WO2017085984A1 - プラズマcvd成膜装置 - Google Patents

プラズマcvd成膜装置 Download PDF

Info

Publication number
WO2017085984A1
WO2017085984A1 PCT/JP2016/076006 JP2016076006W WO2017085984A1 WO 2017085984 A1 WO2017085984 A1 WO 2017085984A1 JP 2016076006 W JP2016076006 W JP 2016076006W WO 2017085984 A1 WO2017085984 A1 WO 2017085984A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
barrier layer
forming apparatus
electrode
Prior art date
Application number
PCT/JP2016/076006
Other languages
English (en)
French (fr)
Inventor
鈴木 一生
大石 清
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017551558A priority Critical patent/JP6642587B2/ja
Publication of WO2017085984A1 publication Critical patent/WO2017085984A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma CVD film forming apparatus for forming a film on a long substrate by a plasma CVD (Chemical Vapor Deposition) method.
  • gas barrier films are widely used for packaging of articles that require shutoff of various gases such as water vapor and oxygen, and packaging applications for preventing deterioration of foods, industrial products, pharmaceuticals, and the like.
  • gas barrier films are used in liquid crystal display elements, solar cells, organic electroluminescence (hereinafter abbreviated as organic EL) elements, and the like.
  • organic EL organic electroluminescence
  • Patent Document 1 describes a method for producing a laminated film in which a laminated film is produced by forming a barrier film and a transparent conductive film on a resin film. And in the said manufacturing method, formation of a barrier film is described performing by the discharge plasma CVD method between rolls. The formation of the transparent conductive film is preferably performed by physical vapor deposition, and it is described that it is preferable to use a polyester resin film or a polyolefin resin film as the resin film.
  • the inter-roll discharge plasma CVD method (and apparatus for performing this) as described in Patent Document 1 generates high-density plasma by localizing electrons on the surface of the electrode roll using a magnetic field, By using the high-density plasma, a dense film is formed on the surface of the substrate.
  • ion bombardment refers to bombardment caused by the incidence of sputtering ions on the surface of a thin film during sputtering film formation.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma CVD film forming apparatus that has sufficient gas barrier performance as a gas barrier film and that does not cause deformation of a substrate.
  • a plasma CVD film forming apparatus for forming a film on a long base material, comprising a magnetic field forming means for forming a magnetic field therein, and having a pair of electrode rolls arranged to face each other,
  • a plasma CVD film forming apparatus comprising a high permeability material having a maximum relative permeability of 5000 to 190,000 in the circumferential direction of each end.
  • the relationship S between the sum S of the width of the base material and the width of the high permeability material provided at both ends and the surface length L of the electrode roll is 1.0 ⁇ (S / L) ⁇ 1.2. 3.
  • the present invention has the above-mentioned means, it is possible to provide a plasma CVD film forming apparatus that has sufficient gas barrier performance as a gas barrier film and that does not cause deformation of the substrate.
  • a plasma CVD film forming apparatus 31 (hereinafter also simply referred to as “film forming apparatus 31”) according to the present embodiment is formed on a long substrate 2 by a plasma CVD method. It forms a film, and includes magnetic field forming means 43 and 44 for forming a magnetic field therein, and has a pair of electrode rolls 39 and 40 arranged to face each other.
  • the film forming apparatus 31 includes a feed roll 32 that feeds the substrate 2 toward the pair of electrode rolls 39 and 40, transport rolls 33, 34, 35, and 36, and a gas supply pipe. 41, a plasma generating power source 42, and a take-up roll 45 for winding the film 1 having the film 3 formed on the base material 2. Further, in such a film forming apparatus 31, at least the electrode rolls 39 and 40, the gas supply pipe 41, and the magnetic field forming means 43 and 44 are arranged in a vacuum chamber (not shown). Further, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be adjusted as appropriate by the vacuum pump.
  • the film forming apparatus 31 is an apparatus that can form the film 3 on the surface of the substrate 2 by a roll-to-roll method using a plasma CVD method. Since the film forming apparatus 31 can form the film 3 on the surface of the substrate 2 by a roll-to-roll method, it has a feature that productivity is high.
  • the electrode rolls are insulated from each other and shared so that the pair of electrode rolls (the electrode roll 39 and the electrode roll 40) can function as a pair of counter electrodes.
  • a plasma generating power source 42 Connected to a plasma generating power source 42. Therefore, in the film forming apparatus 31, power can be supplied from the plasma generating power source 42 to the electrode roll 39 and the electrode roll 40, and can be discharged into the space between the electrode roll 39 and the electrode roll 40. Plasma can be generated in the space between the roll 39 and the electrode roll 40.
  • the pair of electrode rolls 39 and 40 are arranged so that their central axes are substantially parallel on the same plane. That is, the pair of electrode rolls 39 and 40 extend in parallel and are opposed to each other.
  • the film formation rate can be doubled compared to the case where two electrode rolls are not used, and a film having the same structure is formed. can do.
  • the pair of electrode rolls 39 and 40 are formed of a conductive material, and convey the substrate 2 while rotating. In other words, in the film forming apparatus 31, the film is sequentially transferred to one surface of the substrate 2 by the pair of electrode rolls 39 and 40 and is formed twice, so that the film forming rate using one discharge plasma SP is doubled. can do.
  • the pair of electrode rolls 39 and 40 has magnetic field forming means 43 and 44 stored therein.
  • the magnetic field forming means 43 and 44 are members that form a magnetic field in the space, and are stored together with the electrode roll 39 and the electrode roll 40 so as not to rotate.
  • the magnetic field forming means 43, 44 includes an electrode roll 39, a central magnet extending in the same direction as the extending direction of the electrode roll 40 (for example, the N pole in FIG. 1), and the electrode roll 39, And an annular external magnet (for example, the S pole in FIG. 1) that extends in the same direction as the extending direction of the electrode roll 40.
  • an annular external magnet for example, the S pole in FIG. 1
  • magnetic lines of force (magnetic field) connecting the central magnet and the external magnet form an endless tunnel.
  • the magnetic lines connecting the central magnet and the external magnet form an endless tunnel.
  • the discharge plasma SP (see FIG. 2) of the film forming gas is generated by the magnetron discharge in which the lines of magnetic force (magnetic field) and the electric field formed in the space between the electrode roll 39 and the electrode roll 40 intersect. That is, this space is used as a film forming space for performing plasma CVD film forming, and a film forming gas is used as a forming material on the surface (film forming surface) of the substrate 2 that does not contact the electrode roll 39 and the electrode roll 40. A film is formed.
  • the film 3 can be formed on the surface of the substrate 2 by the plasma CVD method. That is, it is possible to deposit a film forming component on the surface of the substrate 2 on the electrode roll 39 and also to deposit a film forming component on the surface of the substrate 2 on the electrode roll 40.
  • film formation is performed on the substrate 2 as follows.
  • the inside of the vacuum chamber is set to a reduced pressure environment, and a voltage is applied to the electrode roll 39 and the electrode roll 40 to generate an electric field in the space. Electrons are emitted from the electrode roll 39 and the electrode roll 40 into the vacuum chamber.
  • the magnetic field forming means 43 and 44 form the above-described endless tunnel-like magnetic field, by introducing the film forming gas, the magnetic field and the electrons emitted into the space are introduced into the tunnel.
  • a donut-shaped film-forming gas discharge plasma is formed. Since this discharge plasma can be generated at a low pressure in the vicinity of several Pa, the temperature in the vacuum chamber can be in the vicinity of room temperature.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of a pair of electrode rolls 39 and 40 provided in the film forming apparatus 31 according to the present invention.
  • a pair of electrode rolls 39 and 40 are used, as shown in FIG. 1, while forming the surface portion of the substrate 2 existing on one electrode roll 39 during film formation, The surface portion of the substrate 2 existing on the electrode roll 40 can be formed simultaneously, and the film 3 can be formed efficiently. Further, as described above, the film formation rate can be doubled as compared with a normal plasma CVD method that does not use a pair of electrode rolls.
  • the film deposition apparatus 31 can form the film 3 having substantially the same structure, the extreme value in the carbon distribution curve described later can be at least doubled, and the film 3 (all) satisfying all of (i) to (iii) described later ( (Barrier layer) can be formed efficiently.
  • the pair of electrode rolls 39 and 40 includes high permeability materials 392 and 402 having a maximum relative permeability of 5000 to 190000 in the circumferential direction A of both end portions 391 and 401, respectively.
  • the both end portions 391 and 401 of the electrode rolls 39 and 40 refer to a section from the end face of the electrode rolls 39 and 40 to 300 mm toward the central portion.
  • the total length of the electrode roll can be set to 1000 to 3000 mm, for example.
  • the maximum relative permeability is measured based on a hysteresis curve and refers to the maximum value of the relative permeability obtained by dividing the absolute permeability by the vacuum permeability.
  • the hysteresis curve can be measured using any commercially available oscilloscope.
  • both end portions of the base material 2 are locations where deformation due to film stress (internal stress) is greatest.
  • the pair of electrode rolls 39 and 40 since the high permeability materials 392 and 402 are provided in the circumferential direction A of the both end portions 391 and 401 of the pair of electrode rolls 39 and 40, the pair of electrode rolls 39 and 40 has The magnetic field at the end can be reduced. Therefore, the film stress at the end of the base material 2 can be reduced, and curling and wavy deformation of the base material 2 can be suppressed.
  • the high magnetic permeability materials 392 and 402 are provided only at both end portions 391 and 401 of the electrode rolls 39 and 40, the plasma density can be reduced without substantially affecting the magnetic field at the center of the base material 2. Don't be. Therefore, higher gas barrier performance can be obtained as a gas barrier film. Accordingly, in the formed film 1, the high permeability provided between the high magnetic permeability material 392 and the high magnetic permeability material 392 provided at both ends 391 of the electrode roll 39 and at the both ends 401 of the electrode roll 40. Gas barrier properties that have sufficient gas barrier performance and do not cause deformation of the base material by cutting out from the portion formed between the magnetic permeability material 402 and the high permeability material 402 in an appropriate shape and size. A film can be obtained.
  • the pair of electrode rolls 39 and 40 are not provided with the high magnetic permeability materials 392 and 402, the above-described effects cannot be obtained, and curling and wavy deformation of the base material 2 cannot be suppressed. Further, when the high magnetic permeability materials 392 and 402 are provided so as to cover the entire outer periphery of the electrode rolls 39 and 40, the magnetic field at the center of the base material 2 is affected by the high magnetic permeability materials 392 and 402 and plasma Density decreases and gas barrier performance decreases.
  • the maximum relative magnetic permeability of the high magnetic permeability materials 392 and 402 is set to 5000 to 190000 as described above.
  • the maximum relative magnetic permeability of the high magnetic permeability materials 392 and 402 is preferably set to 50000 or more. In order to improve the gas barrier performance, it is preferable that the maximum relative magnetic permeability of the high magnetic permeability materials 392 and 402 is 150,000 or less.
  • the maximum relative magnetic permeability of the high magnetic permeability materials 392 and 402 can be arbitrarily changed by changing various materials used as the high magnetic permeability material or changing the thickness.
  • the high magnetic permeability materials 392 and 402 for example, a plate, foil, mesh, metal ink, foam metal or the like using a magnetic metal such as iron can be used.
  • High magnetic permeability materials 392 and 402 are preferably used as electromagnetic shielding materials such as permalloy (for example, PC permalloy (Ni—Mo, Cu—Fe alloy), low-temperature tempered IPC permalloy, etc.), mu metal, etc. More preferably, FM SHIELD (registered trademark) manufactured by Hitachi Metals, Ltd. can be mentioned.
  • FM SHIELD has a thickness of about 0.1 mm
  • the base material 2 is hardly deformed by the thickness, which is also preferable from this point. Note that if the thickness of the high magnetic permeability materials 392 and 402 is about 0.1 to 1 mm, the base material 2 is hardly deformed by the thickness, which is not a problem.
  • FIG. 3 is a schematic cross-sectional view illustrating one modified example by exemplifying the electrode roll 39 of the pair of electrode rolls 39 and 40.
  • both end portions 391 by the thickness of the high magnetic permeability materials 392 and 402 so that the surfaces of the high magnetic permeability materials 392 and 402 and the surfaces of the electrode rolls 39 and 40 are flush with each other. What is necessary is just to dent 401. FIG. That is, it is only necessary to reduce the diameter of both end portions 391 and 401 where the high magnetic permeability materials 392 and 402 are provided.
  • flush means that the surfaces of the two adjacent members are flat with no step.
  • the base material 2 is deformed even when the high magnetic permeability materials 392 and 402 are thick. Can not be.
  • FIG. 4 is a schematic cross-sectional view illustrating the specific embodiment of the electrode roll 39 among the pair of electrode rolls 39 and 40.
  • a slight gap is shown between the electrode roll 39 and the base material 2, but actually there is almost no gap between them due to elastic deformation of the base material 2, It is in a contact state.
  • the width S 2 of high permeability material 392 provided at both ends 391 of width S 1 and a pair of electrode rolls 39 and 40 of the base 2 (only the electrode roll 39 in FIG. 4),
  • the sum S of S 3 and the surface length L of the electrode roll 39 are preferably in a relationship of 1.0 ⁇ (S / L) ⁇ 1.4.
  • the surface length of an electrode roll means the length of the axial direction of a roll surface.
  • the relationship between the width S 1 of the base material 2, the widths S 2 and S 3 of the high magnetic permeability material 392, and the surface length L of the electrode roll 39 is appropriate. Wave deformation can be further suppressed.
  • the total length S of the width S 1 of the substrate 2, the widths S 2 and S 3 of the high magnetic permeability material 392, and the surface length L of the electrode roll 39 are 1.0 ⁇ (S / L) ⁇ 1. .2 is more preferable. In this case, the relationship between the width S 1 of the base material 2, the widths S 2 and S 3 of the high magnetic permeability material 392, and the surface length L of the electrode roll 39 is more appropriate. In addition to further suppressing the wavy deformation, the magnetic field at the center of the base material 2 is not easily affected by the high magnetic permeability materials 392 and 402, and the plasma density is less likely to be lowered. It becomes difficult.
  • the pair of electrode rolls 39 and 40 may be made of any material as long as the high magnetic permeability materials 392 and 402 can be provided.
  • As the pair of electrode rolls 39 and 40 for example, electrodes made of SUS (stainless steel) can be used.
  • the electrode roll 39 and the electrode roll 40 having the same diameter from the viewpoint of forming a thin film more efficiently.
  • the diameters of the electrode roll 39 and the electrode roll 40 are preferably in the range of 50 to 1000 mm ⁇ , particularly in the range of 100 to 500 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the electrode roll is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated and it is possible to avoid that the total amount of heat of the plasma discharge is applied to the substrate 2 in a short time. 2 is preferable because it can reduce damage to 2. On the other hand, if the diameter of the electrode roll is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of device design including uniformity of the plasma discharge space.
  • the magnetic field forming means 43 and 44 fixed so as not to rotate even if the electrode rolls 39 and 40 rotate are provided inside the pair of electrode rolls 39 and 40, respectively.
  • the magnetic field forming means 43 and 44 are arranged so that magnetic poles having the same polarity face each other. Therefore, the magnetic field lines LMF emitted from the magnetic poles (N poles) arranged in the center in the magnetic field forming means 43 and 44 are efficiently guided to the outer magnetic poles (S poles).
  • This line of magnetic force LMF generates a magnetic field MF for magnetron discharge that has two chevrons in cross section, which swells from the roll surface toward the space where the discharge plasma SP (see FIG.
  • the magnetic field forming means 43, 44 does not straddle the lines of magnetic force between the magnetic field forming means 43 provided on one electrode roll 39 and the magnetic field forming means 44 provided on the other electrode roll 40.
  • a magnetic circuit in which the forming means 43 and 44 are substantially closed can be formed. Therefore, by providing such magnetic field forming means 43 and 44, it is possible to promote the formation of the magnetic field MF in which the magnetic lines of force LMF swell in the vicinity of the opposing surface of each of the electrode rolls 39 and 40. Further, since the discharge plasma SP is easily converged on the magnetic field MF, the film formation efficiency can be improved.
  • the magnetic field forming means 43 and 44 each have a racetrack-like magnetic pole that is long in the roll axis direction, and as shown in FIG. 1, the magnetic poles facing one magnetic field forming means 43 and the other magnetic field forming means 44 have the same polarity. It is preferable to arrange the magnetic poles so that When such magnetic field forming means 43 and 44 are used, each of the magnetic field forming means 43 and 44 is opposed to the opposing space (discharge) along the length direction of the roll axis without straddling the magnetic field forming means on the roll side where the magnetic lines of force oppose each other.
  • a racetrack-like (donut-like) magnetic field can be easily formed in the vicinity of the roll surface facing the region. Therefore, plasma can be converged on the magnetic field, and the film 3 can be efficiently formed on the wide substrate 2 wound around the roll width direction.
  • the ends of the electrode rolls 39 and 40 may be covered with a ring-shaped insulating member. Good.
  • the feed roll 32 and the transport rolls 33, 34, 35, and 36 used in the film forming apparatus 31 known rolls can be appropriately used. Further, the winding roll 45 is not particularly limited as long as the film 1 having the film 3 formed on the substrate 2 can be wound, and a known roll can be used as appropriate.
  • Gas supply pipe 41 and the vacuum pump those capable of supplying or discharging a source gas (film forming gas) or the like at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 serving as the gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the electrode roll 39 and the electrode roll 40, and a vacuum pump ( (Not shown) is preferably provided at the other side of the facing space, that is, at a position away from the gas supply pipe 41, preferably at a position facing the gas supply pipe 41.
  • a vacuum pump (Not shown) is preferably provided at the other side of the facing space, that is, at a position away from the gas supply pipe 41, preferably at a position facing the gas supply pipe 41.
  • the plasma generating power source 42 As the plasma generating power source 42, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power source 42 supplies power to a pair of electrode rolls 39 and 40 connected thereto, and makes it possible to use them as counter electrodes for discharge. Such a plasma generation power source 42 can perform plasma CVD more efficiently, so that the polarity of the pair of electrode rolls 39 and 40 can be alternately reversed (AC power source or the like) ) Is preferably used. In addition, since such a plasma generating power source 42 can perform plasma CVD more efficiently, the applied power is 0.1 kW to 10 kW, and the AC frequency is 50 Hz to 500 kHz. preferable.
  • the substrate 2 has a long band shape, and is supplied to the film forming apparatus 31 while being wound around a feed roll 32.
  • a film or sheet made of a resin or a composite material containing a resin is preferably used as the substrate 2.
  • Such a resin film or sheet may have translucency or may be opaque.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin; polyamide resins; polycarbonate Resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin; Polyether sulfide (PES). It can also be used in combination.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)
  • polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin
  • polyamide resins such as polycarbonate Resin
  • Polystyrene resin Polyvinyl alcohol resin
  • Saponified ethylene-vinyl acetate copolymer Polyacrylonitrile resin
  • Acetal resin
  • the polyester resin and the polyolefin resin are preferably selected in accordance with necessary properties such as transparency, heat resistance, and linear expansion property, and PET, PEN, and cyclic polyolefin are more preferable.
  • the composite material including a resin include silicone resins such as polydimethylsiloxane and polysilsesquioxane, a glass composite substrate, and a glass epoxy substrate.
  • silicone resins such as polydimethylsiloxane and polysilsesquioxane
  • glass composite substrate such as polysimethylsiloxane and polysilsesquioxane
  • glass epoxy substrate a glass epoxy substrate.
  • these resins polyester resins, polyolefin resins, glass composite substrates, and glass epoxy substrates are preferable from the viewpoint of high heat resistance and high linear expansion coefficient.
  • these resin can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the base material 2 is appropriately set in consideration of the stability at the time of manufacturing the base material 2, but is 5 ⁇ m to 250 ⁇ m because the base material 2 can be easily transported even in a vacuum. Is preferred. Further, in the formation of the gas barrier film employed in the present embodiment, since the discharge is performed through the substrate 2, the thickness of the substrate 2 is more preferably 50 ⁇ m to 200 ⁇ m, and particularly preferably 50 ⁇ m to 150 ⁇ m.
  • the base material 2 may be subjected to a surface activation treatment for cleaning the surface from the viewpoint of adhesion with the gas barrier film to be formed.
  • a surface activation treatment for cleaning the surface from the viewpoint of adhesion with the gas barrier film to be formed.
  • Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
  • the barrier layer (gas barrier layer) mentioned as an example of the film 3 is a layer that exhibits the gas barrier performance of the gas barrier film.
  • a barrier layer is formed as the film 3, it is preferable that the following (i) to (iii) are satisfied.
  • the gas barrier property and flexibility of the obtained gas barrier film can be made sufficient.
  • the relationship of (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the thickness of the barrier layer. ) And more preferably at least 93% or more (upper limit: 100%).
  • “at least 90% or more of the film thickness of the barrier layer” may not be continuous in the barrier layer, and only needs to satisfy the above-described relationship at a portion of 90% or more.
  • the barrier layer preferably has at least three extreme values in the carbon distribution curve, and more preferably has at least four extreme values. You may have.
  • the upper limit of the extreme value of the carbon distribution curve is not particularly limited, for example, it is preferably 30 or less, more preferably 25 or less. Since the number of extreme values of the carbon distribution curve is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
  • the distance from the surface of the barrier layer in the film thickness direction of the barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. Particularly preferred.
  • distance between extreme values there are portions having a large carbon atom ratio (maximum value) in the barrier layer at an appropriate period, so that the barrier layer is provided with an appropriate flexibility and a gas barrier film is formed. Cracks generated when bent can be more effectively suppressed / prevented.
  • the “extreme value” means a maximum value or a minimum value of an atomic ratio of an element to a distance (L b ) from the surface of the barrier layer in the film thickness direction of the barrier layer.
  • the “maximum value” is a point where the value of the atomic ratio of an element (oxygen, silicon, or carbon) changes from increase to decrease when the distance from the surface of the barrier layer is changed.
  • the atomic ratio value of the element is reduced by 3 at% or more in any range when changing in the range of 4 to 20 nm.
  • the “minimum value” in this specification is a point in which the value of the atomic ratio of an element (oxygen, silicon, or carbon) changes from decrease to increase when the distance from the surface of the barrier layer is changed.
  • the atomic ratio value of the element at a position where the distance from the point in the film thickness direction of the barrier layer from the point in the film thickness direction of the barrier layer to the surface of the barrier layer is further changed by 4 to 20 nm is 3 at%. This is the point that increases.
  • the atomic ratio value of the element when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range.
  • the lower limit of the distance between extreme values in the case of having at least three extreme values is because the smaller the distance between extreme values, the higher the effect of suppressing and preventing cracks that occur when the gas barrier film is bent.
  • it is preferably 10 nm or more, and more preferably 30 nm or more in consideration of the flexibility of the barrier layer, crack suppressing and preventing effects, thermal expansion, and the like.
  • the C max -C min difference is preferably 5 at% or more, more preferably 7 at% or more, and particularly preferably 10 at% or more. If it does in this way, gas barrier property can be improved more.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the upper limit of the C max -C min difference is not particularly limited, but it is preferably 50 at% or less in consideration of the suppression effect and prevention effect of cracks generated when the gas barrier film is bent, More preferably, it is 40 at% or less.
  • the oxygen distribution curve of the barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values.
  • the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the thickness of the barrier layer, and it cannot be defined unconditionally. In the case of having at least three extreme values, the difference in distance from the surface of the barrier layer in the film thickness direction of the barrier layer at one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value.
  • the lower limit of the distance between the extreme values is not particularly limited, but the effect of suppressing or preventing cracks generated when the gas barrier film is bent, thermal expansion, etc. Is preferably 10 nm or more, and more preferably 30 nm or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the barrier layer (hereinafter also simply referred to as “O max ⁇ O min difference”) is 3 at% or more. Is preferably 6 at% or more, more preferably 7 at% or more.
  • the O max ⁇ O min difference is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent can be further improved.
  • the upper limit of the O max -O min difference is not particularly limited, but is preferably 50 at% or less in consideration of the suppression effect or prevention effect of cracks generated when the gas barrier film is bent. % Or less is more preferable.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the barrier layer (hereinafter, also simply referred to as “Si max -Si min difference”) is 10 at% or less. Is preferable, 7 at% or less is more preferable, and 3 at% or less is further preferable. When the Si max -Si min difference is 10 at% or less, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of Si max -Si min difference has higher suppressing effect and the effect of preventing cracks generated when bent a gas barrier film as Si max -Si min difference is small, but not limited to, gas barrier In view of the properties, it is preferably 1 at% or more, and more preferably 2 at% or more.
  • the total amount of carbon and oxygen atoms with respect to the film thickness direction of the barrier layer is preferably substantially constant.
  • the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen-carbon distribution curve (hereinafter simply referred to as “OC”).
  • the “max ⁇ OC min difference”) is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of the OC max -OC min difference since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon in combination.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance (L b ) from the surface of the barrier layer in the film thickness direction of the barrier layer in the film thickness direction. Therefore, the “distance from the surface of the barrier layer in the thickness direction of the barrier layer” is the distance from the surface of the barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Can be adopted.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve can be prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ); Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec; Etching interval (SiO 2 equivalent value): 10 nm;
  • X-ray photoelectron spectrometer manufactured by Thermo Fisher Scientific, model name “VG Theta Probe”; Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ m ⁇ 400 ⁇ m oval
  • the thickness (dry film thickness) of the barrier layer is not particularly limited as long as the above (i) to (iii) are satisfied.
  • the thickness of the barrier layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 100 to 1000 nm. With such a thickness, the gas barrier film can exhibit an excellent gas barrier property and an effect of suppressing and preventing cracks generated when bent.
  • each barrier layer has thickness as mentioned above.
  • the thickness of the entire barrier layer when the barrier layer is composed of two or more layers is not particularly limited, but the thickness of the entire barrier layer (dry film thickness) is preferably about 1000 to 2000 nm. With such a thickness, the gas barrier film can exhibit an excellent gas barrier property and an effect of suppressing and preventing cracks generated when bent.
  • the barrier layer is substantially uniform in the film surface direction (direction parallel to the surface of the barrier layer) from the viewpoint of forming a barrier layer having a uniform and excellent gas barrier property over the entire film surface.
  • the barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon at any two measurement points on the film surface of the barrier layer by XPS depth profile measurement.
  • the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum and minimum values of the atomic ratio of carbon in each carbon distribution curve It means that the absolute value of the difference is the same or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time.
  • the distance (x, unit: nm) from the surface of the barrier layer in the film thickness direction of at least one of the barrier layers, and the atomic ratio of carbon (C, unit: at%) It means satisfying the condition represented by the following formula 1. (DC / dx) ⁇ 0.5 Formula 1
  • the barrier layer satisfying all of the above (i) to (iii) may be provided with only one layer, or may be provided with two or more layers. Further, when two or more such barrier layers are provided, the materials of the plurality of barrier layers may be the same or different.
  • the silicon atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are in the region of 90% or more of the thickness of the barrier layer (i ),
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the barrier layer is preferably 20 to 45 at%, preferably 25 to 40 at%. More preferably.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the barrier layer is preferably 45 to 75 at%, and more preferably 50 to 70 at%.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the barrier layer is preferably 0 to 25 at%, and more preferably 1 to 20 at%. .
  • the film forming apparatus 31 according to the present invention shown in FIG. 1 can be used for manufacturing any film 1 that can be formed by plasma CVD.
  • the film forming apparatus 31 according to the present invention can be suitably used particularly for the production of a film (gas barrier film) exhibiting gas barrier properties.
  • a method for producing a gas barrier film using the film forming apparatus 31 will be described. That is, according to the present invention, it is possible to provide a method for producing a gas barrier film having a step of forming a gas barrier layer (film 3) on the substrate 2 using the film forming apparatus 31 according to the present invention.
  • the gas barrier film (film 1) described above is a film in which the barrier layer (film 3) is formed on the substrate 2 by the film forming apparatus 31.
  • the gas barrier property means that the gas barrier film as a whole has a water vapor transmission rate of 0.01 g / m 2 / day or less and an oxygen transmission rate of 0.01 ml / m 2 / day / atm or less.
  • the water vapor transmission rate can be measured by a method described in JIS K 7129B or Japanese Patent Application Laid-Open No. 2004-333127 (g / m 2 / day).
  • the oxygen permeability can be measured by the method described in JIS K 7126B (ml / m 2 / day / atm).
  • the gas barrier film is preferably formed so as to have a water vapor transmission coefficient of 1 ⁇ 10 ⁇ 14 g ⁇ cm / (cm 2 ⁇ sec ⁇ Pa) or less.
  • the water vapor transmission coefficient can be measured by the following method.
  • a sample film is formed on a known support (for example, cellulose triacetate film; thickness: 100 ⁇ m), and two containers on the primary side and the secondary side separated by sandwiching the sample film are evacuated. Water vapor having a relative humidity of 92% is introduced into the primary side, and the amount of water vapor that has permeated the sample film and has come out to the secondary side is measured at 250 ° C. using a vacuum gauge.
  • a secondary side water vapor pressure (Pa) is plotted on the vertical axis, and time (seconds) is plotted on the horizontal axis, and a transmission curve is created.
  • the water vapor transmission coefficient (g ⁇ cm ⁇ cm ⁇ 2 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1 ) is determined using the slope of the linear portion of this permeation curve. Since the water vapor transmission coefficient of the support is known, the water vapor transmission coefficient can be calculated from this thickness and the thickness of the sample film formed on the support.
  • the film forming apparatus 31 for example, the type of film forming gas such as source gas, the power supplied from the plasma generating power source 42 to the electrode rolls 39 and 40, the pressure in the vacuum chamber
  • the barrier layer (film 3) is formed on the surface of the base material 2 by appropriately adjusting the diameters of the pair of electrode rolls 39 and 40 and the conveying speed of the base material 2, and the film 1 is manufactured.
  • the manufacturing method according to the present embodiment uses the film forming apparatus 31 to generate a discharge between the pair of electrode rolls 39 and 40 while supplying a film forming gas into the vacuum chamber.
  • the film-forming gas is decomposed by plasma, and a barrier layer (film 3) is formed on the surface of the substrate 2 on the electrode roll 39 and on the surface of the substrate 2 on the electrode roll 40 by plasma CVD. .
  • a racetrack-shaped magnetic field is formed near the roll surface facing the opposing space (discharge region) along the length direction of the roll axis of the pair of electrode rolls 39 and 40, and the plasma converges on this magnetic field.
  • the maximum value of the carbon distribution curve is formed in the barrier layer.
  • the minimum value of the carbon distribution curve is formed in the barrier layer. . For this reason, five extreme values are usually generated for the pair of electrode rolls 39 and 40.
  • the distance between the extreme values of the barrier layer (the difference between the one extreme value of the carbon distribution curve and the distance (L b ) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at the extreme value adjacent to the extreme value) can be adjusted by the rotational speed of the pair of electrode rolls 39 and 40 (conveying speed of the substrate 2).
  • the base material 2 is conveyed by the feed roll 32, the electrode roll 39, etc., respectively, so that it is formed on the surface of the base material 2 by a roll-to-roll continuous film formation process.
  • a gas barrier layer is formed.
  • Source gas As the film forming gas (such as source gas) supplied from the gas supply pipe 41 to the facing space, source gas, reaction gas, carrier gas, and discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the barrier layer can be appropriately selected and used according to the material of the barrier layer to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples thereof include silane and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handling properties of the compound and the gas barrier properties of the resulting barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the barrier layer. Furthermore, it is good also as using as a silicon source of the barrier film
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • a carrier gas and a discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen can be used.
  • the ratio of the source gas and the reaction gas is larger than the ratio of the amount of the reaction gas that is theoretically necessary to completely react the source gas and the reaction gas.
  • the reaction gas ratio is preferably not excessive. By not making the ratio of the reaction gas excessive, it is excellent in that excellent gas barrier properties and bending resistance can be obtained by the formed barrier layer.
  • the film forming gas contains the above-described organosilicon compound and oxygen, the oxygen content in the film forming gas completely oxidizes the entire amount of the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount required.
  • HMDSO hexamethyldisiloxane
  • (CH 3 ) 6 Si 2 O) which is an organosilicon compound
  • oxygen (O 2 ) oxygen
  • reaction formula (1) When a film forming gas containing hexamethyldisiloxane and oxygen is reacted by plasma CVD, a reaction represented by the following reaction formula (1) occurs to generate silicon dioxide. (CH 3) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 ⁇ (1)
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form a barrier layer that satisfies all of the above (i) to (iii). Therefore, in the present invention, when the barrier layer is formed, the amount of oxygen is set to a stoichiometric ratio of 12 with respect to 1 mole of hexamethyldisiloxane so that the reaction of the reaction formula 1 does not proceed completely. It is preferable to make it less than a mole.
  • the reaction is considered to be completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount of oxygen (flow rate ) May be 20 times or more the molar amount (flow rate) of hexamethyldisiloxane). Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure in the vacuum chamber (vacuum degree) can be adjusted as appropriate according to the type of the raw material gas, but the space pressure is preferably 0.1 Pa to 50 Pa.
  • the pressure is preferably 0.1 Pa to 10 Pa when the plasma CVD is a low pressure plasma CVD method.
  • the power supplied from the plasma generating power source 42 to the electrode rolls 39 and 40 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but should be 0.1 kW to 10 kW. preferable.
  • the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, and the like, but is preferably 0.1 m / min to 100 m / min. More preferably, it is from 5 m / min to 20 m / min. When the line speed is in this range, wrinkles are not generated in the base material 2 due to heat, and the thickness of the barrier layer to be formed does not become too thin.
  • the base material 2 sent out from the transport roll and formed on the electrode roll 39 is transported to the electrode roll 40 while the film formation surface is wound around the turn bar.
  • Example 1 Manufacture of gas barrier film] (Preparation of resin base material) A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as a resin substrate.
  • PEN film polyethylene naphthalate film
  • Teijin DuPont Films trade name “Teonex Q65FA”
  • a UV curable organic / inorganic hybrid hard coat material OPSTARZ7501 manufactured by JSR Corporation was applied to the easily adhesive surface of the resin substrate with a wire bar so that the layer thickness after drying was 4 ⁇ m. Then, after drying at 80 ° C. for 3 minutes as drying conditions, curing was performed in an air atmosphere using a high-pressure mercury lamp and curing conditions: 1.0 J / cm 2 to form an anchor layer.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 100 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 800 sccm Degree of vacuum in the vacuum chamber: 2Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Resin substrate transport speed: 5 m / min
  • Example 2 A gas barrier film was produced in the same manner as in Example 1 except that iron (maximum relative permeability 5000) was used as the high permeability material.
  • Example 3 A gas barrier film was produced in the same manner as in Example 1 except that iron (maximum relative permeability 5000) was used as the high permeability material and (S / L) was set to 1.0.
  • Example 4 A gas barrier film was produced in the same manner as in Example 1 except that mu metal (maximum relative permeability 50000) was used as the high permeability material.
  • Example 5 A gas barrier film was produced in the same manner as in Example 1 except that (S / L) was 1.1.
  • Example 6 A gas barrier film was produced in the same manner as in Example 1 except that (S / L) was 1.3.
  • Example 7 A gas barrier film was produced in the same manner as in Example 1 except that (S / L) was 1.4.
  • Example 8 A gas barrier film was produced in the same manner as in Example 1 except that (S / L) was 1.0.
  • Example 9 A gas barrier film was produced in the same manner as in Example 1 except that PC permalloy (Ni—Mo, Cu—Fe alloy) (maximum specific permeability 150,000) was used as the high permeability material.
  • Example 10 A gas barrier film was produced in the same manner as in Example 1 except that low-temperature baked pure IPC permalloy (maximum relative permeability 190000) was used as the high permeability material.
  • Example 1 A gas barrier film was produced in the same manner as in Example 1 except that the high magnetic permeability material was not attached to both ends of the pair of electrode rolls.
  • Example 2 A gas barrier film was produced in the same manner as in Example 1 except that a high magnetic permeability material was attached to the entire surface (whole circumference / full width) of the pair of electrode rolls.
  • Example 3 A gas barrier film was produced in the same manner as in Example 1 except that soft iron (maximum relative permeability 2000) was used as the high permeability material.
  • Example 4 A gas barrier film was produced in the same manner as in Example 1 except that pure iron (maximum relative permeability 200000) was used as the high permeability material.
  • the barrier performance was evaluated by measuring the water vapor transmission rate by the following measuring method using the following apparatus.
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M
  • Raw material Metal that reacts with moisture and corrodes: Calcium (granular)
  • Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the obtained film sample sealed on both sides was stored under high temperature and high humidity of 60 ° C. and 90% RH, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561.
  • the amount of water was calculated.
  • the water vapor transmission rate was evaluated according to the following evaluation rank. In addition, the thing of evaluation rank 3 or more was evaluated as excellent (pass), and the thing of 2 or less was evaluated as inferior (fail).
  • the maximum relative magnetic permeability of the high magnetic permeability material used in manufacturing the gas barrier films according to Examples 1 to 10 and Comparative Examples 1 to 4, and (the width S 1 of the resin base material and the width S of the high magnetic permeability material) 2 and S 3 , the ratio of the surface length L of the electrode roll (S / L), the barrier performance, and the curl properties are shown in Table 1.
  • Examples 1 to 10 satisfied the requirements of the present invention, and thus were excellent in barrier performance and curl properties.
  • the film forming apparatus for producing Examples 1 to 10 was a film forming apparatus that had sufficient gas barrier performance as a gas barrier film and that did not deform the substrate.
  • Comparative Examples 1 to 4 did not satisfy the requirements of the present invention, and thus were inferior in barrier performance or curl properties.
  • the plasma CVD film forming apparatus has been specifically described by the embodiment and the examples.
  • the gist of the present invention is not limited to these, and various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

本発明に係るプラズマCVD成膜装置(31)は、長尺の基材(2)上に成膜するプラズマCVD成膜装置であり、内部に磁場を形成する磁場形成手段(43)、(44)を備え、対向して配置された一対の電極ロール(39)、(40)を有し、前記一対の電極ロール(39)、(40)は、それぞれの両端部(391)、(401)の周長方向に、最大比透磁率が5000~190000である高透磁率材(392)、(402)を備えている。

Description

プラズマCVD成膜装置
 本発明は、プラズマCVD(Chemical Vapor Deposition)法によって長尺の基材上に成膜するプラズマCVD成膜装置に関する。
 従来、プラスチック製の基材やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を形成したガスバリア(ガス遮断)性を付与したフィルム(以下、ガスバリア性フィルムともいう。)が知られている。ガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品、工業用品及び医薬品等の変質を防止するための包装用途等に広く用いられている。また、ガスバリア性フィルムは、包装用途以外にも、液晶表示素子、太陽電池、有機エレクトロルミネッセンス(以下、有機ELと略記する。)素子等で使用されている。特に、液晶表示素子や有機EL素子などでは、水蒸気や空気の内部浸透が品質の劣化を招く要因となるため、高度なガスバリア性が要求されている。
 ガスバリア性フィルムの水蒸気や空気を遮断する性能の向上に対する要望は、近年ますます厳しいものとなってきており、そのために様々な試みがなされている。
 例えば、特許文献1には、樹脂フィルム上にバリア膜及び透明導電膜を形成することにより、積層フィルムを製造する積層フィルムの製造方法が記載されている。そして、当該製造方法において、バリア膜の形成は、ロール間放電プラズマCVD法により行うと記載されている。なお、透明導電膜の形成は、物理気相成長法により行うことが好ましく、樹脂フィルムとしては、ポリエステル樹脂フィルムやポリオレフィン樹脂フィルムを用いることが好ましいと記載されている。
米国特許第9011985号明細書
 特許文献1に記載されているようなロール間放電プラズマCVD法(及びこれを行う装置)は、磁界を利用して電極ロールの表面に電子を局在化させることによって高密度プラズマを発生させ、当該高密度プラズマを用いることで、基材の表面に緻密な膜を形成する。しかしながら、このような方法・装置で成膜すると、イオン衝撃による基材への熱負荷が大きく、特に基材の端部にカールや波打ち変形が発生し易いという問題があった。なお、イオン衝撃とは、スパッタ成膜中の薄膜表面へのスパッタリングイオンの入射による衝撃をいう。
 基材の端部にカールや波打ち変形が発生すると、生産性が落ちるだけでなく、ガスバリア性フィルムとして十分なガスバリア性を得ることができない。
 本発明は前記問題に鑑みてなされたものであり、ガスバリア性フィルムとして十分なガスバリア性能を有し、かつ、基材に変形が生じないプラズマCVD成膜装置を提供することを課題とする。
 本発明に係る前記課題は、以下の手段により解決される。
1.長尺の基材上に成膜するプラズマCVD成膜装置であり、内部に磁場を形成する磁場形成手段を備え、対向して配置された一対の電極ロールを有し、前記一対の電極ロールは、それぞれの両端部の周長方向に、最大比透磁率が5000~190000である高透磁率材を備えていることを特徴とするプラズマCVD成膜装置。
2.前記最大比透磁率が50000~190000である前記1に記載のプラズマCVD成膜装置。
3.前記基材の幅と前記両端部に備えられた高透磁率材の幅との総和Sと、前記電極ロールの面長Lとが、1.0<(S/L)<1.4の関係にある前記1又は2に記載のプラズマCVD成膜装置。
4.前記基材の幅と前記両端部に備えられた高透磁率材の幅との総和Sと、前記電極ロールの面長Lとが、1.0<(S/L)<1.2の関係にある前記1又は2に記載のプラズマCVD成膜装置。
 本発明は前記手段を有しているため、ガスバリア性フィルムとして十分なガスバリア性能を有し、かつ、基材に変形が生じないプラズマCVD成膜装置を提供することができる。
本発明の一実施形態に係る成膜装置の概略図である。 本発明に係る成膜装置が備えている一対の電極ロールの構成を説明する概略断面図である。 電極ロールの一変形例を説明した概略断面図である。 電極ロールの具体的態様の一例を示す概略断面図である。 電極ロール及び磁場形成手段の拡大断面説明図である。
[プラズマCVD成膜装置]
 以下、図1及び図2を参照して本発明の一実施形態に係るプラズマCVD成膜装置について詳細に説明する。
 図1に示すように、本実施形態に係るプラズマCVD成膜装置31(以下、単に「成膜装置31」と呼称することもある)は、プラズマCVD法によって長尺の基材2上に成膜をするものであり、内部に磁場を形成する磁場形成手段43、44を備え、対向して配置された一対の電極ロール39、40を有している。
 また、成膜装置31は、これらの構成の他にも、一対の電極ロール39、40に向けて基材2を送り出す送り出しロール32と、搬送ロール33、34、35、36と、ガス供給管41と、プラズマ発生用電源42と、基材2上に膜3が成膜されたフィルム1を巻き取る巻取りロール45とを備えている。また、このような成膜装置31においては、少なくとも電極ロール39、40と、ガス供給管41と、磁場形成手段43、44とが図示を省略した真空チャンバ内に配置されている。さらに、この真空チャンバは図示を省略した真空ポンプに接続されており、当該真空ポンプによって真空チャンバ内の圧力を適宜調整することが可能となっている。成膜装置31は、プラズマCVD法を利用しながらロールツーロール方式で基材2の表面に膜3を成膜することができる装置である。成膜装置31は、ロールツーロール方式で基材2の表面に膜3を成膜することができるので、生産性が高いという特長を有している。
 成膜装置31においては、一対の電極ロール(電極ロール39と電極ロール40)を一対の対向電極として機能させることが可能となるように、各電極ロールはそれぞれ相互に絶縁されていると共に、共通するプラズマ発生用電源42に接続されている。そのため、成膜装置31においては、プラズマ発生用電源42から電極ロール39と電極ロール40に電力を供給し、電極ロール39と電極ロール40との間の空間に放電することができ、これにより電極ロール39と電極ロール40との間の空間にプラズマを発生させることができる。また、成膜装置31においては、一対の電極ロール39、40は、その中心軸が同一平面上において略平行となるようにして配置されている。すなわち、一対の電極ロール39、40は、平行に延在して対向配置されている。このようにして、一対の電極ロール39、40を配置することにより、2つの電極ロールを用いない場合と比較して成膜レートを倍にすることができ、なおかつ、同じ構造の膜を成膜することができる。一対の電極ロール39、40は導電性材料で形成され、それぞれ回転しながら基材2を搬送する。つまり、成膜装置31では、一対の電極ロール39、40により基材2の一方の面に逐次搬送して2回成膜するので、1つの放電プラズマSPを使用した成膜レートを2倍にすることができる。
 さらに、一対の電極ロール39、40は、内部に磁場形成手段43、44が格納されている。磁場形成手段43、44は、空間に磁場を形成する部材であり、電極ロール39及び電極ロール40と共には回転しないようにしてそれぞれ格納されている。
 磁場形成手段43、44は、電極ロール39、電極ロール40の延在方向と同方向に延在する中心磁石(例えば、図1におけるN極)と、中心磁石の周囲を囲みながら電極ロール39、電極ロール40の延在方向と同方向に延在して配置される円環状の外部磁石(例えば、図1におけるS極)と、を有している。磁場形成手段43では、中心磁石と外部磁石とを結ぶ磁力線(磁界)が、無終端のトンネルを形成している。磁場形成手段44においても同様に、中心磁石と外部磁石とを結ぶ磁力線が、無終端のトンネルを形成している。
 この磁力線(磁場)と、電極ロール39と電極ロール40との間の空間に形成される電場と、が交差するマグネトロン放電によって、成膜ガスの放電プラズマSP(図2参照)を生じさせる。すなわち、この空間は、プラズマCVD成膜を行う成膜空間として用いられ、基材2において電極ロール39及び電極ロール40に接しない面(成膜面)には、成膜ガスを形成材料とする膜が形成される。
 このような成膜装置31によれば、プラズマCVD法により基材2の表面上に膜3を形成することができる。つまり、電極ロール39上において基材2の表面上に成膜成分を堆積させつつ、さらに電極ロール40上においても基材2の表面上に成膜成分を堆積させることができる。
 以上のような成膜装置31においては、以下のようにして基材2に対し成膜が行われる。まず、真空チャンバ内を減圧環境とし、電極ロール39、電極ロール40に電圧を印加して空間に電場を生じさせる。電極ロール39及び電極ロール40からは真空チャンバ内に電子が放出される。この際、磁場形成手段43、44では上述した無終端のトンネル状の磁場を形成しているため、成膜ガスを導入することにより、該磁場と空間に放出される電子とによって、該トンネルに沿ったドーナツ状の成膜ガスの放電プラズマが形成される。この放電プラズマは、数Pa近傍の低圧力で発生可能であるため、真空チャンバ内の温度を室温近傍とすることができる。
 一方、磁場形成手段43、44が形成する磁場に高密度で捉えられている電子の温度は高いので、当該電子と成膜ガスとの衝突により生じる放電プラズマが生じる。すなわち、空間に形成される磁場と電場により電子が空間に閉じ込められることによって、空間に高密度の放電プラズマが形成される。より詳しくは、無終端のトンネル状の磁場と電場とが重なる(交差する)空間においては、高密度・高強度の放電プラズマが形成され、無終端のトンネル状の磁場と電場とが重ならない(交差しない)空間においては低密度の(低強度の)放電プラズマが形成される。これら放電プラズマの強度は、連続的に変化するものである。
 以下、装置を構成する各部について説明する。
 (電極ロール)
 図2は、本発明に係る成膜装置31が備えている一対の電極ロール39、40の構成を説明する概略断面図である。本発明では、一対の電極ロール39、40を用いているので、図1に示すように、成膜時に一方の電極ロール39上に存在する基材2の表面部分を成膜しつつ、もう一方の電極ロール40上に存在する基材2の表面部分も同時に成膜することができ、効率良く膜3を成膜することができる。また、前記したように、一対の電極ロールを使用しない通常のプラズマCVD法と比較して成膜レートを倍にすることができる。なおかつ、成膜装置31では略同じ構造の膜3を成膜できるので、後記する炭素分布曲線における極値を少なくとも倍増させることができ、後記する(i)~(iii)を全て満たす膜3(バリア層)を効率良く形成することができる。
 図2に示すように、一対の電極ロール39、40は、それぞれの両端部391、401の周長方向Aに、最大比透磁率が5000~190000である高透磁率材392、402を備えている。ここで、電極ロール39、40の両端部391、401とは、電極ロール39、40の端面から中央部に向かって300mmまでの区間をいう。なお、電極ロールの全長は、例えば、1000~3000mmなどとすることができる。また、最大比透磁率とは、ヒステリシス曲線に基づいて測定され、絶対透磁率を真空の透磁率で除した比透磁率の最大値をいう。ヒステリシス曲線は、市販されている任意のオシロスコープを用いて測定することができる。
 対向配置された電極ロール39、40においては、基材2の一方の面のみを保持し、他方の面は保持されない。そのため、基材2の両端部は膜応力(内部応力)による変形が最も大きくなる箇所である。
 前記したように、本発明においては、一対の電極ロール39、40の両端部391、401の周長方向Aに高透磁率材392、402を備えているので、一対の電極ロール39、40の端部の磁場を低減することができる。そのため、基材2の端部の膜応力を低減することができ、基材2のカールや波打ち変形を抑制することができる。なお、電極ロール39、40の両端部391、401にのみ高透磁率材392、402を備えているので、基材2の中央部の磁場に殆ど影響せず、プラズマ密度を低下させることにはならない。そのため、ガスバリア性フィルムとしてより高いガスバリア性能を得ることができる。従って、成膜されたフィルム1において、電極ロール39の両端部391に備えられた高透磁率材392と高透磁率材392の間、及び、電極ロール40の両端部401に備えられた高透磁率材402と高透磁率材402の間にて成膜された部分から、適宜の形状・サイズにて切り出すことにより、十分なガスバリア性能を有し、かつ、基材に変形が生じないガスバリア性フィルムを得ることができる。
 一対の電極ロール39、40が高透磁率材392、402を備えていないと、前記した効果を得ることができず、基材2のカールや波打ち変形を抑制することができない。
 また、高透磁率材392、402が電極ロール39、40の外周全てを覆うように備えられていると、基材2の中央部の磁場が高透磁率材392、402の影響を受けてプラズマ密度が低下し、ガスバリア性能が低下する。
 また、高透磁率材392、402の最大比透磁率が5000未満であると、一対の電極ロール39、40の端部の磁場を十分に低減することができないため、基材2のカールや波打ち変形を十分に抑制することができない。
 その一方で、高透磁率材392、402の最大比透磁率が190000を超えると、基材2の中央部の磁場が高透磁率材392、402の影響を受けてプラズマ密度が低下し、ガスバリア性能が低下する。
 よって、高透磁率材392、402の最大比透磁率は前記したとおり、5000~190000とする。なお、基材2のカールや波打ち変形をより抑制させるため、高透磁率材392、402の最大比透磁率は50000以上とするのが好ましい。また、ガスバリア性能を向上させるため、高透磁率材392、402の最大比透磁率は150000以下とするのが好ましい。
 高透磁率材392、402の最大比透磁率は、高透磁率材として用いる材料を種々変更したり、厚みを変更したりすることによって任意に変更可能である。高透磁率材392、402としては、例えば、鉄などの磁性を有する金属を用いた板、箔、メッシュ、金属インク、発泡金属などを用いることができる。高透磁率材392、402として好ましくは、パーマロイ(例えば、PCパーマロイ(Ni-Mo,Cu-Fe合金)、低温焼純型IPCパーマロイなど)、ミューメタルなどの電磁シールド材として用いられているものを挙げることができ、より好ましくは日立金属株式会社製FM SHIELD(登録商標)を挙げることができる。FM SHIELDは、厚みが約0.1mmであるため、厚みによる基材2の変形も生じ難く、この点からも好適である。なお、高透磁率材392、402の厚みは約0.1~1mmであれば厚みによる基材2の変形は生じ難く、特に問題とはならない。
 高透磁率材392、402の厚みが厚い場合は、例えば、図3に示すような態様とすればよい。なお、図3は、一対の電極ロール39、40のうち電極ロール39を例示して一変形例を説明した概略断面図である。図3に示すように、高透磁率材392、402の表面と、電極ロール39、40の表面とが面一となるように、高透磁率材392、402の厚みの分だけ両端部391、401を凹ませればよい。つまり、高透磁率材392、402を設ける両端部391、401の部分だけ直径を小さくすればよい。ここで、面一とは、相接する2つの部材の表面に段差が無くフラットな状態のことをいう。このようにすると、電極ロール39、40と高透磁率材392、402との間に段差がないので、高透磁率材392、402の厚みが厚い場合であっても基材2に変形が生じないようにすることができる。
 図4は、一対の電極ロール39、40のうち電極ロール39を例示してその具体的態様を説明した概略断面図である。なお、図4において電極ロール39と基材2の間に若干の隙間をあけて図示しているが、実際には基材2の弾性変形によってこれらの間に隙間は略存在しておらず、当接した状態となっている。
 図4に示すように、基材2の幅S1と一対の電極ロール39、40(図4では電極ロール39のみ図示)の両端部391に備えられた高透磁率材392の幅S2、S3との総和Sと、電極ロール39の面長Lとは、1.0<(S/L)<1.4の関係にあるのが好ましい。なお、電極ロールの面長とは、ロール面の軸方向の長さをいう。このようにすると、基材2の幅S1と、高透磁率材392の幅S2、S3と、電極ロール39の面長Lとの関係が適切であるので、基材2のカールや波打ち変形をより抑制することができる。
 また、基材2の幅S1と、高透磁率材392の幅S2、S3との総和Sと、電極ロール39の面長Lとは、1.0<(S/L)<1.2の関係にあるのがより好ましい。このようにすると、基材2の幅S1と、高透磁率材392の幅S2、S3と、電極ロール39の面長Lとの関係がさらに適切であるので、基材2のカールや波打ち変形をさらに抑制することができるだけでなく、基材2の中央部の磁場が高透磁率材392、402の影響を受け難くなり、プラズマ密度が低下し難くなるので、ガスバリア性能が低下し難くなる。
 なお、一対の電極ロール39、40は、高透磁率材392、402を備えることができるものであればどのような素材で構成されていてもよい。一対の電極ロール39、40は、例えば、SUS(ステンレス鋼)製の電極を用いることができる。
 また、電極ロール39及び電極ロール40は、より効率良く薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような電極ロール39及び電極ロール40の直径としては、放電条件、チャンバのスペース等の観点から、直径が50~1000mmφの範囲、特に100~500mmφの範囲が好ましい。電極ロールの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、電極ロールの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
 (磁場形成手段)
 前記したように、一対の電極ロール39、40の内部には、それぞれ電極ロール39、40が回転しても回転しないようにして固定された磁場形成手段43、44が設けられている。図5に示すように、磁場形成手段43、44は、同じ極性の磁極が対向するように配置されている。そのため、磁場形成手段43、44においてそれぞれ中央に配置された磁極(N極)から出た磁力線LMFが効率的に外側の磁極(S極)に導かれる。この磁力線LMFは、それぞれの電極ロール39、40においてロール表面から放電プラズマSP(図2参照)の発生する空間に向けて膨らんだ、断面が二つの山形を成すマグネトロン放電用の磁場MFを発生させる。つまり、磁場形成手段43、44は、一方の電極ロール39に設けられた磁場形成手段43と他方の電極ロール40に設けられた磁場形成手段44との間で磁力線がまたがらず、それぞれの磁場形成手段43、44がほぼ閉じた磁気回路を形成することができる。そのため、このような磁場形成手段43、44を設けることによって、各電極ロール39、40の対向側表面付近に、磁力線LMFが膨らんだ磁場MFの形成を促進することができる。そして、当該磁場MFには放電プラズマSPが収束され易いため、成膜効率を向上させることができる。
 また、磁場形成手段43、44は、適宜公知の磁場発生装置を用いることができる。磁場形成手段43、44は、それぞれロール軸方向に長いレーストラック状の磁極を備え、図1に示すように、一方の磁場形成手段43と他方の磁場形成手段44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場形成手段43、44とすると、それぞれの磁場形成手段43、44について、磁力線が対向するロール側の磁場形成手段にまたがることなく、ロール軸の長さ方向に沿って対向空間(放電領域)に面したロール表面付近にレーストラック状(ドーナッツ状)の磁場を容易に形成することができる。そのため、当該磁場にプラズマを収束させることができ、ロール幅方向に沿って巻き掛けられた幅広の基材2の上に、効率的に膜3を形成することができる。
 なお、電極ロール39、40の端部にCVD膜が成膜されるのを抑制するため、また異常放電抑制するため、電極ロール39、40の端部をリング形状の絶縁部材で被覆してもよい。
 (送り出しロール、搬送ロール及び巻取りロール)
 成膜装置31に用いる送り出しロール32及び搬送ロール33、34、35、36としては、適宜公知のロールを用いることができる。また、巻取りロール45としても、基材2上に膜3を形成したフィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のロールを用いることができる。
 (ガス供給管及び真空ポンプ)
 ガス供給管41及び真空ポンプとしては、原料ガス(成膜ガス)等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。
 また、ガス供給手段であるガス供給管41は、電極ロール39と電極ロール40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方、つまり、ガス供給管41から離間した位置、好ましくはガス供給管41と対向する位置に設けることが好ましい。このようにガス供給管41と真空ポンプを配置することによって、電極ロール39と電極ロール40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる。
 (プラズマ発生用電源)
 プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された一対の電極ロール39、40に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率良くプラズマCVDを実施することが可能となることから、一対の電極ロール39、40の極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率良くプラズマCVDを実施することが可能となることから、印加電力が0.1kW~10kW、交流の周波数が50Hz~500kHzであることがより好ましい。
 (基材)
 基材2は長尺帯状を呈しており、送り出しロール32に巻かれた状態で成膜装置31に供される。
 基材2としては、樹脂又は樹脂を含む複合材料からなるフィルム又はシートが好適に用いられる。このような樹脂フィルム又はシートは、透光性を有していても良く、また、不透明であってもよい。
 基材2を構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;ポリエーテルサルファイド(PES)が挙げられ、必要に応じてそれらの2種以上を組み合わせて用いることもできる。透明性、耐熱性、線膨張性等の必要な特性に合わせて、ポリエステル樹脂、ポリオレフィン樹脂から選ばれることが好ましく、PET、PEN、環状ポリオレフィンがより好ましい。また、樹脂を含む複合材料としては、ポリジメチルシロキサン、ポリシルセスキオキサンなどのシリコーン樹脂、ガラスコンポジット基板、ガラスエポキシ基板などが挙げられる。これらの樹脂の中でも、耐熱性及び線膨張率が高いという観点から、ポリエステル樹脂、ポリオレフィン樹脂、ガラスコンポジット基板、ガラスエポキシ基板が好ましい。また、これらの樹脂は、1種を単独で又は2種以上を組み合わせて使用することができる。
 基材2の厚みは、基材2を製造する際の安定性等を考慮して適宜設定されるが、真空中においても基材2の搬送が容易であることから、5μm~250μmであることが好ましい。さらに、本実施形態で採用するガスバリア膜の形成では、基材2を通して放電を行うことから、基材2の厚みは50μm~200μmであることがより好ましく、50μm~150μmであることが特に好ましい。
 なお、基材2は、形成するガスバリア膜との密着性の観点から、その表面を清浄するための表面活性処理を施してもよい。このような表面活性処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理が挙げられる。
 (膜)
 膜3の一例として挙げられるバリア層(ガスバリア層)は、ガスバリア性フィルムのガスバリア性能を発揮する層である。膜3としてバリア層を形成する場合は、以下の(i)~(iii)を満たすことが好ましい。
(i)バリア層の膜厚方向における前記バリア層の表面からの距離(Lb)と、ケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lbとケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、並びに前記Lbとケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
(ii)前記炭素分布曲線が少なくとも2つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が3原子%(at%)以上である。
 バリア層(膜3)が、前記(i)を満たすと、得られたガスバリア性フィルムのガスバリア性や屈曲性を十分なものとすることができる。ここで、前記炭素分布曲線において、前記(酸素の原子比)、(ケイ素の原子比)及び(炭素の原子比)の関係は、バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、バリア層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で前記した関係を満たしていればよい。
 また、バリア層(膜3)が、前記(ii)を満たすと、得られたガスバリア性フィルムを屈曲させた場合におけるガスバリア性を十分なものとすることができる。なお、ガスバリア性をより十分なものとする観点から、バリア層は、前記炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有してもよい。炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下である。炭素分布曲線の極値の数は、バリア層の膜厚にも起因するため、一概に規定することはできない。
 ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値及び該極値に隣接する極値における前記バリア層の膜厚方向における前記バリア層の表面からの距離(Lb)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、バリア層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、バリア層に適度な屈曲性を付与し、ガスバリア性フィルムを屈曲させた際に発生するクラックをより有効に抑制・防止できる。なお、本明細書において「極値」とは、前記バリア層の膜厚方向における前記バリア層の表面からの距離(Lb)に対する元素の原子比の極大値又は極小値のことをいう。また、本明細書において「極大値」とは、バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素又は炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点からバリア層の膜厚方向におけるバリア層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。同様にして、本明細書において「極小値」とは、バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素又は炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点からバリア層の膜厚方向におけるバリア層の表面からの距離をさらに4~20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合における極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムを屈曲させた際に発生するクラックの抑制効果や防止効果が高いため特に制限されないが、バリア層の屈曲性、クラックの抑制効果や防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
 さらに、バリア層(膜3)が、前記(iii)を満たすと、得られたガスバリア性フィルムを屈曲させた場合におけるガスバリア性を十分なものとすることができる。なお、前記(iii)において、Cmax-Cmin差は5at%以上であることが好ましく、7at%以上であることがより好ましく、10at%以上であることが特に好ましい。このようにすると、ガスバリア性をより向上することができる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、Cmax-Cmin差の上限は、特に制限されないが、ガスバリア性フィルムを屈曲させた際に発生するクラックの抑制効果や防止効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
 本発明においては、前記バリア層の前記酸素分布曲線が少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも1つ有すると、得られたガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。なお、酸素分布曲線の極値の上限は特に制限されないが、例えば、20以下とするのが好ましく、10以下とするのがより好ましい。酸素分布曲線の極値の数においても、バリア層の膜厚に起因する部分があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する1つの極値及び該極値に隣接する極値における前記バリア層の膜厚方向におけるバリア層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離であれば、ガスバリア性フィルムを屈曲させた際に発生するクラックをより有効に抑制・防止できる。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、特に制限されないが、ガスバリア性フィルムを屈曲させた際に発生するクラックの抑制効果や防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
 加えて、本発明において、前記バリア層の前記酸素分布曲線における酸素の原子比の最大値及び最小値の差の絶対値(以下、単に「Omax-Omin差」とも称する)が3at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。前記Omax-Omin差を3at%以上とすると、得られたガスバリア性フィルムを屈曲させた場合におけるガスバリア性をより向上させることができる。ここで、Omax-Omin差の上限は特に制限されないが、ガスバリア性フィルムを屈曲させた際に発生するクラックの抑制効果や防止効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
 本発明において、前記バリア層の前記ケイ素分布曲線におけるケイ素の原子比の最大値及び最小値の差の絶対値(以下、単に「Simax-Simin差」とも称する)が10at%以下であることが好ましく、7at%以下であることがより好ましく、3at%以下であることがさらに好ましい。前記Simax-Simin差を10at%以下とすると、得られたガスバリア性フィルムのガスバリア性がより向上する。ここで、Simax-Simin差の下限は、Simax-Simin差が小さいほどガスバリア性フィルムを屈曲させた際に発生するクラックの抑制効果や防止効果が高いため、特に制限されないが、ガスバリア性などを考慮すると1at%以上であることが好ましく、2at%以上であることがより好ましい。
 また、本発明において、バリア層の膜厚方向に対する炭素及び酸素原子の合計量は略一定であることが好ましい。これにより、バリア層は適度な屈曲性を発揮し、ガスバリア性フィルムを屈曲させた際に発生するクラックをより有効に抑制・防止することができる。より具体的には、バリア層の膜厚方向における該バリア層の表面からの距離(Lb)とケイ素原子、酸素原子、及び炭素原子の合計量に対する、酸素原子及び炭素原子の合計量の比率(酸素及び炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素及び炭素の原子比の合計の最大値及び最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記OCmax-OCmin差が5at%未満であれば、得られたガスバリア性フィルムのガスバリア性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。
 前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、及び前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記バリア層の膜厚方向における前記バリア層の表面からの距離(Lb)に概ね相関することから、「バリア層の膜厚方向におけるバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるバリア層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線は、下記測定条件にて作成することができる。
 (測定条件)
 エッチングイオン種:アルゴン(Ar+);
 エッチング速度(SiO2熱酸化膜換算値):0.05nm/sec;
 エッチング間隔(SiO2換算値):10nm;
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名”VG Theta Probe”;
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800μm×400μmの楕円形
 バリア層の厚み(乾燥膜厚)は、前記した(i)~(iii)を満たす限り、特に制限されない。バリア層の厚みは、20~3000nmであることが好ましく、50~2500nmであることがより好ましく、100~1000nmであることが特に好ましい。このような厚みであれば、ガスバリア性フィルムは、優れたガスバリア性及び屈曲させた際に発生するクラックの抑制効果や防止効果を発揮することができる。なお、バリア層が2層以上から構成される場合には、各バリア層が前記したような厚みを有することが好ましい。また、バリア層が2層以上から構成される場合のバリア層全体の厚みは特に制限されないが、バリア層全体の厚み(乾燥膜厚)が1000~2000nm程度であることが好ましい。このような厚みであれば、ガスバリア性フィルムは、優れたガスバリア性及び屈曲させた際に発生するクラックの抑制効果や防止効果を発揮することができる。
 本発明では、膜面全体において均一でかつ優れたガスバリア性を有するバリア層を形成するという観点から、前記バリア層が膜面方向(バリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、バリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりバリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5at%以内の差であることをいう。
 さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記バリア層のうちの少なくとも1層の膜厚方向における該バリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記式1で表される条件を満たすことをいう。
 
  (dC/dx)≦0.5   ・・・式1
 
 得られるガスバリア性フィルムにおいて、前記した(i)~(iii)を全て満たすバリア層は、1層のみを備えていてもよいし、2層以上を備えていてもよい。さらに、このようなバリア層を2層以上備える場合には、複数のバリア層の材質は、同一であってもよいし、異なっていてもよい。
 前記ケイ素分布曲線、前記酸素分布曲線、及び前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、及び炭素の原子比が、該バリア層の膜厚の90%以上の領域において前記(i)を満たす場合には、前記バリア層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対するケイ素原子の含有量の原子比率は、20~45at%であることが好ましく、25~40at%であることがより好ましい。また、前記バリア層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、45~75at%であることが好ましく、50~70at%であることがより好ましい。さらに、前記バリア層中におけるケイ素原子、酸素原子、及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、0~25at%であることが好ましく、1~20at%であることがより好ましい。
[ガスバリア性フィルムの製造方法]
 図1に示す本発明に係る成膜装置31は、プラズマCVD法により成膜することのできるどのようなフィルム1の製造にも用いることができる。しかしながら、本発明に係る成膜装置31は、特にガスバリア性を示すフィルム(ガスバリア性フィルム)の製造に、好適に用いることができる。以下、好ましい実施形態として、成膜装置31を用いたガスバリア性フィルムの製造方法について説明する。すなわち、本発明によれば、本発明に係る成膜装置31を用いて、基材2上にガスバリア層(膜3)を成膜する工程を有するガスバリア性フィルムの製造方法を提供することができる。つまり、前記したガスバリア性フィルム(フィルム1)は、成膜装置31によって基材2上にバリア層(膜3)が成膜されたものである。
 なお、本明細書において、ガスバリア性を示すとは、ガスバリア性フィルムが、全体として、水蒸気透過率0.01g/m2/day以下、酸素透過率0.01ml/m2/day/atm以下を示すことをいう。水蒸気透過率は、JIS K 7129Bや特開2004-333127号公報等に記載された方法により測定することができる(g/m2/day)。また、酸素透過率についても同じく、JIS K 7126B等に記載された方法で測定することができる(ml/m2/day/atm)。前記のガスバリア性を有するためには、ガスバリア性フィルムは、併せて1×10-14g・cm/(cm2・sec・Pa)以下の水蒸気透過係数を有するように形成されることが好ましい。また、水蒸気透過係数は以下の方法で測定することができる。既知の支持体(例えばセルローストリアセテートフィルム;厚み100μm)上に試料膜を形成し、この試料膜を挟んで隔てた一次側と二次側の2つの容器を真空にする。一次側に相対湿度92%の水蒸気を導入し、試料膜を透過し二次側に出てきた水蒸気量を、250℃において真空計を用いて計測する。これを経時で測定し、縦軸に二次側水蒸気圧(Pa)、横軸に時間(秒)をとり、透過曲線を作成する。この透過曲線の直線部の勾配を用いて水蒸気透過係数(g・cm・cm-2・sec-1・Pa-1)を求める。支持体の水蒸気透過係数は既知なので、この厚み及び支持体上に形成した試料膜の厚みから、水蒸気透過係数を計算することができる。
 本実施形態に係る製造方法では、成膜装置31を用いて、例えば、原料ガス等の成膜ガスの種類、プラズマ発生用電源42から電極ロール39、40に供給する電力、真空チャンバ内の圧力、一対の電極ロール39、40の直径、及び基材2の搬送速度を適宜調整することによって基材2の表面上にバリア層(膜3)を成膜し、フィルム1の製造を行う。
 具体的には、本実施形態に係る製造方法は、成膜装置31を用いて、成膜ガスを真空チャンバ内に供給しつつ、一対の電極ロール39、40の間に放電を発生させることにより、前記成膜ガスをプラズマによって分解し、電極ロール39上の基材2の表面上及び電極ロール40上の基材2の表面上に、プラズマCVD法によりバリア層(膜3)を成膜する。
 成膜の際、一対の電極ロール39、40のロール軸の長さ方向に沿って対向空間(放電領域)に面したロール表面付近にレーストラック状の磁場が形成され、この磁場にプラズマが収束する。このため、基材2が、図1中の電極ロール39のA地点及び電極ロール40のB地点を通過する際に、バリア層で炭素分布曲線の極大値が形成される。これに対して、基材2が、図1中の電極ロール39のC1及びC2地点並びに電極ロール40のC3及びC4地点を通過する際に、バリア層で炭素分布曲線の極小値が形成される。
 このため、一対の電極ロール39、40に対して、通常、五つの極値が生成する。また、バリア層の極値間の距離(炭素分布曲線の有する一つの極値及び該極値に隣接する極値におけるガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(Lb)の差の絶対値)は、一対の電極ロール39、40の回転速度(基材2の搬送速度)によって調節できる。
 なお、このような成膜に際しては、基材2が送り出しロール32や電極ロール39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上にガスバリア層が形成される。
 (成膜ガス)
 ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独又は2種以上を混合して用いることができる。バリア層の形成に用いる成膜ガス中の原料ガスとしては、形成するバリア層の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンなどが挙げられる。
 これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られるバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、バリア層の種類に応じて適切な原料ガスが選択される。さらに、原料ガスとして、上述の有機ケイ素化合物の他にモノシランを含有させ、形成するバリア膜のケイ素源として使用することとしてもよい。
 また、成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも又は2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素を用いることができる。
 成膜ガスが原料ガスと反応ガスを含有する場合における原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるバリア層によって、優れたガスバリア性や耐屈曲性を得ることができる点で優れている。また、成膜ガスが前記した有機ケイ素化合物と酸素とを含有するものである場合には、成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。
 ここで、原料ガスとして有機ケイ素化合物であるヘキサメチルジシロキサン(HMDSO、(CH36Si2O)を用い、反応ガスとして酸素(O2)を含有するものを用いて、ケイ素-酸素系の膜3を製造する場合を例に挙げ、これらのガスの好適な比率等について説明する。
 ヘキサメチルジシロキサンと酸素とを含有する成膜ガスをプラズマCVDにより反応させると、下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。
 
(CH36Si2O+12O2→6CO2+9H2O+2SiO2  ・・・(1)
 
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、前記した(i)~(iii)を全て満たすバリア層を形成することができなくなってしまう。そのため、本発明において、バリア層を形成する際には、前記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。
 なお、実際のプラズマCVD成膜装置における真空チャンバ内の反応では、原料ガスのヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給管41から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料ガスのヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)をヘキサメチルジシロキサンのモル量(流量)の20倍以上とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比率でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がバリア層中に取り込まれ、前記した(i)~(iii)を全て満たすバリア層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性及び耐屈曲性を発揮させることが可能となる。
 なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、空間の圧力が0.1Pa~50Paであることが好ましい。気相反応を抑制する目的により、プラズマCVDを低圧プラズマCVD法とする場合は0.1Pa~10Paであることが好ましい。また、プラズマ発生用電源42から電極ロール39、40に供給する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.1kW~10kWであることが好ましい。
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.1m/min~100m/minであることが好ましく、0.5m/min~20m/minであることがより好ましい。ライン速度をこの範囲とすると、熱に起因して基材2に皺が発生することもなく、また、成膜されるバリア層の厚みが薄くなり過ぎることもない。搬送する際には、搬送ロールから送り出され、電極ロール39上で成膜された基材2は、成膜面をターンバーに巻き掛けながら電極ロール40に搬送される。
 以下、実施例及び比較例により本発明を具体的に説明する。
[実施例1]
〔ガスバリア性フィルムの製造〕
 (樹脂基材の準備)
 2軸延伸のポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を樹脂基材として用いた。
 (アンカー層の形成)
 前記樹脂基材の易接着面に、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材OPSTARZ7501を乾燥後の層厚が4μmになるようにワイヤーバーで塗布した。その後、乾燥条件として、80℃で3分間の乾燥を行った後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm2で硬化を行い、アンカー層を形成した。
 (ガスバリア層の形成)
 (樹脂基材の幅S1と高透磁率材の幅S2、S3の総和S)/電極ロールの面長Lが1.2(すなわち、(S/L)が1.2)となるように、一対の電極ロールの両端部に高透磁率材を取り付けた(図2参照)。高透磁率材は、日立金属製FM SHILD(最大比透磁率100000)を用いた。そして、当該一対の電極ロールを有するプラズマCVD装置を用いて下記の成膜条件(プラズマCVD条件)にてアンカー層上に厚さが100nmとなる条件でガスバリア層を成膜し、ガスバリア性フィルムを製造した。
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:100sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:800sccm
 真空チャンバ内の真空度:2Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:5m/min
[実施例2]
 高透磁率材として鉄(最大比透磁率5000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例3]
 高透磁率材として鉄(最大比透磁率5000)を用い、(S/L)を1.0とした以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例4]
 高透磁率材としてミューメタル(最大比透磁率50000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例5]
 (S/L)を1.1とした以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例6]
 (S/L)を1.3とした以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例7]
 (S/L)を1.4とした以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例8]
 (S/L)を1.0とした以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例9]
 高透磁率材としてPCパーマロイ(Ni-Mo,Cu-Fe合金)(最大比透磁率150000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[実施例10]
 高透磁率材として低温焼純型IPCパーマロイ(最大比透磁率190000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[比較例1]
 一対の電極ロールの両端部に高透磁率材を取り付けなかったこと以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[比較例2]
 一対の電極ロールの全面(全周・全幅)に高透磁率材を取り付けたこと以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[比較例3]
 高透磁率材として軟鉄(最大比透磁率2000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
[比較例4]
 高透磁率材として純鉄(最大比透磁率200000)を用いた以外は、実施例1と同様にしてガスバリア性フィルムを製造した。
 製造した実施例1~10及び比較例1~4に係るガスバリア性フィルムを用い、以下のようにしてバリア性能及びカール性を評価した。
〔バリア性能〕
 バリア性能は下記の装置等を用い、以下の測定方法で水蒸気透過率を測定することにより評価した。
 (装置等)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 原材料:水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気透過率評価用セルの作製)
 真空蒸着装置(日本電子製真空蒸着装置JEE-400)を用い、ガスバリア性フィルムの片側の面(ガスバリア層を形成した面)において金属カルシウムを蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、真空条件下で金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、ガスバリア性フィルムの前記片側の全面にアルミニウムをもう一つの金属蒸着源から蒸着させて、前記金属カルシウムを蒸着させた部分を封止した。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
 得られた両面を封止したフィルム試料を60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。下記の評価ランクで水蒸気透過率を評価した。なお、評価ランクが3以上のものを優れている(合格)と評価し、2以下のものを劣っている(不合格)と評価した。
<評価ランク>
5:6×10-3g/m2/day未満
4:6×10-3g/m2/day以上、8×10-3g/m2/day未満
3:8×10-3g/m2/day以上、1×10-2g/m2/day未満
2:1×10-2g/m2/day以上、3×10-2g/m2/day未満
1:3×10-2g/m2/day以上
〔カール性〕
 カール性は、ガスバリア性フィルムを10cm四方に切り取り、25℃、相対湿度65%の環境下で48時間放置後、浮き上がった高さを測定し、下記の評価ランクでカール性を評価した。なお、評価ランクが3以上のものを優れている(合格)と評価し、2以下のものを劣っている(不合格)と評価した。
<評価ランク>
5:0mm
4:0mmを超え、0.5mm未満
3:0.5mm以上、1mm未満
2:1mm以上、3mm未満
1:3mm以上
 実施例1~10及び比較例1~4に係るガスバリア性フィルムを製造する際に用いた高透磁率材の最大比透磁率と、(樹脂基材の幅S1と高透磁率材の幅S2、S3の総和S)/電極ロールの面長Lの比(S/L)と、バリア性能と、カール性とを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~10は、本発明の要件を満たしていたので、バリア性能及びカール性に優れていた。つまり、実施例1~10を製造した成膜装置は、ガスバリア性フィルムとして十分なガスバリア性能を有し、かつ、基材に変形が生じない成膜装置であることが確認された。
 これに対し、比較例1~4は、本発明の要件を満たしていなかったので、バリア性能又はカール性に劣っていた。
 以上、本発明に係るプラズマCVD成膜装置について、実施形態及び実施例により具体的に説明したが、本発明の主旨はこれらに限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 2   基材
 31  プラズマCVD成膜装置(成膜装置)
 43、44 磁場形成手段
 39、40 電極ロール
 391、401 両端部
 392、402 高透磁率材

Claims (4)

  1.  長尺の基材上に成膜するプラズマCVD成膜装置であり、
     内部に磁場を形成する磁場形成手段を備え、対向して配置された一対の電極ロールを有し、
     前記一対の電極ロールは、それぞれの両端部の周長方向に、最大比透磁率が5000~190000である高透磁率材を備えていることを特徴とするプラズマCVD成膜装置。
  2.  前記最大比透磁率が50000~190000であることを特徴とする請求項1に記載のプラズマCVD成膜装置。
  3.  前記基材の幅と前記両端部に備えられた高透磁率材の幅との総和Sと、前記電極ロールの面長Lとが、1.0<(S/L)<1.4の関係にあることを特徴とする請求項1又は請求項2に記載のプラズマCVD成膜装置。
  4.  前記基材の幅と前記両端部に備えられた高透磁率材の幅との総和Sと、前記電極ロールの面長Lとが、1.0<(S/L)<1.2の関係にあることを特徴とする請求項1又は請求項2に記載のプラズマCVD成膜装置。
PCT/JP2016/076006 2015-11-19 2016-09-05 プラズマcvd成膜装置 WO2017085984A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551558A JP6642587B2 (ja) 2015-11-19 2016-09-05 プラズマcvd成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227016 2015-11-19
JP2015-227016 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017085984A1 true WO2017085984A1 (ja) 2017-05-26

Family

ID=58719180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076006 WO2017085984A1 (ja) 2015-11-19 2016-09-05 プラズマcvd成膜装置

Country Status (2)

Country Link
JP (1) JP6642587B2 (ja)
WO (1) WO2017085984A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279456A (ja) * 2000-03-30 2001-10-10 Canon Inc 堆積膜処理装置及び堆積膜処理方法
US9011985B2 (en) * 2009-10-30 2015-04-21 Sumitomo Chemical Company, Limited Method of manufacture of multilayer film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279456A (ja) * 2000-03-30 2001-10-10 Canon Inc 堆積膜処理装置及び堆積膜処理方法
US9011985B2 (en) * 2009-10-30 2015-04-21 Sumitomo Chemical Company, Limited Method of manufacture of multilayer film

Also Published As

Publication number Publication date
JP6642587B2 (ja) 2020-02-05
JPWO2017085984A1 (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6585226B2 (ja) 積層フィルム
JP5513959B2 (ja) ガスバリア性積層フィルム
TWI647110B (zh) 層合體之製造方法
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
WO2012046778A1 (ja) プラズマcvd成膜による積層体の製造方法
JP2012081632A (ja) 積層フィルム
JP5673926B2 (ja) 積層フィルム
JP6569685B2 (ja) 成膜装置及びガスバリアーフィルムの製造方法
WO2017085984A1 (ja) プラズマcvd成膜装置
JPWO2015098670A1 (ja) 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
TWI666121B (zh) 層合薄膜、有機電致發光裝置、光電轉換裝置及液晶顯示器
WO2017104357A1 (ja) プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法
WO2015163358A1 (ja) ガスバリアーフィルム及びその製造方法
JP6288082B2 (ja) 成膜装置、電極ロールおよびガスバリア性フィルムの製造方法
JPWO2015053189A1 (ja) ガスバリアーフィルム及びその製造方法
JP6897567B2 (ja) ガスバリアーフィルム
WO2016159206A1 (ja) ガスバリアーフィルム及びその製造方法
JP6579098B2 (ja) ガスバリア性フィルムの製造方法
JP6593347B2 (ja) ガスバリアフィルムの製造方法及び製造装置
JPWO2016148029A1 (ja) 成膜装置及びガスバリアーフィルムの製造方法
WO2014109250A1 (ja) 機能性フィルムの製造方法、機能性フィルム製造装置、および機能性フィルムを備える有機エレクトロルミネッセンス素子
JP2016211066A (ja) 成膜ローラー及び成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865987

Country of ref document: EP

Kind code of ref document: A1