WO2017086346A1 - 車両用空調装置、それを備える車両及び車両用空調装置の制御方法 - Google Patents

車両用空調装置、それを備える車両及び車両用空調装置の制御方法 Download PDF

Info

Publication number
WO2017086346A1
WO2017086346A1 PCT/JP2016/083965 JP2016083965W WO2017086346A1 WO 2017086346 A1 WO2017086346 A1 WO 2017086346A1 JP 2016083965 W JP2016083965 W JP 2016083965W WO 2017086346 A1 WO2017086346 A1 WO 2017086346A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
air flow
temperature sensor
flow rate
evaporator
Prior art date
Application number
PCT/JP2016/083965
Other languages
English (en)
French (fr)
Inventor
輝明 辻
光彦 赤星
真 吉田
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2017086346A1 publication Critical patent/WO2017086346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a vehicle air conditioner, a vehicle including the same, and a control method for the vehicle air conditioner, and in particular, a technique for preventing excessive operation of a condenser cooling fan in a vehicle air conditioner including an internal heat exchanger. About.
  • a technique for increasing the amount of heat exchange in the condenser by increasing the work of the cooling fan that blows air to the condenser when the pressure of the refrigerant flowing out of the condenser is detected and higher than a predetermined value is disclosed. (For example, refer to Patent Document 1). Thereby, the heat exchange amount in the condenser can be adjusted, and the cooling capacity can be appropriately secured.
  • the refrigerant is not contained even if the pressure and temperature of the refrigerant immediately after the condenser (the refrigerant between the condenser and the internal heat exchanger) are not sufficiently reduced. Since it is cooled by the heat exchanger, it can reach the expansion device and the evaporator with the pressure and temperature of the refrigerant sufficiently low. For this reason, operating the cooling fan with a high air flow rate until the refrigerant pressure and temperature immediately after the condenser is sufficiently reduced is a waste of electric power and unnecessary noise due to excessive use of the cooling fan. There are concerns that lead to outbreaks.
  • An object of the present disclosure is to provide a vehicular air conditioner that includes a refrigeration cycle having an internal heat exchanger and a condenser cooling fan, the vehicular air conditioner that prevents excessive use of the cooling fan, a vehicle including the vehicular air conditioner, and a vehicle It is providing the control method of an air conditioner.
  • a vehicle air conditioner includes a refrigerant circuit that circulates a refrigerant by connecting a compressor, a condenser, an expansion device, and an evaporator with piping, and a refrigerant that is led from the condenser to the expansion device flows through a first refrigerant flow.
  • a refrigeration cycle having an internal heat exchanger for exchanging heat of the refrigerant between the heat exchange part of the refrigerant and a second heat exchange part through which the refrigerant guided from the evaporator to the suction side of the compressor flows,
  • a cooling fan that generates a flow of air that cools the condenser, a first temperature sensor that detects the temperature of the evaporator or the temperature of the air that has passed through the evaporator, or the evaporator and the internal heat exchanger;
  • a second temperature sensor having a measurement point in between, and an output unit that outputs a detection value of the first temperature sensor or a detection value of the second temperature sensor to a cooling fan control device that controls the cooling fan; It is characterized by comprising
  • a vehicle according to the present invention includes the vehicle air conditioner according to the present invention and the cooling fan control device.
  • the control method for a vehicle air conditioner includes a refrigerant circuit that circulates a refrigerant by connecting a compressor, a condenser, an expansion device, and an evaporator with piping, and a refrigerant that is led from the condenser to the expansion device.
  • a refrigeration cycle having an internal heat exchanger for exchanging heat of the refrigerant between the flowing first heat exchange section and the second heat exchange section through which the refrigerant guided from the evaporator to the suction side of the compressor flows.
  • a cooling fan that generates a flow of air that cools the condenser, a first temperature sensor that detects the temperature of the evaporator or the temperature of the air that has passed through the evaporator, or the evaporator and the internal heat
  • a detection value of the first temperature sensor or a detection value of the second temperature sensor is output to a second temperature sensor having a measurement point with the exchanger and a cooling fan control device that controls the cooling fan.
  • An output part for a vehicle In the control method of the control device, the air flow rate of the cooling fan is set in advance including information on the set air flow rate of the cooling fan with respect to the detection value of the first temperature sensor or the detection value of the second temperature sensor Control is performed based on the set air flow rate profile.
  • the cooling fan is a fan that also serves to cool a radiator
  • the cooling fan control device detects the detected value of the first temperature sensor output from the output unit or
  • the value of the set air flow rate corresponding to the detection value of the second sensor is acquired from the set air flow rate profile, the acquired value of the set air flow rate and the value of the necessary air flow rate necessary for cooling the radiator. It is preferable to control the air flow rate of the cooling fan to the set air flow rate when the acquired value of the set air flow rate is larger than the value of the required air flow rate.
  • the cooling fan is a fan dedicated to the condenser, and the cooling fan control device is configured to detect a detection value of the first temperature sensor output from the output unit or It is preferable that a value of the set air flow rate corresponding to the detection value of the second sensor is acquired from the set air flow rate profile, and the air flow rate of the cooling fan is controlled to the acquired set air flow rate.
  • the present disclosure relates to a vehicle air conditioner that includes a refrigeration cycle having an internal heat exchanger and a condenser cooling fan, the vehicle air conditioner preventing excessive use of the cooling fan, the vehicle including the vehicle, and the vehicle air conditioner A control method can be provided.
  • FIG. 7 is a flowchart illustrating an example of control processing for the air flow rate of a cooling fan when the cooling fan is a fan that also serves to cool a radiator. It is a flowchart which shows an example of the control processing of the ventilation volume of a cooling fan when a cooling fan is a fan only for a condenser.
  • FIG. 1 is a system diagram showing an example of a refrigeration cycle of a vehicle air conditioner according to the present embodiment.
  • a vehicle air conditioner 100 according to this embodiment includes a refrigerant circuit 50 that circulates refrigerant by connecting a compressor 2, a condenser 3, an expansion device 4, and an evaporator 5 through pipes 61 to 66. Between the first heat exchange section 11 through which the refrigerant guided from the condenser 3 to the expansion device 4 flows and the second heat exchange section 12 through which the refrigerant guided from the evaporator 5 to the suction side of the compressor 2 flows.
  • the refrigeration cycle 1 having an internal heat exchanger 10 that performs heat exchange of the refrigerant, the cooling fan 7 that generates a flow of air that cools the condenser 3, and the temperature of the evaporator 5 or the air that has passed through the evaporator 5
  • the first temperature sensor 31 for detecting the temperature or the second temperature sensor 32 having a measurement point between the evaporator 5 and the internal heat exchanger 10 and the cooling fan control device 40 for controlling the cooling fan 7
  • the detection value of the first temperature sensor 31 or the second temperature sensor Comprising an output unit for outputting a second detection value (not shown).
  • the refrigerant circuit 50 is a closed circuit in which the compressor 2, the condenser 3, the expansion device 4, and the evaporator 5 are connected by pipes 61 to 66, and the refrigerant circulates therein.
  • the refrigerant is, for example, a fluorocarbon material such as R134a, HFO-1234yf, or carbon dioxide.
  • the refrigerant circuit 50 separates the gaseous refrigerant and the liquid refrigerant inside the condenser 3 or between the condenser 3 and the internal heat exchanger 10 when the refrigerant circulating inside is a fluorocarbon material.
  • a liquid tank (not shown) for storing a part of the refrigerant is provided.
  • the refrigerant circuit 50 includes an accumulator (not shown) that stores a part of the refrigerant between the evaporator 5 and the compressor 2 when the refrigerant circulating inside is carbon dioxide.
  • the compressor 2 receives a driving force from an engine (not shown) or a driving force of a motor (not shown) driven by electric power, compresses the refrigerant in a vaporized state at low temperature and low pressure, Use high-pressure vaporized refrigerant.
  • the compressor 2 may be a fixed capacity type or a variable capacity type.
  • the condenser 3 is a heat exchanger, which cools the high-temperature and high-pressure vaporized refrigerant discharged from the compressor 2 by running wind, the wind from the cooling fan 7 or both, and is in a high-temperature and high-pressure liquefied state. Use refrigerant.
  • the expansion device 4 depressurizes and expands the refrigerant condensed in the condenser 3 to produce a low-temperature and low-pressure mist refrigerant (gas-liquid mixed refrigerant) and adjusts the flow rate of the refrigerant.
  • the expansion device 4 is, for example, a temperature-sensitive expansion valve or an electronically controlled expansion valve.
  • the evaporator 5 is a heat exchanger, vaporizes the refrigerant that has become a gas-liquid mixture in the expansion device 4, and cools and dehumidifies the blown air that passes through the evaporator 5 by the heat of evaporation at that time.
  • the internal heat exchanger 10 is disposed on the refrigerant circuit 50.
  • the internal heat exchanger 10 includes a first heat exchange unit 11 through which the refrigerant guided from the condenser 3 to the expansion device 4 flows, and a second heat exchange unit through which the refrigerant guided from the evaporator 5 to the suction side of the compressor 2 flows. 12, and performs heat exchange between a relatively high temperature refrigerant flowing through the first heat exchange unit 11 and a relatively low temperature refrigerant flowing through the second heat exchange unit 12.
  • the pipe 61 connects the outlet of the compressor 2 and the inlet of the condenser 3 directly or indirectly.
  • the pipe 62 connects the outlet of the condenser 3 and the inlet 10a of the first heat exchange unit 11 directly or indirectly.
  • the pipe 63 connects the outlet 10b of the first heat exchange unit 11 and the inlet of the expansion device 4 directly or indirectly.
  • the pipe 64 connects the outlet of the expansion device 4 and the inlet of the evaporator 5 directly or indirectly.
  • the pipe 65 connects the outlet of the evaporator 5 and the inlet 10c of the second heat exchange unit 12 directly or indirectly.
  • the pipe 66 connects the outlet 10 d of the second heat exchange unit 12 and the inlet of the compressor 2 directly or indirectly.
  • the cooling fan 7 is driven by a motor such as an electric motor.
  • the cooling fan 7 may be a fan dedicated to the condenser 3 or may be a fan that also serves to cool a radiator (not shown) arranged close to the leeward side of the condenser 3.
  • the number of cooling fans 7 is not particularly limited, and may be one or two or more.
  • the first temperature sensor 31 is a device that detects the temperature of the evaporator 5 or the temperature of the air that has passed through the evaporator 5, and is an existing device in the conventional refrigeration cycle.
  • the measurement point of the 1st temperature sensor 31 is attached to the fin of the site
  • the measurement point of the first temperature sensor 31 is, for example, the downstream side of the portion of the evaporator 5 where the temperature is lowest. It is attached to this space with a conventionally well-known configuration.
  • the detection value of the first temperature sensor 31 is used, for example, for on / off control of the fixed capacity compressor 2. More specifically, when the temperature of the evaporator 5 or the temperature of the air that has passed through the evaporator 5 exceeds a set value, the compressor 2 is driven, and the temperature of the evaporator 5 or the air that has passed through the evaporator 5 Control is performed to stop the compressor 2 when the temperature falls below a set value. Alternatively, it is used for discharge amount control of the variable capacity compressor 2.
  • the discharge amount of the compressor 2 is increased, and the temperature of the evaporator 5 or passes through the evaporator 5.
  • Control is performed to reduce the discharge amount of the compressor 2 when the temperature of the air is below a set value.
  • the reason why the first temperature sensor 31 is installed in the portion of the evaporator 5 where the temperature is lowest is to detect freezing of the evaporator 5 at an early stage.
  • the part where the temperature is lowest in the evaporator 5 is a part of the refrigerant circuit 50 where the degree of superheat of the refrigerant is the smallest or the degree of superheat is zero.
  • the detection value of the first temperature sensor 31 is used for controlling the air flow rate of the cooling fan 7 in addition to the use in the conventional refrigeration cycle.
  • the detection value of the first temperature sensor 31 is a value that correlates with the temperature of the air sent from the blower fan to the evaporator 5 and the air flow rate, and is the cooling capacity of the refrigeration cycle 1 (in this specification, cooling of the refrigeration cycle).
  • the capacity can be an index of the cooling capacity that the refrigeration cycle 1 is exerting against the load that is currently received. For this reason, by using the detection value of the first temperature sensor 31, the cooling capacity of the refrigeration cycle 1 can be grasped without adding parts. Then, by adding the index of the cooling capacity of the refrigeration cycle 1 to the control of the air flow rate of the cooling fan 7, excessive use of the cooling fan 7 can be appropriately prevented.
  • the second temperature sensor 32 is a device that detects the temperature of the refrigerant flowing out of the evaporator 5.
  • the measurement point of the second temperature sensor 32 is attached so that the measurement point contacts the outer periphery of the refrigerant outlet pipe (not shown) of the evaporator 5 or the outer periphery of the pipe 65.
  • the temperature of the refrigerant at the outlet of the evaporator 5 detected by the second temperature sensor 32 is used for valve opening control of the expansion device 4. More specifically, the valve opening degree of the expansion device 4 is controlled based on the detection value of the second temperature sensor 32 so that the superheat degree (superheat) value at the refrigerant outlet of the evaporator 5 becomes the target value.
  • the degree of superheat at the outlet of the evaporator 5 can be grasped from the detection value of the second temperature sensor 32.
  • the expansion device 4 is an electronically controlled expansion valve
  • a temperature sensor used for valve opening control of the electronically controlled expansion valve may be used as the second temperature sensor 32.
  • the detection value of the second temperature sensor 32 for controlling the air flow rate of the cooling fan 7
  • the cooling capacity of the refrigeration cycle 1 is grasped from the degree of superheat of the refrigerant at the outlet of the evaporator 5, Excessive use of the cooling fan 7 can be prevented appropriately.
  • the output unit (not shown) has an output terminal of the first temperature sensor 31 or the second temperature sensor 32, for example.
  • the output terminal is electrically connected to the cooling fan control device 40.
  • the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32 is in the form of an analog signal or digital data. Output to the cooling fan control device 40.
  • the cooling fan control device 40 receives the information of the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32 from the output unit, and calculates the blowing amount of the cooling fan 7 using this information.
  • the motor of the cooling fan 7 is controlled based on the calculation result.
  • the first temperature sensor 31 or the second temperature sensor 32 is either the evaporator 5 side of the internal heat exchanger 10, that is, the first heat exchange unit of the internal heat exchanger 10 in the refrigerant circuit 50. 11 and on the circuit upstream of the second heat exchanging unit 12, even if the pressure of the refrigerant immediately after flowing out of the condenser 3 is not sufficiently reduced, the refrigeration cycle
  • the cooling capacity of 1 can be properly grasped.
  • cooling fan control device 40 is mounted on an air conditioning control unit (not shown) or mounted on an engine control unit (not shown) of a vehicle on which the vehicle air conditioning device 100 is mounted. It is possible to flexibly cope with various factors such as vehicle design philosophy, memory capacity or cost.
  • FIG. 2 is a conceptual diagram in which the set air flow rate profile is graphed.
  • the air flow rate of the cooling fan 7 is set to the detected air flow rate of the first temperature sensor 31 or the detected air flow rate of the second temperature sensor 32. Control is performed based on preset air flow rate profiles 900 and 901 including the above information.
  • the vertical axis of the graph shown in FIG. 2 is a relative value of the air flow rate of the cooling fan with the maximum air flow rate being 100.
  • the maximum airflow rate is the maximum amount of airflow formed by the cooling fan when there is one cooling fan 7, and each cooling fan is formed when there are two or more cooling fans 7.
  • the horizontal axis (first axis, lower axis) of the graph shown in FIG. 2 is the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32. Further, the horizontal axis (second axis, upper axis) of the graph shown in FIG. 2 is the temperature of the engine coolant.
  • the set air volume profiles 900 and 901 are information defining the relationship between the detected value of the first temperature sensor 31 or the detected value of the second temperature sensor 32 and the set air volume of the cooling fan 7.
  • the set air flow rate is an ideal air flow rate of the cooling fan 7 that is required to ensure the cooling capacity of the refrigeration cycle 1.
  • the set air blowing amount is the air blowing amount of the cooling fan when there is one cooling fan 7, and the air blowing amount of each cooling fan when there are two or more cooling fans 7.
  • the set blast volume profiles 900 and 901 as shown in FIG. 2, when the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32 exceeds a predetermined temperature t0, the cooling of the refrigeration cycle 1 is performed.
  • the set air volume is an arbitrary air volume exceeding 0.
  • the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32 is equal to or lower than the predetermined temperature t0, it can be said that the cooling capacity of the refrigeration cycle 1 is sufficiently secured.
  • the air volume is zero. In this way, it is possible to prevent the cooling fan 7 from operating excessively only for cooling while ensuring the cooling capacity of the refrigeration cycle 1.
  • the set air flow profiles 900 and 901 are, for example, profiles 900 that continuously increase the set air flow of the cooling fan 7 in accordance with an increase in the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32. Or a profile 901 that increases the set air flow rate of the cooling fan 7 stepwise in accordance with an increase in the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32.
  • the present invention is not limited to the profile shown in FIG.
  • FIG. 3 is a flowchart showing an example of control processing of the air flow rate of the cooling fan when the cooling fan is a fan that also serves to cool the radiator.
  • the cooling fan 7 is a fan that also serves to cool the radiator, and the cooling fan control device 40 detects the detected value of the first temperature sensor 31 output from the output unit.
  • the value of the set air flow rate corresponding to the detection value of the second sensor 32 is acquired from the set air flow rate profiles 900 and 901 (step S11), and it is necessary for cooling the acquired value of the set air flow rate and the radiator.
  • the air flow of the cooling fan 7 is controlled to the set air flow (step S13). It is preferable.
  • Step S11 the cooling fan control device 40 inputs information about the detection value of the first temperature sensor 31 or the detection value of the second sensor 32 from the output unit, and sets the value of the set air flow rate based on the input information. Is acquired from the set air flow rate profile 900.
  • Step S12 the cooling fan control device 40 determines whether the acquired set airflow value is larger, smaller, or the same as the necessary airflow value necessary for cooling the radiator.
  • the required air volume is preferably determined based on a preset required air volume profile 800 including information on the required air volume of the cooling fan 7 with respect to the temperature of the engine cooling water, for example.
  • FIG. 2 shows an example of a conceptual diagram in which the required air flow rate profile 800 is graphed. The present invention is not limited to this profile.
  • Step S13 When it is determined in step S12 that the acquired value of the set air flow rate is greater than the value of the required air flow rate, step S13 is executed.
  • the radiator can be sufficiently cooled even if the air flow rate of the cooling fan 7 is set as the set air flow rate. This is because the temperature of the condenser 3 is lower than that of the radiator, and the radiator can be cooled even with the air that has passed through the condenser 3. Therefore, in step S13, the cooling fan control device 40 controls the air flow rate of the cooling fan 7 to the set air flow rate. For example, in FIG.
  • the cooling fan control device 40 controls the motor of the cooling fan 7 so that the airflow rate of the cooling fan 7 becomes the set airflow rate a2.
  • Step S14 On the other hand, when it is determined in step S12 that the acquired set air flow value is smaller than the required air flow value or the same as the required air flow value, step S14 is executed.
  • the air flow rate of the cooling fan 7 is controlled to the required air flow rate. For example, in FIG. 2, when the detection value of the first temperature sensor 31 or the detection value of the second temperature sensor 32 is t1, the set air flow rate is a1. Further, when the temperature of the engine cooling water is t3, the necessary air blowing amount is a3. At this time, since a1 ⁇ a3, the cooling fan control device 40 controls the motor of the cooling fan 7 so that the airflow rate of the cooling fan 7 becomes the required airflow rate a3.
  • Steps S11 to S14 can avoid cooling problems of the radiator and the engine room while preventing excessive use of the cooling fan 7.
  • FIG. 4 is a flowchart showing an example of control processing for the air flow rate of the cooling fan when the cooling fan is a fan dedicated to the condenser.
  • the cooling fan 7 is a fan dedicated to the condenser 3
  • the cooling fan control device 40 is configured to detect the detection value of the first temperature sensor 31 output from the output unit or
  • the value of the set air flow rate corresponding to the detection value of the second sensor 32 is acquired from the set air flow rate profiles 900 and 901 (Step S21), and the air flow rate of the cooling fan 7 is controlled to the acquired set air flow rate (Step S21).
  • S22 is preferable.
  • Step S21 is the same as step S11.
  • Step S22 the cooling fan control device 40 controls the motor of the cooling fan 7 based on the set air volume acquired in step S11.
  • the excessive use of the cooling fan 7 can be prevented by steps S21 to S22.
  • the vehicle according to the present embodiment includes the vehicle air conditioner 100 and the cooling fan control device 40 according to the present embodiment.
  • the vehicle air conditioner 100 according to the present embodiment can prevent the cooling fan 7 from being excessively used.
  • the vehicle according to the present embodiment can save power and prevent noise caused by excessive operation of the cooling fan 7.

Abstract

本開示の目的は、内部熱交換器を有する冷凍サイクルと凝縮器の冷却ファンとを備える車両用空調装置において、冷却ファンの過剰な使用を防止した車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することである。本発明に係る車両用空調装置(100)は、圧縮機(2)、凝縮器(3)、膨張装置(4)及び蒸発器(5)を配管(61~66)で接続して冷媒を循環させる冷媒回路(50)と、内部熱交換器(10)とを有する冷凍サイクル(1)と、凝縮器を冷却する空気の流れを発生する冷却ファン(7)と、蒸発器の温度若しくは蒸発器を通過した空気の温度を検知する第1の温度センサ(31)、又は蒸発器と内部熱交換器との間に測定点を有する第2の温度センサ(32)と、冷却ファンを制御する冷却ファン制御装置(40)へ第1の温度センサの検出値又は第2の温度センサの検出値を出力する出力部と、を備える。

Description

車両用空調装置、それを備える車両及び車両用空調装置の制御方法
 この開示は、車両用空調装置、それを備える車両及び車両用空調装置の制御方法に関し、特に内部熱交換器を備えた車両用空調装置において、凝縮器の冷却ファンの過剰な作動を防止する技術に関する。
 凝縮器から流出した冷媒の圧力を検知し、所定値よりも高い場合には、凝縮器への送風を行う冷却ファンの仕事量を多くして凝縮器での熱交換量を増やす技術が開示されている(例えば、特許文献1を参照。)。これによって、凝縮器での熱交換量を調整し、冷房能力を適切に確保することができる。
 ところで、冷凍サイクルの冷房能力および成績係数を向上する構成として、内部熱交換器(凝縮器から流出した相対的に温度の高い冷媒と、蒸発器から流出した相対的に温度の低い冷媒とを熱交換する装置)を冷凍サイクルに配置する技術が知られている(例えば、特許文献2を参照。)。
特開平9-076722号公報 特開2008-122034号公報
 ここで、特許文献2の冷凍サイクルの冷却ファンを、特許文献1の技術を用いて制御することが考えられる。この場合、凝縮器の下流位置での冷媒の圧力が十分に低下するまで、冷却ファンの送風量が多いままとなる。
 しかしながら、内部熱交換器を備えた冷凍サイクルでは、凝縮器の下流直後の冷媒(凝縮器と内部熱交換器との間の冷媒)の圧力及び温度が十分に低下していなくとも、冷媒は内部熱交換器によって冷却されるため、冷媒の圧力及び温度を十分に低くした状態で膨張装置及び蒸発器に到達させることができる。このため、凝縮器の下流直後での冷媒の圧力及び温度が十分に低下するまで冷却ファンを高い送風量で稼働させることは、冷却ファンの過剰な使用にあたり、電力の浪費及び不必要な騒音の発生につながる懸念がある。
 本開示の目的は、内部熱交換器を有する冷凍サイクルと凝縮器の冷却ファンとを備える車両用空調装置において、冷却ファンの過剰な使用を防止した車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することである。
 本発明に係る車両用空調装置は、圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、前記凝縮器を冷却する空気の流れを発生する冷却ファンと、前記蒸発器の温度若しくは該蒸発器を通過した空気の温度を検知する第1の温度センサ、又は前記蒸発器と前記内部熱交換器との間に測定点を有する第2の温度センサと、前記冷却ファンを制御する冷却ファン制御装置へ前記第1の温度センサの検出値又は前記第2の温度センサの検出値を出力する出力部と、を備えることを特徴とする。
 本発明に係る車両は、本発明に係る車両用空調装置と前記冷却ファン制御装置とを備えることを特徴とする。
 本発明に係る車両用空調装置の制御方法は、圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、前記凝縮器を冷却する空気の流れを発生する冷却ファンと、前記蒸発器の温度若しくは該蒸発器を通過した空気の温度を検知する第1の温度センサ、又は前記蒸発器と前記内部熱交換器との間に測定点を有する第2の温度センサと、前記冷却ファンを制御する冷却ファン制御装置へ前記第1の温度センサの検出値又は前記第2の温度センサの検出値を出力する出力部と、を備える車両用空調装置の制御方法であって、前記冷却ファンの送風量を、前記第1の温度センサの検出値又は前記第2の温度センサの検出値に対する前記冷却ファンの設定送風量の情報を含む予め設定された設定送風量プロファイルに基づいて制御することを特徴とする。
 本発明に係る車両用空調装置の制御方法では、前記冷却ファンがラジエータの冷却を兼ねるファンであり、前記冷却ファン制御装置は、前記出力部から出力された前記第1の温度センサの検出値又は前記第2のセンサの検出値に対応する設定送風量の値を前記設定送風量プロファイルから取得し、取得された前記設定送風量の値と前記ラジエータを冷却するために必要な必要送風量の値とを比較し、前記取得された設定送風量の値が前記必要送風量の値よりも大きいとき、前記冷却ファンの送風量を前記設定送風量に制御することが好ましい。
 本発明に係る車両用空調装置の制御方法では、前記冷却ファンが前記凝縮器専用のファンであり、前記冷却ファン制御装置は、前記出力部から出力された前記第1の温度センサの検出値又は前記第2のセンサの検出値に対応する設定送風量の値を前記設定送風量プロファイルから取得し、前記冷却ファンの送風量を取得された前記設定送風量に制御することが好ましい。
 本開示は、内部熱交換器を有する冷凍サイクルと凝縮器の冷却ファンとを備える車両用空調装置において、冷却ファンの過剰な使用を防止した車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することができる。
本実施形態に係る車両用空調装置の冷凍サイクルの一例を示すシステム図である。 設定送風量プロファイルをグラフ化した概念図である。 冷却ファンがラジエータの冷却を兼ねるファンであるとき、冷却ファンの送風量の制御処理の一例を示すフローチャートである。 冷却ファンが凝縮器専用のファンであるとき、冷却ファンの送風量の制御処理の一例を示すフローチャートである。
 以下、添付の図面を参照して本発明の一態様を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。本発明の効果を奏する限り、種々の形態変更をしてもよい。
 図1は、本実施形態に係る車両用空調装置の冷凍サイクルの一例を示すシステム図である。本実施形態に係る車両用空調装置100は、図1に示すように、圧縮機2、凝縮器3、膨張装置4及び蒸発器5を配管61~66で接続して冷媒を循環させる冷媒回路50と、凝縮器3から膨張装置4に導かれる冷媒が流れる第1の熱交換部11と蒸発器5から圧縮機2の吸入側に導かれる冷媒が流れる第2の熱交換部12との間で冷媒の熱交換を行う内部熱交換器10とを有する冷凍サイクル1と、凝縮器3を冷却する空気の流れを発生する冷却ファン7と、蒸発器5の温度若しくは蒸発器5を通過した空気の温度を検知する第1の温度センサ31、又は蒸発器5と内部熱交換器10との間に測定点を有する第2の温度センサ32と、冷却ファン7を制御する冷却ファン制御装置40へ第1の温度センサ31の検出値又は第2の温度センサ32の検出値を出力する出力部(不図示)と、を備える。
 冷媒回路50は、圧縮機2と凝縮器3と膨張装置4と蒸発器5とを配管61~66で接続した閉回路であり、内部を冷媒が循環する。冷媒は、例えば、R134aなどのフロン系物質、HFO-1234yf、又は二酸化炭素である。冷媒回路50は、内部を循環する冷媒がフロン系物質の場合、凝縮器3の内部、又は凝縮器3と内部熱交換器10との間に、気体状の冷媒と液体状の冷媒とを分離するとともに、冷媒の一部を貯留するリキッドタンク(不図示)を備える。冷媒回路50は、内部を循環する冷媒が二酸化炭素の場合、蒸発器5と圧縮機2との間に、冷媒の一部を貯留するアキュムレータ(不図示)を備える。
 圧縮機2は、エンジン(図示せず)からの駆動力を受けて、又は電力によって駆動するモータ(図示せず)の駆動力を受けて、低温低圧の気化状態の冷媒を圧縮して、高温高圧の気化状態の冷媒にする。圧縮機2は、固定容量型であるか、又は可変容量型であってもよい。
 凝縮器3は、熱交換器であり、圧縮機2から吐出された高温高圧の気化状態の冷媒を、走行風、冷却ファン7からの風又はこれらの両方によって冷却し、高温高圧の液化状態の冷媒にする。
 膨張装置4は、凝縮器3で凝縮された冷媒を、絞り作用によって減圧・膨張させて、低温低圧の霧状の冷媒(気液混合状の冷媒)とするとともに、冷媒の流量の調整を行う。膨張装置4は、例えば、感温式膨張弁又は電子制御式膨張弁である。
 蒸発器5は、熱交換器であり、膨張装置4で気液混合状となった冷媒を気化させ、そのときの蒸発熱によって蒸発器5を通過する送風空気を冷却除湿する。
 内部熱交換器10は、冷媒回路50上に配置される。内部熱交換器10は、凝縮器3から膨張装置4に導かれる冷媒が流れる第1の熱交換部11と蒸発器5から圧縮機2の吸入側に導かれる冷媒が流れる第2の熱交換部12とを有し、第1の熱交換部11を流れる相対的に高温の冷媒と第2の熱交換部12を流れる相対的に低温の冷媒との間で熱交換を行う。
 配管61は、圧縮機2の出口と凝縮器3の入口とを直接的又は間接的に接続する。配管62は、凝縮器3の出口と第1の熱交換部11の入口10aとを直接的又は間接的に接続する。配管63は、第1の熱交換部11の出口10bと膨張装置4の入口とを直接的又は間接的に接続する。配管64は、膨張装置4の出口と蒸発器5の入口とを直接的又は間接的に接続する。配管65は、蒸発器5の出口と第2の熱交換部12の入口10cとを直接的又は間接的に接続する。配管66は、第2の熱交換部12の出口10dと圧縮機2の入口とを直接的又は間接的に接続する。
 冷却ファン7は、例えば電動モータなどのモータによって駆動される。冷却ファン7は、凝縮器3専用のファンであるか、又は凝縮器3の風下側に近接して配置されるラジエータ(不図示)の冷却を兼ねるファンであってもよい。また、冷却ファン7の個数は、特に限定されず、1個であるか、又は2個以上であってもよい。
 第1の温度センサ31は、蒸発器5の温度又は蒸発器5を通過した空気の温度を検知する装置であり、従来の冷凍サイクルに既設の装置である。第1の温度センサ31が蒸発器5の温度を検知する場合、第1の温度センサ31の測定点は、例えば、蒸発器5のうち最も温度が低くなる部位のフィンに取り付けられる。また、第1の温度センサ31が蒸発器5を通過した空気の温度を検知する場合、第1の温度センサ31の測定点は、例えば、蒸発器5のうち最も温度が低くなる部位の下流側の空間に、従来周知の構成で取り付けられる。従来の冷凍サイクルにおいて、第1の温度センサ31の検出値は、例えば、固定容量式の圧縮機2のオンオフ制御に利用されている。より具体的には、蒸発器5の温度又は蒸発器5を通過した空気の温度が設定値を超えたとき、圧縮機2を駆動させ、蒸発器5の温度又は蒸発器5を通過した空気の温度が設定値以下になったとき、圧縮機2を停止させる制御が行われている。あるいは、可変容量式の圧縮機2の吐出量制御に利用されている。より具体的には、蒸発器5の温度又は蒸発器5を通過した空気の温度が設定値を超えたとき、圧縮機2の吐出量を増加させ、蒸発器5の温度又は蒸発器5を通過した空気の温度が設定値以下になったとき、圧縮機2の吐出量を減少させる制御が行われている。第1の温度センサ31を蒸発器5のうち最も温度が低くなる部位に設置するのは、蒸発器5の凍結を早期に検知するためである。蒸発器5のうち最も温度が低くなる部位は、冷媒回路50のうち、冷媒の過熱度が最も小さい、又は過熱度がゼロの部分である。本実施形態では、第1の温度センサ31の検出値は、従来の冷凍サイクルにおける利用に加えて、冷却ファン7の送風量の制御に利用される。第1の温度センサ31の検出値は、ブロワファンから蒸発器5へ送られる空気の温度及び送風量と相関する値であって、冷凍サイクル1の冷房能力(本明細書において、冷凍サイクルの冷房能力とは、冷凍サイクル1が現時点で受けている負荷に対して発揮している冷房能力をいう。)の指標となりうる。このため、第1の温度センサ31の検出値を用いることで、部品を追加することなく冷凍サイクル1の冷房能力を把握することができる。そして、冷凍サイクル1の冷房能力の指標を、冷却ファン7の送風量の制御に加味することで、冷却ファン7の過剰な使用を適切に防止することができる。
 第2の温度センサ32は、蒸発器5から流出してきた冷媒の温度を検知する装置である。第2の温度センサ32の測定点は、例えば、蒸発器5の冷媒出口管(不図示)の外周又は配管65の外周に、測定点が接触するように取り付けられる。第2の温度センサ32が検知する蒸発器5出口での冷媒の温度は、膨張装置4の弁開度制御に利用される。より具体的には、第2の温度センサ32の検出値に基づいて蒸発器5の冷媒出口における過熱度(スーパーヒート)の値が目標値となるように膨張装置4の弁開度が制御される。したがって、第2の温度センサ32の検出値から、蒸発器5出口での過熱度を把握することができる。膨張装置4が電子制御式膨張弁であるとき、第2の温度センサ32として、電子制御式膨張弁の弁開度制御に利用される温度センサを用いてもよい。本実施形態では、第2の温度センサ32の検出値を冷却ファン7の送風量の制御に用いることで、蒸発器5出口での冷媒の過熱度から冷凍サイクル1の冷房能力を把握して、冷却ファン7の過剰な使用を適切に防止することができる。
 出力部(不図示)は、例えば、第1の温度センサ31又は第2の温度センサ32の出力端子を有する。出力端子は、冷却ファン制御装置40に電気的に接続されており、例えば、アナログ信号又はデジタルデータなどの形式で、第1の温度センサ31の検出値又は第2の温度センサ32の検出値を冷却ファン制御装置40へ出力する。
 冷却ファン制御装置40は、出力部から第1の温度センサ31の検出値又は第2の温度センサ32の検出値の情報が入力され、この情報を用いて冷却ファン7の送風量を演算し、演算結果に基づいて冷却ファン7のモータを制御する。第1の温度センサ31又は第2の温度センサ32は、いずれも内部熱交換器10よりも蒸発器5側、すなわち、冷媒回路50のうち、内部熱交換器10の有する第1の熱交換部11よりも下流、かつ、第2の熱交換部12よりも上流の回路上に配置されているため、凝縮器3から流出した直後の冷媒の圧力が十分に低下していなくても、冷凍サイクル1の冷房能力を適切に把握することができる。その結果、従来の冷凍サイクルのように凝縮器から流出した直後の冷媒の圧力に基づいて冷却ファン7の送風量を制御する場合と比較して、冷却ファン7が過剰に作動されることを防止することが可能となる。
 冷却ファン制御装置40は、空調制御ユニット(不図示)に搭載されるか、又は車両用空調装置100が搭載される車両のエンジンコントロールユニット(不図示)に搭載されることが好ましい。車両の設計思想、メモリの容量又はコストなどの各種要因に対して柔軟に対応することができる。
 次に、本実施形態に係る車両用空調装置の制御方法について説明する。図2は、設定送風量プロファイルをグラフ化した概念図である。本実施形態に係る車両用空調装置100の制御方法は、冷却ファン7の送風量を、第1の温度センサ31の検出値又は第2の温度センサ32の検出値に対する冷却ファン7の設定送風量の情報を含む予め設定された設定送風量プロファイル900,901に基づいて制御する。図2に示すグラフの縦軸は、最大送風量を100とした冷却ファンの送風量の相対値である。ここで、最大送風量とは、冷却ファン7が1個のときは、当該冷却ファンが形成する送風量の最大量であり、冷却ファン7が2個以上であるときは、各冷却ファンが形成する送風量の合計の最大量である。図2に示すグラフの横軸(第1軸、下方の軸)は、第1の温度センサ31の検出値又は第2の温度センサ32の検出値である。また、図2に示すグラフの横軸(第2軸、上方の軸)は、エンジン冷却水の温度である。
 設定送風量プロファイル900,901は、第1の温度センサ31の検出値又は第2の温度センサ32の検出値と冷却ファン7の設定送風量との関係を規定する情報である。設定送風量は、冷凍サイクル1の冷房能力を確保するために必要とされる、冷却ファン7の理想の送風量である。設定送風量は、冷却ファン7が1個のときは、当該冷却ファンの送風量であり、冷却ファン7が2個以上であるときは、各冷却ファンの送風量の合計量である。設定送風量プロファイル900,901では、図2に示すように、第1の温度センサ31の検出値又は第2の温度センサ32の検出値が所定の温度t0を超えるときは、冷凍サイクル1の冷房能力が不足しているといえるから、設定送風量は0を超える任意の送風量となる。一方、第1の温度センサ31の検出値又は第2の温度センサ32の検出値が所定の温度t0以下のときは、冷凍サイクル1の冷房能力が十分に確保されているといえるから、設定送風量は0となる。このように、冷凍サイクル1の冷房能力を確保しながら、冷房のためだけに冷却ファン7が過剰に作動することを防止することができる。
 設定送風量プロファイル900,901は、例えば、第1の温度センサ31の検出値又は第2の温度センサ32の検出値の増加に応じて冷却ファン7の設定送風量を連続的に増加させるプロファイル900であるか、又は第1の温度センサ31の検出値又は第2の温度センサ32の検出値の増加に応じて冷却ファン7の設定送風量を段階的に増加させるプロファイル901であってもよい。本発明は、図2に示すプロファイルに限定されない。
 図3は、冷却ファンがラジエータの冷却を兼ねるファンであるとき、冷却ファンの送風量の制御処理の一例を示すフローチャートである。本実施形態に係る車両用空調装置100の制御方法では、冷却ファン7がラジエータの冷却を兼ねるファンであり、冷却ファン制御装置40は、出力部から出力された第1の温度センサ31の検出値又は第2のセンサ32の検出値に対応する設定送風量の値を設定送風量プロファイル900,901から取得し(ステップS11)、取得された設定送風量の値とラジエータを冷却するために必要な必要送風量の値とを比較し(ステップS12)、取得された設定送風量の値が必要送風量の値よりも大きいとき、冷却ファン7の送風量を設定送風量に制御する(ステップS13)ことが好ましい。
 次に冷却ファンがラジエータの冷却を兼ねるファンであるときの制御について、設定送風量プロファイルとして図2に示すプロファイル900を用いた例を説明する。
(ステップS11)
 ステップS11では、冷却ファン制御装置40は、出力部から第1の温度センサ31の検出値又は第2のセンサ32の検出値の情報を入力し、入力した情報に基づいて、設定送風量の値を設定送風量プロファイル900から取得する。
(ステップS12)
 ステップS12では、冷却ファン制御装置40は、取得された設定送風量の値がラジエータを冷却するために必要な必要送風量の値に対して大きいか、小さいか又は同じであるかを判定する。必要送風量は、例えば、エンジン冷却水の温度に対する冷却ファン7の必要送風量の情報を含むあらかじめ設定された必要送風量プロファイル800に基づいて決定されることが好ましい。図2に、必要送風量プロファイル800をグラフ化した概念図の一例を示す。本発明は、このプロファイルに限定されない。
(ステップS13)
 ステップS12において、取得された設定送風量の値が必要送風量の値よりも大きいと判定されたとき、ステップS13が実行される。設定送風量の値が必要送風量の値よりも大きいときは、冷却ファン7の送風量を設定送風量としても、ラジエータを十分に冷却することができる。ラジエータよりも凝縮器3の温度が低く、凝縮器3を通過した空気であってもラジエータを冷却できるためである。そこで、ステップS13では、冷却ファン制御装置40は、冷却ファン7の送風量を設定送風量に制御する。例えば、図2において、第1温度センサ31の検出値又は第2温度センサ32の検出値がt2であるとき、設定送風量はa2である。また、エンジン冷却水の温度がt3であるとき、必要送風量はa3である。このとき、a2>a3であるから、冷却ファン制御装置40は、冷却ファン7の送風量が設定送風量a2となるように、冷却ファン7のモータを制御する。
(ステップS14)
 一方、ステップS12において、取得された設定送風量の値が必要送風量の値よりも小さい又は必要送風量の値と同じと判定されたとき、ステップS14が実行される。設定送風量の値が必要送風量の値よりも小さいときは、冷却ファン7の送風量を設定送風量としてしまうと、ラジエータの冷却が不十分になってしまう。そこで、ステップS14では、冷却ファン7の送風量を必要送風量に制御する。例えば、図2において、第1温度センサ31の検出値又は第2温度センサ32の検出値がt1であるとき、設定送風量はa1である。また、エンジン冷却水の温度がt3であるとき、必要送風量はa3である。このとき、a1<a3であるから、冷却ファン制御装置40は、冷却ファン7の送風量が必要送風量a3となるように、冷却ファン7のモータを制御する。
 ステップS11~S14によって、冷却ファン7の過剰な使用を防止しながら、ラジエータ及びエンジンルームの冷却不具合を回避することができる。
 図4は、冷却ファンが凝縮器専用のファンであるとき、冷却ファンの送風量の制御処理の一例を示すフローチャートである。本実施形態に係る車両用空調装置の制御方法では、冷却ファン7が凝縮器3専用のファンであり、冷却ファン制御装置40は、出力部から出力された第1の温度センサ31の検出値又は第2のセンサ32の検出値に対応する設定送風量の値を設定送風量プロファイル900,901から取得し(ステップS21)、冷却ファン7の送風量を取得された設定送風量に制御する(ステップS22)ことが好ましい。
 次に冷却ファンが凝縮器専用のファンであるときの制御について、設定送風量プロファイルとして図2に示すプロファイル900を用いた例を説明する。
(ステップS21)
 ステップS21は、ステップS11と同様である。
(ステップS22)
 ステップS22では、冷却ファン制御装置40は、ステップS11で取得した設定送風量に基づいて、冷却ファン7のモータを制御する。
 ステップS21~S22によって、冷却ファン7の過剰な使用を防止することができる。
 本実施形態に係る車両は、本実施形態に係る車両用空調装置100と冷却ファン制御装置40とを備える。前記の通り、本実施形態に係る車両用空調装置100は、冷却ファン7の過剰な使用を防止することができる。その結果、本実施形態に係る車両は、省電力、かつ、冷却ファン7の過剰な作動による騒音を防止することができる。
1 冷凍サイクル
2 圧縮機
3 凝縮器
4 膨張装置
5 蒸発器
7 冷却ファン
10 内部熱交換器
10a 第1の熱交換部の入口
10b 第1の熱交換部の出口
10c 第2の熱交換部の入口
10d 第2の熱交換部の出口
11 第1の熱交換部
12 第2の熱交換部
31 第1の温度センサ
32 第2の温度センサ
40 冷却ファン制御装置
50 冷媒回路
61~66 配管
100 車両用空調装置
800 必要送風量プロファイル
900,901 設定送風量プロファイル

Claims (5)

  1.  圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、
     前記凝縮器を冷却する空気の流れを発生する冷却ファンと、
     前記蒸発器の温度若しくは該蒸発器を通過した空気の温度を検知する第1の温度センサ、又は前記蒸発器と前記内部熱交換器との間に測定点を有する第2の温度センサと、
     前記冷却ファンを制御する冷却ファン制御装置へ前記第1の温度センサの検出値又は前記第2の温度センサの検出値を出力する出力部と、を備えることを特徴とする車両用空調装置。
  2.  請求項1に記載の車両用空調装置と前記冷却ファン制御装置とを備えることを特徴とする車両。
  3.  圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、
     前記凝縮器を冷却する空気の流れを発生する冷却ファンと、
     前記蒸発器の温度若しくは該蒸発器を通過した空気の温度を検知する第1の温度センサ、又は前記蒸発器と前記内部熱交換器との間に測定点を有する第2の温度センサと、
     前記冷却ファンを制御する冷却ファン制御装置へ前記第1の温度センサの検出値又は前記第2の温度センサの検出値を出力する出力部と、を備える車両用空調装置の制御方法であって、
     前記冷却ファンの送風量を、前記第1の温度センサの検出値又は前記第2の温度センサの検出値に対する前記冷却ファンの設定送風量の情報を含む予め設定された設定送風量プロファイルに基づいて制御することを特徴とする車両用空調装置の制御方法。
  4.  前記冷却ファンがラジエータの冷却を兼ねるファンであり、
     前記冷却ファン制御装置は、前記出力部から出力された前記第1の温度センサの検出値又は前記第2のセンサの検出値に対応する設定送風量の値を前記設定送風量プロファイルから取得し、
     取得された前記設定送風量の値と前記ラジエータを冷却するために必要な必要送風量の値とを比較し、
     前記取得された設定送風量の値が前記必要送風量の値よりも大きいとき、前記冷却ファンの送風量を前記設定送風量に制御することを特徴とする請求項3に記載の車両用空調装置の制御方法。
  5.  前記冷却ファンが前記凝縮器専用のファンであり、
     前記冷却ファン制御装置は、前記出力部から出力された前記第1の温度センサの検出値又は前記第2のセンサの検出値に対応する設定送風量の値を前記設定送風量プロファイルから取得し、
     前記冷却ファンの送風量を取得された前記設定送風量に制御することを特徴とする請求項3に記載の車両用空調装置の制御方法。
PCT/JP2016/083965 2015-11-17 2016-11-16 車両用空調装置、それを備える車両及び車両用空調装置の制御方法 WO2017086346A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-225069 2015-11-17
JP2015225069A JP2017088138A (ja) 2015-11-17 2015-11-17 車両用空調装置、それを備える車両及び車両用空調装置の制御方法

Publications (1)

Publication Number Publication Date
WO2017086346A1 true WO2017086346A1 (ja) 2017-05-26

Family

ID=58718926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083965 WO2017086346A1 (ja) 2015-11-17 2016-11-16 車両用空調装置、それを備える車両及び車両用空調装置の制御方法

Country Status (2)

Country Link
JP (1) JP2017088138A (ja)
WO (1) WO2017086346A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132412U (ja) * 1983-02-25 1984-09-05 三菱重工業株式会社 自動車用空調装置
JP2002029253A (ja) * 2000-07-17 2002-01-29 Sanden Corp 車両用空調装置
JP2015039999A (ja) * 2013-08-23 2015-03-02 サンデン株式会社 車両用空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132412U (ja) * 1983-02-25 1984-09-05 三菱重工業株式会社 自動車用空調装置
JP2002029253A (ja) * 2000-07-17 2002-01-29 Sanden Corp 車両用空調装置
JP2015039999A (ja) * 2013-08-23 2015-03-02 サンデン株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
JP2017088138A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
EP2270405B1 (en) Refrigerating device
JP2007139269A (ja) 超臨界冷凍サイクル
JP6087744B2 (ja) 冷凍機
US20190241044A1 (en) Heat pump cycle apparatus
JP2017007593A (ja) 車両用空気調和装置
JP5370453B2 (ja) 自動車用温調システム
JP5966796B2 (ja) 車両用空調装置
JP2017121818A (ja) 冷却装置の制御装置
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
WO2017135223A1 (ja) 車両用空調装置、それを備える車両及び車両用グリル装置の制御方法
JP2018103720A (ja) 空調装置
JP2008082637A (ja) 超臨界冷凍サイクル
JP2017062065A (ja) 熱交換システム
JP4400533B2 (ja) エジェクタ式冷凍サイクル
JP2017137012A (ja) 車両用空調装置、それを備える車両及び車両用空調装置の制御方法
JP6167891B2 (ja) ヒートポンプサイクル装置。
JP2018124017A (ja) 冷却システム
WO2017086346A1 (ja) 車両用空調装置、それを備える車両及び車両用空調装置の制御方法
JP2007253901A (ja) 車両用空調装置
EP1728662B1 (en) Refrigeration system for an air conditioner
JP2012076589A (ja) 車両用空調装置
KR100764941B1 (ko) 자동차용 에어컨 및 그 제어방법
JP4089630B2 (ja) 車両用冷凍サイクル
JP2019035520A (ja) 冷凍サイクル装置
JP2010116033A (ja) 冷凍サイクル装置及びそれを備えた空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866347

Country of ref document: EP

Kind code of ref document: A1