WO2017086037A1 - 反応炉 - Google Patents

反応炉 Download PDF

Info

Publication number
WO2017086037A1
WO2017086037A1 PCT/JP2016/079297 JP2016079297W WO2017086037A1 WO 2017086037 A1 WO2017086037 A1 WO 2017086037A1 JP 2016079297 W JP2016079297 W JP 2016079297W WO 2017086037 A1 WO2017086037 A1 WO 2017086037A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction furnace
gas
protective material
wall surface
end surface
Prior art date
Application number
PCT/JP2016/079297
Other languages
English (en)
French (fr)
Inventor
敏浩 山岡
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to MYPI2018701872A priority Critical patent/MY192530A/en
Publication of WO2017086037A1 publication Critical patent/WO2017086037A1/ja
Priority to PH12018501024A priority patent/PH12018501024A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types

Definitions

  • the present invention relates to a reactor.
  • a reactor that supplies a gas from a gas supply unit provided on a bottom wall surface to form a fluidized state of a fluid (for example, see Patent Document 1).
  • a plurality of nozzles are provided at the bottom of the reaction furnace, and the flow state of the fluid is formed by adjusting the orientation of each nozzle.
  • the reactor there may be a downflow in which the fluid falls along the side surface of the reactor at the bottom.
  • the gas supply unit may be worn or worn.
  • An object of the present invention is to provide a reaction furnace capable of suppressing wear and wear of a gas supply section provided on a bottom wall surface.
  • a reaction furnace is a reaction furnace in which a gas is supplied from a gas supply unit provided on a bottom wall surface to form a fluid flow state.
  • the reaction furnace has a protruding portion that protrudes from the reaction furnace wall surface provided with the protective material toward the inside of the reaction furnace. Moreover, the upper end surface of the protrusion extends along the horizontal direction.
  • the downflow of the fluid flowing downward along the reaction furnace wall surface collides with the upper end surface of the projecting part before colliding with the gas supply unit provided on the bottom wall surface. Thereby, the down flow of the fluid is diffused and the dynamic pressure is reduced before the gas supply unit. As described above, wear and wear of the gas supply unit provided on the bottom wall surface can be suppressed.
  • the thickness of the protruding portion in the direction toward the inside of the reaction furnace may be larger than the thickness of the protective material that protects the reaction furnace wall surface. Accordingly, a sufficiently wide upper end surface can be secured in order to diffuse and reduce the dynamic pressure of the downflow of the fluid.
  • the protrusion may be formed integrally with the protective material.
  • a protrusion part can be formed simultaneously.
  • the protrusion may be continuously formed from the bottom to the upper end surface. As a result, it is possible to suppress the downflow diffused at the upper end surface of the projecting portion from turning around the projecting portion.
  • a deposit is formed by depositing fluid on the upper end surface, and the height of the upper end surface of the projecting portion is the imaginary line extending the upper surface when the deposit portion is at the angle of repose. It is set so as to pass above the gas supply unit arranged on the reaction furnace wall side. This suppresses the downflow that flows obliquely downward along the upper surface when the deposition part is at the angle of repose when colliding with the upper end surface from colliding with the gas supply part arranged closest to the reactor wall surface. it can. Therefore, wear and wear of the gas supply unit can be suppressed.
  • FIG. 1 is a diagram showing a configuration of a circulating fluidized bed boiler to which a gas nozzle mounting structure according to an embodiment of the present invention is applied.
  • FIG. 2 is a schematic cross-sectional view showing the lower part of the reactor in the circulating fluidized bed boiler of FIG.
  • FIG. 3 is a schematic cross-sectional view of FIG. 2 viewed from above.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV shown in FIG. 6A is an enlarged view around the protrusion in FIG. 5, and
  • FIG. 6B is an enlarged view around the protrusion in FIG.
  • FIGS. 7A and 7B are enlarged views of the reaction unit according to the comparative example.
  • FIG. 1 is a diagram showing a configuration of a circulating fluidized bed boiler to which a gas nozzle mounting structure according to an embodiment of the present invention is applied.
  • the circulating fluidized bed boiler 2 includes a fluidized bed type reaction furnace 3 having a vertically long cylindrical shape.
  • a fuel inlet 3a for introducing fuel is provided, and in the upper part, a gas outlet 3b for discharging combustion gas is provided.
  • the fuel supplied from the fuel input device 5 to the reaction furnace 3 is input into the reaction furnace 3 through the fuel input port 3a.
  • a cyclone 7 functioning as a solid-gas separation device is connected to the gas outlet 3b of the reaction furnace 3.
  • the discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line.
  • a return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the reaction furnace 3.
  • the reaction furnace 3 is configured as a furnace having a combustion chamber 4 therein.
  • the combustion chamber 4 solids containing fuel introduced from the fuel inlet 3 a (for example, “fluid” in the following description) by combustion / flowing gas (for example, air) introduced from the bottom of the reaction furnace 3 described later. And the fuel burns at about 800-900 ° C. while flowing.
  • the combustion gas generated in the combustion chamber 4 is introduced into the cyclone 7 with accompanying solid particles.
  • the cyclone 7 separates the solid particles and the gas by a centrifugal separation action, returns the separated solid particles to the combustion chamber 4 through the return line 9, and also discharges the combustion gas from which the solid particles have been removed from the discharge port 7a. It is sent to the gas processing system at the subsequent stage through the line.
  • combustion ash is generated and collected at the bottom. For this reason, in the reaction furnace 3, combustion ash is regularly discharged
  • the gas treatment system includes a gas heat exchange device 13 connected to the discharge port 7a of the cyclone 7 via a gas line, and a bag filter connected to the discharge port 13a of the gas heat exchange device 13 via a gas line. (Dust collector) 15.
  • the gas heat exchanger 13 is provided with a boiler tube 13b that allows water to flow across the exhaust gas flow path. When the high-temperature exhaust gas sent from the cyclone 7 comes into contact with the boiler tube 13b, the heat of the exhaust gas is recovered in the water in the tube, and the generated high-temperature steam is sent to the turbine for power generation through the boiler tube 13b.
  • the bag filter 15 removes fine particles such as fly ash still entrained in the combustible gas. The clean gas discharged from the discharge port 15a of the bag filter 15 is discharged from the chimney 19 via the gas line and the pump 17 to the outside.
  • FIG. 2 is a schematic cross-sectional view showing the lower part of the reactor in the circulating fluidized bed boiler of FIG. 1
  • FIG. 3 is a schematic cross-sectional view of FIG.
  • the reaction furnace 3 includes side wall surfaces 3f and 3g opposed in the longitudinal direction, side wall surfaces 3h and 3k opposed in the short direction, and a bottom wall surface 3e. These wall surfaces may be collectively referred to as “reactor wall surfaces”.
  • the bottom wall surface 3e is provided with a plurality of discharge ports 3d extending downward so as to discharge the combustion ash.
  • a wind box 21 is provided below the bottom wall surface 3 e of the reaction furnace 3.
  • a plurality of gas pipes 23 are provided upright above the bottom wall surface 3 e and extend toward the combustion chamber 4.
  • a plurality of gas nozzles 25 are connected to the respective upper ends of the plurality of gas pipes 23.
  • the wind box 21 is provided with a supply path 27 for introducing combustion / flowing gas. The combustion / flowing gas introduced from the supply passage 27 is sent to the entire combustion chamber 4 through the wind box 21, the gas pipe 23 and the gas nozzle 25 so as to be uniform.
  • a protective material 29 for protecting the wall of the reaction furnace is provided in the lower part of the reaction furnace 3.
  • a protective material 29A is provided above the bottom wall surface 3e
  • a protective material 29B is provided so as to cover the surface of the discharge port
  • a protective material is provided so as to cover the inner surfaces of the side wall surfaces 3f and 3g.
  • 29C and 29D are provided
  • protective materials 29E and 29F are provided so as to cover the inner surfaces of the side wall surfaces 3h and 3k.
  • the gas pipe 23 is erected on the bottom wall surface 3e of the reaction furnace 3 and extends upward through the protective material 29A.
  • the periphery of the gas pipe 23 is covered with a protective material 29A.
  • the gas nozzle 25 connected to the upper end of the gas pipe 23 is partly or entirely exposed without being covered with the protective material 29 ⁇ / b> A and protrudes toward the combustion chamber 4.
  • the gas nozzle 25 is arranged in a stepped manner so as to be arranged at a position one step lower as it approaches the discharge port 3d.
  • the protective material 29A is also formed in a step shape (see also FIGS. 4 and 5).
  • the jet nozzle for feeding the gas in the gas nozzle 25 into the combustion chamber 4 is arranged so as to face the discharge port 3d.
  • the gas fed from the gas nozzle 25 flows in the direction indicated by the arrow.
  • the direction indicated by the arrow may be referred to as “ejection direction D1”, which is the direction in which the gas nozzle 25 ejects gas.
  • the ejection direction (that is, the direction toward the discharge port 3d) is perpendicular to the ejection direction D1.
  • the ejection direction D1 is set in a direction orthogonal to the axis of the gas pipe 23, but may be set in an inclined direction.
  • a plurality of (for example, several thousand) gas nozzles 25 are arranged side by side on the bottom wall surface 3 e of the reaction furnace 3.
  • the gas ejected from the ejection ports of the respective gas nozzles 25 flows in the ejection direction D1 toward the ejection port 3d.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV shown in FIG. 6A is an enlarged view of the protruding portion shown in FIG. 5, and
  • FIG. 6B is an enlarged view of the protruding portion shown in FIG.
  • the side wall surface 3f in the lower part of the reaction furnace 3 extends straight in the vertical direction. Therefore, the protective material 29C also extends straight along the side wall surface 3f in the vertical direction.
  • the reaction furnace 3 includes a protruding portion 31 protruding toward the inside of the reaction furnace 3 from the side wall surface 3f provided with the protective material 29C.
  • the protruding portion 31 protrudes from the side surface 29Ca on the inner side of the reaction furnace 3 of the protective material 29C.
  • the protrusion 31 is made of the same protective material as the protective material 29C. Further, the protruding portion 31 is formed integrally with the protective material 29C. Therefore, there is no cut or the like between the protruding portion 31 and the protective material 29C, and they are configured as the same member.
  • the protective material 29C and the protruding portion 31 are formed at the same time using the same mold.
  • the material of the mold is not limited, and it may be made of metal or wooden.
  • the upper end surface 31a of the protrusion 31 extends along the horizontal direction.
  • a deposit T is formed by depositing a fluid.
  • the accumulation portion T is formed so as to be inclined downward from the side surface 29Ca of the protective material 29C toward the tip of the upper end surface 31a.
  • the upper end surface 31a preferably extends in parallel with the horizontal direction, but may be inclined with respect to the horizontal direction as long as the accumulated fluid does not fall.
  • the side end surface 31b inside the reaction furnace 3 of the projecting portion 31 extends straight in the vertical direction.
  • the side end surface 31b of the protruding portion 31 is disposed closer to the side wall surface 3f than the gas nozzle 25A disposed closest to the side wall surface 3f.
  • the side end surface 31b extends straight in the vertical direction over the entire area between the upper end surface 31a and the upper surface of the lower protective member 29A, and continuously extends without being provided with a recess or the like in the middle position. . That is, the protrusion 31 is continuously formed with the same thickness from the bottom (here, the upper surface 29Aa at the uppermost stage of the protective material 29A) to the upper end surface 31a.
  • the thickness t2 of the protruding portion 31 in the direction toward the inside of the reaction furnace 3 is thicker than the thickness t1 of the protective material 29C that protects the side wall surface 3f.
  • the thickness t2 of the protrusion 31 may be smaller than the thickness t1 of the protective material 29C. In this case, the amount of material for forming the protruding portion 31 can be reduced.
  • the height position of the upper end surface 31a will be described.
  • the upper end surface 31a is disposed at least above the upper end portion of the gas nozzle 25A disposed closest to the side wall surface 3f. Further, the height of the upper end surface 31a is set so that the imaginary line L1 whose upper surface is extended when the accumulation portion T is at the repose angle ⁇ passes above the gas nozzle 25A that is disposed closest to the side wall surface 3f. The Thereby, the height of the upper end surface 31a is set so that the gas nozzle 25A does not exist on the virtual line L1. As shown in FIG.
  • the imaginary line L1 does not intersect with the gas nozzle 25A by setting the height of the upper end surface 31a to be equal to or higher than the upper end portion of the gas nozzle 25A. Passes over 25A.
  • the imaginary line L1 intersects the gas nozzle 25 or the protective material 29A inside the reaction furnace 3 than the gas nozzle 25A.
  • the angle of repose ⁇ of the accumulation portion T is formed immediately after the start of operation, and then continuously formed.
  • the repose angle ⁇ varies depending on the type of fluid, the size of the upper end surface 31a, and the like, and is not particularly limited, but may be about 45 °.
  • the reaction furnace 3 is provided with components such as a fuel inlet 3a and a return line 9 shown in FIG.
  • the height of the upper end surface 31a is set below the component so as not to interfere with these components. Further, the height of the upper end surface 31a is set to such a height that the downflow once diffused on the upper end surface 31a does not flow downward again along the side end surface 31b.
  • FIG. 6A shows an enlarged view of the side wall surface 3k
  • the side wall surface 3h facing the side wall surface 3k in the short-side direction has the same configuration, and a description thereof will be omitted.
  • the side wall surface 3k in the lower part of the reaction furnace 3 extends so as to be inclined with respect to the vertical direction. Therefore, the protective material 29F also extends straight along the side wall surface 3k in the vertical direction. In addition, the side wall surface 3k and the protective material 29F are inclined so as to go to the inner side of the reaction furnace 3 as it goes downward.
  • the reaction furnace 3 includes a protruding portion 32 protruding toward the inside of the reaction furnace 3 from the side wall surface 3k provided with the protective material 29F.
  • the protrusion 32 protrudes from the side surface 29Fa inside the reaction furnace 3 of the protective material 29F.
  • the protrusion 32 is made of the same protective material as the protective material 29F.
  • the protrusion part 32 is comprised integrally with the protective material 29F. Accordingly, there is no break or the like between the protruding portion 32 and the protective material 29F, and they are configured as the same member.
  • the upper end surface 32a of the protruding portion 32 extends along the horizontal direction.
  • the deposit T is formed by depositing the fluid.
  • the accumulation portion T is formed so as to be inclined downward from the side surface 29Fa of the protective material 29F toward the tip of the upper end surface 32a.
  • the upper end surface 32a preferably extends parallel to the horizontal direction, but may be inclined with respect to the horizontal direction as long as the accumulated fluid does not fall.
  • the side end face 32b inside the reaction furnace 3 of the projecting portion 32 extends straight in the vertical direction.
  • a tapered surface 32c is formed between the side end surface 32b and the upper end surface 32a. By forming the tapered surface 32c, the end portion of the protruding portion 32 can be made difficult to chip.
  • the side end face 32b of the protruding portion 32 is disposed closer to the side wall surface 3k than the gas nozzle 25B disposed closest to the side wall surface 3k.
  • the side end surface 32b extends straight in the vertical direction over the entire area between the tapered surface 32c and the upper surface of the lower protective member 29A, and continuously extends without being provided with a recess or the like in the middle position. .
  • the protrusion 32 is continuously formed so as to gradually increase in thickness from the bottom (here, the upper surface 29Aa at the uppermost stage of the protective material 29A) to the tapered surface 32c.
  • the thickness t4 of the protrusion 32 in the direction toward the inside of the reaction furnace 3 (here, the horizontal direction) is thicker than the thickness t3 of the protective material 29F that protects the side wall surface 3k.
  • the thickness t4 here is defined as the thickness at the position of the upper end surface 32a when it is assumed that the tapered surface 32c is not formed.
  • the width t5 in the horizontal direction of the upper end surface 32a is also wider than the thickness t3 of the protective material 29F.
  • the thickness t4 of the protrusion 32 may be smaller than the thickness t3 of the protective material 29F. In this case, the amount of material for forming the protrusion 32 can be reduced.
  • the height position of the upper end surface 32a will be described.
  • the upper end surface 32a is disposed at least above the upper end portion of the gas nozzle 25B disposed closest to the side wall surface 3k. Further, the height of the upper end surface 32a is such that the imaginary line L2 extending from the upper surface when the fluid deposit portion T is at the repose angle ⁇ passes above the gas nozzle 25B disposed closest to the side wall surface 3k. Set to do. Thereby, the height of the upper end surface 32a is set so that the gas nozzle 25B does not exist on the virtual line L2. As shown in FIG.
  • the height of the upper end surface 32a is set to be equal to or higher than the upper end portion of the gas nozzle 25B, so that the imaginary line L2 does not intersect with the gas nozzle 25B. Passes over 25B.
  • the imaginary line L2 intersects the gas nozzle 25 or the protective material 29A inside the reaction furnace 3 than the gas nozzle 25B.
  • the angle of repose ⁇ of the deposited portion T has the same purpose as the angle of repose described in the protruding portion 31.
  • the height of the upper end surface 32a is set below the component so as not to interfere with the component of the reactor 3 described above.
  • the height of the upper end surface 32a is set to such a height that the downflow once diffused on the upper end surface 32a does not flow downward again along the side end surface 32b.
  • the reaction furnace is not provided with the protrusions 31 and 32 as in the present embodiment.
  • the downflow F collides with a gas nozzle provided on the bottom wall surface, thereby causing a gas nozzle. Wear and wear may occur.
  • the reaction furnace 3 includes projecting portions 31 and 32 that project toward the inside of the reaction furnace 3 from the side wall surfaces 3f, 3g, 3h, and 3k provided with the protective material 29. .
  • the upper end surfaces 31a and 32a of the protrusions 31 and 32 extend along the horizontal direction.
  • the downflow F of the fluid flowing downward along the side wall surfaces 3f, 3g, 3h, 3k is the upper end surface 31a of the projecting portions 31, 32 before colliding with the gas nozzles 25A, 25B provided on the bottom wall surface 3e. , 32a.
  • the downflow F of the fluid is diffused and reduced in dynamic pressure before the gas nozzle 25 (see FIG. 6).
  • wear and wear of the gas nozzle 25 provided on the bottom wall surface can be suppressed.
  • the thickness of the protrusion 31 in the direction toward the inside of the reaction furnace 3 is greater than the thickness of the protective materials 29C and 29D that protect the side wall surfaces 3f and 3g. 3 is thicker than the thickness of the protective materials 29E and 29F that protect the side wall surfaces 3h and 3k.
  • the protruding portion 31 is configured integrally with the protective materials 29C and 29D.
  • the protrusion 31 can be formed at the same time when the protective members 29C and 29D are formed by the mold.
  • the protrusion part 32 is comprised integrally with the protection materials 29E and 29F.
  • the protrusion 32 can be formed at the same time when the protective members 29E and 29F are formed by the mold.
  • the structural strength can be improved, and the protrusions 31 and 32 can be prevented from falling off.
  • the protruding portions 31 and 32 are continuously formed from the bottom to the upper end surfaces 31a and 32a.
  • the protrusions 31 and 32 are continuously formed from the bottom to the upper end surfaces 31a and 32a, so that the downflow F diffused on the upper end surfaces 31a and 32a of the protrusions 31 and 32 is reduced. Therefore, it is possible to prevent the protrusions 31 and 32 from turning downward.
  • the heights of the upper end surfaces 31a and 32a of the projecting portions 31 and 32 are the imaginary lines L1 and L2 extending from the upper surface when the deposition portion T is at the repose angle ⁇ , It is set so as to pass above the gas nozzles 25 arranged on the wall surfaces 3f, 3g, 3h, and 3k.
  • the downflow F that flows obliquely downward along the upper surface when the deposited portion T is at the angle of repose ⁇ is arranged on the side wall surfaces 3f, 3g, 3h, and 3k. It is possible to suppress collision with the gas nozzles 25A and 25B. Therefore, wear and wear of the gas nozzles 25A and 25B can be suppressed.
  • the present invention is not limited to the embodiment described above.
  • the protruding portions are formed on all the four side wall surfaces 3f, 3g, 3h, and 3k, but it is only necessary that the protruding portions are provided on at least one of the side wall surfaces.
  • the protrusions may be formed only on the pair of side wall surfaces facing the longitudinal direction or the short direction. In this case, the amount of the material used for forming the protrusion can be reduced by forming the protrusion on only a part of the side wall surface.
  • the shape of the side wall surface and the shape of the protective material covering it are not limited to the above-described embodiment.
  • the shape of the protruding portion is not limited to the above-described embodiment, and may be changed as appropriate.
  • the protruding portion may not be formed continuously from the bottom portion to the upper end surface, and may be formed only on a part in the vertical direction. In this case, the amount of material used to form the protrusion can be reduced.
  • the protruding portion does not have to be formed integrally with the protective material.
  • the protruding portion may be constituted by another member made of a material different from the protective material. In this case, the degree of freedom of materials and processing methods for forming the protrusions is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

反応炉は、底壁面に設けられた気体供給部より気体を供給し、流動物の流動状態を形成する反応炉であって、反応炉の下部に設けられ、反応炉壁面を防護する防護材と、防護材が設けられた反応炉壁面から反応炉の内部に向けて突出した突出部と、を備え、突出部の上端面は水平方向に沿って延びている。

Description

反応炉
 本発明は、反応炉に関する。
 従来の反応炉として、底壁面に設けられた気体供給部より気体を供給し、流動物の流動状態を形成するものが知られている(例えば、特許文献1参照)。反応炉の底部には、複数のノズルが設けられ、各ノズルの向きの調整が行われることによって流動物の流動状態が形成されている。
特開平8-49827号公報
 上述したような反応炉では、底部において反応炉の側面に沿って流動物が下降するダウンフローが生じる場合がある。このようなダウンフローが底壁面に設けられた気体供給部に衝突することにより、気体供給部に摩耗、損耗が生じる場合があった。
 本発明は、底壁面に設けられた気体供給部の摩耗、損耗を抑制できる反応炉を提供することを目的とする。
 本発明の一形態に係る反応炉は、底壁面に設けられた気体供給部より気体を供給し、流動物の流動状態を形成する反応炉において、反応炉の下部に設けられ、反応炉壁面を防護する防護材と、防護材が設けられた反応炉壁面から反応炉の内部に向けて突出した突出部と、を備え、突出部の上端面は水平方向に沿って延びている。
 反応炉は、防護材が設けられた反応炉壁面から反応炉の内部に向けて突出した突出部を備えている。また、突出部の上端面は水平方向に沿って延びている。反応炉壁面に沿って下方へ流れる流動物のダウンフローは、底壁面に設けられた気体供給部と衝突する手前において、突出部の上端面と衝突する。これによって、流動物のダウンフローは、気体供給部の手前で拡散及び動圧低減する。以上により、底壁面に設けられた気体供給部の摩耗、損耗を抑制できる。
 反応炉において、突出部における反応炉の内部へ向かう方向の厚みは反応炉壁面を防護する防護材の厚みよりも厚くてよい。これによって、流動物のダウンフローを拡散及び動圧低減するために、十分な広さの上端面を確保することができる。
 反応炉において、突出部は防護材と一体的に構成されていてよい。これによって、成形型によって防護材を形成する際に同時に突出部を形成することができる。
 反応炉において、突出部は底部から上端面に至るまで連続的に形成されていてよい。これによって、突出部の上端面で拡散したダウンフローが、突出部の下方へ回りこむ事を抑制できる。
 反応炉において、上端面には、流動物が堆積することによって堆積部が形成され、突出部の上端面の高さは、堆積部が安息角にある時の上面を延長した仮想線が、最も反応炉壁面側に配置される気体供給部の上方を通過するように設定される。これによって、上端面で拡散した際に、堆積部が安息角にある時の上面に沿って斜め下方へ流れるダウンフローが、最も反応炉壁面側に配置される気体供給部に衝突することを抑制できる。従って、気体供給部の摩耗、損耗を抑制できる。
 本発明によれば、底壁面に設けられた気体供給部の摩耗、損耗を抑制できる。
図1は、本発明の実施形態に係る気体ノズルの取付構造が適用される循環流動層ボイラの構成を示す図である。 図2は、図1の循環流動層ボイラにおける反応炉の下部を示す概略断面図である。 図3は、図2を上から見た概略断面図である。 図4は、図3に示すIV-IV線に沿った断面図である。 図5は、図3に示すV-V線に沿った断面図である。 図6(a)は図5における突出部周辺の拡大図であり、図6(b)は図4における突出部周辺の拡大図である。 図7(a),(b)は、比較例に係る反応部の拡大図である。
 本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
 まず、図1を参照し、本実施形態の気体ノズルの取付構造が適用される循環流動層ボイラの構成について説明する。図1は、本発明の実施形態に係る気体ノズルの取付構造が適用される循環流動層ボイラの構成を示す図である。図1に示すように、循環流動層ボイラ2は、縦長の筒形状をなす流動層型の反応炉3を備えている。反応炉3の中間部には、燃料を投入する燃料投入口3aが設けられ、上部には燃焼ガスを排出するガス出口3bが設けられている。燃料投入装置5からこの反応炉3に供給される燃料は、燃料投入口3aを介して反応炉3の内部に投入される。
 反応炉3のガス出口3bには固気分離装置として機能するサイクロン7が接続されている。サイクロン7の排出口7aはガスラインを介して後段のガス処理系に接続されている。また、サイクロン7の底部出口からはダウンカマーと称されるリターンライン9が下方に延びており、リターンライン9の下端は反応炉3の中間部側面に接続されている。
 反応炉3は、その内部に燃焼室4を有した火炉として構成されている。燃焼室4では、後述する反応炉3の底部から導入される燃焼・流動用の気体(例えば、空気)により、燃料投入口3aから投入された燃料を含む固形物(以降の説明において「流動物」と称する場合がある)が流動し、燃料は流動しながら約800~900℃で燃焼する。サイクロン7には、燃焼室4で発生した燃焼ガスが固体粒子を同伴しながら導入される。サイクロン7は、遠心分離作用により固体粒子と気体とを分離し、分離された固体粒子をリターンライン9を介して燃焼室4に戻すと共に、固体粒子が除かれた燃焼ガスを排出口7aからガスラインを通じて後段のガス処理系に送出する。
 この燃焼室4では、燃焼灰が発生し底部に溜まる。このため、反応炉3では、底部の排出口3dから燃焼灰が定期的に外部に排出されている。
 上記のガス処理系は、サイクロン7の排出口7aにガスラインを介して接続されたガス熱交換装置13と、このガス熱交換装置13の排出口13aにガスラインを介して接続されたバグフィルタ(集塵器)15とを備えている。ガス熱交換装置13には、排ガスの流路を横切るように水を流動させるボイラチューブ13bが設けられている。サイクロン7から送られた高温の排ガスがこのボイラチューブ13bに接触することで、排ガスの熱がチューブ内の水に回収され、発生した高温の水蒸気がボイラチューブ13bを通じて発電用のタービンに送られる。バグフィルタ15は、この可燃性ガスに未だ同伴している飛灰等微粒子を除去する。バグフィルタ15の排出口15aから排出された清浄なガスはガスライン及びポンプ17を経由して煙突19から外部に排出される。
 続いて、図2及び図3を参照し、本実施形態に係る気体ノズルの取付構造が適用される循環流動層ボイラの反応炉の下部について詳細に説明する。図2は、図1の循環流動層ボイラにおける反応炉の下部を示す概略断面図であり、図3は、図2を上から見た概略断面図である。図2及び図3に示すように、反応炉3は、長手方向に対向する側壁面3f,3gと、短手方向に対向する側壁面3h,3kと、底壁面3eと、を備えている。なお、これらの壁面をまとめて「反応炉壁面」と称する場合がある。また、底壁面3eには、燃焼灰を排出するように下方へ延びる排出口3dが複数設けられている。
 図2に示すように、反応炉3の底壁面3eの下側には、風箱21が設けられている。また、底壁面3eの上側には複数の気体配管23が立設され、燃焼室4に向かって延在している。複数の気体配管23のそれぞれの上端には複数の気体ノズル25が連結されている。風箱21には、燃焼・流動用の気体を導入する供給路27が設けられている。供給路27から導入された燃焼・流動用の気体は、風箱21、気体配管23及び気体ノズル25を介して、燃焼室4内全体に均一となるように送り込まれる。
 反応炉3の下部には、反応炉壁面を防護する防護材29が設けられる。具体的には、底壁面3eの上側には防護材29Aが設けられ、排出口の表面を覆うように防護材29Bが設けられ、側壁面3f,3gの内部側の表面を覆うように防護材29C,29Dが設けられ、側壁面3h,3kの内部側の表面を覆うように防護材29E,29Fが設けられる。
 気体配管23は、反応炉3の底壁面3eに立設され、防護材29Aを上方へ向かって延びている。気体配管23の周囲は、防護材29Aに覆われている。気体配管23の上端に連結されている気体ノズル25は、一部または全部が防護材29Aに覆われることなく露出し、燃焼室4に向かって突出している。気体ノズル25は、排出口3dへ近づくに従って、一段低い位置に配置されるように、階段状に配置される。これに伴い、防護材29Aも階段状に形成される(図4及び図5も参照)。気体ノズル25における気体を燃焼室4内へ送り込む噴出口は、排出口3dに向かうように配置されている。反応炉3の運転時において、気体ノズル25から送り込まれる気体は、矢印で示す向きに流れる。なお、矢印で示す方向は、気体ノズル25が気体を噴出する方向である「噴出方向D1」と称する場合がある。ただし、排出口3dと短手方向に隣り合う領域については、噴出方向(すなわち、排出口3dへ向かう方向)が噴出方向D1と垂直になる。なお、本実施形態では、噴出方向D1は、気体配管23の軸線と直交する方向に設定されているが、傾斜する方向へ設定されていてもよい。
 図3に示すように、反応炉3の底壁面3eには、複数(例えば数千本)の気体ノズル25が並んで配置されている。反応炉3の運転時には、それぞれの気体ノズル25の噴出口から噴出した気体は、排出口3dに向かって噴出方向D1に流れる。
 次に、図4~図6を参照して、本実施形態に係る反応炉3の構成について詳細に説明する。図4は、図3に示すIV-IV線に沿った断面図である。図5は、図3に示すV-V線に沿った断面図である。図6(a)は図5に示す突出部の拡大図、図6(b)は図4に示す突出部の拡大図である。
 図4及び図6(b)には側壁面3fのみ図示されているが、当該側壁面3fと長手方向に対向する側壁面3gも同様な構成を有するため説明を省略する。本実施形態において、反応炉3の下部における側壁面3fは、鉛直方向に真っ直ぐに延びている。従って、防護材29Cも側壁面3fに沿って鉛直方向に真っ直ぐに延びている。
 図4及び図6(b)に示すように、反応炉3は、防護材29Cが設けられた側壁面3fから反応炉3の内部に向けて突出した突出部31を備えている。突出部31は、防護材29Cの反応炉3の内側の側面29Caから突出している。突出部31は防護材29Cと同材料の防護材によって構成されている。また、突出部31は防護材29Cと一体的に構成されている。従って、突出部31と防護材29Cとの間には切れ目等がなく、同一部材として構成されている。防護材29C及び突出部31を形成する際は、同一の成形型にて防護材29Cと突出部31が同時に形成される。なお、成形型の材質は限定されず、金属製であっても木製であってもよい。突出部31の上端面31aは水平方向に沿って延びている。当該上端面31a上には、流動物が堆積することで堆積部Tが形成される。堆積部Tは、防護材29Cの側面29Caから上端面31aの先端へ向かって下方へ傾斜するように形成される。上端面31aは、水平方向と平行に延びることが好ましいが、堆積した流動物が落下しない範囲で水平方向に対して傾斜していてもよい。
 突出部31の反応炉3の内側の側端面31bは、鉛直方向に真っ直ぐに延びている。突出部31の側端面31bは、最も側壁面3f側に配置される気体ノズル25Aよりも側壁面3f側に配置される。側端面31bは、上端面31aと下側の防護材29Aの上面との間の全域に亘って鉛直方向に真っ直ぐに延びており、中途位置に窪み等が設けられることなく連続的に延びている。すなわち、突出部31は底部(ここでは、防護材29Aの最上段における上面29Aa)から上端面31aに至るまで同一の厚さにて連続的に形成されている。突出部31における反応炉3の内部へ向かう方向(ここでは水平方向)の厚みt2は側壁面3fを防護する防護材29Cの厚みt1よりも厚い。ただし、突出部31の厚みt2は、防護材29Cの厚みt1より薄くてもよい。この場合、突出部31を形成するための材料の量を低減することができる。
 上端面31aの高さ位置について説明する。上端面31aは、少なくとも、最も側壁面3f側に配置される気体ノズル25Aの上端部よりも上側へ配置される。また、上端面31aの高さは、堆積部Tが安息角θにある時に上面を延長した仮想線L1が、最も側壁面3f側に配置される気体ノズル25Aの上方を通過するように設定される。これにより、上端面31aの高さは、仮想線L1上に気体ノズル25Aが存在しないように設定される。図6(b)に示すように、上端面31aの高さが気体ノズル25Aの上端部よりも一定以上に設定されることで、仮想線L1は、気体ノズル25Aと交わることなく、当該気体ノズル25Aの上方を通過する。仮想線L1は、気体ノズル25Aよりも反応炉3の内側において気体ノズル25又は防護材29Aと交わる。なお、堆積部Tの安息角θは、運転開始後、直ちに形成され、その後、持続的に形成される。安息角θは、流動物の種類や、上端面31aの大きさ等によって変動があるため、特に限定されないが、45°前後の角度となる程度となる場合がある。なお、反応炉3には、図1に示す燃料投入口3a及びリターンライン9、その他、バーナ、エアノズル等の構成要素が設けられている。上端面31aの高さは、これらの構成要素と干渉しないように、当該構成要素よりも下方に設定される。また、上端面31aの高さは、高すぎることによって、当該上端面31aで一度拡散させたダウンフローが再び側端面31bに沿って下方へ流れない程度の高さに設定される。
 次に、図5及び図6(a)を参照して、側壁面3k,3h側の構成について説明する。なお、図6(a)には側壁面3kの拡大図が図示されているが、当該側壁面3kと短手方向に対向する側壁面3hも同様な構成を有するため説明を省略する。本実施形態において、反応炉3の下部における側壁面3kは、鉛直方向に対して傾斜するように延びている。従って、防護材29Fも側壁面3kに沿って鉛直方向に真っ直ぐに延びている。なお、側壁面3k及び防護材29Fは、下方へ向かうに従って反応炉3の内部側へ向かうように傾斜している。
 図5及び図6(a)に示すように、反応炉3は、防護材29Fが設けられた側壁面3kから反応炉3の内部に向けて突出した突出部32を備えている。突出部32は、防護材29Fの反応炉3の内側の側面29Faから突出している。突出部32は防護材29Fと同材料の防護材によって構成されている。また、突出部32は防護材29Fと一体的に構成されている。従って、突出部32と防護材29Fとの間には切れ目等がなく、同一部材として構成されている。防護材29F及び突出部32を形成する際は、同一の成形型にて防護材29Fと突出部32が同時に形成される。突出部32の上端面32aは水平方向に沿って延びている。当該上端面32a上には、流動物が堆積することで堆積部Tが形成される。堆積部Tは、防護材29Fの側面29Faから上端面32aの先端へ向かって下方へ傾斜するように形成される。上端面32aは、水平方向と平行に延びることが好ましいが、堆積した流動物が落下しない範囲で水平方向に対して傾斜していてもよい。
 突出部32の反応炉3の内側の側端面32bは、鉛直方向に真っ直ぐに延びている。側端面32bと上端面32aとの間にはテーパー面32cが形成される。テーパー面32cを形成することにより、突出部32の端部を欠けにくくすることができる。突出部32の側端面32bは、最も側壁面3k側に配置される気体ノズル25Bよりも側壁面3k側に配置される。側端面32bは、テーパー面32cと下側の防護材29Aの上面との間の全域に亘って鉛直方向に真っ直ぐに延びており、中途位置に窪み等が設けられることなく連続的に延びている。すなわち、突出部32は底部(ここでは、防護材29Aの最上段における上面29Aa)からテーパー面32cに至るまで徐々に厚さが大きくなるように連続的に形成されている。突出部32における反応炉3の内部へ向かう方向(ここでは水平方向)の厚みt4は側壁面3kを防護する防護材29Fの厚みt3よりも厚い。ただし、ここでの厚みt4は、テーパー面32cが形成されていないと仮定した場合の、上端面32aの位置における厚みとして定義される。また、上端面32aの水平方向における広さt5も防護材29Fの厚みt3より広い。ただし、突出部32の厚みt4は、防護材29Fの厚みt3より薄くてもよい。この場合、突出部32を形成するための材料の量を低減することができる。
 上端面32aの高さ位置について説明する。上端面32aは、少なくとも、最も側壁面3k側に配置される気体ノズル25Bの上端部よりも上側へ配置される。また、上端面32aの高さは、流動物の堆積部Tが安息角θにある時の上面を延長した仮想線L2上が、最も側壁面3k側に配置される気体ノズル25Bの上方を通過するように設定される。これにより、上端面32aの高さは、仮想線L2上に気体ノズル25Bが存在しないように設定される。図6(a)に示すように、上端面32aの高さが気体ノズル25Bの上端部よりも一定以上に設定されることで、仮想線L2は、気体ノズル25Bと交わることなく、当該気体ノズル25Bの上方を通過する。仮想線L2は、気体ノズル25Bよりも反応炉3の内側において気体ノズル25又は防護材29Aと交わる。なお、ここでの堆積部Tの安息角θは、突出部31で説明した安息角と同趣旨である。上端面32aの高さは、前述の反応炉3の構成要素と干渉しないように、当該構成要素よりも下方に設定される。また、上端面32aの高さは、高すぎることによって、当該上端面32aで一度拡散させたダウンフローが再び側端面32bに沿って下方へ流れない程度の高さに設定される。
 次に、本実施形態に係る反応炉3の作用・効果について説明する。
 まず、比較例に係る反応炉について、図7を参照して説明する。図7に示すように、反応炉は本実施形態のような突出部31,32が設けられていない。このような反応炉では、底部において反応炉の側面に沿って流動物が下降するダウンフローが生じた時に、当該ダウンフローFが底壁面に設けられた気体ノズルと衝突することによって、気体ノズルに摩耗、損耗が生じる場合があった。
 これに対し、本実施形態に係る反応炉3は、防護材29が設けられた側壁面3f,3g,3h,3kから反応炉3の内部に向けて突出した突出部31,32を備えている。また、突出部31,32の上端面31a,32aは水平方向に沿って延びている。側壁面3f,3g,3h,3kに沿って下方へ流れる流動物のダウンフローFは、底壁面3eに設けられた気体ノズル25A,25Bと衝突する手前において、突出部31,32の上端面31a,32aと衝突する。これによって、流動物のダウンフローFは、気体ノズル25の手前で拡散及び動圧低減する(図6参照)。以上により、底壁面に設けられた気体ノズル25の摩耗、損耗を抑制できる。
 本実施形態に係る反応炉3において、突出部31における反応炉3の内部へ向かう方向の厚みは側壁面3f,3gを防護する防護材29C,29Dの厚みよりも厚く、突出部32における反応炉3の内部へ向かう方向の厚みは側壁面3h,3kを防護する防護材29E,29Fの厚みよりも厚い。これによって、流動物のダウンフローFを拡散及び動圧低減するために、十分な広さの上端面31a,32aを確保することができる。
 本実施形態に係る反応炉3において、突出部31は防護材29C,29Dと一体的に構成されている。これによって、成形型によって防護材29C,29Dを形成する際に同時に突出部31を形成することができる。また、突出部32は防護材29E,29Fと一体的に構成されている。これによって、成形型によって防護材29E,29Fを形成する際に同時に突出部32を形成することができる。また、突出部31,32を防護材29C,29D,29E,29Fと一体的に構成することで、構造上の強度を向上することができ、突出部31,32の脱落を防止できる。
 本実施形態に係る反応炉3において、突出部31,32は底部から上端面31a,32aに至るまで連続的に形成されていている。例えば、突出部31,32が上下方向における一部にのみ形成されていた場合、一度上端面31a,32aで拡散したダウンフローFが、突出部31,32の下方へ回りこんで、防護材29に沿って下方へ向かう可能性がある。これに比して、突出部31,32は底部から上端面31a,32aに至るまで連続的に形成されていることで、突出部31,32の上端面31a,32aで拡散したダウンフローFが、突出部31,32の下方へ回りこむ事を抑制できる。
 本実施形態に係る反応炉3において、突出部31,32の上端面31a,32aの高さは、堆積部Tが安息角θにある時の上面を延長した仮想線L1,L2が、最も側壁面3f,3g,3h,3k側に配置される気体ノズル25の上方を通過するように設定されている。これによって、上端面31a,32aで拡散した際に、堆積部Tが安息角θであるときの上面に沿って斜め下方へ流れるダウンフローFが、最も側壁面3f,3g,3h,3kに配置される気体ノズル25A,25Bに衝突することを抑制できる。従って、気体ノズル25A,25Bの摩耗、損耗を抑制できる。
 本発明は、上述の実施形態に限定されるものではない。
 例えば、上述の実施形態においては、四方の側壁面3f,3g,3h,3kの全てについて突出部が形成されていたが、少なくとも一つの側壁面に突出部が設けられていればよい。例えば、長手方向、又は短手方向に対向する一対の側壁面のみに突出部が形成されていてもよい。この場合、一部の側壁面のみに突出部を形成することで、突出部を形成するために用いる材料の量を低減できる。
 また、側壁面の形状、及びそれを覆う防護材の形状は、上述の実施形態に限定されるものではない。
 また、突出部の形状は、上述の実施形態に限定されるものではなく、適宜変更してよい。例えば、突出部は底部から上端面に至るまで連続的に形成されていなくともよく、上下方向における一部だけに形成されていてもよい。この場合、突出部を形成するのに用いる材料の量を低減できる。
 また、突出部は防護材と一体的に構成されていなくともよい。この場合、突出部は、防護材と異なる材料による別部材によって構成されていてもよい。この場合、突出部を形成するための材料や加工方法の自由度が向上する。
 3…反応炉、3f,3g,3h,3k…側壁面、29…防護材、25…気体ノズル(気体供給部)、31,32…突出部、31a,32a…上端面。

Claims (5)

  1.  底壁面に設けられた気体供給部より気体を供給し、流動物の流動状態を形成する反応炉であって、
     前記反応炉の下部に設けられ、反応炉壁面を防護する防護材と、
     前記防護材が設けられた前記反応炉壁面から前記反応炉の内部に向けて突出した突出部と、を備え、
     前記突出部の上端面は水平方向に沿って延びている、反応炉。
  2.  前記突出部における前記反応炉の内部へ向かう方向の厚みは前記反応炉壁面を防護する前記防護材の厚みよりも厚い、請求項1に記載の反応炉。
  3.  前記突出部は前記防護材と一体的に構成されている、請求項1又は2に記載の反応炉。
  4.  前記突出部は底部から前記上端面に至るまで連続的に形成されている、請求項1~3の何れか一項に記載の反応炉。
  5.  前記上端面には、前記流動物が堆積することによって堆積部が形成され、
     前記突出部の前記上端面の高さは、前記堆積部が安息角にある時の上面を延長した仮想線が、最も前記反応炉壁面側に配置される前記気体供給部の上方を通過するように設定される、請求項1~4の何れか一項に記載の反応炉。
PCT/JP2016/079297 2015-11-18 2016-10-03 反応炉 WO2017086037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2018701872A MY192530A (en) 2015-11-18 2016-10-03 Reacting furnace
PH12018501024A PH12018501024A1 (en) 2015-11-18 2018-05-15 Reacting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015225727A JP6629050B2 (ja) 2015-11-18 2015-11-18 反応炉
JP2015-225727 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086037A1 true WO2017086037A1 (ja) 2017-05-26

Family

ID=58718777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079297 WO2017086037A1 (ja) 2015-11-18 2016-10-03 反応炉

Country Status (4)

Country Link
JP (1) JP6629050B2 (ja)
MY (1) MY192530A (ja)
PH (1) PH12018501024A1 (ja)
WO (1) WO2017086037A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191796U (ja) * 1984-11-19 1986-06-14
JPH01169213A (ja) * 1987-12-25 1989-07-04 Babcock Hitachi Kk 流動層燃焼炉
JPH01203814A (ja) * 1988-02-10 1989-08-16 Babcock Hitachi Kk 流動層燃焼装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191796U (ja) * 1984-11-19 1986-06-14
JPH01169213A (ja) * 1987-12-25 1989-07-04 Babcock Hitachi Kk 流動層燃焼炉
JPH01203814A (ja) * 1988-02-10 1989-08-16 Babcock Hitachi Kk 流動層燃焼装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEO TANAKA: "Biomass Hatsuden System", SANGYO KIKAI, 20 May 2004 (2004-05-20), pages 42 - 45 *

Also Published As

Publication number Publication date
MY192530A (en) 2022-08-26
JP6629050B2 (ja) 2020-01-15
PH12018501024A1 (en) 2019-01-28
JP2017094227A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101255005B1 (ko) 순환 유동층 보일러
RU2537482C2 (ru) Циркулирующий псевдоожиженный слой с соплами для подачи вторичного воздуха в топочную камеру
US9040004B2 (en) Method and device for cleaning exhaust gases by way of fluidized bed reactors
RU2315236C1 (ru) Система реактора с псевдоожиженным слоем, имеющая газосборник для выпускаемого газа
WO2017086037A1 (ja) 反応炉
JP6812523B2 (ja) 反応炉
CN111492176B (zh) 具有返料热交换器的循环流化床锅炉
CN101378821B (zh) 特别用于燃烧设备的固体分离器
JP6912654B2 (ja) ガスの洗浄のための除塵装置
US5372096A (en) Internal particle collecting cells for circulating fluid bed combustion
JP6124453B2 (ja) 循環流動層ボイラ
JP6202555B2 (ja) 循環流動層ボイラの流動媒体回収器
WO2019168059A1 (ja) 排ガス処理装置
JP5129604B2 (ja) 循環流動層燃焼炉
KR20130103806A (ko) 고체 연료 버너
JP6090618B1 (ja) フライアッシュ分級装置、フライアッシュ分級方法及び球状フライアッシュ粒子群の生産方法
JP7441014B2 (ja) プレダスタ
JP3514592B2 (ja) 循環流動層燃焼装置の異物排出装置及び異物排出方法
JP6284923B2 (ja) 気体ノズルの取付構造
TWI802860B (zh) 脫硫裝置的吸收塔
JPWO2018207559A1 (ja) 固体燃料バーナおよび燃焼装置
EP3186554B1 (en) Method for operating a circulating fluidized bed gasification or combustion system
CN115307121A (zh) 换热器以及循环流化床锅炉
JP6814727B2 (ja) ボイラ
WO1991017390A1 (en) Combustor with riser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018501024

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866039

Country of ref document: EP

Kind code of ref document: A1