WO2017086465A1 - ヨウ素原子含有量の低減された含フッ素化合物を製造する方法 - Google Patents
ヨウ素原子含有量の低減された含フッ素化合物を製造する方法 Download PDFInfo
- Publication number
- WO2017086465A1 WO2017086465A1 PCT/JP2016/084325 JP2016084325W WO2017086465A1 WO 2017086465 A1 WO2017086465 A1 WO 2017086465A1 JP 2016084325 W JP2016084325 W JP 2016084325W WO 2017086465 A1 WO2017086465 A1 WO 2017086465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iodine
- containing compound
- group
- fluorine
- formula
- Prior art date
Links
- 0 CC(C)(C(*)(*)O1)OC1=C(*)* Chemical compound CC(C)(C(*)(*)O1)OC1=C(*)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/23—Preparation of halogenated hydrocarbons by dehalogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C23/00—Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
- C07C23/02—Monocyclic halogenated hydrocarbons
- C07C23/08—Monocyclic halogenated hydrocarbons with a five-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C23/00—Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
- C07C23/02—Monocyclic halogenated hydrocarbons
- C07C23/10—Monocyclic halogenated hydrocarbons with a six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/24—Preparation of ethers by reactions not forming ether-oxygen bonds by elimination of halogens, e.g. elimination of HCl
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/02—Monomers containing chlorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/26—Removing halogen atoms or halogen-containing groups from the molecule
Definitions
- the present invention relates to a method for producing a stabilized fluorine-containing compound by reducing iodine atoms remaining in the fluorine-containing compound.
- Patent Document 1 There is a method of synthesizing a polymer by cleaving a carbon-iodine bond of a compound having an iodine atom and radically polymerizing a radical polymerizable monomer to the generated carbon radical (Patent Document 1).
- Patent Document 1 a method of synthesizing a polymer by cleaving a carbon-iodine bond of a compound having an iodine atom and radically polymerizing a radical polymerizable monomer to the generated carbon radical.
- iodine atoms remain in the obtained polymer, iodine is easily liberated and the polymer may be deteriorated or colored by light or heat.
- the polymer in which iodine atoms remain is treated with light, heat or a radical initiator in the presence of isopentane, toluene, carbon tetrachloride, etc.
- Patent Document 1 A method of converting to a C—H bond or a C—Cl bond is disclosed (Patent Document 1).
- Example 9 of Patent Document 1 discloses that iodine can be almost completely removed by dissolving a polymer having iodine atoms in isopentane and R-113, adding sodium sulfite, and irradiating with ultraviolet rays. Is done.
- the residual polymer of iodine atoms to be treated has —CH 2 CH (COOCH 3 ) —I and —CH 2 CH (C 4 H 9 ) —I as carbon atom-iodine atom bonds, but —CF 2 It did not have -I.
- the prior art discloses a method for efficiently converting a CI bond of an iodine-containing compound having a group represented by -CFRf-I (Rf is a fluorine atom or a perfluoroalkyl group) into a CH bond.
- the present invention efficiently converts the CI bond of an iodine-containing compound having a group represented by —CFRf-I (Rf is a fluorine atom or a perfluoroalkyl group) into a C—H bond, thereby providing an ultraviolet irradiation facility.
- An object is to easily obtain a stabilized fluorine-containing compound without using it.
- the present invention provides a method for producing a fluorine-containing compound having the following configuration [1].
- An iodine-containing compound having a group represented by the following formula (1i) or a group represented by the following formula (2i), an organic peroxide and a hydrogen-containing compound having a group represented by the following formula (3) A method for producing a fluorine-containing compound having a iodine atom content reduced from that of the iodine-containing compound by deiodinating in the presence of the compound.
- Rf represents a fluorine atom or a perfluoroalkyl group.
- the ring containing Rf ′ is a 5-membered or 6-membered ring, and Rf ′ represents a perfluoroalkylene group having a linear or branched structure and optionally having an etheric oxygen atom.
- R a and R b each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms.
- R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group.
- the CI bond of a fluorine-containing compound having a group represented by -CFRf-I can be efficiently converted into a CH bond, and stabilized.
- the obtained fluorine-containing compound can be easily obtained.
- a structural unit represented by the formula (m1) is referred to as a unit (m1). Units represented by other formulas will be described accordingly.
- the monomer represented by the formula (m1) is referred to as a monomer (m1).
- the compounds represented by other formulas will be described accordingly.
- a group represented by the formula (1i) is referred to as a group (1i). Groups represented by other formulas are also described in the same manner.
- the “unit” means a unit derived from the monomer formed by radical polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
- Fluorine-containing compound means a compound having a fluorine atom bonded to a carbon atom.
- Iodine-containing compound means a compound having an iodine atom bonded to a carbon atom.
- Hydrogen-containing compound means a compound having a hydrogen atom bonded to a carbon atom.
- the “perfluoroalkyl group” means a group in which all of the hydrogen atoms of the alkyl group are replaced with fluorine atoms.
- the “perfluoroalkylene group” means a group in which all of the hydrogen atoms of the alkylene group are replaced with fluorine atoms.
- Polyfluoroalkyl group means a group in which part of hydrogen atoms of an alkyl group is replaced by a fluorine atom.
- Polyfluoroalkylene group means a group in which a part of hydrogen atoms of an alkylene group is replaced by a fluorine atom.
- the “deiodination treatment” means a treatment for converting a CI bond in a compound into a CH bond.
- “Chain transfer agent” means a compound that provides a hydrogen atom to a radical generated by extracting an iodine atom.
- an object to be treated for deiodination is an iodine-containing compound having a group (1i) or a group (2i). That is, the iodine-containing compound is a compound to be treated in the present invention, but it can be said that the compound to be treated contains fluorine, and thus is a fluorine-containing compound.
- Rf represents a fluorine atom or a perfluoroalkyl group.
- the perfluoroalkyl group may be linear or branched, and is preferably linear.
- the perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
- Rf is preferably a fluorine atom, a trifluoromethyl group, or a pentafluoroethyl group, more preferably a fluorine atom or a trifluoromethyl group, and even more preferably a fluorine atom.
- the ring containing Rf ′ is a 5-membered or 6-membered ring, and Rf ′ represents a perfluoroalkylene group having a linear or branched structure and optionally having an etheric oxygen atom.
- the ring containing Rf ′ is preferably a 5-membered ring.
- Rf ′ preferably has a branched structure, and more preferably contains an etheric oxygen atom.
- R a and R b each independently represents a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms.
- At least one of R a and R b is preferably a fluorine atom, and more preferably both are fluorine atoms.
- the perfluoroalkyl group and the perfluoroalkoxy group may be linear or branched, and preferably linear.
- the iodine-containing compound in the present invention may be a low molecular compound or a high molecular compound.
- the iodine-containing compound is a low molecular compound
- examples of the low molecular compound include a compound represented by the following formula (4) or a compound represented by the following formula (5).
- Q 1 -CFRf-I Formula (4) Q 2- (CFRf-I) Formula 2 (5)
- Rf is a fluorine atom or a perfluoroalkyl group
- Q 1 represents a polyfluoroalkyl group which may have a fluorine atom or an ether-bonded oxygen atom.
- Rf each independently represents a fluorine atom or a perfluoroalkyl group
- Q 2 represents a polyfluoroalkylene group which may have an etheric oxygen atom.
- a preferred embodiment of Rf is as described in formula (1i).
- the oxygen atom may be 1 or 2 or more.
- the oxygen atom may be inserted between the carbon-carbon bonds of the polyfluoroalkyl group or may be present at the terminal on the side bonded to the group (1i).
- the polyfluoroalkyl group may be linear or branched, and is preferably linear.
- the number of carbon atoms of the polyfluoroalkyl group is preferably 1-20, and more preferably 1-10.
- the polyfluoroalkyl group is preferably a perfluoroalkyl group.
- the oxygen atom may be 1 or 2 or more.
- the oxygen atom may be inserted between the carbon-carbon bonds of the polyfluoroalkylene group or may be present at the terminal on the side bonded to the group (1i).
- the polyfluoroalkylene group may be linear or branched, and is preferably linear.
- the carbon number of the polyfluoroalkylene group is preferably 1-20, and more preferably 1-10.
- the polyfluoroalkylene group is preferably a perfluoroalkylene group.
- examples of the polymer compound include a polymer obtained by radical polymerization reaction of monomers. Polymers having at least one or more CI bonds and in which all of the hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms are preferred. The higher the proportion of fluorine atoms in the polymer, the better the heat-resistant, light-resistant, chemical stability, low refractive index, low dielectric constant, water / oil repellency and other properties of the polymer after deiodination treatment.
- the polymer may be a branched polymer having a branched molecular chain or an amorphous branched polymer.
- amorphous branched polymer As the amorphous branched polymer, a unit (m1) based on a monomer (m1) having an iodine atom, a monomer (m2) having an aliphatic ring structure, and a monomer capable of forming an aliphatic ring structure by cyclopolymerization ( m2 ′) and a polymer containing a unit (m2) based on one or both of them.
- the branch point of the branched polymer consists of a unit obtained by removing iodine atoms from the unit (m1).
- the unit (m1) in which iodine atoms are extracted by radicals in the polymerization reaction system is the starting point of the polymerization of the monomer component, and the branching point of the polymer formed after the polymerization of the monomer component. ing.
- the group (1i) in the branched polymer may be composed of iodine atoms in the unit (m1) (remaining without being extracted during polymerization). Further, the group (1i) in the branched polymer also exists as a portion where an iodine atom is bonded to the unit (m2), that is, a polymer terminal portion where an iodine atom is bonded.
- the iodine atom present at the polymer terminal is an iodine atom that has moved away from the unit (m1) or the iodine-containing monomer (m1) in the polymerization reaction system during the formation of the polymer. It is.
- the monomer (m1) is a monomer having an iodine atom.
- the monomer (m1) a monomer in which a part of hydrogen atoms bonded to carbon atoms is replaced by iodine atoms and the remaining hydrogen atoms are all replaced by fluorine atoms in order to increase the proportion of fluorine atoms in the polymer to be produced. preferable.
- Examples of the monomer (m1) include the following monomers.
- CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 -I
- CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 -I
- CF 2 CFO (CF 2 ) 2 -I
- CF 2 CFO (CF 2 ) 3 -I
- CF 2 CFO (CF 2 ) 4 -I
- CF 2 CFO (CF 2 ) 5 -I
- CF 2 CFO (CF 2 ) 6 -I
- CF 2 CFO (CF 2 ) 8 -I
- CF 2 CFOCF 2 CF (CF 3 ) -I
- CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF (CF 3 ) -I
- CF 2 CFO (CF 2 ) 3 OCF 2 CF 2 -I
- CF 2 CFOCF 2 CF 2 OCF
- the monomer (m2) is a monomer having an aliphatic ring structure.
- the aliphatic ring structure is a cyclic organic group which may have one or two ether-bonded oxygen atoms, and a hydrogen atom bonded to a carbon atom may be substituted with a fluorine atom.
- the monomer (m2) is preferably a perfluoromonomer in order to increase the proportion of fluorine atoms in the polymer to be produced.
- the polymerization-reactive carbon-carbon double bond in the monomer (m2) may be composed of two adjacent carbon atoms constituting the aliphatic ring structure, and one carbon atom constituting the aliphatic ring structure. And one carbon atom existing outside the aliphatic ring structure adjacent thereto.
- Examples of the monomer (m2) include the monomer (m20) and the monomer (m22), and the monomer (m20) is preferable.
- the monomer (m20) is preferable.
- a branched polymer having a terminal group (2i) is obtained.
- the monomer (m20) is more preferably the monomer (m21).
- Rf ′, R a and R b are the same as in formula (2i).
- R 11 and R 12 are each independently a fluorine atom or a C 1-5 perfluoroalkyl group.
- R 13 and R 14 are each independently a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. From the viewpoint of high polymerization reactivity, at least one of R 13 and R 14 is preferably a fluorine atom, and more preferably both are fluorine atoms.
- the perfluoroalkyl group and the perfluoroalkoxy group may be linear or branched, and preferably linear.
- R 21 to R 26 each independently represents a monovalent perfluoro organic group which may have an etheric oxygen atom or a fluorine atom.
- a perfluoroalkyl group is preferable.
- the oxygen atom may be one or two or more. Further, the oxygen atom may be inserted between the carbon-carbon bonds of the perfluoroalkyl group, or may be present at the terminal on the side bonded to the carbon atom.
- the perfluoroalkyl group may be linear or branched, and is preferably linear. From the viewpoint of high polymerization reactivity, at least one of R 25 and R 26 is preferably a fluorine atom, and more preferably both are fluorine atoms.
- Examples of the monomer (m21) include monomers (m21-1) to (m21-7).
- Examples of the monomer (m22) include a monomer (m22-1) and a monomer (m22-2). From the viewpoint of easy synthesis, the monomer (m22-1) is more preferable.
- the monomer (m2 ′) is a monomer that can form an aliphatic ring structure by cyclopolymerization.
- the aliphatic ring structure is a cyclic organic group which may have one or two ether-bonded oxygen atoms, and a hydrogen atom bonded to a carbon atom may be substituted with a fluorine atom.
- the monomer (m2 ′) is preferably a perfluoromonomer from the viewpoint of durability, and examples thereof include a monomer (m24).
- R 41 to R 46 are each independently a monovalent perfluoro organic group which may have an etheric oxygen atom or a fluorine atom.
- a perfluoroalkyl group is preferable.
- the oxygen atom may be one or two or more. Further, the oxygen atom may be inserted between the carbon-carbon bonds of the perfluoroalkyl group, or may be present at the terminal on the side bonded to the carbon atom.
- the perfluoroalkyl group may be linear or branched, and is preferably linear.
- R 41 to R 44 are more preferably a fluorine atom from the viewpoint of high polymerization reactivity.
- Examples of the monomer (m24) include monomers (m24-1) to (m24-3), and the monomer (m24-1) is preferable because of the ease of monomer synthesis.
- branched polymers include a unit (m1) based on a monomer (m1) having an iodine atom, a monomer (m2) having an aliphatic ring structure, and a monomer capable of forming an aliphatic ring structure by cyclopolymerization ( m2 ′) a unit based on a monomer (m3) having a precursor group of an ionic group described later at the end of a branched molecular chain comprising a unit (m2) including a unit (m2) based on either one or both ( and a branched multi-segmented copolymer in which one or more linear molecular chains composed of the segment (B) having m3) are bonded.
- the segment (A) and the segment (B) may include a unit (m4) based on the monomer (m4) other than the monomer (m1), the monomer (m2), the monomer (m2 ′), and the monomer (m3).
- the “ionic group” is a group having H + , monovalent metal cation, ammonium ion, or the like.
- the monomer (m1), the monomer (m2), the monomer (m2 ′) and the monomer (m4) do not have an ionic group or a precursor group thereof.
- a group (1i) or a group (2i) to which an iodine atom is bonded exists at the end of the segment (B) of the branched multi-segmented copolymer. A part of the group (1i) or the group (2i) contained in the segment (A) may remain.
- the branched multi-segmented copolymer is obtained by converting a precursor group of an ionic group (a group that can be converted into an ionic group by a known process such as a hydrolysis process or an acid type process, such as a —SO 2 F group) with an ionic group ( sulfonic acid group - after converted into (-SO 3 H + groups)), but may be used in a fuel cell or the like as the electrolyte material, the group (1i) or group (2i) is remained in the polymer, the fuel May affect battery performance.
- an ionic group a group that can be converted into an ionic group by a known process such as a hydrolysis process or an acid type process, such as a —SO 2 F group
- an ionic group sulfonic acid group - after converted into (-SO 3 H + groups
- the monomer (m1) and monomer (m2) in the branched multi-segmented copolymer are the same as described above.
- the monomer (m3) is a monomer having an ionic group precursor group.
- the monomer (m3) is preferably a perfluoromonomer from the viewpoint of durability as an electrolyte material, particularly as an electrolyte material for a fuel cell.
- Examples of the monomer (m3) include a monomer (m3-1) having one precursor group, a monomer (m3-2) having two precursor groups, and the like.
- Monomer (m3-1) As the monomer (m3-1), the monomer (m31) is preferable from the viewpoint of easy production of a branched polymer and easy industrial implementation.
- CF 2 CF (CF 2 ) p OCF 2 —CFY 1 —Q 3 —SO 2 F (m31).
- Q 3 is a perfluoroalkylene group which may have a single bond or an ether bond oxygen atom.
- the oxygen atom may be 1 or 2 or more.
- the oxygen atom may be inserted between the carbon atom-carbon atom bond of the perfluoroalkylene group or may be present at the terminal on the CFY 1 side.
- the perfluoroalkylene group may be linear or branched, and is preferably linear.
- the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
- Y 1 is a fluorine atom or a monovalent perfluoro organic group. Y 1 is preferably a fluorine atom or a trifluoromethyl group. p is 0 or 1.
- Monomer (m3-2) As the monomer (m3-2), the following monomer (m32) is preferable.
- Q 21 is a perfluoroalkylene group which may have an etheric oxygen atom.
- Q 22 is a perfluoroalkylene group which may have a single bond or an ether bond oxygen atom.
- the oxygen atom may be one or two or more.
- the oxygen atom may be inserted between the carbon atom-carbon atom bond of the perfluoroalkylene group, or may be present at the CY 2 side terminal.
- the perfluoroalkylene group may be linear or branched, and is preferably linear.
- the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. At least one of Q 21 and Q 22 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom at the CY 2 end.
- Y 2 is a fluorine atom or a monovalent perfluoro organic group. Y 2 is preferably a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom.
- the monomers (m32) As the monomer (m32), the monomers (m32-1) to (m32-3) are preferable and the monomer (m32-1) is preferable because the production of the polymer is easy and industrial implementation is easy.
- the amorphous branched polymer or branched multi-segmented copolymer described above may contain a unit based on the monomer (m4).
- Monomer (m4) is a monomer other than the monomer (m1), the monomer (m2), the monomer (m2 ′), and the monomer (m3).
- Monomers (m4) include tetrafluoroethylene (TFE), chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, propylene, perfluoro ⁇ -olefins (hexafluoropropylene, etc.), (perfluoroalkyl) ) Ethylenes (such as (perfluorobutyl) ethylene), (perfluoroalkyl) propenes (such as 3-perfluorooctyl-1-propene), and the like.
- the monomer (m4) is preferably a perfluoromonomer and more preferably TFE from the viewpoint of durability.
- the above-described amorphous branched polymer and branched multi-segmented copolymer are produced using a known ordinary radical polymerization method.
- the iodine-containing compound is treated with an organic peroxide. Even if the iodine-containing compound having the group (1i) or the group (2i) is treated with an inorganic oxide or an azo compound, the CI bond of the iodine-containing compound can be efficiently converted into a CH bond. Have difficulty.
- organic peroxides include dialkyl peroxides, peroxyketals, diacyl peroxides, dialkyl peroxydicarbonates, peroxyesters, peroxymonocarbonates, bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, and peroxyesters. It is done.
- organic peroxides examples include dialkyl peroxides such as di-t-butyl peroxide, perfluorodi-t-butyl peroxide t-butylcumyl peroxide, and dicumyl peroxide; 1,1-bis ( t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, 2, Peroxyketals such as 2-bis (t-butylperoxy) butane; isobutyryl peroxide, acetyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauroyl peroxide, benzoyl peroxide, (Z (CF 2 ) p COO) 2 (wherein, Z is hydrogen Hara Fluorine atom or chlorine atom, and p is an integer of 1 to 10.
- the 10-hour half-life temperature of the organic peroxide is preferably 10 ° C to 150 ° C, more preferably 15 ° C to 120 ° C, and further preferably 20 ° C to 80 ° C. If the half-life temperature is within the above range, there is an advantage that the reaction rate can be easily controlled.
- the 10-hour half-life temperature is a temperature at which the organic peroxide concentration is halved after 10 hours at a concentration of 0.1 mol / liter in benzene, and is an index representing thermal characteristics. One.
- the organic peroxide is preferably diisopropyl peroxydicarbonate, t-butyl peroxypivalate, or the like because of easy control of the reaction temperature.
- the total number of moles of organic peroxide is preferably 0.0005 to 5 times the total number of moles of iodine atoms in the iodine-containing compound. If it is 0.0005 times or more, the conversion rate of the reaction is not too low and is practical. When it is 5 times or less, it is preferable for safety without adding an organic peroxide more than necessary, 0.005 to 2 times is more preferable, 0.01 to 1 time is further preferable, and 0.02 to 0. 5 times is particularly preferable. Further, the concentration of the organic peroxide in the reaction solution is preferably 5% by mass or less, and more preferably 1% by mass or less, in order to perform the reaction safely.
- Patent Document 1 it was thought that the carbon-iodine bond was cleaved by the radical initiator, so that an organic peroxide efficiently converts the CI bond of the iodine-containing compound into a CH bond. It was thought that a large amount of peroxide was required to convert to. In the presence of isopentane, toluene, etc., it was thought that hydrogen atoms are extracted and stabilized, but there are no experimental examples in combination with organic peroxides, which are necessary when adding these hydrocarbon compounds. There was no knowledge about the amount of organic peroxide. In the experiment of the comparative example of the present invention, even when toluene was added, the CI bond was not efficiently converted to the CH bond.
- the present inventor has found that when a compound having a specific hydrocarbon structure described later is used, the reaction proceeds efficiently even if the amount of the organic peroxide is smaller than that of the conventional one.
- the reaction proceeds efficiently even with an organic peroxide having a considerably smaller number of moles than the number of moles of iodine atoms in the iodine-containing compound. It has not been known or suggested that the reaction proceeds efficiently under such conditions.
- radicals generated from organic peroxides were thought to extract iodine atoms from iodine-containing compounds, so that C—H bonds were formed with organic peroxides having a mole number smaller than the number of moles of iodine atoms. No reaction has been attempted to convert to a bond.
- a reaction in which an iodine atom is extracted from an iodine-containing compound is extracted from the iodine-containing compound by the radical generated by the extraction of a hydrogen atom from the compound having the specific hydrocarbon structure.
- the C—I bond is efficiently converted to the C—H bond.
- the iodine-containing compound is a chain of hydrogen-containing compounds having a group represented by —CHR 1 —CHR 2 —CHR 3 — (wherein R 1 , R 2 and R 3 are each independently a hydrogen atom or an alkyl group). Used as a transfer agent. Even if the iodine-containing compound having the group (1i) or the group (2i) is treated with methanol, toluene or the like as a chain transfer agent, the CI bond of the iodine-containing compound is efficiently converted to a CH bond. It is difficult.
- the above-mentioned hydrogen-containing compound is preferably a chain saturated hydrocarbon (alkane) or a cyclic saturated hydrocarbon (cycloalkane), but it may be a compound having an ether bond or other functional group.
- the hydrogen-containing compound may be linear or branched. Alkanes or cycloalkanes are preferred because they are easy to handle, have high reaction activity, and are less likely to cause side reactions.
- alkane examples include n-pentane, 2-methylbutane, n-hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, n-heptane, 2-methylhexane, 3-methylhexane, 2,4-dimethylpentane, n-octane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 2,2-dimethylhexane, 2,5-dimethylhexane, 3,3-dimethylhexane, 2-methyl -3-ethylpentane, 3-methyl-3-ethylpentane, 2,3,3-trimethylpentane, 2,3,4-trimethylpentane, 2,2,3-trimethylpentane, 2-methylheptane, 2,2 , 4-trimethylpentane, n-nonane, 2,2,5-trimethylhexane, n-decane,
- n-pentane, 2-methylbutane, n-hexane, 2-methylpentane, or n-heptane is preferable.
- the cycloalkane include cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, and bicyclohexane. Of these, cyclopentane or cyclohexane is preferable.
- the total number of moles of the hydrogen-containing compound is preferably 2 to 500 times the total number of moles of all iodine atoms in the iodine-containing compound.
- the amount of the hydrogen-containing compound is twice or more, a hydrogen abstraction reaction easily occurs and the reaction yield is improved.
- the amount of the hydrogen-containing compound is 500 times or less, the solubility of the fluorine-containing iodine-containing compound is good, or the concentration of the iodine-containing compound does not become too thin. Among these, 5 to 300 times is more preferable, and 10 to 100 times is more preferable.
- the iodine-containing compound is preferably treated by dissolving or dispersing in a fluorine-containing solvent.
- fluorine-containing solvent examples include perfluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, and hydrofluoroether.
- perfluorocarbon examples include n-perfluorohexane, n-perfluoroheptane, perfluorocyclobutane, perfluorocyclohexane, perfluorobenzene and the like.
- Hydrochlorofluorocarbons include 2,2-dichloro-1,1,1-trifluoroethane, 1,1-dichloro-1-fluoroethane, 1,1-dichloro-2,2,3,3,3-penta Examples include fluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane.
- hydrofluorocarbon examples include 1,1,2,2-tetrafluorocyclobutane, CF 3 CF 2 CH 2 CH 3 , CF 3 CHF (CF 2 ) 3 F, CF 3 (CF 2 ) 4 H, and CF 3 CF 2 CHF.
- hydrofluoroether CF 3 CH 2 O (CF 2) 2 H, CHF 2 CF 2 CH 2 O (CF 2) 2 H, CH 3 O (CF 2) 4 H, CH 3 OCF 2 CF (CF 3 ) 2 , CF 3 CHFCF 2 OCF 3 and the like.
- a solvent compatible with both the fluorine-containing iodine-containing compound as a reaction substrate and the hydrogen-containing compound to be added is preferable, for example, 1,3-dichloro-1,1,2,2,3-penta Fluoropropane is preferred.
- the concentration of the iodine-containing compound is preferably 0.1 to 50% by mass with respect to the reaction solution. From the viewpoint of productivity, it is preferably 0.1% by mass or more, and preferably from 50% by mass or less from the viewpoint of preventing rapid heat generation at the start of the reaction. 1 to 30% by mass is more preferable.
- the concentration of the hydrogen-containing compound in the fluorine-containing solvent solution is preferably 0.1 to 30% by mass with respect to the reaction solution. When it is 0.1% by mass or more, an appropriate reaction rate can be secured.
- the hydrogen-containing compound can also be used as a solvent, but it is 30 mass from the viewpoint of ensuring compatibility with the fluorine-containing iodine-containing compound. % Or less is preferable. It is more preferably 1 to 20% by mass.
- the heat treatment temperature at this time is preferably between T ° C. and T + 80 ° C., more preferably between T + 10 ° C. and T + 50 ° C., when the 10-hour half-life temperature of the organic peroxide is T ° C.
- the heat treatment is preferably performed at 50 ° C. to 150 ° C.
- the heating time is preferably 1 to 24 hours. Since the reaction involving rapid organic peroxide decomposition is dangerous, it is preferable to carry out the reaction over one hour or more. From the viewpoint of productivity, the heating time is preferably within 24 hours.
- fluorine-containing compounds By the production method of the present invention, a fluorine-containing compound having an iodine atom content reduced as compared with the iodine-containing compound can be obtained.
- the fluorine-containing compound may have a group represented by the formula (1h) or a group represented by the formula (2h). -CFRf-H Formula (1h)
- Rf is the same as described in the formula (1i).
- Rf ′, R a and R b are the same as those described in the formula (2i).
- the group (1i) in the iodine-containing compound can be converted into the group (1h), and the group (2i) in the iodine-containing compound can be converted into the group (2h).
- the iodine atom content of the obtained fluorine-containing compound can be reduced to 10% or less of the iodine atom content of the iodine-containing compound before the treatment by deiodination treatment. That is, 90% or more of iodine atoms forming all CI bonds subjected to the reaction can be removed before and after the deiodination treatment.
- the iodine-containing compound is a polymer
- the iodine atom content in the polymer can be easily reduced to 10% or less of the original value.
- the polymer has an iodine atom content of 1% by mass
- a polymer having an iodine atom content reduced to 0.1% by mass or less can be obtained.
- the iodine atom content of the obtained fluorine-containing compound can be more preferably 5% or less, more preferably 3% or less of the iodine atom content of the iodine-containing compound.
- Examples 1 to 8, 10, 12 to 15, 21 to 26, and 30 are examples, and Examples 9, 11, and 27 to 29 are comparative examples.
- IPP diisopropyl peroxydicarbonate
- PBPV t-butyl peroxypivalate (solvent)
- HFC-52-13p CF 3 (CF 2 ) 5 H
- HCFC-141b CH 3 CCl 2 F
- HCFC-225cb CClF 2 CF 2 CHClF
- HCFC-225 A mixture of CClF 2 CF 2 CHClF and CF 3 CF 2 CHCl 2 .
- a branched polymer (1) having a unit based on 8IVE (m1-1) and a unit based on BVE (m24-1) was synthesized as follows. In an autoclave made of Hastelloy having an internal volume of 120 mL, 3.67 g (7.5 mmol) of 8IVE was charged. A solution prepared by dissolving 1.546 g (7.5 mmol) of IPP in about 15 g of HFC-52-13p and 18.77 g (67.5 mmol) of BVE were added, and finally HFC-52-13p was added. The total amount of HFC-52-13p added was 44.01 g.
- freeze deaeration was repeated twice to return to about 0 ° C., and then nitrogen gas was introduced to 0.3 MPaG.
- the autoclave was set in a water bath and stirred for 4 hours while maintaining the internal temperature at 45 ° C. Subsequently, it heated up to 55 degreeC over 10 minutes and stirred for 1 hour. Furthermore, after heating up to 65 degreeC over 10 minutes and stirring for 1 hour, it heated up to 70 degreeC over 5 minutes and stirred for 1 hour. Thereafter, the autoclave was immersed in ice water and cooled to 20 ° C. or lower to stop the reaction. The reaction solution was transferred from the autoclave to the beaker, and about 110 g of HFC-52-13p was added.
- the number of terminals of the BVE unit bonded to the iodine atom was determined.
- the ratio of the number of —OCF 2 CF 2 —I groups based on 8IVE units in which iodine atoms are not dissociated is 29:71 from the ratio of the peak at ⁇ 44 to ⁇ 54 ppm and the peak at around ⁇ 62 ppm.
- This polymer was confirmed to contain branched molecular chains.
- the iodine atom content determined by elemental analysis was 3.4% by mass. From this value, the molar ratio of units derived from 8IVE (m1-1) to units derived from BVE (m24-1) (8IVE / BVE) ) was calculated to be 1/12.
- the autoclave was set in a water bath and stirred for 8 hours while maintaining the internal temperature at 45 ° C. After stirring, the autoclave was immersed in ice water and cooled to 20 ° C. or lower to stop the reaction. The jelly-like product was transferred from the autoclave to the beaker and HCFC-225cb was added. The total amount was 214 g. After stirring for 5 minutes with a magnetic stirrer, 261 g of n-hexane was added to aggregate the polymer, followed by stirring for 30 minutes. Filtration under reduced pressure was performed, and the resulting polymer was washed with n-hexane.
- the polymer was returned to the beaker, HCFC-225cb was added, the total amount was 214 g, and the mixture was stirred for 5 minutes.
- the polymer was agglomerated by adding 261 g of n-hexane and stirred for 30 minutes. After filtration under reduced pressure and washing with n-hexane, HCFC-225cb was again added and stirred in the same manner, and the mixture was aggregated with n-hexane, filtered, and washed with n-hexane. Then, it dried until it became constant weight with a 60 degreeC vacuum dryer, and 23.75g of the polymer (2 ') of white powder was obtained.
- a Hastelloy autoclave with an internal volume of 230 mL was charged with 6.99 g of the polymer (2 ′) and 260.32 g of BSVE-2E, closed, and the gas phase was replaced with nitrogen. The temperature was raised to 40 ° C. and the mixture was stirred for 12 hours to dissolve the polymer (2 ′). After cooling to room temperature, 18.3 mg of IPP dissolved in 1.73 g of HFC-52-13p was added, and freeze degassing was repeated twice using liquid nitrogen. TFE was continuously introduced while raising the temperature, and the temperature was kept constant at 40 ° C. and the pressure at 0.50 MPaG. Consumption of TFE began 10 minutes after the temperature stabilized at 40 ° C.
- the autoclave was cooled to 10 ° C. 4.3 hours after the TFE supply amount at a constant pressure reached 2.37 g.
- the reaction was stopped by purging TFE in the autoclave.
- the product was diluted with 15 g of HCFC-225 and then 200 g of HCFC-141b was added to precipitate the polymer and filtered.
- the polymer was dissolved again in 150 g of HCFC-225, precipitated by adding 50 g of n-hexane and 140 g of HCFC-141b, and filtered. The dissolution / precipitation operation was performed again using the same solvent amount.
- the polymer was dried under reduced pressure at 80 ° C.
- segment (B) consisting of units derived from TFE (m4-1) and units derived from BSVE-2E (m32-1), PDD (m21 13.3 g of copolymer (2) which is a branched multi-segmented copolymer composed of a unit derived from -1) and a segment (A) composed of units derived from 8IVE (m1-1).
- the capacity was calculated as 2.00 meq / g dry resin.
- the ion exchange capacity of the copolymer (2) determined by the titration method was 1.22 meq / g dry resin.
- the measured GPC chart had one peak, and the copolymer (2) had a mass average molecular weight in terms of polymethyl methacrylate of 101,000.
- Example 1 In a 34 mL Hastelloy autoclave with an internal volume, PHVE-I, IPP (diisopropyl peroxydicarbonate) as an organic peroxide as a radical generation source, n-hexane as a hydrogen-containing compound, HCFC-225cb (1, 3-dichloro-1,1,2,2,3-pentafluoropropane) was added. Freeze deaeration was repeated twice using liquid nitrogen, the temperature was returned to about 0 ° C., nitrogen gas was introduced to 0.3 MPaG, and then heat treatment was performed at 70 ° C. for 7 hours.
- the total amount of the charging liquid was 18 g, and the concentration of PHVE-I was 5 mass%.
- the ratio of the total number of moles of organic peroxide (IPP) to the total number of moles of iodine atoms in PHVE-I was 2.
- the concentration of the hydrogen-containing compound (hexane) was 10% by mass.
- the ratio of the total number of moles of the hydrogen-containing compound (hexane) to the total number of moles of iodine atoms in PHVE-I was 13.4.
- the yield of the obtained CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF 2 CF 2 —H (hereinafter referred to as “PHVE-H”) was 96.8%.
- Example 2 to 11 Heat treatment was performed in the same manner as in Example 1 except that the following conditions were changed to those shown in Table 1.
- the yield of the obtained PHVE-H is shown in Table 1.
- the reaction temperature was 60 ° C.
- Example 11 the reaction temperature was 75 ° C.
- Example 12 In Example 3, the reaction was conducted under the same conditions except that CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) -I was used instead of PHVE-I. The obtained product was CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) —H, and the yield was 98.1%.
- Example 13 To a solution in which 1.35 g of the branched polymer (1) was dissolved in HCFC-225cb in a stainless steel autoclave having an internal volume of 110 mL, IPP as an organic peroxide and n-hexane as a hydrogen-containing compound were added. After freeze deaeration was repeated twice using liquid nitrogen and returned to about 0 ° C., nitrogen gas was introduced to 0.3 MPaG and stirred at 70 ° C. for 7 hours. In the above reaction, the concentration of the branched polymer (1) with respect to HCFC-225cb was 2% by mass.
- the ratio of the total number of moles of organic peroxide (IPP) to the total number of moles of iodine atoms in the branched polymer (1) was 2.
- the concentration of the hydrogen-containing compound (n-hexane) with respect to the total charged weight was 1% by mass.
- the ratio of the total number of moles of the hydrogen-containing compound to the total number of moles of iodine atoms in the branched polymer (1) was 22.
- Example 14 The treatment of the branched polymer (1) was carried out in the same manner as in Example 13, except that the ratio of the total number of moles of organic peroxide (IPP) to the total number of moles of iodine atoms in the branched polymer (1) was 0.5. Went.
- the reaction product was subjected to 19 F-NMR measurement using a perfluorobenzene solvent, the peak based on the —CF 2 —I bond disappeared, and 1 H-NMR was measured to find that —CF 2 —H at 6.0 ppm. The H atom peak (triple line) was observed.
- Example 15 In Example 13, the object to be treated was changed from the branched polymer (1) to the branched polymer (3).
- the concentration of the branched polymer (3) with respect to HCFC-225cb was 1.5% by mass.
- the ratio of the total number of moles of organic peroxide (IPP) to the total number of moles of iodine atoms in the branched polymer (3) was 0.5.
- the concentration of the hydrogen-containing compound (n-hexane) with respect to the total charged weight was 1% by mass. At this time, the ratio of the total number of moles of the hydrogen-containing compound to the total number of moles of iodine atoms in the branched polymer (1) was 45.
- the other conditions were the same as in Example 13.
- Example 21 The iodine content of the branched multi-segmented copolymer (2) was measured by elemental analysis and found to be 0.9% by mass. IPP as an organic peroxide and n-hexane as a hydrogen-containing compound were added to a solution of 0.45 g of the copolymer (2) dissolved in HCFC-225cb at a concentration of 3% by mass in a 34 mL Hastelloy autoclave. Of HCFC-225cb was added. Freezing and deaeration was repeated twice using liquid nitrogen, and the temperature was returned to about 0 ° C., then nitrogen gas was introduced to 0.3 MPaG, and heat treatment was performed at 70 ° C. for 7 hours.
- the concentration of the copolymer (2) with respect to the total charged amount was 2% by mass.
- the ratio of the total number of moles of organic peroxide to the total number of moles of iodine atoms in the copolymer (2) was 16.4.
- the concentration with respect to the total amount of the hydrogen-containing compound (n-hexane) was 1% by mass.
- the ratio of the total number of moles of the hydrogen-containing compound to the total number of moles of iodine atoms in the copolymer (2) was 82.
- the residual iodine atom content of the polymer after the heat treatment was measured by elemental analysis and found to be 0.02%.
- Example 22 to 29 Heat treatment was carried out in the same manner as in Example 21 except that the following conditions were changed to those shown in Table 2.
- Table 2 shows the yield of the polymer after the heat treatment.
- the concentration of copolymer (2) in the total charge The ratio of the total number of moles of organic peroxide to the total number of moles of iodine atoms in the copolymer (2).
- the reaction conditions were heating at 60 ° C. for 5 hours and then heating at 70 ° C. for 3 hours.
- Example 30 The iodine content of the branched multi-segmented copolymer (4) was measured by elemental analysis and found to be 0.49% by mass. This polymer was dissolved in an HCFC-225cb solvent and reacted at 70 ° C. for 7 hours in the same manner as in Example 21. However, in the above reaction, the concentration with respect to the total charged amount of the copolymer (4) was 2% by mass. The ratio of the total number of moles of organic peroxide (IPP) to the total number of moles of iodine atoms in the copolymer (4) was 5.4. The concentration with respect to the total amount of the hydrogen-containing compound (n-hexane) was 1% by mass.
- IPP organic peroxide
- the ratio of the total number of moles of the hydrogen-containing compound to the total number of moles of iodine atoms in the copolymer (4) was 150. After returning to room temperature after the reaction, an HCFC-225cb solution of IPP (concentration 3% by mass) was added. The ratio of the total number of moles of this IPP to the total number of moles of iodine atoms in the initially charged copolymer (4) was 5.5. The same operation was performed again, and the reaction was carried out at 70 ° C. for 7 hours. When elemental analysis was performed on the obtained polymer, iodine atoms were not detected (less than 0.01% by mass).
- the fluorosulfonyl group-containing fluorine-containing polymer compound obtained in the present invention is useful as an intermediate for an electrolyte material for a polymer electrolyte fuel cell.
- Other applications proto selective permeable membranes used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, etc .; cation exchange membranes for electrodialysis used for salt electrolysis, redox flow battery membranes, desalting or salt production , Dehumidifying membranes, humidifying membranes, chemical reaction acid catalysts, sensors, gas separation membranes, etc.).
- the fluorine-containing polymer compound containing no ionic group obtained by the production method of the present invention is an insulating film of a semiconductor device or an electronic circuit board, an optical waveguide material, an antireflection material, a sealing material, a water repellent, an oil repellent, etc. Useful as.
- the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2015-227178 filed on Nov. 20, 2015 are incorporated herein as the disclosure of the specification of the present invention. Is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
-CFRf-Iで表される基(Rfはフッ素原子またはペルフルオロアルキル基)を有する含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させ、紫外線照射を照射しなくても容易に、安定化された含フッ素化合物を得ることを目的とする。 -CFRf-I(Rfはフッ素原子またはペルフルオロアルキル基を示す。)で表される基を有する含ヨウ素化合物を、有機過酸化物および-CHR1-CHR2-CHR3-で表される基(R1、R2、R3はそれぞれ独立に水素原子またはアルキル基を示す。)を有する含水素化合物の存在下に脱ヨウ素処理し、前記ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物を製造する方法。
Description
本発明は、含フッ素化合物中に残存するヨウ素原子を低減することにより、安定化された含フッ素化合物を製造する方法に関する。
ヨウ素原子を有する化合物の炭素-ヨウ素結合を開裂させ、生じた炭素ラジカルにラジカル重合性モノマーをラジカル重合させてポリマーを合成する方法がある(特許文献1)。しかし、得られたポリマーにヨウ素原子が残存していると、ヨウ素が遊離しやすく、光、熱によって、ポリマーの劣化、着色が生じることがある。
そのような現象を防止するために、ヨウ素原子の残存するポリマーを、イソペンタン、トルエン、四塩化炭素などの存在下、光、熱またはラジカル開始剤で処理して、ポリマー中のC-I結合をC-H結合またはC-Cl結合に変換させる方法が開示される(特許文献1)。
上記特許文献1の実施例9には、ヨウ素原子の残存するポリマーを、イソペンタンとR-113に溶かし、亜硫酸ナトリウムを加え、紫外線照射をすることで、ヨウ素をほぼ完全に除去できたことが開示される。当該処理されるヨウ素原子の残存するポリマーは、炭素原子-ヨウ素原子結合として、-CH2CH(COOCH3)-Iと-CH2CH(C4H9)-Iを有するが、-CF2-Iを有するものではなかった。
そのような現象を防止するために、ヨウ素原子の残存するポリマーを、イソペンタン、トルエン、四塩化炭素などの存在下、光、熱またはラジカル開始剤で処理して、ポリマー中のC-I結合をC-H結合またはC-Cl結合に変換させる方法が開示される(特許文献1)。
上記特許文献1の実施例9には、ヨウ素原子の残存するポリマーを、イソペンタンとR-113に溶かし、亜硫酸ナトリウムを加え、紫外線照射をすることで、ヨウ素をほぼ完全に除去できたことが開示される。当該処理されるヨウ素原子の残存するポリマーは、炭素原子-ヨウ素原子結合として、-CH2CH(COOCH3)-Iと-CH2CH(C4H9)-Iを有するが、-CF2-Iを有するものではなかった。
従来技術には、-CFRf-Iで表される基(Rfはフッ素原子またはペルフルオロアルキル基)を有する含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させる方法は開示されていなかった。
本発明は、-CFRf-Iで表される基(Rfはフッ素原子またはペルフルオロアルキル基)を有する含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させ、紫外線照射の設備を使用することなく容易に、安定化された含フッ素化合物を得ることを目的とする。
本発明は、-CFRf-Iで表される基(Rfはフッ素原子またはペルフルオロアルキル基)を有する含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させ、紫外線照射の設備を使用することなく容易に、安定化された含フッ素化合物を得ることを目的とする。
本発明は、以下の[1]の構成を有する、含フッ素化合物を製造する方法を提供する。
[1]下記式(1i)で表される基または下記式(2i)で表される基を有する含ヨウ素化合物を、有機過酸化物および下記式(3)で表される基を有する含水素化合物の存在下に脱ヨウ素処理し、前記含ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物を製造する方法。
-CFRf-I 式(1i)
[1]下記式(1i)で表される基または下記式(2i)で表される基を有する含ヨウ素化合物を、有機過酸化物および下記式(3)で表される基を有する含水素化合物の存在下に脱ヨウ素処理し、前記含ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物を製造する方法。
-CFRf-I 式(1i)
-CHR1-CHR2-CHR3- 式(3)
式(1i)中、Rfはフッ素原子またはペルフルオロアルキル基を示す。
式(2i)中、Rf’を含む環は5員環又は6員環であり、Rf’は直鎖または分岐構造を有する、エーテル結合性酸素原子を有していても良いペルフルオロアルキレン基を示す。RaおよびRbは、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基を示す。
式(3)中、R1、R2、R3は、それぞれ独立に水素原子またはアルキル基を示す。
式(1i)中、Rfはフッ素原子またはペルフルオロアルキル基を示す。
式(2i)中、Rf’を含む環は5員環又は6員環であり、Rf’は直鎖または分岐構造を有する、エーテル結合性酸素原子を有していても良いペルフルオロアルキレン基を示す。RaおよびRbは、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基を示す。
式(3)中、R1、R2、R3は、それぞれ独立に水素原子またはアルキル基を示す。
本発明により、-CFRf-Iで表される基(Rfはフッ素原子またはペルフルオロアルキル基)を有する含フッ素化合物のC-I結合をC-H結合に効率的に変換させることができ、安定化された含フッ素化合物を容易に得ることができる。
以下の表現や用語の定義は、特に断りのない限り、本明細書および特許請求の範囲にわたって適用される。
式(m1)で表される構成単位を単位(m1)と記す。他の式で表される単位もこれに準じて記す。
式(m1)で表されるモノマーをモノマー(m1)と記す。他の式で表される化合物もこれに準じて記す。
式(1i)で表される基を基(1i)と記す。他の式で表される基もこれに準じて記す。
「単位」とは、モノマーがラジカル重合することによって形成された該モノマーに由来する単位を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって、該単位の一部が別の構造に変換された単位であってもよい。
「含フッ素化合物」とは、炭素原子に結合するフッ素原子を有する化合物を意味する。
「含ヨウ素化合物」とは、炭素原子に結合するヨウ素原子を有する化合物を意味する。
「含水素化合物」とは、炭素原子に結合する水素原子を有する化合物を意味する。
「ペルフルオロアルキル基」とは、アルキル基の水素原子のすべてがフッ素原子に置き換わった基を意味する。「ペルフルオロアルキレン基」とは、アルキレン基の水素原子のすべてがフッ素原子に置き換わった基を意味する。
「ポリフルオロアルキル基」とは、アルキル基の水素原子の一部がフッ素原子に置き換わった基を意味する。「ポリフルオロアルキレン基」とは、アルキレン基の水素原子の一部がフッ素原子に置き換わった基を意味する。
「脱ヨウ素処理」とは、化合物中のC-I結合をC-H結合に変換する処理を意味する。
「連鎖移動剤」とは、ヨウ素原子を引き抜かれて生成したラジカルに水素原子を提供する化合物を意味する。
式(m1)で表される構成単位を単位(m1)と記す。他の式で表される単位もこれに準じて記す。
式(m1)で表されるモノマーをモノマー(m1)と記す。他の式で表される化合物もこれに準じて記す。
式(1i)で表される基を基(1i)と記す。他の式で表される基もこれに準じて記す。
「単位」とは、モノマーがラジカル重合することによって形成された該モノマーに由来する単位を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって、該単位の一部が別の構造に変換された単位であってもよい。
「含フッ素化合物」とは、炭素原子に結合するフッ素原子を有する化合物を意味する。
「含ヨウ素化合物」とは、炭素原子に結合するヨウ素原子を有する化合物を意味する。
「含水素化合物」とは、炭素原子に結合する水素原子を有する化合物を意味する。
「ペルフルオロアルキル基」とは、アルキル基の水素原子のすべてがフッ素原子に置き換わった基を意味する。「ペルフルオロアルキレン基」とは、アルキレン基の水素原子のすべてがフッ素原子に置き換わった基を意味する。
「ポリフルオロアルキル基」とは、アルキル基の水素原子の一部がフッ素原子に置き換わった基を意味する。「ポリフルオロアルキレン基」とは、アルキレン基の水素原子の一部がフッ素原子に置き換わった基を意味する。
「脱ヨウ素処理」とは、化合物中のC-I結合をC-H結合に変換する処理を意味する。
「連鎖移動剤」とは、ヨウ素原子を引き抜かれて生成したラジカルに水素原子を提供する化合物を意味する。
(含ヨウ素化合物)
本発明において脱ヨウ素処理される被処理体は、基(1i)または基(2i)を有する含ヨウ素化合物である。すなわち、含ヨウ素化合物は、本発明において被処理化合物であるが、被処理化合物は、フッ素を含んでいるので含フッ素化合物ともいえる。
-CFRf-I 式(1i)
本発明において脱ヨウ素処理される被処理体は、基(1i)または基(2i)を有する含ヨウ素化合物である。すなわち、含ヨウ素化合物は、本発明において被処理化合物であるが、被処理化合物は、フッ素を含んでいるので含フッ素化合物ともいえる。
-CFRf-I 式(1i)
式(1i)中、Rfはフッ素原子またはペルフルオロアルキル基を示す。
ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
ペルフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。
Rfとしては、フッ素原子、トリフルオロメチル基、またはペンタフルオロエチル基が好ましく、フッ素原子またはトリフルオロメチル基がより好ましく、フッ素原子がさらに好ましい。
ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
ペルフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。
Rfとしては、フッ素原子、トリフルオロメチル基、またはペンタフルオロエチル基が好ましく、フッ素原子またはトリフルオロメチル基がより好ましく、フッ素原子がさらに好ましい。
式(2i)中、Rf’を含む環は5員環又は6員環であり、Rf’は直鎖または分岐構造を有する、エーテル結合性酸素原子を有していても良いペルフルオロアルキレン基を示す。Rf’を含む環は5員環であるものが好ましい。Rf’は分岐構造を有するものが好ましく、エーテル結合性酸素原子を含むものがより好ましい。
RaおよびRbは、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基を示す。RaおよびRbは、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
ペルフルオロアルキル基およびペルフルオロアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
RaおよびRbは、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基を示す。RaおよびRbは、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
ペルフルオロアルキル基およびペルフルオロアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
本発明における含ヨウ素化合物は、低分子化合物であってもよく、高分子化合物であってもよい。
含ヨウ素化合物が低分子化合物である場合、該低分子化合物としては、下記式(4)で表される化合物、または、下記式(5)で表される化合物が挙げられる。
Q1-CFRf-I 式(4)
Q2-(CFRf-I)2 式(5)
式(4)中、Rfはフッ素原子またはペルフルオロアルキル基であり、Q1はフッ素原子またはエーテル結合性酸素原子を有していてもよいポリフルオロアルキル基を示す。式(5)中、Rfはそれぞれ独立にフッ素原子またはペルフルオロアルキル基であり、Q2はエーテル結合性酸素原子を有してもよいポリフルオロアルキレン基を示す。
Rfの好ましい態様は、式(1i)において説明したとおりである。
含ヨウ素化合物が低分子化合物である場合、該低分子化合物としては、下記式(4)で表される化合物、または、下記式(5)で表される化合物が挙げられる。
Q1-CFRf-I 式(4)
Q2-(CFRf-I)2 式(5)
式(4)中、Rfはフッ素原子またはペルフルオロアルキル基であり、Q1はフッ素原子またはエーテル結合性酸素原子を有していてもよいポリフルオロアルキル基を示す。式(5)中、Rfはそれぞれ独立にフッ素原子またはペルフルオロアルキル基であり、Q2はエーテル結合性酸素原子を有してもよいポリフルオロアルキレン基を示す。
Rfの好ましい態様は、式(1i)において説明したとおりである。
Q1がエーテル結合性酸素原子を有するポリフルオロアルキル基である場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ポリフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、基(1i)と結合する側の末端に存在していてもよい。ポリフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ポリフルオロアルキル基の炭素数は、1~20が好ましく、1~10がより好ましい。該ポリフルオロアルキル基は、ペルフルオロアルキル基が好ましい。
Q2がエーテル結合性酸素原子を有するポリフルオロアルキレン基である場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ポリフルオロアルキレン基の炭素-炭素結合間に挿入されていてもよく、基(1i)と結合する側の末端に存在していてもよい。ポリフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ポリフルオロアルキレン基の炭素数は、1~20が好ましく、1~10がより好ましい。該ポリフルオロアルキレン基は、ペルフルオロアルキレン基が好ましい。
含ヨウ素化合物が高分子化合物である場合、該高分子化合物としては、モノマーのラジカル重合反応で得られるポリマーが挙げられる。少なくとも1以上のC-I結合を有し、炭素原子に結合した水素原子のすべてがフッ素原子に置き換わったポリマーが好ましい。ポリマー中のフッ素原子の割合が増えるほど、脱ヨウ素処理後のポリマーの耐熱性、耐光性、化学的安定性、低屈折率、低誘電率、撥水撥油性等の特性が良好になる。ポリマーとしては、分岐分子鎖を有する分岐ポリマーであってもよく、非晶質の分岐ポリマーであってもよい。
非晶質の分岐ポリマーとしては、ヨウ素原子を有するモノマー(m1)に基づく単位(m1)と、脂肪族環構造を有するモノマー(m2)および環化重合によって脂肪族環構造を形成し得るモノマー(m2’)のいずれか一方または両方に基づく単位(m2)とを含むポリマーが挙げられる。
分岐ポリマーの分岐点は、単位(m1)からヨウ素原子を除いた単位からなる。分岐ポリマーの形成の途中で、重合反応系内のラジカルによりヨウ素原子が引き抜かれた単位(m1)は、モノマー成分の重合の開始点となり、モノマー成分の重合後に形成されたポリマーの分岐点となっている。
分岐ポリマーにおける基(1i)は、単位(m1)中の(重合中に引き抜かれずに残存している)ヨウ素原子により構成される場合もある。また、分岐ポリマーにおける基(1i)は、単位(m2)にヨウ素原子が結合した部分、すなわちヨウ素原子が結合しているポリマー末端部としても存在する。該ポリマー末端部に存在するヨウ素原子は、ポリマーの形成の途中で、単位(m1)から離脱したヨウ素原子、または、重合反応系内のヨウ素を有するモノマー(m1)からヨウ素原子が移動してきたものである。
モノマー(m1):
モノマー(m1)は、ヨウ素原子を有するモノマーである。
モノマー(m1)としては、生成するポリマー中のフッ素原子の割合を大きくするため、炭素原子に結合する水素原子の一部がヨウ素原子に置き換わり、残りの水素原子がすべてフッ素原子に置き換わったモノマーが好ましい。
モノマー(m1)は、ヨウ素原子を有するモノマーである。
モノマー(m1)としては、生成するポリマー中のフッ素原子の割合を大きくするため、炭素原子に結合する水素原子の一部がヨウ素原子に置き換わり、残りの水素原子がすべてフッ素原子に置き換わったモノマーが好ましい。
モノマー(m1)としては、下記のモノマーが挙げられる。
CF2=CFOCF2CF(CF3)OCF2CF2-I、
CF2=CFOCF2CF(CF3)OCF2CF(CF3)OCF2CF2-I、
CF2=CFO(CF2)2-I、CF2=CFO(CF2)3-I、
CF2=CFO(CF2)4-I、CF2=CFO(CF2)5-I、
CF2=CFO(CF2)6-I、CF2=CFO(CF2)8-I、
CF2=CFOCF2CF(CF3)-I、
CF2=CFOCF2CF(CF3)OCF2CF(CF3)-I、
CF2=CFO(CF2)3OCF2CF2-I、
CF2=CFOCF2CF2OCF2CF2CF2CF2-I、
CF2=CFOCF(CF3)CF2OCF2CF2-I、
CF2=CFOCF2CF2CH2-I、
CF2=CFOCF2CF(CF3)OCF2CF2CH2-I、
CF2=CFOCF2CF2CH2CH2CH2-I、
CH2=CHCF2CF2-I、CH2=CHCF2CF2CF2CF2-I、
CH2=CFCF2CF2-I、CH2=CFCF2CF2CF2CF2-I、
CH2=CFCF2OCF(CF3)-I、
CH2=CFCF2OCF(CF3)CF2OCF(CF3)-I、
CH2=CFCF2OCF(CF3)CF2OCF(CF3)CF2OCF(CF3)-I
これらの中でも、基(1i)を含有するモノマーが、生成ポリマーの安定化が容易なので好ましい。ペルフルオロモノマーがより好ましい。
CF2=CFOCF2CF(CF3)OCF2CF2-I、
CF2=CFOCF2CF(CF3)OCF2CF(CF3)OCF2CF2-I、
CF2=CFO(CF2)2-I、CF2=CFO(CF2)3-I、
CF2=CFO(CF2)4-I、CF2=CFO(CF2)5-I、
CF2=CFO(CF2)6-I、CF2=CFO(CF2)8-I、
CF2=CFOCF2CF(CF3)-I、
CF2=CFOCF2CF(CF3)OCF2CF(CF3)-I、
CF2=CFO(CF2)3OCF2CF2-I、
CF2=CFOCF2CF2OCF2CF2CF2CF2-I、
CF2=CFOCF(CF3)CF2OCF2CF2-I、
CF2=CFOCF2CF2CH2-I、
CF2=CFOCF2CF(CF3)OCF2CF2CH2-I、
CF2=CFOCF2CF2CH2CH2CH2-I、
CH2=CHCF2CF2-I、CH2=CHCF2CF2CF2CF2-I、
CH2=CFCF2CF2-I、CH2=CFCF2CF2CF2CF2-I、
CH2=CFCF2OCF(CF3)-I、
CH2=CFCF2OCF(CF3)CF2OCF(CF3)-I、
CH2=CFCF2OCF(CF3)CF2OCF(CF3)CF2OCF(CF3)-I
これらの中でも、基(1i)を含有するモノマーが、生成ポリマーの安定化が容易なので好ましい。ペルフルオロモノマーがより好ましい。
モノマー(m2):
モノマー(m2)は、脂肪族環構造を有するモノマーである。
脂肪族環構造は、エーテル結合性酸素原子を1個または2個有してもよく、炭素原子に結合する水素原子がフッ素原子に置換されていてもよい環状の有機基である。
モノマー(m2)としては、生成するポリマー中のフッ素原子の割合を大きくするため、ペルフルオロモノマーが好ましい。
モノマー(m2)における重合反応性の炭素-炭素二重結合は、脂肪族環構造を構成する隣接する2個の炭素原子から構成されてもよく、脂肪族環構造を構成する1個の炭素原子とこれに隣接する脂肪族環構造外に存在する1個の炭素原子から構成されてもよい。
モノマー(m2)は、脂肪族環構造を有するモノマーである。
脂肪族環構造は、エーテル結合性酸素原子を1個または2個有してもよく、炭素原子に結合する水素原子がフッ素原子に置換されていてもよい環状の有機基である。
モノマー(m2)としては、生成するポリマー中のフッ素原子の割合を大きくするため、ペルフルオロモノマーが好ましい。
モノマー(m2)における重合反応性の炭素-炭素二重結合は、脂肪族環構造を構成する隣接する2個の炭素原子から構成されてもよく、脂肪族環構造を構成する1個の炭素原子とこれに隣接する脂肪族環構造外に存在する1個の炭素原子から構成されてもよい。
モノマー(m2)としては、たとえば、モノマー(m20)またはモノマー(m22)が挙げられ、モノマー(m20)が好ましい。モノマー(m20)とモノマー(m1)を共重合することで、末端に基(2i)を有する分岐ポリマーが得られる。モノマー(m20)はモノマー(m21)であることがさらに好ましい。
式(m20)中、Rf’、Ra、Rbは、式(2i)と同様である。
式(m21)中、R11およびR12は、それぞれ独立に、フッ素原子または炭素数1~5のペルフルオロアルキル基である。
R13およびR14は、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基である。R13およびR14は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
ペルフルオロアルキル基およびペルフルオロアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
式(m21)中、R11およびR12は、それぞれ独立に、フッ素原子または炭素数1~5のペルフルオロアルキル基である。
R13およびR14は、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基である。R13およびR14は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
ペルフルオロアルキル基およびペルフルオロアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
式(m22)中、R21~R26は、それぞれ独立に、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、炭素原子と結合する側の末端に存在していてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
R25およびR26は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
R25およびR26は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
モノマー(m21)としては、たとえば、モノマー(m21-1)~(m21-7)が挙げられる。
モノマー(m22)としては、たとえば、モノマー(m22-1)またはモノマー(m22-2)が挙げられる。合成が容易である点から、モノマー(m22-1)がより好ましい。
モノマー(m2’):
モノマー(m2’)は、環化重合によって脂肪族環構造を形成し得るモノマーである。
脂肪族環構造は、エーテル結合性酸素原子を1個または2個有してもよく、炭素原子に結合する水素原子がフッ素原子に置換されていてもよい環状の有機基である。
モノマー(m2’)としては、耐久性の点から、ペルフルオロモノマーが好ましく、たとえば、モノマー(m24)が挙げられる。
モノマー(m2’)は、環化重合によって脂肪族環構造を形成し得るモノマーである。
脂肪族環構造は、エーテル結合性酸素原子を1個または2個有してもよく、炭素原子に結合する水素原子がフッ素原子に置換されていてもよい環状の有機基である。
モノマー(m2’)としては、耐久性の点から、ペルフルオロモノマーが好ましく、たとえば、モノマー(m24)が挙げられる。
CF(R41)=C(R43)-O-CF(R46)-CF(R45)-C(R44)=CF(R42) ・・・(m24)。
R41~R46は、それぞれ独立に、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、炭素原子と結合する側の末端に存在していてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
R41~R44は、重合反応性が高い点から、フッ素原子であることがより好ましい。
R41~R46は、それぞれ独立に、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、炭素原子と結合する側の末端に存在していてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
R41~R44は、重合反応性が高い点から、フッ素原子であることがより好ましい。
モノマー(m24)としては、たとえば、モノマー(m24-1)~(m24-3)が挙げられ、モノマーの合成のしやすさから、モノマー(m24-1)が好ましい。
CF2=CF-O-CF2-CF2-CF=CF2 ・・・(m24-1)、
CF2=CF-O-CF2-CF(CF3)-CF=CF2 ・・・(m24-2)、
CF2=CF-O-CF(CF3)-CF2-CF=CF2 ・・・(m24-3)。
CF2=CF-O-CF2-CF2-CF=CF2 ・・・(m24-1)、
CF2=CF-O-CF2-CF(CF3)-CF=CF2 ・・・(m24-2)、
CF2=CF-O-CF(CF3)-CF2-CF=CF2 ・・・(m24-3)。
また、他の分岐ポリマーとしては、ヨウ素原子を有するモノマー(m1)に基づく単位(m1)と、脂肪族環構造を有するモノマー(m2)および環化重合によって脂肪族環構造を形成し得るモノマー(m2’)のいずれか一方または両方に基づく単位(m2)とを含むセグメント(A)からなる分岐分子鎖の末端に、後述するイオン性基の前駆体基を有するモノマー(m3)に基づく単位(m3)を有するセグメント(B)からなる線状の分子鎖の1つ以上が結合した分岐型多元セグメント化コポリマーが挙げられる。セグメント(A)、セグメント(B)はモノマー(m1)、モノマー(m2)、モノマー(m2’)およびモノマー(m3)以外のモノマー(m4)に基づく単位(m4)を含んでもよい。
なお、「イオン性基」とは、H+、一価の金属カチオン、アンモニウムイオン等を有する基である。モノマー(m1)、モノマー(m2)、モノマー(m2’)およびモノマー(m4)は、イオン性基またはその前駆体基を有しない。
なお、「イオン性基」とは、H+、一価の金属カチオン、アンモニウムイオン等を有する基である。モノマー(m1)、モノマー(m2)、モノマー(m2’)およびモノマー(m4)は、イオン性基またはその前駆体基を有しない。
分岐型多元セグメント化コポリマーのセグメント(B)の末端には、ヨウ素原子が結合した基(1i)または基(2i)が存在する。セグメント(A)に含まれていた基(1i)または基(2i)の一部が残存していても良い。
分岐型多元セグメント化コポリマーは、イオン性基の前駆体基(加水分解処理、酸型化処理等の公知の処理によってイオン性基に変換できる基、例えば-SO2F基)をイオン性基(スルホン酸基(-SO3
-H+基))に変換したあと、電解質材料として燃料電池等に使用され得るが、基(1i)または基(2i)がポリマー中に残存していると、燃料電池の性能に影響を及ぼすことがある。
分岐型多元セグメント化コポリマーにおけるモノマー(m1)、モノマー(m2)については、上述したのと同様である。
モノマー(m3):
モノマー(m3)は、イオン性基の前駆体基を有するモノマーである。該モノマー(m3)としては、電解質材料、特には燃料電池用電解質材料としての耐久性の点から、ペルフルオロモノマーが好ましい。
モノマー(m3)としては、1つの前駆体基を有するモノマー(m3-1)、2つの前駆体基を有するモノマー(m3-2)等が挙げられる。
モノマー(m3)は、イオン性基の前駆体基を有するモノマーである。該モノマー(m3)としては、電解質材料、特には燃料電池用電解質材料としての耐久性の点から、ペルフルオロモノマーが好ましい。
モノマー(m3)としては、1つの前駆体基を有するモノマー(m3-1)、2つの前駆体基を有するモノマー(m3-2)等が挙げられる。
モノマー(m3-1):
モノマー(m3-1)としては、分岐ポリマーの製造が容易であり、工業的実施が容易である点から、モノマー(m31)が好ましい。
CF2=CF(CF2)pOCF2-CFY1-Q3-SO2F ・・・(m31)。
モノマー(m3-1)としては、分岐ポリマーの製造が容易であり、工業的実施が容易である点から、モノマー(m31)が好ましい。
CF2=CF(CF2)pOCF2-CFY1-Q3-SO2F ・・・(m31)。
Q3は、単結合、またはエーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。
Q3のペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、CFY1側の末端に存在していてもよい。
ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。
Q3のペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、CFY1側の末端に存在していてもよい。
ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。
Y1は、フッ素原子または1価のペルフルオロ有機基である。 Y1としては、フッ素原子またはトリフルオロメチル基が好ましい。
pは、0または1である。
pは、0または1である。
モノマー(m31)としては、ポリマーの製造が容易であり、工業的実施が容易である点から、モノマー(m31-1)~(m31-4)が好ましい。
CF2=CFOCF2CF(CF3)OCF2CF2-SO2F ・・・(m31-1)、
CF2=CFOCF2CF2-SO2F ・・・(m31-2)、
CF2=CFOCF2CF2CF2CF2-SO2F ・・・(m31-3)、
CF2=CFCF2OCF2CF2-SO2F ・・・(m31-4)。
CF2=CFOCF2CF(CF3)OCF2CF2-SO2F ・・・(m31-1)、
CF2=CFOCF2CF2-SO2F ・・・(m31-2)、
CF2=CFOCF2CF2CF2CF2-SO2F ・・・(m31-3)、
CF2=CFCF2OCF2CF2-SO2F ・・・(m31-4)。
モノマー(m3-2):
モノマー(m3-2)としては、下記モノマー(m32)が好ましい。
モノマー(m3-2)としては、下記モノマー(m32)が好ましい。
qは、0または1である。
Q21は、エーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。Q22は、単結合、またはエーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。
Q21、Q22のペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、CY2側の末端に存在していてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。
Q21およびQ22の少なくとも一方は、CY2側の末端にエーテル結合性酸素原子を有する炭素数1~6のペルフルオロアルキレン基であることが好ましい。
Y2は、フッ素原子または1価のペルフルオロ有機基である。Y2は、フッ素原子、またはエーテル結合性酸素原子を有していてもよい、炭素数1~6の直鎖のペルフルオロアルキル基が好ましい。
Q21は、エーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。Q22は、単結合、またはエーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。
Q21、Q22のペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、CY2側の末端に存在していてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。
Q21およびQ22の少なくとも一方は、CY2側の末端にエーテル結合性酸素原子を有する炭素数1~6のペルフルオロアルキレン基であることが好ましい。
Y2は、フッ素原子または1価のペルフルオロ有機基である。Y2は、フッ素原子、またはエーテル結合性酸素原子を有していてもよい、炭素数1~6の直鎖のペルフルオロアルキル基が好ましい。
モノマー(m32)としては、ポリマーの製造が容易であり、工業的実施が容易である点から、モノマー(m32-1)~(m32-3)が好ましく、モノマー(m32-1)が好ましい。
上述した非晶質の分岐ポリマーや分岐型多元セグメント化コポリマーは、モノマー(m4)に基づく単位を含んでいてもよい。
モノマー(m4):
モノマー(m4)は、モノマー(m1)、モノマー(m2)、モノマー(m2’)およびモノマー(m3)以外の他のモノマーである。
モノマー(m4):
モノマー(m4)は、モノマー(m1)、モノマー(m2)、モノマー(m2’)およびモノマー(m3)以外の他のモノマーである。
モノマー(m4)としては、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、エチレン、プロピレン、ペルフルオロα-オレフィン類(ヘキサフルオロプロピレン等)、(ペルフルオロアルキル)エチレン類((ペルフルオロブチル)エチレン等)、(ペルフルオロアルキル)プロペン類(3-ペルフルオロオクチル-1-プロペン等)等が挙げられる。モノマー(m4)としては、耐久性の点から、ペルフルオロモノマーが好ましく、TFEがより好ましい。
上述した非晶質の分岐ポリマーや分岐型多元セグメント化コポリマーは、公知の通常のラジカル重合法を用いて製造される。
(有機過酸化物)
本発明において、含ヨウ素化合物は、有機過酸化物を用いて処理される。基(1i)または基(2i)を有する含ヨウ素化合物を無機酸化物やアゾ化合物を用いて処理しても、含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させることは困難である。
本発明において、含ヨウ素化合物は、有機過酸化物を用いて処理される。基(1i)または基(2i)を有する含ヨウ素化合物を無機酸化物やアゾ化合物を用いて処理しても、含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させることは困難である。
有機過酸化物としては、ジアルキルペルオキサイド、ペルオキシケタール、ジアシルペルオキサイド、ジアルキルペルオキシジカーボネート、ペルオキシエステル、ペルオキシモノカーボネート、ビス(フルオロアシル)ペルオキシド、ビス(クロロフルオロアシル)ペルオキシド、ペルオキシエステル等が挙げられる。
これらの有機過酸化物としては、たとえばジ-t-ブチルペルオキサイド、ペルフルオロジ-t-ブチルペルオキサイドt-ブチルクミルペルオキサイド、ジクミルペルオキサイドなどのジアルキルペルオキサイド;1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、2,2-ビス(t-ブチルペルオキシ)ブタンなどのペルオキシケタール;イソブチリルペルオキサイド、アセチルペルオキサイド、3,3,5-トリメチルヘキサノイルペルオキサイド、ラウロイルペルオキサイド、ベンゾイルペルオキサイド、(Z(CF2)pCOO)2(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1~10の整数である。)等の含フッ素ジアシルペルオキサイド、ペルフルオロプロピルジアシルペルオキサイド、などのジアシルペルオキサイド;ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ジ-2-エトキシエチルペルオキシジカーボネート、ジ-メトキシブチルペルオキシジカーボネートなどのジアルキルペルオキシジカーボネート;クミルペルオキシネオデカネート、1,1,3,3-テトラメチルブチルペルオキシネオデカネート、t-ヘキシルペルオキシネオデカネート、t-アミルペルオキシネオデカネート、t-ブチルペルオキシネオデカネート、t-ブチルペルオキシネオオクタネ-ト、t-ブチルペルオキシネオヘキサネート、t-ブチルペルオキシピバレ-ト、t-ブチル-2-エチルヘキサネート、t-ブチルペルオキシソブチレート、t-ブチルペルオキシラウレート、t-ブチルペルオキシ-2-エチルヘキサネート、t-ブチルペルオキシベンゾエート、t-ブチルペルオキシアセテートなどのペルオキシエステル;t-ブチルペルオキシソプロピルモノカーボネート、t-ブチルペルオキシアリルモノカーボネートなどのペルオキシモノカーボネートなどがあげられる。
有機過酸化物の10時間半減期温度は10℃~150℃であることが好ましく、15℃~120℃がより好ましく、20℃~80℃がさらに好ましい。該半減期温度が前記範囲内であれば、容易に反応速度を制御できるという利点がある。なお、本明細書において、10時間半減期温度とは、ベンゼン中0.1モル/リットルの濃度で10時間後に有機過酸化物濃度が半分となる温度であり、熱的特性を表わす指標の1つである。
本発明において、有機過酸化物は、反応温度の制御のしやすさの理由から、ジイソプロピルペルオキシジカーボネートやt-ブチルペルオキシピバレ-トなどが好ましい。
有機過酸化物の全モル数は、含ヨウ素化合物中のヨウ素原子の全モル数に対して、0.0005~5倍であることが好ましい。0.0005倍以上であると反応の転化率が低すぎず実用的である。5倍以下であると、必要以上に有機過酸化物を添加することなく、安全上好ましく、0.005~2倍がより好ましく、0.01~1倍がさらに好ましく、0.02~0.5倍が特に好ましい。また、有機過酸化物の反応液中の濃度は、反応を安全に行うために、5質量%以下であることが好ましく、1質量%以下であることがさらに好ましい。
従来(例えば、特許文献1)は、ラジカル開始剤によって炭素-ヨウ素結合が開裂されると考えられていたので、有機過酸化物で含ヨウ素化合物のC-I結合をC-H結合に効率的に変換するためには、過酸化物が大量に必要と考えられていた。イソペンタン、トルエンなどを存在させると、水素原子が引き抜かれて安定化されると考えられていたが、有機過酸化物と組み合わせた実験例はなく、これらの炭化水素化合物を添加する場合に必要な有機過酸化物の量についても知見がなかった。本発明の比較例の実験では、トルエンを添加してもC-I結合はC-H結合に効率的に変換されることはなかった。本発明者は、後述する特定の炭化水素構造を有する化合物を用いると、有機過酸化物の量が従来よりも少ない量であっても効率的に反応が進行することを見出した。含ヨウ素化合物のヨウ素原子のモル数よりもかなり少ないモル数の有機過酸化物でも反応は効率的に進行する。このような条件で反応が効率的に進行するということはこれまでに知られておらず、示唆もなかった。従来は有機過酸化物から生成したラジカルが含ヨウ素化合物からヨウ素原子を引き抜くと考えられていたので、ヨウ素原子のモル数よりも少ないモル数の有機過酸化物でC-I結合をC-H結合に変換する反応が試みられたことはなかった。含ヨウ素化合物からヨウ素原子が引き抜かれて生成したラジカルが、前記特定の炭化水素構造を有する化合物から水素原子を引き抜き、それによって生成したラジカルによって、含ヨウ素化合物からヨウ素原子が引き抜かれるという反応が繰り返されることで、効率的にC-I結合がC-H結合に変換されると考えられる。
(含水素化合物)
本発明において、含ヨウ素化合物は、-CHR1-CHR2-CHR3-で表される基(R1、R2、R3はそれぞれ独立に水素原子またはアルキル基)を有する含水素化合物を連鎖移動剤として用いて処理される。基(1i)または基(2i)を有する含ヨウ素化合物をメタノールやトルエン等を連鎖移動剤として用いて処理しても、含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させることは困難である。
本発明において、含ヨウ素化合物は、-CHR1-CHR2-CHR3-で表される基(R1、R2、R3はそれぞれ独立に水素原子またはアルキル基)を有する含水素化合物を連鎖移動剤として用いて処理される。基(1i)または基(2i)を有する含ヨウ素化合物をメタノールやトルエン等を連鎖移動剤として用いて処理しても、含ヨウ素化合物のC-I結合をC-H結合に効率的に変換させることは困難である。
上記含水素化合物は、鎖式飽和炭化水素(アルカン)、又は環式飽和炭化水素(シクロアルカン)が好ましく用いられるが、エーテル結合や他の官能基を有する化合物であっても良い。また、上記含水素化合物は、直鎖状であっても分岐状であってもよい。アルカンまたはシクロアルカンが取り扱いが容易で反応活性が高く、副反応を起こしにくいので好ましい。
上記アルカンとしては、n-ペンタン、2-メチルブタン、n-ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,4-ジメチルペンタン、n-オクタン、2-メチルヘプタン、3-メチルヘプタン、4-メチルヘプタン、2,2-ジメチルヘキサン、2,5-ジメチルヘキサン、3,3-ジメチルヘキサン、2-メチル-3-エチルペンタン、3-メチル-3-エチルペンタン、2,3,3-トリメチルペンタン、2,3,4-トリメチルペンタン、2,2,3-トリメチルペンタン、2-メチルヘプタン、2,2,4-トリメチルペンタン、n-ノナン、2,2,5-トリメチルヘキサン、n-デカン、n-ドデカン、等が挙げられる。なかでも、n-ペンタン、2-メチルブタン、n-ヘキサン、2-メチルペンタン、またはn-ヘプタンが好ましい。
上記シクロアルカンとしては、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ビシクロヘキサン等が挙げられる。なかでも、シクロペンタンまたはシクロヘキサンが好ましい。
上記シクロアルカンとしては、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ビシクロヘキサン等が挙げられる。なかでも、シクロペンタンまたはシクロヘキサンが好ましい。
含水素化合物の全モル数は、含ヨウ素化合物中の全ヨウ素原子の全モル数に対して、2~500倍であることが好ましい。含水素化合物の量が2倍以上であると水素引き抜き反応が起こりやすく反応収率が向上する。また含水素化合物の量が500倍以下であるとフッ素含有の含ヨウ素化合物の溶解性がよく、あるいは含ヨウ素化合物の濃度が薄くなりすぎることがない。なかでも、5~300倍がより好ましく、10~100倍がさらに好ましい。
(含フッ素溶媒)
本発明においては、含ヨウ素化合物は、含フッ素溶媒に溶解または分散させて処理されることが好ましい。
本発明においては、含ヨウ素化合物は、含フッ素溶媒に溶解または分散させて処理されることが好ましい。
含フッ素溶媒としては、ペルフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテルが挙げられる。
ペルフルオロカーボンとしては、n-ペルフルオロヘキサン、n-ペルフルオロヘプタン、ペルフルオロシクロブタン、ペルフルオロシクロヘキサン、ペルフルオロベンゼン等が挙げられる。
ペルフルオロカーボンとしては、n-ペルフルオロヘキサン、n-ペルフルオロヘプタン、ペルフルオロシクロブタン、ペルフルオロシクロヘキサン、ペルフルオロベンゼン等が挙げられる。
ハイドロクロロフルオロカーボンとしては、2,2-ジクロロ-1,1,1-トリフルオロエタン、1,1-ジクロロ-1-フルオロエタン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等が挙げられる。
ハイドロフルオロカーボンとしては、1,1,2,2-テトラフルオロシクロブタン、CF3CF2CH2CH3、CF3CHF(CF2)3F、CF3(CF2)4H、CF3CF2CHF(CF2)2F、CF3(CHF)2(CF2)2F、CHF2CHF(CF2)3F、CF3(CF2)5H、CF3CH(CF3)(CF2)3F、CF3CF(CF3)CHF(CF2)2F、CF3CF(CF3)(CHF)2CF3、CF3CH(CF3)CHF(CF2)2F、CF3(CF2)3(CH2)2H等が挙げられる。
ハイドロフルオロエーテルとしては、CF3CH2O(CF2)2H、CHF2CF2CH2O(CF2)2H、CH3O(CF2)4H、CH3OCF2CF(CF3)2、CF3CHFCF2OCF3等が挙げられる。
これらの中で反応基質であるフッ素含有の含ヨウ素化合物と添加する含水素化合物の両方に相溶性のある溶媒が好ましく、例えば、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンが好ましい。
(処理条件)
含フッ素溶媒の溶液中、含ヨウ素化合物の濃度は、反応液に対して、0.1~50質量%であることが好ましい。生産性の観点から0.1質量%以上であることが好ましく、反応開始時の急激な発熱を防止する観点から50質量%以下が好ましい。1~30質量%がより好ましい。
含フッ素溶媒の溶液中、含水素化合物の濃度は、反応液に対して、0.1~30質量%であることが好ましい。0.1質量%以上であると、適度な反応速度を確保できる。含ヨウ素化合物が含水素化合物と自由に混合可能な場合は、含水素化合物を溶媒を兼ねて用いることも可能であるが、フッ素含有の含ヨウ素化合物との相溶性を確保するという観点から30質量%以下が好ましい。1~20質量%であることがより好ましい。
含フッ素溶媒の溶液中、含ヨウ素化合物の濃度は、反応液に対して、0.1~50質量%であることが好ましい。生産性の観点から0.1質量%以上であることが好ましく、反応開始時の急激な発熱を防止する観点から50質量%以下が好ましい。1~30質量%がより好ましい。
含フッ素溶媒の溶液中、含水素化合物の濃度は、反応液に対して、0.1~30質量%であることが好ましい。0.1質量%以上であると、適度な反応速度を確保できる。含ヨウ素化合物が含水素化合物と自由に混合可能な場合は、含水素化合物を溶媒を兼ねて用いることも可能であるが、フッ素含有の含ヨウ素化合物との相溶性を確保するという観点から30質量%以下が好ましい。1~20質量%であることがより好ましい。
本発明において、含ヨウ素化合物の脱ヨウ素処理では、有機過酸化物の分解温度やより効率的な処理のために加熱処理するのが好ましい。この際の加熱処理温度としては、有機過酸化物の10時間半減期温度をT℃とするとき、T℃からT+80℃の間が好ましく、T+10℃からT+50℃の間がさらに好ましく、操作上の観点から、50℃~150℃で加熱処理されることが好ましい。また、加熱時間は、1~24時間が好ましい。急激な有機過酸化物の分解を伴う反応は危険なので、1時間以上をかけて反応を行うのが好ましい。また、生産性の観点から、加熱時間は24時間以内であることが好ましい。
(含フッ素化合物)
本発明の製法によって、含ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物が得られる。含フッ素化合物は、式(1h)で表される基または式(2h)で表される基を有していてよい。
-CFRf-H 式(1h)
本発明の製法によって、含ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物が得られる。含フッ素化合物は、式(1h)で表される基または式(2h)で表される基を有していてよい。
-CFRf-H 式(1h)
式(1h)中、Rfは、式(1i)において述べたのと同様である。
式(2h)中、Rf’、Ra、Rbは、式(2i)において述べたのと同様である。
式(2h)中、Rf’、Ra、Rbは、式(2i)において述べたのと同様である。
脱ヨウ素処理により、含ヨウ素化合物における基(1i)が基(1h)に変換され、含ヨウ素化合物における基(2i)が基(2h)に変換され得る。
本発明の製造方法において、脱ヨウ素処理により、得られる含フッ素化合物のヨウ素原子含有量を、処理前の含ヨウ素化合物のヨウ素原子含有量の10%以下とすることができる。すなわち、脱ヨウ素処理の前後で、反応に処せられたすべてのC-I結合を形成するヨウ素原子の90%以上を除去することができる。含ヨウ素化合物がポリマーである場合、ポリマー中のヨウ素原子含有量を元の値の10%以下に容易に低減できる。例えば、ヨウ素原子含有量が1質量%であるポリマーであれば、ヨウ素原子含有量が0.1質量%以下に低減されたポリマーを得ることができる。本発明により、得られる含フッ素化合物のヨウ素原子含有量を、含ヨウ素化合物のヨウ素原子含有量のより好ましくは5%以下、さらに好ましくは3%以下とすることができる。
以下の例において、例1~8、10、12~15、21~26、30が実施例であり、例9、11、27~29が比較例である。
(含ヨウ素化合物)
PHVE-I:CF3CF2CF2OCF(CF3)CF2OCF2CF2-I
(モノマー(m1))
8IVE: CF2=CFOCF2CF(CF3)OCF2CF2-I ・・・(m1-1)
(モノマー(m2))
PDD:
PHVE-I:CF3CF2CF2OCF(CF3)CF2OCF2CF2-I
(モノマー(m1))
8IVE: CF2=CFOCF2CF(CF3)OCF2CF2-I ・・・(m1-1)
(モノマー(m2))
PDD:
(モノマー(m2’))
BVE:CF2=CF-O-CF2-CF2-CF=CF2 ・・・(m24-1)
(モノマー(m3))
PSVE:
CF2=CFOCF2CF(CF3)OCF2CF2-SO2F ・・・(m31-1)
BSVE-2E:
BVE:CF2=CF-O-CF2-CF2-CF=CF2 ・・・(m24-1)
(モノマー(m3))
PSVE:
CF2=CFOCF2CF(CF3)OCF2CF2-SO2F ・・・(m31-1)
BSVE-2E:
(モノマー(m4))
TFE:CF2=CF2 ・・・(m4-1)
(有機過酸化物)
IPP:ジイソプロピルペルオキシジカーボネート
PBPV:t-ブチルペルオキシピバレ-ト
(溶媒)
HFC-52-13p:CF3(CF2)5H、
HCFC-141b:CH3CCl2F、
HCFC-225cb:CClF2CF2CHClF、
HCFC-225:CClF2CF2CHClFとCF3CF2CHCl2の混合物。
TFE:CF2=CF2 ・・・(m4-1)
(有機過酸化物)
IPP:ジイソプロピルペルオキシジカーボネート
PBPV:t-ブチルペルオキシピバレ-ト
(溶媒)
HFC-52-13p:CF3(CF2)5H、
HCFC-141b:CH3CCl2F、
HCFC-225cb:CClF2CF2CHClF、
HCFC-225:CClF2CF2CHClFとCF3CF2CHCl2の混合物。
[8IVE(m1-1)の合成]
8IVE(m1-1)は、Huaxue Xuebao、第47巻、第7号、1989年、pp.720-723に記載された方法と同様にして、合成した。
8IVE(m1-1)は、Huaxue Xuebao、第47巻、第7号、1989年、pp.720-723に記載された方法と同様にして、合成した。
[分岐ポリマー(1)の合成例]
8IVE(m1-1)に基づく単位とBVE(m24-1)に基づく単位を有する分岐ポリマー(1)を以下のようにして合成した。
内容積120mLのハステロイ製オートクレーブに、8IVEの3.67g(7.5mmol)を仕込んだ。IPPの1.546g(7.5mmol)を約15gのHFC-52-13pに溶解した液およびBVEの18.77g(67.5mmol)を加え、最後にHFC-52-13pを加えた。添加したHFC-52-13pの全量は44.01gであった。液体窒素を用いて、凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入した。オートクレーブをウォーターバスにセットし、内温を45℃に保持しつつ、4時間撹拌した。次いで、10分かけて55℃に昇温して1時間撹拌した。さらに、10分かけて65℃に昇温して1時間撹拌した後、5分かけて70℃に昇温して1時間撹拌した。その後、オートクレーブを氷水に浸けて、20℃以下まで冷却して反応を停止した。
反応液をオートクレーブからビーカーに移し替え、約110gのHFC-52-13pを添加した。n-ヘキサンを約110g加えて撹拌し、一晩放置した。ビーカーの内容物をナスフラスコに移してエバポレーターで溶媒を留去し、次いで、60℃で約200時間真空乾燥して、20.65gの固形分(分岐ポリマー(1))を得た。GPCで測定したポリメチルメタクリレート換算の質量平均分子量は、8,700であった。
8IVE(m1-1)に基づく単位とBVE(m24-1)に基づく単位を有する分岐ポリマー(1)を以下のようにして合成した。
内容積120mLのハステロイ製オートクレーブに、8IVEの3.67g(7.5mmol)を仕込んだ。IPPの1.546g(7.5mmol)を約15gのHFC-52-13pに溶解した液およびBVEの18.77g(67.5mmol)を加え、最後にHFC-52-13pを加えた。添加したHFC-52-13pの全量は44.01gであった。液体窒素を用いて、凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入した。オートクレーブをウォーターバスにセットし、内温を45℃に保持しつつ、4時間撹拌した。次いで、10分かけて55℃に昇温して1時間撹拌した。さらに、10分かけて65℃に昇温して1時間撹拌した後、5分かけて70℃に昇温して1時間撹拌した。その後、オートクレーブを氷水に浸けて、20℃以下まで冷却して反応を停止した。
反応液をオートクレーブからビーカーに移し替え、約110gのHFC-52-13pを添加した。n-ヘキサンを約110g加えて撹拌し、一晩放置した。ビーカーの内容物をナスフラスコに移してエバポレーターで溶媒を留去し、次いで、60℃で約200時間真空乾燥して、20.65gの固形分(分岐ポリマー(1))を得た。GPCで測定したポリメチルメタクリレート換算の質量平均分子量は、8,700であった。
分岐ポリマー(1)をペルフルオロベンゼンに溶解して19F-NMR(ペルフルオロベンゼンのケミカルシフトを-162.7ppmに設定、以下同様)を測定したところ、ヨウ素原子に結合したBVE単位の末端の数と、ヨウ素原子が解離していない8IVE単位に基づく-OCF2CF2-I基の数の比率は、-44~-54ppmのピークと-62ppm付近のピークの比率から29:71であることが分かり、このポリマーが分岐分子鎖を含有することが確認された。元素分析により求めたヨウ素原子含有量は3.4質量%であり、この値から、8IVE(m1-1)に由来する単位とBVE(m24-1)に由来する単位のモル比(8IVE/BVE)は1/12と計算された。
[分岐型多元セグメント化コポリマー(2)の合成例]
8IVE(m1-1)に基づく単位とPDD(m21-1)に基づく単位を有するセグメントと、TFE(m4-1)に基づく単位とBSVE-2E(m32-1)に基づく単位を有するセグメントとを含有する分岐型多元セグメント化コポリマー(2)を以下のようにして合成した。
8IVE(m1-1)に基づく単位とPDD(m21-1)に基づく単位を有するセグメントと、TFE(m4-1)に基づく単位とBSVE-2E(m32-1)に基づく単位を有するセグメントとを含有する分岐型多元セグメント化コポリマー(2)を以下のようにして合成した。
内容積230mLのハステロイ製オートクレーブに、8IVEの5.72g(11.7mmol)を仕込んだ。IPPの0.241g(1.17mmol)を5gのHCFC-225cbに溶解した液およびPDDの25.63g(105.0mmol)を加え、最後にHCFC-225cbを加えた。添加したHCFC-225cbの全量は118.42gであった。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaG(Gはゲージ圧力を表す。以下同様)まで導入した。オートクレーブをウォーターバスにセットし、内温を45℃に保持しつつ、8時間撹拌した。撹拌後、オートクレーブを氷水に浸けて、20℃以下まで冷却して反応を停止した。
ゼリー状の生成物をオートクレーブからビーカーに移し替え、HCFC-225cbを添加した。全量は214gであった。マグネチックスターラで5分間撹拌した後、n-ヘキサンの261gを加えてポリマーを凝集し、引き続き30分撹拌した。減圧ろ過を行って、得られたポリマーをn-ヘキサンで洗浄した。ポリマーをビーカーに戻してHCFC-225cbを加え、全量を214gとして、5分間撹拌した。n-ヘキサンの261gを加えてポリマーを凝集し、30分間撹拌した。減圧ろ過を行って、n-ヘキサンで洗浄した後、再び、同様にしてHCFC-225cbを加えて撹拌し、n-ヘキサンで凝集し、ろ過を行い、n-ヘキサンで洗浄した。その後、60℃の真空乾燥器で恒量になるまで乾燥し、白色粉体のポリマー(2’)の23.75gを得た。
ゼリー状の生成物をオートクレーブからビーカーに移し替え、HCFC-225cbを添加した。全量は214gであった。マグネチックスターラで5分間撹拌した後、n-ヘキサンの261gを加えてポリマーを凝集し、引き続き30分撹拌した。減圧ろ過を行って、得られたポリマーをn-ヘキサンで洗浄した。ポリマーをビーカーに戻してHCFC-225cbを加え、全量を214gとして、5分間撹拌した。n-ヘキサンの261gを加えてポリマーを凝集し、30分間撹拌した。減圧ろ過を行って、n-ヘキサンで洗浄した後、再び、同様にしてHCFC-225cbを加えて撹拌し、n-ヘキサンで凝集し、ろ過を行い、n-ヘキサンで洗浄した。その後、60℃の真空乾燥器で恒量になるまで乾燥し、白色粉体のポリマー(2’)の23.75gを得た。
ポリマー(2’)について、元素分析でヨウ素原子の含有量を調べたところ、2.8質量%であった。この値からポリマー(2’)における8IVE(m1-1)に由来する単位とPDD(m21-1)に由来する単位のモル比(8IVE/PDD)は1/17(5.6/94.4)と計算された。GPCで求めたポリメチルメタクリレート換算のポリマー(2’)の質量平均分子量は、18,700であった。ポリマー(2’)をペルフルオロベンゼンに溶解して19F-NMRを測定したところ、ヨウ素原子が結合したPDDに由来する単位が存在することがわかり、ポリマー(2’)が分岐分子鎖を含有することが確認された。ヨウ素原子が結合したPDDに由来する単位とヨウ素原子が解離していない8IVEに由来する単位の比率は、19F-NMR(溶媒:ペルフルオロベンゼン)の-42~-47ppmのピークと-62ppm付近のピークの比率より46:54であることがわかった。
内容積230mLのハステロイ製オートクレーブに、ポリマー(2’)の6.99g、およびBSVE-2Eの260.32gを仕込み、閉蓋した後、気相部を窒素で置換した。40℃に昇温して12時間撹拌し、ポリマー(2’)を溶解させた。室温まで冷却した後、HFC-52-13pの1.73gに溶解させたIPPの18.3mgを加え、液体窒素を用いて、凍結脱気を2回繰り返した。昇温しながらTFEを連続的に導入し、温度を40℃、圧力を0.50MPaGで一定に保持した。温度が40℃で安定化した10分後にTFEの消費が始まった。定圧におけるTFE供給量が2.37gに達した4.3時間後に、オートクレーブを10℃まで冷却した。オートクレーブ内のTFEをパージして反応を停止した。
生成物をHCFC-225の15gで希釈した後、HCFC-141bの200gを加え、ポリマーを析出させて、ろ過した。ポリマーは、再度HCFC-225の150gに溶解させ、n-ヘキサンの50g、およびHCFC-141bの140gを加えて析出させ、ろ過した。溶解・析出の操作を同じ溶媒量を用いて再度実施した。次いで、ポリマーを80℃で一晩減圧乾燥し、TFE(m4-1)に由来する単位およびBSVE-2E(m32-1)に由来する単位からなるセグメント(B)の前駆体と、PDD(m21-1)に由来する単位および8IVE(m1-1)に由来する単位からなるセグメント(A)とからなる分岐型多元セグメント化コポリマーであるコポリマー(2)の13.3gを得た。
生成物をHCFC-225の15gで希釈した後、HCFC-141bの200gを加え、ポリマーを析出させて、ろ過した。ポリマーは、再度HCFC-225の150gに溶解させ、n-ヘキサンの50g、およびHCFC-141bの140gを加えて析出させ、ろ過した。溶解・析出の操作を同じ溶媒量を用いて再度実施した。次いで、ポリマーを80℃で一晩減圧乾燥し、TFE(m4-1)に由来する単位およびBSVE-2E(m32-1)に由来する単位からなるセグメント(B)の前駆体と、PDD(m21-1)に由来する単位および8IVE(m1-1)に由来する単位からなるセグメント(A)とからなる分岐型多元セグメント化コポリマーであるコポリマー(2)の13.3gを得た。
コポリマー(2)の19F-NMR(溶媒:ペルフルオロベンゼン)から求めたセグメント(B)の単位のモル比は、TFE/BSVE-2E=78.9/21.1であり、該セグメントのイオン交換容量は、2.00ミリ当量/g乾燥樹脂と計算された。滴定法で求めたコポリマー(2)のイオン交換容量は、1.22ミリ当量/g乾燥樹脂であった。
測定したGPCチャートのピークは一つで、コポリマー(2)のポリメチルメタクリレート換算の質量平均分子量は、101,000であった。
測定したGPCチャートのピークは一つで、コポリマー(2)のポリメチルメタクリレート換算の質量平均分子量は、101,000であった。
[分岐ポリマー(3)の合成例]
上記ポリマー(2’)の合成と同様の操作により8IVEとPDDの共重合を行い、ヨウ素含有量2.2質量%で、8IVEとPDDのモル比が1:22の分岐分子鎖を含有するポリマー(3)を得た。GPCで求めたポリメチルメタクリレート換算のポリマー(3)の質量平均分子量は、18,900であった。
上記ポリマー(2’)の合成と同様の操作により8IVEとPDDの共重合を行い、ヨウ素含有量2.2質量%で、8IVEとPDDのモル比が1:22の分岐分子鎖を含有するポリマー(3)を得た。GPCで求めたポリメチルメタクリレート換算のポリマー(3)の質量平均分子量は、18,900であった。
[分岐型多元セグメント化コポリマー(4)の合成例]
分岐型多元セグメント化コポリマー(2)の合成と同様の操作によって、8IVEとPDDの共重合体からなるセグメント(単位のモル比は、8IVE/PDD=5.0/95.0)と、TFEとBSVE-2Eの共重合体からなるセグメント(単位のモル比は、TFE/BSVE-2E=79.1/20.9)を有する分岐ポリマーを合成した。イオン交換容量は1.42ミリ当量/g乾燥樹脂であった。
分岐型多元セグメント化コポリマー(2)の合成と同様の操作によって、8IVEとPDDの共重合体からなるセグメント(単位のモル比は、8IVE/PDD=5.0/95.0)と、TFEとBSVE-2Eの共重合体からなるセグメント(単位のモル比は、TFE/BSVE-2E=79.1/20.9)を有する分岐ポリマーを合成した。イオン交換容量は1.42ミリ当量/g乾燥樹脂であった。
[例1]
内容積34mLのハステロイ製オートクレーブに、PHVE-I、ラジカル発生源としての有機過酸化物であるIPP(ジイソプロピルペルオキシジカーボネート)、含水素化合物としてのn-ヘキサン、溶媒としてのHCFC-225cb(1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン)を加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻し、窒素ガスを0.3MPaGまで導入した後、70℃で7時間加熱処理した。
内容積34mLのハステロイ製オートクレーブに、PHVE-I、ラジカル発生源としての有機過酸化物であるIPP(ジイソプロピルペルオキシジカーボネート)、含水素化合物としてのn-ヘキサン、溶媒としてのHCFC-225cb(1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン)を加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻し、窒素ガスを0.3MPaGまで導入した後、70℃で7時間加熱処理した。
上記仕込みにおいて、仕込み液の全量は18gであり、PHVE-Iの濃度を5質量%とした。有機過酸化物(IPP)の全モル数のPHVE-I中のヨウ素原子の全モル数に対する割合を2とした。含水素化合物(ヘキサン)の濃度を10質量%とした。このとき、含水素化合物(ヘキサン)の全モル数のPHVE-I中のヨウ素原子の全モル数に対する割合は13.4であった。
得られたCF3CF2CF2OCF(CF3)CF2OCF2CF2-H(以下、「PHVE-H」という。)の収率は96.8%であった。
得られたCF3CF2CF2OCF(CF3)CF2OCF2CF2-H(以下、「PHVE-H」という。)の収率は96.8%であった。
[例2~11]
下記の条件を表1に示すものに変更した以外は、例1と同様にして、加熱処理した。得られたPHVE-Hの収率を表1に示す。
・PHVE-IのHCFC-225cb溶液中の濃度。
・ラジカル発生源(有機過酸化物)の種類、ラジカル発生源の全モル数のPHVE-I中のヨウ素原子の全モル数に対する割合。
・連鎖移動剤の種類、連鎖移動剤の全モル数のPHVE-I中のヨウ素原子の全モル数、連鎖移動剤のHCFC-225cb溶液中の濃度。
なお、例8では反応温度を60℃とし、例11では反応温度を75℃とした。
下記の条件を表1に示すものに変更した以外は、例1と同様にして、加熱処理した。得られたPHVE-Hの収率を表1に示す。
・PHVE-IのHCFC-225cb溶液中の濃度。
・ラジカル発生源(有機過酸化物)の種類、ラジカル発生源の全モル数のPHVE-I中のヨウ素原子の全モル数に対する割合。
・連鎖移動剤の種類、連鎖移動剤の全モル数のPHVE-I中のヨウ素原子の全モル数、連鎖移動剤のHCFC-225cb溶液中の濃度。
なお、例8では反応温度を60℃とし、例11では反応温度を75℃とした。
[例12]
例3において、PHVE-Iの代わりにCF3CF2CF2OCF(CF3)CF2OCF(CF3)-Iを用いた以外は同じ条件で反応を行った。得られた生成物はCF3CF2CF2OCF(CF3)CF2OCF(CF3)-Hで、収率は98.1%であった。
例3において、PHVE-Iの代わりにCF3CF2CF2OCF(CF3)CF2OCF(CF3)-Iを用いた以外は同じ条件で反応を行った。得られた生成物はCF3CF2CF2OCF(CF3)CF2OCF(CF3)-Hで、収率は98.1%であった。
[例13]
内容積110mLのステンレス製オートクレーブに分岐ポリマー(1)の1.35gをHCFC-225cbに溶解させた溶液に、有機過酸化物としてのIPPと含水素化合物としてのn-ヘキサンを加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入し、70℃で7時間撹拌した。
上記反応において、分岐ポリマー(1)のHCFC-225cbに対する濃度を2質量%とした。有機過酸化物(IPP)の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合を2とした。含水素化合物(n-ヘキサン)の全仕込み重量に対する濃度を1質量%とした。このとき、含水素化合物の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合は22であった。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、-CF2-I結合に基づくピークは消滅し、1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子のピーク(三重線)が観測された。
ていた。
内容積110mLのステンレス製オートクレーブに分岐ポリマー(1)の1.35gをHCFC-225cbに溶解させた溶液に、有機過酸化物としてのIPPと含水素化合物としてのn-ヘキサンを加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入し、70℃で7時間撹拌した。
上記反応において、分岐ポリマー(1)のHCFC-225cbに対する濃度を2質量%とした。有機過酸化物(IPP)の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合を2とした。含水素化合物(n-ヘキサン)の全仕込み重量に対する濃度を1質量%とした。このとき、含水素化合物の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合は22であった。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、-CF2-I結合に基づくピークは消滅し、1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子のピーク(三重線)が観測された。
ていた。
[例14]
例13において、有機過酸化物(IPP)の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合を0.5とした以外は同様にして、分岐ポリマー(1)の処理を行った。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、-CF2-I結合に基づくピークは消滅し、1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子のピーク(三重線)が観測された。
例13において、有機過酸化物(IPP)の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合を0.5とした以外は同様にして、分岐ポリマー(1)の処理を行った。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、-CF2-I結合に基づくピークは消滅し、1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子のピーク(三重線)が観測された。
[例15]
例13において、被処理体を分岐ポリマー(1)から分岐ポリマー(3)に変更した。また、分岐ポリマー(3)のHCFC-225cbに対する濃度を1.5質量%とした。有機過酸化物(IPP)の全モル数の分岐ポリマー(3)中のヨウ素原子の全モル数に対する割合を0.5とした。含水素化合物(n-ヘキサン)の全仕込み重量に対する濃度を1質量%とした。このとき、含水素化合物の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合は45であった。その他の条件は例13と同様にして処理を行った。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、ヨウ素原子と同じ炭素原子に結合したフッ素原子による-42~-47ppmのピークと-62ppm付近のピークは消滅していた。1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子による三重線が観測され、6.6ppmに下図の構造に基づくH原子による二重線が観測された。
例13において、被処理体を分岐ポリマー(1)から分岐ポリマー(3)に変更した。また、分岐ポリマー(3)のHCFC-225cbに対する濃度を1.5質量%とした。有機過酸化物(IPP)の全モル数の分岐ポリマー(3)中のヨウ素原子の全モル数に対する割合を0.5とした。含水素化合物(n-ヘキサン)の全仕込み重量に対する濃度を1質量%とした。このとき、含水素化合物の全モル数の分岐ポリマー(1)中のヨウ素原子の全モル数に対する割合は45であった。その他の条件は例13と同様にして処理を行った。
反応生成物についてペルフルオロベンゼン溶媒を用いて19F-NMR測定をしたところ、ヨウ素原子と同じ炭素原子に結合したフッ素原子による-42~-47ppmのピークと-62ppm付近のピークは消滅していた。1H-NMRを測定したところ、6.0ppmに-CF2-HのH原子による三重線が観測され、6.6ppmに下図の構造に基づくH原子による二重線が観測された。
[例21]
分岐型多元セグメント化コポリマー(2)について元素分析によりヨウ素原子含有量を測定したところ、0.9質量%であった。
内容積34mLのハステロイ製オートクレーブにコポリマー(2)の0.45gをHCFC-225cbに濃度3質量%で溶解させた溶液に、有機過酸化物としてのIPPと含水素化合物としてのn-ヘキサンと追加のHCFC-225cbを加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入し、70℃で7時間加熱処理した。
上記反応において、コポリマー(2)の全仕込み量に対する濃度を2質量%とした。有機過酸化物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合を16.4とした。含水素化合物(n-ヘキサン)の全仕込み量に対する濃度を1質量%とした。含水素化合物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合は82であった。
加熱処理後のポリマーの残存ヨウ素原子含有量を元素分析で測定したところ、0.02%であった。
分岐型多元セグメント化コポリマー(2)について元素分析によりヨウ素原子含有量を測定したところ、0.9質量%であった。
内容積34mLのハステロイ製オートクレーブにコポリマー(2)の0.45gをHCFC-225cbに濃度3質量%で溶解させた溶液に、有機過酸化物としてのIPPと含水素化合物としてのn-ヘキサンと追加のHCFC-225cbを加えた。液体窒素を用いて凍結脱気を2回繰り返して約0℃まで戻した後、窒素ガスを0.3MPaGまで導入し、70℃で7時間加熱処理した。
上記反応において、コポリマー(2)の全仕込み量に対する濃度を2質量%とした。有機過酸化物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合を16.4とした。含水素化合物(n-ヘキサン)の全仕込み量に対する濃度を1質量%とした。含水素化合物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合は82であった。
加熱処理後のポリマーの残存ヨウ素原子含有量を元素分析で測定したところ、0.02%であった。
[例22~29]
下記の条件を表2に示すものに変更した以外は、例21と同様にして、加熱処理した。加熱処理後のポリマーの収率を表2に示す。
・コポリマー(2)の全仕込み液中の濃度。
・有機過酸化物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合。
・連鎖移動剤の種類、連鎖移動剤の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合。
なお、例28では、反応条件を60℃で5時間加熱後、70℃で3時間加熱とした。
下記の条件を表2に示すものに変更した以外は、例21と同様にして、加熱処理した。加熱処理後のポリマーの収率を表2に示す。
・コポリマー(2)の全仕込み液中の濃度。
・有機過酸化物の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合。
・連鎖移動剤の種類、連鎖移動剤の全モル数のコポリマー(2)中のヨウ素原子の全モル数に対する割合。
なお、例28では、反応条件を60℃で5時間加熱後、70℃で3時間加熱とした。
[例30]
分岐型多元セグメント化コポリマー(4)について元素分析によりヨウ素原子含有量を測定したところ、0.49質量%であった。
このポリマーをHCFC-225cb溶媒に溶解し、例21と同様にして70℃で7時間反応を行った。ただし、上記反応において、コポリマー(4)の全仕込み量に対する濃度を2質量%とした。有機過酸化物(IPP)の全モル数のコポリマー(4)中のヨウ素原子の全モル数に対する割合を5.4とした。含水素化合物(n-ヘキサン)の全仕込み量に対する濃度を1質量%とした。含水素化合物の全モル数のコポリマー(4)中のヨウ素原子の全モル数に対する割合は150であった。
反応後室温に戻した後、IPPのHCFC-225cb溶液(濃度3質量%)を添加した。このIPPの全モル数の最初に仕込んだコポリマー(4)中のヨウ素原子の全モル数に対する割合は5.5であった。再び同様の操作を行い、70℃で7時間反応を実施した。得られたポリマーについて元素分析を行ったところ、ヨウ素原子は検出されなかった(0.01質量%未満)。
分岐型多元セグメント化コポリマー(4)について元素分析によりヨウ素原子含有量を測定したところ、0.49質量%であった。
このポリマーをHCFC-225cb溶媒に溶解し、例21と同様にして70℃で7時間反応を行った。ただし、上記反応において、コポリマー(4)の全仕込み量に対する濃度を2質量%とした。有機過酸化物(IPP)の全モル数のコポリマー(4)中のヨウ素原子の全モル数に対する割合を5.4とした。含水素化合物(n-ヘキサン)の全仕込み量に対する濃度を1質量%とした。含水素化合物の全モル数のコポリマー(4)中のヨウ素原子の全モル数に対する割合は150であった。
反応後室温に戻した後、IPPのHCFC-225cb溶液(濃度3質量%)を添加した。このIPPの全モル数の最初に仕込んだコポリマー(4)中のヨウ素原子の全モル数に対する割合は5.5であった。再び同様の操作を行い、70℃で7時間反応を実施した。得られたポリマーについて元素分析を行ったところ、ヨウ素原子は検出されなかった(0.01質量%未満)。
本発明で得られるフルオロスルホニル基含有の含フッ素高分子化合物は、固体高分子形燃料電池用の電解質材料の中間体として有用である。また、他の用途(水電解、過酸化水素製造、オゾン製造、廃酸回収等に用いるプロトン選択透過膜;食塩電解、レドックスフロー電池の隔膜、脱塩または製塩に用いる電気透析用陽イオン交換膜、除湿膜、加湿膜、化学反応の酸触媒、センサー、ガス分離膜等)の中間体に用いることができる。本発明の製造方法で得られるイオン性基を含有しない含フッ素高分子化合物は、半導体デバイスや電子回路基板の絶縁膜、光導波路材料、反射防止材料、封止材料、撥水剤、撥油剤等として有用である。
なお、2015年11月20日に出願された日本特許出願2015-227178号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
なお、2015年11月20日に出願された日本特許出願2015-227178号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (13)
- 下記式(1i)で表される基または下記式(2i)で表される基を有する含ヨウ素化合物を、有機過酸化物および下記式(3)で表される基を有する含水素化合物の存在下に脱ヨウ素処理し、前記ヨウ素化合物よりもヨウ素原子含有量の低減された含フッ素化合物を製造する方法。
-CFRf-I 式(1i)
式(1i)中、Rfはフッ素原子またはペルフルオロアルキル基を示す。
式(2i)中、Rf’を含む環は5員環又は6員環であり、Rf’は直鎖または分岐構造を有する、エーテル結合性酸素原子を有していても良いペルフルオロアルキレン基を示す。RaおよびRbは、それぞれ独立に、フッ素原子、炭素数1~5のペルフルオロアルキル基、または炭素数1~5のペルフルオロアルコキシ基を示す。
式(3)中、R1、R2、R3はそれぞれ独立に水素原子またはアルキル基を示す。 - 前記含ヨウ素化合物が、下記式(4)で表される化合物、又は下記式(5)で表される化合物である、請求項1または2に記載の方法。
Q1-CFRf-I 式(4)
Q2-(CFRf-I)2 式(5)
式(4)中、Rfはフッ素原子またはペルフルオロアルキル基であり、Q1はフッ素原子またはエーテル結合性酸素原子を有していてもよいポリフルオロアルキル基を示す。式(5)中、Rfはそれぞれ独立にフッ素原子またはペルフルオロアルキル基であり、Q2はエーテル結合性酸素原子を有してもよいポリフルオロアルキレン基を示す。 - 前記含ヨウ素化合物が、少なくとも1以上のC-I結合を有し、炭素原子に結合した水素原子のすべてがフッ素原子に置き換わった高分子化合物である、請求項1または2に記載の方法。
- 前記有機過酸化物が、10℃~150℃の10時間半減期温度を有する、請求項1~4に記載の方法。
- 前記含水素化合物は、アルカンである、請求項5に記載の方法。
- 前記有機過酸化物の全モル数は、前記含ヨウ素化合物中のヨウ素原子の全モル数に対して、0.0005~5倍である、請求項1~6のいずれかに記載の方法。
- 前記含水素化合物の全モル数は、前記含ヨウ素化合物中の全ヨウ素原子の全モル数に対して、5~500倍である、請求項1~7のいずれかに記載の方法。
- 前記含ヨウ素化合物を含フッ素溶媒中で処理する、請求項1~8のいずれかに記載の方法。
- 前記含ヨウ素化合物の濃度が、含フッ素溶媒の溶液中、反応液に対して、0.1~50質量%である、請求項1~9のいずれかに記載の方法。
- 前記含水素化合物の濃度が、含フッ素溶媒の溶液中、反応液に対して、0.1~30質量%である、請求項1~10のいずれかに記載の方法。
- 含ヨウ素化合物の脱ヨウ素処理における加熱温度は、有機過酸化物の10時間半減期温度をT℃とするとき、T℃からT+80℃の間である、請求項1~11のいずれかに記載の方法。
- 前記含フッ素化合物のヨウ素原子含有量は、前記含ヨウ素化合物のヨウ素原子含有量の10%以下である、請求項1~12のいずれかに記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017551961A JP6819605B2 (ja) | 2015-11-20 | 2016-11-18 | ヨウ素原子含有量の低減された含フッ素化合物を製造する方法 |
EP16866465.4A EP3378876B1 (en) | 2015-11-20 | 2016-11-18 | Method for producing fluorine-containing compound which is reduced in iodine atom content |
CN201680067944.8A CN108350112B (zh) | 2015-11-20 | 2016-11-18 | 制造碘原子含量得以减少的含氟化合物的方法 |
US15/943,750 US10604461B2 (en) | 2015-11-20 | 2018-04-03 | Method for producing fluorine-containing compound having iodine atom content reduced |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015227178 | 2015-11-20 | ||
JP2015-227178 | 2015-11-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/943,750 Continuation US10604461B2 (en) | 2015-11-20 | 2018-04-03 | Method for producing fluorine-containing compound having iodine atom content reduced |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086465A1 true WO2017086465A1 (ja) | 2017-05-26 |
Family
ID=58719140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084325 WO2017086465A1 (ja) | 2015-11-20 | 2016-11-18 | ヨウ素原子含有量の低減された含フッ素化合物を製造する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10604461B2 (ja) |
EP (1) | EP3378876B1 (ja) |
JP (1) | JP6819605B2 (ja) |
CN (1) | CN108350112B (ja) |
WO (1) | WO2017086465A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131677A1 (ja) | 2017-12-26 | 2019-07-04 | Agc株式会社 | 含フッ素ジエン化合物、含フッ素重合体及びそれらの製造方法 |
CN112689554A (zh) * | 2018-09-14 | 2021-04-20 | Agc株式会社 | 粒料的制造方法、粒料及离子交换膜 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4212553A4 (en) * | 2020-09-09 | 2024-10-09 | Agc Inc | PROCESS FOR PRODUCING IODINE-CONTAINING COMPOUND, AND IODINE-CONTAINING COMPOUND |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794004A (en) * | 1980-12-03 | 1982-06-11 | Toyo Soda Mfg Co Ltd | Perfluorocarbon polymer and its production |
JPH09291062A (ja) * | 1996-04-25 | 1997-11-11 | Nitto Denko Corp | 過フッ化アルキルフタル酸および過フッ化アルキルフタル酸無水物 |
WO1999008709A1 (fr) * | 1997-08-14 | 1999-02-25 | Daiichi Radioisotope Laboratories, Ltd. | Medicament radioactif stable |
WO1999018138A1 (en) * | 1997-10-07 | 1999-04-15 | University Of Massachusetts | Preparation and applications of fluorinated propargyl phosphonate reagents |
JP2000327713A (ja) * | 1999-05-24 | 2000-11-28 | Sekisui Chem Co Ltd | 末端に官能基を有するビニル系重合体の製造方法、及び、末端に官能基を有するビニル系重合体 |
JP2000344831A (ja) * | 1999-04-02 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | 重合体の処理方法 |
JP2004532918A (ja) * | 2001-06-04 | 2004-10-28 | クロムプトン コーポレイション | ポリアルファオレフィンポリマーの水素化/脱ハロゲン化方法、それによって得られるポリマー及び当該ポリマーを含有する潤滑剤 |
WO2006090728A1 (ja) * | 2005-02-23 | 2006-08-31 | Daikin Industries, Ltd. | 含フッ素エラストマーおよび含フッ素エラストマーの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2060041C3 (de) * | 1970-12-05 | 1973-10-25 | Farbwerke Hoechst Ag, Vormals Meister Lucius & Bruening, 6000 Frankfurt | Verfahren zur Herstellung von fluorierten Kohlenwasserstoffen |
JPH0826087B2 (ja) | 1990-11-29 | 1996-03-13 | ダイキン工業株式会社 | ポリマーの新規な製造方法 |
IT1269514B (it) * | 1994-05-18 | 1997-04-01 | Ausimont Spa | Fluoroelastomeri vulcanizzabili per via perossidica,particolarmente adatti per la fabbricazione di o-ring |
US7030194B1 (en) | 1999-04-02 | 2006-04-18 | Kaneka Corporation | Method of treating polymer |
DE10317198A1 (de) * | 2003-04-15 | 2004-11-04 | Clariant Gmbh | Gleitmittel für feste Oberflächen |
JP5146455B2 (ja) * | 2007-09-12 | 2013-02-20 | ユニマテック株式会社 | 末端ヨウ素化ポリフルオロアルカンおよびその製造法 |
US8288492B2 (en) * | 2007-10-23 | 2012-10-16 | E I Du Pont De Nemours And Company | Difunctional oligomers of perfluoro(methyl vinyl ether) |
JP2009227787A (ja) * | 2008-03-21 | 2009-10-08 | Mitsubishi Rayon Co Ltd | メチルメタクリレート系共重合体の製造方法、及びプラスチック光ファイバの製造方法 |
CN102659507A (zh) * | 2012-04-13 | 2012-09-12 | 阜新恒通氟化学有限公司 | 一种全氟烷基烷烃的制备方法 |
WO2014030586A1 (ja) * | 2012-08-21 | 2014-02-27 | 旭硝子株式会社 | 硬化性含フッ素重合体、その製造方法及び含フッ素重合体硬化物 |
-
2016
- 2016-11-18 WO PCT/JP2016/084325 patent/WO2017086465A1/ja active Application Filing
- 2016-11-18 JP JP2017551961A patent/JP6819605B2/ja active Active
- 2016-11-18 EP EP16866465.4A patent/EP3378876B1/en active Active
- 2016-11-18 CN CN201680067944.8A patent/CN108350112B/zh active Active
-
2018
- 2018-04-03 US US15/943,750 patent/US10604461B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794004A (en) * | 1980-12-03 | 1982-06-11 | Toyo Soda Mfg Co Ltd | Perfluorocarbon polymer and its production |
JPH09291062A (ja) * | 1996-04-25 | 1997-11-11 | Nitto Denko Corp | 過フッ化アルキルフタル酸および過フッ化アルキルフタル酸無水物 |
WO1999008709A1 (fr) * | 1997-08-14 | 1999-02-25 | Daiichi Radioisotope Laboratories, Ltd. | Medicament radioactif stable |
WO1999018138A1 (en) * | 1997-10-07 | 1999-04-15 | University Of Massachusetts | Preparation and applications of fluorinated propargyl phosphonate reagents |
JP2000344831A (ja) * | 1999-04-02 | 2000-12-12 | Kanegafuchi Chem Ind Co Ltd | 重合体の処理方法 |
JP2000327713A (ja) * | 1999-05-24 | 2000-11-28 | Sekisui Chem Co Ltd | 末端に官能基を有するビニル系重合体の製造方法、及び、末端に官能基を有するビニル系重合体 |
JP2004532918A (ja) * | 2001-06-04 | 2004-10-28 | クロムプトン コーポレイション | ポリアルファオレフィンポリマーの水素化/脱ハロゲン化方法、それによって得られるポリマー及び当該ポリマーを含有する潤滑剤 |
WO2006090728A1 (ja) * | 2005-02-23 | 2006-08-31 | Daikin Industries, Ltd. | 含フッ素エラストマーおよび含フッ素エラストマーの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3378876A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131677A1 (ja) | 2017-12-26 | 2019-07-04 | Agc株式会社 | 含フッ素ジエン化合物、含フッ素重合体及びそれらの製造方法 |
CN112689554A (zh) * | 2018-09-14 | 2021-04-20 | Agc株式会社 | 粒料的制造方法、粒料及离子交换膜 |
Also Published As
Publication number | Publication date |
---|---|
US20180222828A1 (en) | 2018-08-09 |
EP3378876B1 (en) | 2020-04-15 |
JP6819605B2 (ja) | 2021-01-27 |
CN108350112B (zh) | 2020-10-23 |
EP3378876A1 (en) | 2018-09-26 |
JPWO2017086465A1 (ja) | 2018-09-06 |
US10604461B2 (en) | 2020-03-31 |
CN108350112A (zh) | 2018-07-31 |
EP3378876A4 (en) | 2019-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7367817B2 (ja) | フルオロスルホニル基含有化合物、フルオロスルホニル基含有モノマー及びそれらの製造方法 | |
JP4257109B2 (ja) | スルホン性モノマーの重合方法 | |
JP2010018674A (ja) | ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体 | |
JP7287404B2 (ja) | フルオロスルホニル基含有含フッ素ポリマーの製造方法、塩型スルホン酸基含有含フッ素ポリマーの製造方法および酸型スルホン酸基含有含フッ素ポリマーの製造方法 | |
US10604461B2 (en) | Method for producing fluorine-containing compound having iodine atom content reduced | |
JPWO2016104380A1 (ja) | 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 | |
US10975209B2 (en) | Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane | |
JP4334375B2 (ja) | N−アルキルビススルホニルイミド基含有ビニルモノマー | |
Kirsh et al. | Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties | |
US8933264B2 (en) | Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group | |
JP7276330B2 (ja) | 含フッ素ポリマーの製造方法および含フッ素イオン交換ポリマーの製造方法 | |
JP2780590B2 (ja) | スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法 | |
WO2005037879A1 (ja) | パーフルオロカーボン重合体の製造方法 | |
JPH06199958A (ja) | スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法 | |
RU2782831C2 (ru) | Способ получения фторированного полимера и способ получения фторированного ионообменного полимера | |
JPH1135638A (ja) | スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法 | |
JP2011052186A (ja) | 含フッ素重合体の凝集分離方法 | |
JPH08325335A (ja) | スルホン酸型官能基を有するパーフルオロカーボン共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866465 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017551961 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016866465 Country of ref document: EP |