cell and resuming data transfer with the cell via a connection which restricts dual connectivity operation, the UE 115 may expedite the return of data transfer at the UE 115, thereby improving user experience with the UE 115.
Based on tracking attempts to re-establish an EPS bearer with a counter value, a processor of the UE 115 (e.g., a processor controlling the receiver 510, the communications manager 515, the transmitter 520, etc. ) may reduce processing resources used for uplink and downlink communications. For example, by reducing the number of attempts to re-establish the EPS bearer, the processor of the UE 115 may reduce the number of retransmissions and signaling resources used by the UE 115, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle uplink transmission and/or downlink reception.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are  implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 645. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a cell connectivity manager 620, a setup procedure manager 625, a configuration message receiving manager 630, an EPS counter manager 635, and a cell detachment manager 640. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The cell connectivity manager 620 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. The setup procedure manager 625 may perform a setup procedure for a second cell associated with a second radio access technology. The configuration message receiving manager 630 may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. The EPS counter manager 635 may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. The cell detachment manager 640 may detach from the cell based on the counter value satisfying a threshold counter value.
The transmitter 645 may transmit signals generated by other components of the device 605. In some examples, the transmitter 645 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 645 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 645 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a cell connectivity manager 710, a setup procedure manager 715, a configuration message receiving manager 720, an EPS counter manager 725, a cell detachment manager 730, an attach request transmitting manager 735, an attach accept receiving manager 740, an information manager 745, a deactivation accept transmitting manager 750, an EPS bearer manager 755, a service request transmitting manager 760, a timer manager 765, a TAU transmitting manager 770, and a TAU receiving manager 775. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The cell connectivity manager 710 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. In some examples, the cell connectivity manager 710 may establish the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio  access technology. In some examples, the cell connectivity manager 710 may transmit, to the base station supporting the cell, a connectivity request message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the cell connectivity manager 710 may switch the connection from the first cell to a third cell.
In some cases, the first radio access technology includes a long term evolution technology, a fourth generation (4G) technology, or both. In some cases, the second radio access technology includes a new radio technology, a fifth generation (5G) technology, or both.
The configuration message receiving manager 720 may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. In some examples, the configuration message receiving manager 720 may receive, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer.
The EPS counter manager 725 may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the EPS counter manager 725 may increment the counter value from a first counter value to a second counter value. In some examples, the EPS counter manager 725 may compare the second counter value to the threshold counter value, where the second counter value is less than the threshold counter value. In some examples, the EPS counter manager 725 may maintain the connection with the cell based on the second counter value being less than the threshold counter value. In some examples, the EPS counter manager 725 may increment the counter value from the second counter value to a third counter value. In some examples, the EPS counter manager 725 may compare the third counter value to the threshold counter value, where the connection with the cell is based on comparing the third counter value to the threshold counter value. In some examples, the EPS counter manager 725 may configure the threshold counter value based on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
The cell detachment manager 730 may detach from the cell based on the counter value satisfying a threshold counter value. In some examples, the cell detachment manager 730 may detach from the cell is further based on the timer being activated. In some examples,  the cell detachment manager 730 may transmit a detach request message to the base station supporting the cell.
The attach request transmitting manager 735 may transmit, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell. The attach accept receiving manager 740 may receive, from the base station, an attach accept message, where the second connection is established with the cell based on the attach accept message.
The information manager 745 may communicate information with the cell associated with the first radio access technology via the second connection.
The deactivation accept transmitting manager 750 may transmit, to the base station supporting the cell, a deactivation accept message based on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
The EPS bearer manager 755 may deactivate the evolved packet system bearer at the UE based on transmitting the deactivation accept message. In some examples, the EPS bearer manager 755 may activate at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based on transmitting the connectivity request message.
The service request transmitting manager 760 may transmit, to the base station supporting the cell, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer is received based on transmitting the service request message. In some examples, the service request transmitting manager 760 may transmit an additional service request message to the base station supporting the cell, where the additional configuration message indicating the deactivation of the evolved packet system bearer is received based on transmitting the additional service request message.
The timer manager 765 may determine that a timer is inactive. In some examples, the timer manager 765 may activate the timer based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the timer manager 765 may determine an expiry of the timer. In some examples, the timer manager 765 may reset the counter value to a counter start value based on the expiry of the timer. In some examples, the timer manager 765 may reset the timer to a timer start value based on the  expiry of the timer. In some examples, the timer manager 765 may deactivate the timer based on the expiry of the timer. In some examples, the timer manager 765 may configure an active duration for the timer, where the expiry of the timer is determined based on the timer running for at least the active duration. In some examples, the timer manager 765 may reset the timer to a timer start value based on switching the connection to the third cell. In some examples, the timer manager 765 may deactivate the timer based on switching the connection to the third cell. In some examples, the timer manager 765 may reset the counter value to a counter start value based on switching the connection to the third cell.
The TAU transmitting manager 770 may transmit, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell. The TAU receiving manager 775 may receive a tracking area update accept based on transmitting the tracking area update request.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation, perform a setup procedure for a second cell associated with a second radio access technology, receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer, update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer, and detach from the cell based on the counter value satisfying a threshold counter value.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020088027-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting recovering user equipment from call failure in new radio) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a block diagram 900 of a device 905 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The actions performed by the communications manager 915 as described herein may be implemented to realize one or more potential advantages. For example, performing a detach procedure with the UE 115 based on the configuration message indicating deactivation of the EPS bearer may improve the efficiency and reliability of wireless communications. In  particular, performing the detach procedure with the UE 115 may reduce attempts by the UE 115 to re-establish the EPS bearer, and may thereby reduce power consumption at the base station 105. Moreover, by performing the detach procedure and resuming data transfer with the UE 115 via a connection which restricts dual connectivity operation at the UE 115 may expedite the return of data transfer thereby improving user experience.
Based on performing a detach procedure with the UE 115 based on the configuration message indicating deactivation of the EPS bearer, a processor of the base station 105 (e.g., a processor controlling the receiver 910, the communications manager 915, the transmitter 920, etc. ) may reduce processing resources used for uplink and downlink communications. For example, by reducing the number of attempts to re-establish the EPS bearer, the processor of the base station 105 may reduce the number of retransmissions and signaling resources used by the base station 105, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle downlink transmission and/or uplink reception.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to recovering user equipment from call failure in new radio, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a connectivity manager 1020, a setup procedure manager 1025, a configuration message transmitting manager 1030, and a detach procedure manager 1035. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The connectivity manager 1020 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology. The setup procedure manager 1025 may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology. The configuration message transmitting manager 1030 may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer. The detach procedure manager 1035 may perform a detach procedure with the UE based on  transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
The transmitter 1040 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1040 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1040 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a connectivity manager 1110, a setup procedure manager 1115, a configuration message transmitting manager 1120, a detach procedure manager 1125, an attach request receiving manager 1130, an attach accept transmitting manager 1135, an information manager 1140, a deactivation accept receiving manager 1145, a service request receiving manager 1150, a TAU receiving manager 1155, and a TAU transmitting manager 1160. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The connectivity manager 1110 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology. In some examples, the connectivity manager 1110 may establish the second connection with the UE via the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology. In some examples, the connectivity manager 1110 may receive, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the connectivity manager 1110 may receive, from the UE, a connectivity request message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
In some cases, the first radio access technology includes a long term evolution technology, a fourth generation (4G) technology, or both. In some cases, the second radio  access technology includes a new radio technology, a fifth generation (5G) technology, or both.
The setup procedure manager 1115 may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology. In some examples, the setup procedure manager 1115 may perform a setup procedure with the UE via the second cell supported by the base station, where the second cell is associated with the second radio access technology, where determining the indication that the UE has performed a setup procedure with the second cell associated with the second radio access technology is based on performing the setup procedure with the UE via the second cell supported by the base station.
The configuration message transmitting manager 1120 may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer. In some examples, the configuration message transmitting manager 1120 may transmit, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
The detach procedure manager 1125 may perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. In some examples, the detach procedure manager 1125 may receive, from the UE, a detach request message. In some examples, the detach procedure manager 1125 may transmit, to the UE, a detach accept message.
The attach request receiving manager 1130 may receive, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on performing the detach procedure with the UE. The attach accept transmitting manager 1135 may transmit, to the UE, an attach accept message, where the second connection is established with the UE based on the attach accept message.
The information manager 1140 may communicate information with the UE via the cell associated with the first radio access technology via the second connection.
The deactivation accept receiving manager 1145 may receive, from the UE, a deactivation accept message based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. The service request receiving manager  1150 may receive, from the UE, a service request message, where the configuration message indicating the deactivation of the evolved packet system bearer is transmitted based on receiving the service request message. In some examples, the service request receiving manager 1150 may receive an additional service request message from the UE, where the additional configuration message indicating the deactivation of the evolved packet system bearer is transmitted based on receiving the additional service request message.
The TAU receiving manager 1155 may receive, from the UE, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell. The TAU transmitting manager 1160 may transmit a tracking area update accept based on receiving the tracking area update request.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology, determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology, transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer, and perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting recovering user equipment from call failure in new radio) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may  provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
At 1310, the UE may perform a setup procedure for a second cell associated with a second radio access technology. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
At 1315, the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
At 1320, the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1325, the UE may detach from the cell based on the counter value satisfying a threshold counter value. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
At 1410, the UE may perform a setup procedure for a second cell associated with a second radio access technology. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
At 1415, the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
At 1420, the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1425, the UE may detach from the cell based on the counter value satisfying a threshold counter value. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
At 1430, the UE may transmit, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based on detaching from the cell. The operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by an attach request transmitting manager as described with reference to FIGs. 5 through 8.
At 1435, the UE may establish the second connection with the cell associated with the first radio access technology based on the attach request message, where the second connection restricts dual connectivity operation with the second radio access technology. The operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation. The operations of 1505  may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a cell connectivity manager as described with reference to FIGs. 5 through 8.
At 1510, the UE may perform a setup procedure for a second cell associated with a second radio access technology. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a setup procedure manager as described with reference to FIGs. 5 through 8.
At 1515, the UE may receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a configuration message receiving manager as described with reference to FIGs. 5 through 8.
At 1520, the UE may update a counter value based on receiving the configuration message indicating the deactivation of the evolved packet system bearer. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1525, the UE may increment the counter value from a first counter value to a second counter value. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1530, the UE may compare the second counter value to the threshold counter value, where the second counter value is less than the threshold counter value. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1535, the UE may maintain the connection with the cell based on the second counter value being less than the threshold counter value. The operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1535 may be performed by an EPS counter manager as described with reference to FIGs. 5 through 8.
At 1540, the UE may detach from the cell based on the counter value satisfying a threshold counter value. The operations of 1540 may be performed according to the methods described herein. In some examples, aspects of the operations of 1540 may be performed by a cell detachment manager as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports recovering user equipment from call failure in new radio in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may establish a connection with a UE via a cell supported by the base station, where the cell is associated with a first radio access technology. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a connectivity manager as described with reference to FIGs. 9 through 12.
At 1610, the base station may determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a setup procedure manager as described with reference to FIGs. 9 through 12.
At 1615, the base station may transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a configuration message transmitting manager as described with reference to FIGs. 9 through 12.
At 1620, the base station may perform a detach procedure with the UE based on transmitting the configuration message indicating the deactivation of the evolved packet system bearer. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a detach procedure manager as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple  microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (80)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation;
    performing a setup procedure for a second cell associated with a second radio access technology;
    receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer;
    updating a counter value based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    detaching from the cell based at least in part on the counter value satisfying a threshold counter value.
  2. The method of claim 1, wherein the connection with the cell comprises a first connection supporting dual connectivity operation with the second radio access technology, the method further comprising:
    transmitting, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based at least in part on detaching from the cell.
  3. The method of claim 2, further comprising:
    establishing the second connection with the cell associated with the first radio access technology based at least in part on the attach request message, wherein the second connection restricts dual connectivity operation with the second radio access technology.
  4. The method of claim 3, further comprising:
    receiving, from the base station, an attach accept message, wherein the second connection is established with the cell based at least in part on the attach accept message.
  5. The method of claim 3, further comprising:
    communicating information with the cell associated with the first radio access technology via the second connection.
  6. The method of claim 1, further comprising:
    transmitting, to the base station supporting the cell, a deactivation accept message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    deactivating the evolved packet system bearer at the UE based at least in part on transmitting the deactivation accept message.
  7. The method of claim 1, further comprising:
    transmitting, to the base station supporting the cell, a connectivity request message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  8. The method of claim 7, further comprising:
    activating at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based at least in part on transmitting the connectivity request message.
  9. The method of claim 1, further comprising:
    transmitting, to the base station supporting the cell, a service request message, wherein the configuration message indicating the deactivation of the evolved packet system bearer is received based at least in part on transmitting the service request message.
  10. The method of claim 1, wherein updating the counter value comprises:
    incrementing the counter value from a first counter value to a second counter value.
  11. The method of claim 10, further comprising:
    comparing the second counter value to the threshold counter value, wherein the second counter value is less than the threshold counter value; and
    maintaining the connection with the cell based at least in part on the second counter value being less than the threshold counter value.
  12. The method of claim 11, further comprising:
    transmitting, to the base station supporting the cell, a connectivity request message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer;
    receiving, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer;
    incrementing the counter value from the second counter value to a third counter value; and
    comparing the third counter value to the threshold counter value, wherein the connection with the cell is based at least in part on comparing the third counter value to the threshold counter value.
  13. The method of claim 12, further comprising:
    transmitting an additional service request message to the base station supporting the cell, wherein the additional configuration message indicating the deactivation of the evolved packet system bearer is received based at least in part on transmitting the additional service request message.
  14. The method of claim 1, further comprising:
    determining that a timer is inactive; and
    activating the timer based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  15. The method of claim 14, wherein:
    detaching from the cell is further based at least in part on the timer being activated.
  16. The method of claim 14, further comprising:
    determining an expiry of the timer;
    resetting the counter value to a counter start value based at least in part on the expiry of the timer;
    resetting the timer to a timer start value based at least in part on the expiry of the timer; and
    deactivating the timer based at least in part on the expiry of the timer.
  17. The method of claim 16, further comprising:
    configuring an active duration for the timer, wherein the expiry of the timer is determined based at least in part on the timer running for at least the active duration.
  18. The method of claim 14, wherein the cell comprises a first cell, the method further comprising:
    switching the connection from the first cell to a third cell;
    resetting the timer to a timer start value based at least in part on switching the connection to the third cell; and
    deactivating the timer based at least in part on switching the connection to the third cell.
  19. The method of claim 1, wherein the cell comprises a first cell, the method further comprising:
    switching the connection from the first cell to a third cell; and
    resetting the counter value to a counter start value based at least in part on switching the connection to the third cell.
  20. The method of claim 1, further comprising:
    configuring the threshold counter value based at least in part on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
  21. The method of claim 1, wherein performing the setup procedure for the second cell associated with the second radio access technology comprises:
    transmitting, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell; and
    receiving a tracking area update accept based at least in part on transmitting the tracking area update request.
  22. The method of claim 1, further comprising:
    transmitting a detach request message to the base station supporting the cell; and
    receiving, from the base station supporting the cell, a detach accept message, wherein detaching from the cell is based at least in part on receiving the detach accept message.
  23. The method of claim 1, wherein:
    the first radio access technology comprises a long term evolution technology, a fourth generation (4G) technology, or both; and
    the second radio access technology comprises a new radio technology, a fifth generation (5G) technology, or both.
  24. A method for wireless communication at a base station, comprising:
    establishing a connection with a user equipment (UE) via a cell supported by the base station, wherein the cell is associated with a first radio access technology;
    determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology;
    transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer; and
    performing a detach procedure with the UE based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  25. The method of claim 24, wherein the connection with the UE via the cell comprises a first connection supporting dual connectivity operation with the second radio access technology, the method further comprising:
    receiving, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based at least in part on performing the detach procedure with the UE.
  26. The method of claim 25, further comprising:
    establishing the second connection with the UE via the cell associated with the first radio access technology based at least in part on the attach request message, wherein the second connection restricts dual connectivity operation with the second radio access technology.
  27. The method of claim 26, further comprising:
    transmitting, to the UE, an attach accept message, wherein the second connection is established with the UE based at least in part on the attach accept message.
  28. The method of claim 26, further comprising:
    communicating information with the UE via the cell associated with the first radio access technology via the second connection.
  29. The method of claim 24, further comprising:
    receiving, from the UE, a deactivation accept message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  30. The method of claim 24, further comprising:
    receiving, from the UE, a connectivity request message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  31. The method of claim 24, further comprising:
    receiving, from the UE, a service request message, wherein the configuration message indicating the deactivation of the evolved packet system bearer is transmitted based at least in part on receiving the service request message.
  32. The method of claim 24, further comprising:
    receiving, from the UE, a connectivity request message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer; and
    transmitting, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
  33. The method of claim 32, further comprising:
    receiving an additional service request message from the UE, wherein the additional configuration message indicating the deactivation of the evolved packet system bearer is transmitted based at least in part on receiving the additional service request message.
  34. The method of claim 24, further comprising:
    performing a setup procedure with the UE via the second cell supported by the base station, wherein the second cell is associated with the second radio access technology, wherein determining the indication that the UE has performed a setup procedure with the second cell associated with the second radio access technology is based at least in part on performing the setup procedure with the UE via the second cell supported by the base station.
  35. The method of claim 34, wherein performing the setup procedure with the UE via the second cell comprises:
    receiving, from the UE, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell; and
    transmitting a tracking area update accept based at least in part on receiving the tracking area update request.
  36. The method of claim 24, wherein performing the detach procedure with the UE comprises:
    receiving, from the UE, a detach request message; and
    transmitting, to the UE, a detach accept message.
  37. The method of claim 24, wherein:
    the first radio access technology comprises a long term evolution technology, a fourth generation (4G) technology, or both; and
    the second radio access technology comprises a new radio technology, a fifth generation (5G) technology, or both.
  38. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation;
    perform a setup procedure for a second cell associated with a second radio access technology;
    receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer;
    update a counter value based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    detach from the cell based at least in part on the counter value satisfying a threshold counter value.
  39. The apparatus of claim 38, wherein the connection with the cell comprises a first connection supporting dual connectivity operation with the second radio access technology, and the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based at least in part on detaching from the cell.
  40. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish the second connection with the cell associated with the first radio access technology based at least in part on the attach request message, wherein the second connection restricts dual connectivity operation with the second radio access technology.
  41. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, an attach accept message, wherein the second connection is established with the cell based at least in part on the attach accept message.
  42. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate information with the cell associated with the first radio access technology via the second connection.
  43. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station supporting the cell, a deactivation accept message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    deactivate the evolved packet system bearer at the UE based at least in part on transmitting the deactivation accept message.
  44. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station supporting the cell, a connectivity request message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  45. The apparatus of claim 44, wherein the instructions are further executable by the processor to cause the apparatus to:
    activate at least one of the evolved packet system bearer or a second evolved packet system bearer at the UE based at least in part on transmitting the connectivity request message.
  46. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station supporting the cell, a service request message, wherein the configuration message indicating the deactivation of the evolved packet system bearer is received based at least in part on transmitting the service request message.
  47. The apparatus of claim 38, wherein the instructions to update the counter value are executable by the processor to cause the apparatus to:
    increment the counter value from a first counter value to a second counter value.
  48. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    compare the second counter value to the threshold counter value, wherein the second counter value is less than the threshold counter value; and
    maintain the connection with the cell based at least in part on the second counter value being less than the threshold counter value.
  49. The apparatus of claim 48, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station supporting the cell, a connectivity request message based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer;
    receive, from the base station supporting the cell, an additional configuration message indicating the deactivation of the evolved packet system bearer;
    increment the counter value from the second counter value to a third counter value; and
    compare the third counter value to the threshold counter value, wherein the connection with the cell is based at least in part on comparing the third counter value to the threshold counter value.
  50. The apparatus of claim 49, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit an additional service request message to the base station supporting the cell, wherein the additional configuration message indicating the deactivation of the evolved packet system bearer is received based at least in part on transmitting the additional service request message.
  51. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a timer is inactive; and
    activate the timer based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer.
  52. The apparatus of claim 51, wherein detaching from the cell is further based at least in part on the timer being activated.
  53. The apparatus of claim 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine an expiry of the timer;
    reset the counter value to a counter start value based at least in part on the expiry of the timer;
    reset the timer to a timer start value based at least in part on the expiry of the timer; and
    deactivate the timer based at least in part on the expiry of the timer.
  54. The apparatus of claim 53, wherein the instructions are further executable by the processor to cause the apparatus to:
    configure an active duration for the timer, wherein the expiry of the timer is determined based at least in part on the timer running for at least the active duration.
  55. The apparatus of claim 51, wherein the cell comprises a first cell, and the instructions are further executable by the processor to cause the apparatus to:
    switch the connection from the first cell to a third cell;
    reset the timer to a timer start value based at least in part on switching the connection to the third cell; and
    deactivate the timer based at least in part on switching the connection to the third cell.
  56. The apparatus of claim 38, wherein the cell comprises a first cell, and the instructions are further executable by the processor to cause the apparatus to:
    switch the connection from the first cell to a third cell; and
    reset the counter value to a counter start value based at least in part on switching the connection to the third cell.
  57. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    configure the threshold counter value based at least in part on the connection, the cell, a previous connection with the cell, past connection information, or any combination thereof.
  58. The apparatus of claim 38, wherein the instructions to perform the setup procedure for the second cell associated with the second radio access technology are executable by the processor to cause the apparatus to:
    transmit, to the base station supporting the cell, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell; and
    receive a tracking area update accept based at least in part on transmitting the tracking area update request.
  59. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a detach request message to the base station supporting the cell; and
    receive, from the base station supporting the cell, a detach accept message, wherein detaching from the cell is based at least in part on receiving the detach accept message.
  60. The apparatus of claim 38, wherein:
    the first radio access technology comprises a long term evolution technology, a fourth generation (4G) technology, or both; and
    the second radio access technology comprises a new radio technology, a fifth generation (5G) technology, or both.
  61. The apparatus of claim 38, further comprising a transceiver, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station via the transceiver, an attach request message for a connection restricting dual connectivity operation with the second radio access technology based at least in part on detaching from the cell.
  62. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    establish a connection with a user equipment (UE) via a cell supported by the base station, wherein the cell is associated with a first radio access technology;
    determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology;
    transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer; and
    perform a detach procedure with the UE based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  63. The apparatus of claim 62, wherein the connection with the UE via the cell comprises a first connection supporting dual connectivity operation with the second radio access technology, and the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, an attach request message for a second connection restricting dual connectivity operation with the second radio access technology based at least in part on performing the detach procedure with the UE.
  64. The apparatus of claim 63, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish the second connection with the UE via the cell associated with the first radio access technology based at least in part on the attach request message, wherein the second connection restricts dual connectivity operation with the second radio access technology.
  65. The apparatus of claim 64, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, an attach accept message, wherein the second connection is established with the UE based at least in part on the attach accept message.
  66. The apparatus of claim 64, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate information with the UE via the cell associated with the first radio access technology via the second connection.
  67. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a deactivation accept message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  68. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a connectivity request message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  69. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a service request message, wherein the configuration message indicating the deactivation of the evolved packet system bearer is transmitted based at least in part on receiving the service request message.
  70. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a connectivity request message based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer; and
    transmit, to the UE, an additional configuration message indicating the deactivation of the evolved packet system bearer.
  71. The apparatus of claim 70, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an additional service request message from the UE, wherein the additional configuration message indicating the deactivation of the evolved packet system bearer is transmitted based at least in part on receiving the additional service request message.
  72. The apparatus of claim 62, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform a setup procedure with the UE via the second cell supported by the base station, wherein the second cell is associated with the second radio access technology, wherein determining the indication that the UE has performed a setup procedure with the second cell associated with the second radio access technology is based at least in part on performing the setup procedure with the UE via the second cell supported by the base station.
  73. The apparatus of claim 72, wherein the instructions to perform the setup procedure with the UE via the second cell are executable by the processor to cause the apparatus to:
    receive, from the UE, a tracking area update request including an indication of a dual connectivity operation with the cell and the second cell; and
    transmit a tracking area update accept based at least in part on receiving the tracking area update request.
  74. The apparatus of claim 62, wherein the instructions to perform the detach procedure with the UE are executable by the processor to cause the apparatus to:
    receive, from the UE, a detach request message; and
    transmit, to the UE, a detach accept message.
  75. The apparatus of claim 62, wherein:
    the first radio access technology comprises a long term evolution technology, a fourth generation (4G) technology, or both; and
    the second radio access technology comprises a new radio technology, a fifth generation (5G) technology, or both.
  76. The apparatus of claim 62, further comprising a transceiver, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE via the transceiver, an attach request message for a connection restricting dual connectivity operation with the second radio access technology based at least in part on performing the detach procedure with the UE.
  77. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for establishing a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation;
    means for performing a setup procedure for a second cell associated with a second radio access technology;
    means for receiving, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer;
    means for updating a counter value based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    means for detaching from the cell based at least in part on the counter value satisfying a threshold counter value.
  78. An apparatus for wireless communication at a base station, comprising:
    means for establishing a connection with a user equipment (UE) via a cell supported by the base station, wherein the cell is associated with a first radio access technology;
    means for determining an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology;
    means for transmitting, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer; and
    means for performing a detach procedure with the UE based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
  79. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    establish a connection with a cell associated with a first radio access technology and in a non-standalone mode of operation;
    perform a setup procedure for a second cell associated with a second radio access technology;
    receive, from a base station supporting the cell, a configuration message indicating a deactivation of an evolved packet system bearer;
    update a counter value based at least in part on receiving the configuration message indicating the deactivation of the evolved packet system bearer; and
    detach from the cell based at least in part on the counter value satisfying a threshold counter value.
  80. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    establish a connection with a user equipment (UE) via a cell supported by the base station, wherein the cell is associated with a first radio access technology;
    determine an indication that the UE has performed a setup procedure with a second cell associated with a second radio access technology;
    transmit, to the UE, a configuration message indicating a deactivation of an evolved packet system bearer; and
    perform a detach procedure with the UE based at least in part on transmitting the configuration message indicating the deactivation of the evolved packet system bearer.
PCT/CN2020/088027 2020-04-30 2020-04-30 Recovering user equipment from call failure in new radio WO2021217553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088027 WO2021217553A1 (en) 2020-04-30 2020-04-30 Recovering user equipment from call failure in new radio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088027 WO2021217553A1 (en) 2020-04-30 2020-04-30 Recovering user equipment from call failure in new radio

Publications (1)

Publication Number Publication Date
WO2021217553A1 true WO2021217553A1 (en) 2021-11-04

Family

ID=78331645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088027 WO2021217553A1 (en) 2020-04-30 2020-04-30 Recovering user equipment from call failure in new radio

Country Status (1)

Country Link
WO (1) WO2021217553A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049024A1 (en) * 2015-03-09 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) User Equipment Registration Recovery Upon Core Node Failure
CN108370604A (en) * 2015-11-17 2018-08-03 Lg 电子株式会社 Extension idle mode is supported discontinuously to receive the method and its device of activation in wireless communication system
WO2019070808A1 (en) * 2017-10-04 2019-04-11 Qualcomm Incorporated Enhanced power savings through mobile initiated dormancy
US10595355B2 (en) * 2017-07-10 2020-03-17 Lg Electronics Inc. Method and apparatus for establishing a connection in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049024A1 (en) * 2015-03-09 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) User Equipment Registration Recovery Upon Core Node Failure
CN108370604A (en) * 2015-11-17 2018-08-03 Lg 电子株式会社 Extension idle mode is supported discontinuously to receive the method and its device of activation in wireless communication system
US10595355B2 (en) * 2017-07-10 2020-03-17 Lg Electronics Inc. Method and apparatus for establishing a connection in a wireless communication system
WO2019070808A1 (en) * 2017-10-04 2019-04-11 Qualcomm Incorporated Enhanced power savings through mobile initiated dormancy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, NOKIA, NOKIA SHANGHAI BELL: "Support of UE paging probability for WUS-procedure part", 3GPP DRAFT; C1-199045, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG1, no. Reno (NV), USA; 20191111 - 20191115, 15 November 2019 (2019-11-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051825575 *

Similar Documents

Publication Publication Date Title
US20220053590A1 (en) Techniques for radio link management
US11653375B2 (en) Transmit power adjustment for full duplex feedback
US11856451B2 (en) Avoiding packet data convergence protocol holes for bearer in dual connectivity mode across multiple radio access technologies
US20220287142A1 (en) Directional sidelink discontinuous reception and operations
US11581938B2 (en) Radio link monitoring across multiple frequencies in wireless communications
WO2021232221A1 (en) Techniques for post-call service recovery in dual sim user equipment
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
EP4186199A1 (en) Communicating across a wideband using sub-bands
US11596004B2 (en) Activation and deactivation of random access channel occasions
US11553460B2 (en) Transmit and receive switching for sidelink communications
US20220361049A1 (en) Discontinuous reception operation for sidelink communications
WO2022151146A1 (en) Techniques for remote user equipment handover due to relay user equipment mobility
WO2022150228A1 (en) Methods and apparatuses for preconfigured uplink resource response signaling
WO2021217553A1 (en) Recovering user equipment from call failure in new radio
WO2021223138A1 (en) Improving cell selection over new radio
US20230209479A1 (en) Power headroom report triggering by dormant bandwidth part switching
WO2021217541A1 (en) Paging signal monitoring for multiple subscription communications
WO2021223077A1 (en) Recovering from problematic network
WO2021212298A1 (en) Fast resumption of network service in case of radio resource conflict
WO2021195911A1 (en) Connecting to multi-radio access technology service in non-standalone mode
EP4209049A1 (en) Techniques for cell bar time selection
EP4302565A1 (en) Directional sidelink discontinuous reception and operations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933198

Country of ref document: EP

Kind code of ref document: A1