WO2017085931A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2017085931A1
WO2017085931A1 PCT/JP2016/004903 JP2016004903W WO2017085931A1 WO 2017085931 A1 WO2017085931 A1 WO 2017085931A1 JP 2016004903 W JP2016004903 W JP 2016004903W WO 2017085931 A1 WO2017085931 A1 WO 2017085931A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording medium
magnetic recording
magnetic
medium according
Prior art date
Application number
PCT/JP2016/004903
Other languages
English (en)
French (fr)
Inventor
淳一 立花
遠藤 哲雄
尾崎 知恵
隆嗣 相澤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112016005258.8T priority Critical patent/DE112016005258T5/de
Priority to CN201680065922.8A priority patent/CN108352170B/zh
Priority to US15/765,600 priority patent/US10789979B2/en
Priority to JP2017551534A priority patent/JP6825573B2/ja
Publication of WO2017085931A1 publication Critical patent/WO2017085931A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • G11B5/7253Fluorocarbon lubricant

Definitions

  • This technology relates to a magnetic recording medium.
  • the present invention relates to a magnetic recording medium having a perpendicular recording layer.
  • Patent Document 1 discloses a magnetic recording medium in which at least an amorphous layer, a seed layer, an underlayer, a magnetic layer, and a protective layer are sequentially formed on a nonmagnetic support.
  • An object of the present technology is to provide a magnetic recording medium having a high SNR.
  • the present technology provides a long substrate having flexibility, a Cr-Ni-Fe layer, and a face-centered cubic lattice structure provided on the substrate, A first layer preferentially oriented so that a (111) plane of a centered cubic structure is parallel to the substrate surface; and an average of O with respect to the average atomic concentration of Co, including Co and O, provided on the first layer
  • a second layer having a column structure having an atomic concentration ratio of 1 or more and an average particle size of 3 nm or more and 13 nm or less; a third layer provided on the second layer and containing Ru; and a third layer on the third layer And a perpendicular recording layer.
  • a magnetic recording medium having a high SNR can be provided.
  • FIG. 1 is a cross-sectional view schematically illustrating an exemplary configuration of a magnetic recording medium according to an embodiment of the present technology.
  • FIG. 2 is a schematic diagram schematically illustrating an example of a configuration of a sputtering apparatus used for manufacturing a magnetic recording medium according to an embodiment of the present technology.
  • FIG. 3A is a cross-sectional view schematically illustrating an exemplary configuration of a magnetic recording medium according to Modification 1 of the embodiment of the present technology.
  • FIG. 3B is a cross-sectional view schematically illustrating an exemplary configuration of a magnetic recording medium according to Modification 2 of the embodiment of the present technology.
  • FIG. 3B is a cross-sectional view schematically illustrating an exemplary configuration of a magnetic recording medium according to Modification 3 of the embodiment of the present technology.
  • a magnetic recording medium 10 is a so-called long single-layer perpendicular magnetic recording medium, and as illustrated in FIG. 1, a base 11 and one main surface (hereinafter “surface”) of the base 11.
  • the seed layer (first layer) 12 provided on the seed layer 12, the base layer (second layer) 13 provided on the seed layer 12, and the intermediate layer (third layer provided on the base layer 13).
  • the magnetic recording medium 10 includes a protective layer 16 provided on the recording layer 15, a lubricating layer 17 provided on the protective layer 16, and the other main surface (hereinafter “back surface”) of the substrate 11 as necessary. It may be further provided with a back coat layer 18 provided thereon.
  • a magnetic recording medium having no soft magnetic underlayer (hereinafter referred to as “SUL”) is referred to as “single-layer perpendicular magnetic recording medium”, and a magnetic recording medium having SUL is referred to as “two”. It is called a “layer perpendicular magnetic recording medium”.
  • the magnetic recording medium 10 is suitable for use as a data archiving storage medium that is expected to increase in demand in the future.
  • This magnetic recording medium 10 can realize, for example, a surface recording density that is 10 times or more that of the present coating-type magnetic recording medium for storage, that is, a surface recording density of 50 Gb / in 2 .
  • a general linear recording type data cartridge is configured using the magnetic recording medium 10 having such a surface recording density, large capacity recording of 50 TB or more per one data cartridge can be performed.
  • This magnetic recording medium 10 is suitable for use in a recording / reproducing apparatus using a ring type recording head and a giant magnetoresistive (GMR) type reproducing head.
  • GMR giant magnetoresistive
  • the base 11 serving as a support is a long non-magnetic base having flexibility.
  • the nonmagnetic substrate is a film, and the thickness of the film is, for example, 3 ⁇ m or more and 8 ⁇ m or less.
  • a flexible polymer resin material used for a general magnetic recording medium can be used. Specific examples of such a polymer material include polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, and polycarbonates.
  • the seed layer 12 includes Cr, Ni, and Fe, has a face-centered cubic lattice (fcc) structure, and is preferentially oriented so that the (111) plane of the face-centered cubic structure is parallel to the surface of the substrate 11. Yes.
  • the preferential orientation is a state where the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is larger than the diffraction peaks from other crystal planes in the ⁇ -2 ⁇ scan of the X-ray diffraction method, or X-ray diffraction This means that only the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is observed in the normal ⁇ -2 ⁇ scan.
  • the X-ray diffraction intensity ratio of the seed layer 12 is preferably 60 cps / nm or more, more preferably 70 cps / nm or more, and even more preferably 80 cps / nm or more, from the viewpoint of improving the SNR.
  • the X-ray diffraction intensity ratio of the seed layer 12 is obtained by dividing the X-ray diffraction intensity I (cps) of the seed layer 12 by the thickness D (nm) of the seed layer 12 (I / D). (Cps / nm)).
  • Cr, Ni, and Fe contained in the seed layer 12 have an average composition represented by the following formula (A).
  • Cr X (Ni Y Fe 100-Y ) 100-X (A) (However, X is in the range of 10 ⁇ X ⁇ 45 and Y is in the range of 60 ⁇ Y ⁇ 90.)
  • X is out of the above range
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is lowered, and the SNR tends to deteriorate.
  • Y is out of the above range
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe tends to decrease, and the SNR tends to deteriorate.
  • the thickness of the seed layer 12 is preferably 5 nm or more and 40 nm or less. If the thickness of the seed layer 12 is out of this range, the (111) orientation of the Cr, Ni, Fe face-centered cubic lattice structure tends to decrease and the SNR tends to deteriorate.
  • the underlayer 13 includes Co and O having a face-centered cubic lattice structure, and has a column (columnar crystal) structure.
  • the concentration ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more. When the concentration ratio is less than 1, the effect of providing the underlayer 13 tends to decrease, and the SNR tends to decrease.
  • the underlayer 13 may be a column (columnar crystal) structure layer containing Ni and O having a face-centered cubic lattice structure.
  • the column structure is preferably inclined from the viewpoint of improving the SNR.
  • the inclination direction is preferably the longitudinal direction of the long magnetic recording medium 10.
  • the longitudinal direction is preferable in this way for the following reason.
  • the magnetic recording medium 10 according to the present embodiment is a so-called linear recording magnetic recording medium, and the recording track is parallel to the longitudinal direction of the magnetic recording medium 10.
  • the magnetic recording medium 10 according to the present embodiment is also a so-called perpendicular magnetic recording medium. From the viewpoint of recording characteristics, it is preferable that the crystal orientation axis of the recording layer 15 is the vertical direction. The tilt of the crystal orientation axis of the recording layer 15 may occur due to the influence of the tilt of the structure.
  • the structure in which the crystal orientation axis of the recording layer 15 is inclined in the longitudinal direction of the magnetic recording medium 10 in relation to the head magnetic field at the time of recording is the width of the magnetic recording medium 10.
  • the influence on the recording characteristics due to the inclination of the crystal orientation axis can be reduced.
  • the tilt direction of the column structure of the underlayer 13 is preferably the longitudinal direction of the magnetic recording medium 10 as described above.
  • the inclination angle of the column structure is preferably greater than 0 ° and 60 ° or less.
  • the change in the shape of the tip of the column contained in the underlayer 13 is substantially triangular, so the effect of the granular structure is enhanced, noise is reduced, and SNR is improved.
  • the inclination angle exceeds 60 °, the change in the tip shape of the column included in the underlayer 13 is small and hardly forms a triangular mountain shape, so that the low noise effect tends to fade.
  • the average particle size of the column structure is 3 nm or more and 13 nm or less. If the average particle diameter is less than 3 nm, the average particle diameter of the column structure contained in the recording layer 15 becomes small, and the current magnetic material tends to have a significant decrease in the ability to retain recording. On the other hand, when the average particle diameter exceeds 13 nm, noise increases and SNR tends to decrease.
  • the thickness of the underlayer 13 is preferably 10 nm or more and 150 nm or less.
  • the thickness of the underlayer 13 is less than 10 nm, the (111) orientation of the face-centered cubic lattice structure of the underlayer 13 tends to decrease.
  • the thickness of the underlayer 13 exceeds 150 nm, the particle size of the column increases and noise increases, so that the SNR tends to decrease.
  • the intermediate layer 14 preferably has the same crystal structure as that of the recording layer 15.
  • the intermediate layer 14 includes a material having a hexagonal close packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is relative to the film surface. It is preferably oriented in the vertical direction (that is, the film thickness direction). This is because the orientation of the recording layer 15 can be improved and the lattice constant matching between the intermediate layer 14 and the recording layer 15 can be made relatively good.
  • a material having a hexagonal close packed structure a material containing Ru is preferably used, and specifically, Ru alone or a Ru alloy is preferable. Examples of the Ru alloy include Ru alloy oxides such as Ru—SiO 2 , Ru—TiO 2, and Ru—ZrO 2 .
  • the thickness of the intermediate layer 14 may be thinner than the intermediate layer in a general magnetic recording medium, and may be, for example, 1 nm or more and 5 nm or less. Since the seed layer 12 and the base layer 13 having the above-described configuration are provided under the intermediate layer 14, a good SNR can be obtained even if the intermediate layer 14 is thin as described above.
  • the recording layer 15 is a so-called perpendicular magnetic recording layer, and is preferably a granular magnetic layer containing a Co-based alloy from the viewpoint of improving the recording density.
  • the granular magnetic layer is composed of ferromagnetic crystal particles containing a Co-based alloy and nonmagnetic grain boundaries (nonmagnetic material) surrounding the ferromagnetic crystal particles. More specifically, the granular magnetic layer includes a column (columnar crystal) containing a Co-based alloy, and a nonmagnetic grain boundary (for example, an oxide such as SiO 2 ) surrounding the column and magnetically separating each column. ).
  • the recording layer 15 having a structure in which each column is magnetically separated can be formed.
  • the Co-based alloy has a hexagonal close-packed (hcp) structure, and its c-axis is oriented in a direction perpendicular to the film surface (film thickness direction).
  • hcp hexagonal close-packed
  • the CoCrPt-based alloy is not particularly limited, and the CoCrPt alloy may further contain an additive element.
  • the additive element include one or more elements selected from the group consisting of Ni and Ta.
  • the nonmagnetic grain boundary surrounding the ferromagnetic crystal grain contains a nonmagnetic metal material.
  • the metal includes a semi-metal.
  • the nonmagnetic metal material for example, at least one of a metal oxide and a metal nitride can be used. From the viewpoint of maintaining a more stable granular structure, it is preferable to use a metal oxide.
  • the metal oxide include a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf.
  • Metal oxides containing the product ie SiO 2
  • metal nitride examples include metal nitrides containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, Hf, and the like. Specific examples thereof include SiN, TiN, and AlN.
  • the CoCrPt-based alloy contained in the ferromagnetic crystal grains and the Si oxide contained in the nonmagnetic grain boundaries have an average composition represented by the following formula (B). This is because the saturation magnetization amount Ms that suppresses the influence of the demagnetizing field and can secure a sufficient reproduction output can be realized, thereby further improving the recording and reproduction characteristics.
  • (Co x Pt y Cr 100- xy) 100-z - (SiO 2) z ⁇ (B) (However, in the formula (B), x, y, and z are values within the ranges of 69 ⁇ X ⁇ 75, 10 ⁇ y ⁇ 16, and 9 ⁇ Z ⁇ 12, respectively.)
  • the above composition can be obtained as follows. While performing ion milling from the protective layer 16 side of the magnetic recording medium 10, depth direction analysis (depth profile measurement) of the recording layer 15 by Auger Electron Spectroscopy (hereinafter referred to as “AES”) is performed. The average composition (average atomic ratio) of Co, Pt, Cr, Si and O in the direction is obtained.
  • AES Auger Electron Spectroscopy
  • the protective layer 16 includes, for example, a carbon material or silicon dioxide (SiO 2 ). From the viewpoint of the film strength of the protective layer 16, the protective layer 16 preferably includes a carbon material. Examples of the carbon material include graphite, diamond-like carbon (DLC), diamond, and the like.
  • the lubricant layer 17 contains at least one lubricant.
  • the lubrication layer 17 may further contain various additives such as a rust preventive as necessary.
  • the lubricant has at least two carboxyl groups and one ester bond, and contains at least one carboxylic acid compound represented by the following general formula (1).
  • the lubricant may further contain a type of lubricant other than the carboxylic acid compound represented by the following general formula (1).
  • the carboxylic acid compound is preferably represented by the following general formula (2) or (3).
  • General formula (2) (In the formula, Rf is an unsubstituted or substituted, saturated or unsaturated, fluorine-containing hydrocarbon group or hydrocarbon group.)
  • General formula (3) (In the formula, Rf is an unsubstituted or substituted, saturated or unsaturated, fluorine-containing hydrocarbon group or hydrocarbon group.)
  • the lubricant preferably contains one or both of the carboxylic acid compounds represented by the general formulas (2) and (3).
  • lubrication occurs due to the cohesive force between the fluorine-containing hydrocarbon groups or hydrocarbon groups Rf that are hydrophobic groups.
  • the effect is manifested.
  • the Rf group is a fluorinated hydrocarbon group
  • the total carbon number is preferably 6 to 50
  • the total carbon number of the fluorinated hydrocarbon group is preferably 4 to 20.
  • the Rf group may be saturated or unsaturated, linear or branched or cyclic, but is preferably saturated and linear.
  • Rf group is a hydrocarbon group
  • Rf group is preferably a group represented by the following general formula (4).
  • General formula (4) (In the general formula (4), l is an integer selected from the range of 8 to 30, more preferably 12 to 20.)
  • Rf group is a fluorine-containing hydrocarbon group
  • Rf group is a fluorine-containing hydrocarbon group
  • the fluorinated hydrocarbon group may be concentrated at one place as described above, or may be dispersed as in the following general formula (6), and not only —CF 3 and —CF 2 — but also —CHF 2 or -CHF- may be used.
  • the carbon number is limited as described above because the number of carbon atoms constituting the alkyl group or the fluorine-containing alkyl group (l or the sum of m and n) is This is because when the amount is not less than the above lower limit, the length becomes an appropriate length, the cohesive force between the hydrophobic groups is effectively exhibited, a good lubricating action is exhibited, and the friction / wear durability is improved. Moreover, it is because the solubility with respect to the solvent of the lubricant which consists of the said carboxylic acid type compound is kept favorable that the carbon number is below the said upper limit.
  • the Rf group contains a fluorine atom
  • it is effective in reducing the friction coefficient and improving the running performance.
  • a hydrocarbon group is provided between the fluorine-containing hydrocarbon group and the ester bond, and the fluorine-containing hydrocarbon group and the ester bond are separated to ensure the stability of the ester bond and prevent hydrolysis. Good.
  • the Rf group may have a fluoroalkyl ether group or a perfluoropolyether group.
  • the R group may not be present, but in some cases, it may be a hydrocarbon chain having a relatively small number of carbon atoms.
  • the Rf group or R group contains elements such as nitrogen, oxygen, sulfur, phosphorus, and halogen as constituent elements, and in addition to the functional groups described above, a hydroxyl group, a carboxyl group, a carbonyl group, an amino group, and an ester It may further have a bond or the like.
  • the carboxylic acid compound represented by the general formula (1) is preferably at least one of the following compounds. That is, the lubricant preferably contains at least one compound shown below. CF 3 (CF 2 ) 7 (CH 2 ) 10 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 3 (CH 2 ) 10 COOCH (COOH) CH 2 COOH C 17 H 35 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 2 OCOCH 2 CH (C 18 H 37 ) COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 COOCH (COOH) CH 2 COOH CHF 2 (CF 2 ) 7 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 2 OCOCH 2 CH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 6 OCOCH 2 CH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2
  • the carboxylic acid compound represented by the general formula (1) is soluble in a non-fluorinated solvent with a small environmental load, and is a general-purpose solvent such as a hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ester solvent, etc. It has the advantage that operations such as coating, dipping, and spraying can be performed.
  • solvents such as hexane, heptane, octane, decane, dodecane, benzene, toluene, xylene, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, and cyclohexanone. it can.
  • the protective layer 16 includes a carbon material
  • the carboxylic acid compound when applied as a lubricant on the protective layer 16, two carboxyl groups that are polar base parts of the lubricant molecules and at least one of the carboxyl groups are applied on the protective layer 16.
  • the ester bond group is adsorbed, and the lubricating layer 17 having particularly good durability can be formed by the cohesive force between the hydrophobic groups.
  • the lubricant is not only held as the lubricating layer 17 on the surface of the magnetic recording medium 10 as described above, but also contained in the layers such as the recording layer 15 and the protective layer 16 constituting the magnetic recording medium 10 and possessed. May be.
  • the back coat layer 18 includes, for example, a binder, inorganic particles, and a lubricant.
  • the back coat layer 18 may contain various additives such as a curing agent and an antistatic agent as necessary.
  • the sputtering apparatus 20 is a continuous winding type sputtering apparatus used for forming the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15.
  • a drum 22 that is a can (rotary body), cathodes 23a to 23d, a supply reel 24, a take-up reel 25, and a plurality of guide rolls 27a to 27c and 28a to 28c are provided.
  • the sputtering apparatus 20 is, for example, a DC (direct current) magnetron sputtering system, but the sputtering system is not limited to this system.
  • the film forming chamber 21 is connected to a vacuum pump (not shown) through the exhaust port 26, and the atmosphere in the film forming chamber 21 is set to a predetermined degree of vacuum by the vacuum pump.
  • a drum 22, a supply reel 24 and a take-up reel 25 having a rotatable configuration are arranged inside the film forming chamber 21, a plurality of guide rolls 27 a to 27 c for guiding the conveyance of the substrate 11 between the supply reel 24 and the drum 22 are provided, and the drum 22, the take-up reel 25, A plurality of guide rolls 28a to 28c are provided for guiding the conveyance of the substrate 11 between them.
  • the substrate 11 unwound from the supply reel 24 is wound around the take-up reel 25 via the guide rolls 27a to 27c, the drum 22 and the guide rolls 28a to 28c.
  • the drum 22 has a cylindrical shape, and the long base 11 is conveyed along the cylindrical surface of the drum 22.
  • the drum 22 is provided with a cooling mechanism (not shown), and is cooled to, for example, about ⁇ 20 ° C. during sputtering.
  • a plurality of cathodes 23 a to 23 d are disposed inside the film forming chamber 21 so as to face the peripheral surface of the drum 22.
  • a target is set on each of the cathodes 23a to 23d.
  • targets for forming the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are set on the cathodes 23a, 23b, 23c, and 23d, respectively.
  • a plurality of types of films, that is, the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are simultaneously formed by these cathodes 23a to 23d.
  • the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 can be continuously formed by a Roll-to-Roll method.
  • the magnetic recording medium 10 according to an embodiment of the present technology can be manufactured as follows, for example.
  • the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are formed on the surface of the substrate 11 using the sputtering apparatus 20 shown in FIG. Specifically, the film is formed as follows. First, the film forming chamber 21 is evacuated until a predetermined pressure is reached. Thereafter, the target set on the cathodes 23a to 23d is sputtered while introducing a process gas such as Ar gas into the film forming chamber 21. Thereby, the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are sequentially formed on the surface of the traveling substrate 11.
  • a process gas such as Ar gas
  • the atmosphere of the film forming chamber 21 during sputtering is set to about 1 ⁇ 10 ⁇ 5 Pa to 5 ⁇ 10 ⁇ 5 Pa, for example.
  • the film thickness and characteristics (for example, magnetic characteristics) of the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are the tape line speed at which the substrate 11 is wound, the pressure of a process gas such as Ar gas introduced during sputtering (sputtering). Gas pressure) and input power can be adjusted.
  • a protective layer 16 is formed on the recording layer 15.
  • a method for forming the protective layer 16 for example, a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method can be used.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a coating material for film formation of the backcoat layer is prepared by kneading and dispersing a binder, inorganic particles, a lubricant and the like in a solvent.
  • the back coat layer 18 is formed on the back surface of the substrate 11 by applying a coating material for forming the back coat layer on the back surface of the substrate 11 and drying it.
  • a lubricant is applied on the protective layer 16 to form the lubricant layer 17.
  • various application methods such as gravure coating and dip coating can be used.
  • the magnetic recording medium 10 is cut into a predetermined width as necessary. Thus, the magnetic recording medium 10 shown in FIG. 1 is obtained.
  • the magnetic recording medium 10 includes the seed layer 12 and the underlayer 13 between the base 11 and the intermediate layer 14.
  • the seed layer 12 contains Cr, Ni, and Fe, has a face-centered cubic lattice structure, and is preferentially oriented so that the (111) plane of the face-centered cubic structure is parallel to the surface of the substrate 11.
  • the underlayer 13 includes Co and O, has a column structure in which the ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more, and the average particle size is 3 nm or more and 13 nm or less.
  • the recording layer 15 having a good crystal orientation and high coercive force can be realized without reducing the thickness of the intermediate layer 14 and using Ru, which is an expensive material, as much as possible. Therefore, the magnetic recording medium 10 having a high SNR can be provided.
  • Ru contained in the intermediate layer 14 has the same hexagonal close-packed lattice structure as Co which is the main component of the recording layer 15. For this reason, Ru has the effect of achieving both improvement in crystal orientation of the recording layer 15 and promotion of granularity.
  • an underlayer 13 and a seed layer 12 are provided under the intermediate layer 14.
  • substantially the same effect (function) as that of the intermediate layer 14 containing Ru is realized by the base layer 13 containing inexpensive CoO having a face-centered cubic lattice structure. For this reason, the thickness of the intermediate layer 14 can be reduced.
  • a seed layer 12 containing Cr, Ni and Fe is provided to increase the crystal orientation of the underlayer 13.
  • the magnetic recording medium 10 may include an intermediate layer 31 having a two-layer structure on the underlayer 13.
  • the intermediate layer 31 includes a first intermediate layer 31a provided on the base layer 13 and a second intermediate layer 31b provided on the first intermediate layer 31a.
  • the first intermediate layer 31a includes, for example, NiW, NiWZr, NiWAl, or Ta.
  • the second intermediate layer 31b is the same as the intermediate layer 14 in the above-described embodiment.
  • the magnetic recording medium 10 is a so-called double-layer perpendicular magnetic recording medium, and may further include a single-layer SUL 32 between the base 11 and the seed layer 12 as shown in FIG. 3B.
  • This magnetic recording medium 10 is suitable for use in a recording / reproducing apparatus using a single pole type (SPT) type recording head and a tunnel magnetoresistive (TMR) type reproducing head.
  • SPT single pole type
  • TMR tunnel magnetoresistive
  • the film thickness of SUL13 is preferably 40 nm or more, more preferably 40 nm or more and 140 nm or less.
  • the SUL 13 includes a soft magnetic material in an amorphous state.
  • a Co-based material or an Fe-based material can be used as the soft magnetic material.
  • the Co-based material include CoZrNb, CoZrTa, and CoZrTaNb.
  • the Fe-based material include FeCoB, FeCoZr, and FeCoTa.
  • the magnetic field strength from the recording head can be increased by providing the SUL 19 under the recording layer 15 which is a perpendicular magnetic layer. Therefore, the magnetic recording medium 10 suitable for high density recording can be realized.
  • the magnetic recording medium 10 may include an antiparallel coupled SUL (hereinafter referred to as “APC-SUL”) 33 between the base 11 and the seed layer 12.
  • APC-SUL antiparallel coupled SUL
  • the APC-SUL 33 has a structure in which two soft magnetic layers 33a and 33c are stacked via a thin intermediate layer 33b, and the magnetization is positively coupled antiparallel using exchange coupling via the intermediate layer 33b. is doing.
  • the film thicknesses of the soft magnetic layers 33a and 33c are preferably substantially the same.
  • the total film thickness of the soft magnetic layers 33a and 33c is preferably 40 nm or more, more preferably 40 nm or more and 140 nm or less. When the total film thickness is 40 nm or more, better recording / reproducing characteristics can be obtained. On the other hand, when the total film thickness is 140 nm or less, it can be avoided that the film formation time of APC-SUL 33 becomes long and the productivity is lowered.
  • the materials of the soft magnetic layers 33a and 33c are preferably the same material, and the same material as that of the SUL 32 in the second modification can be used.
  • the film thickness of the intermediate layer 33b is, for example, not less than 0.8 nm and not more than 1.4 nm, preferably not less than 0.9 nm and not more than 1.3 nm, more preferably about 1.1 nm. By selecting the film thickness of the intermediate layer 33b within the range of 0.9 nm or more and 1.3 nm or less, better recording / reproducing characteristics can be obtained.
  • Examples of the material of the intermediate layer 33b include V, Cr, Mo, Cu, Ru, Rh, and Re. In particular, it is preferable that Ru is contained.
  • the soft magnetic layer 33a as the upper layer and the soft magnetic layer 33c as the lower layer are exchange-coupled antiparallel to each other in a residual magnetization state.
  • the total magnetization of the upper and lower layers is zero.
  • Modification 4 In the above-described embodiment, the case where the seed layer 12, the underlayer 13, the intermediate layer 14, and the recording layer 15 are formed by the sputtering method has been described. However, at least one of these layers, for example, the underlayer 13 is formed by the evaporation method. You may make it form. Further, the intermediate layer 31, the SUL 32, and the APC-SUL 33 in the above-described modified examples 1 to 3 may be formed by a sputtering method or may be formed by an evaporation method.
  • the thicknesses of the seed layer, the underlayer, the intermediate layer, the recording layer, and the protective layer were determined as follows. First, a magnetic tape was thinly processed in the film cross-sectional direction to prepare a sample piece. Next, the sample piece was observed with a transmission electron microscope (hereinafter referred to as “TEM”), and the thickness of each layer was measured from the TEM image.
  • TEM transmission electron microscope
  • the composition of the seed layer was determined as follows. First, ion milling of the magnetic tape was performed, and depth direction analysis (depth profile measurement) of the seed layer by AES was performed. Next, the average composition (average atomic number ratio) of Cr, Ni and Fe in the film thickness direction was determined from the obtained depth profile.
  • Example 2 A magnetic tape was obtained in the same manner as in Example 1 except that in the seed layer formation step, the thickness of the seed layer was changed to 5 nm and 40 nm.
  • Example 9 In the underlayer film forming step, a 50 nm underlayer made of CoO was formed on the seed layer under the following film formation conditions.
  • Deposition method Vapor deposition method Incident angle: 90 ° (However, the incident angle is the incident angle of the vapor deposition material with the polymer film surface as a reference (0 °).)
  • Example 10 A magnetic tape was obtained in the same manner as in Example 1 except that the film thickness of the underlayer was changed to 100 nm and 150 nm in the underlayer forming process.
  • Example 12 A magnetic tape was obtained in the same manner as in Example 1 except that in the underlayer forming process, the input power was changed to 1.25 W / mm 2 .
  • Example 13 and 14 A magnetic tape was obtained in the same manner as in Example 9 except that in the underlayer film forming step, the incident angle of the film forming conditions was changed to 60 ° and 70 °.
  • Example 15 and 16 A magnetic tape was obtained in the same manner as in Example 1 except that a mask was used and the mask angle was set to 60 ° and 70 ° in the underlayer film forming step. By adjusting the mask angle to 60 ° and 70 °, the angles at which the sputtered atoms entered the polymer film surface were set to about 60 ° and 70 °.
  • the incident angle is an angle with the polymer film surface as a reference (0 °).
  • Example 17 A magnetic tape was obtained in the same manner as in Example 1 except that the intermediate layer forming step was further provided between the intermediate layer forming step and the magnetic recording layer forming step.
  • An intermediate layer made of NiW was formed to a thickness of 10 nm on the underlayer under the following film formation conditions.
  • Deposition method DC magnetron sputtering method
  • Target NiW target Gas type: Ar Gas pressure: 0.5Pa
  • Example 18 A magnetic tape was obtained in the same manner as in Example 1 except that the seed layer formation step was further provided with the following single-layer SUL film formation step.
  • Example 19 A magnetic tape was obtained in the same manner as in Example 18 except that the following APC-SUL film forming step was provided instead of the single layer SUL film forming step.
  • a first soft magnetic layer made of CoZrNb was formed to a thickness of 50 nm on the surface of a long polymer film under the following film formation conditions.
  • Deposition method DC magnetron sputtering method
  • Target CoZrNb target
  • Gas type Ar Gas pressure: 0.1 Pa
  • an intermediate layer made of Ru was formed to a thickness of 1.0 nm on the first soft magnetic layer under the following film formation conditions.
  • Deposition method DC magnetron sputtering method
  • Target Ru target Gas type: Ar Gas pressure: 0.3Pa
  • a second soft magnetic layer made of CoZrNb was deposited to 50 nm on the intermediate layer under the following deposition conditions.
  • Example 5 In the seed layer forming step, a magnetic tape was obtained in the same manner as in Example 1 except that the gas pressure was changed to 1 Pa.
  • Example 13 A magnetic tape was obtained in the same manner as in Example 1 except that the film thickness of the underlayer was changed to 160 nm in the underlayer forming process.
  • Example 14 A magnetic tape was obtained in the same manner as in Example 1 except that the gas pressure was changed to 0.5 Pa in the underlayer film forming step.
  • Example 15 A magnetic tape was obtained in the same manner as in Example 1 except that the input power was changed to 1.5 W / mm 2 in the underlayer forming process.
  • a magnetic tape was thinly processed in the film cross-sectional direction to prepare a sample piece.
  • the sample piece was observed with a TEM, and the tilt angle of the column of the underlayer was measured from the TEM image.
  • the inclination angle is an angle measured with the surface (interface) on the seed layer side of the underlayer as a reference (0 °).
  • Table 1 shows the measurement conditions for the X-ray diffraction intensity.
  • data processing software attached peak search software and XRD analysis processing software JADE were used.
  • the recording / reproducing characteristics were evaluated as follows. First, a ring type recording head and a giant magnetoresistive (GMR) type reproducing head are used, and recording and reproduction are performed by reciprocating vibration of the head by a piezo stage, and measurement is performed by a so-called drag tester. It was. Here, the read track width of the reproducing head was 120 nm. Next, the recording wavelength is 250 kFCI (kilo Flux Changes per Inch), and the SNR is determined by the ratio between the zero-to-peak voltage of the reproduced waveform and the voltage obtained from the value obtained by integrating the noise spectrum in the band of 0 kFCI to 500 kFCI. Calculated and obtained.
  • GMR giant magnetoresistive
  • the minimum SNR required to establish a recording / reproducing system is about 17 dB in the case of a value obtained by the measurement method used for evaluating the recording / reproducing characteristics (so-called “Broadband SNR”). Furthermore, it is desirable to further set an SNR margin in consideration of a decrease in output caused by sliding of the magnetic tape and the magnetic head and a decrease in practical characteristics such as deformation of the magnetic tape. Considering this margin, it is considered that the SNR is preferably 20 dB or more.
  • the recording / reproducing characteristics were evaluated as follows. First, using a single pole type recording head and a tunnel magnetoresistive (TMR) type reproducing head, recording and reproduction is performed by reciprocally vibrating the head with a piezo stage, and measurement is performed using a so-called drag tester. went. In a high recording density recording area exceeding 100 Gb / in 2 , even a perpendicular magnetic recording medium is mainly a recording problem, and it is difficult to realize sufficient recording / reproducing characteristics, and a single magnetic field capable of generating a steep magnetic field in the vertical direction is obtained.
  • TMR tunnel magnetoresistive
  • a combination of a two-layer perpendicular recording medium having a single pole type (SPT) head and a soft magnetic underlayer (SUL) is required.
  • a tunnel magnetoresistive (TMR) type reproducing head having a large magnetoresistive change rate and a high reproducing sensitivity as compared with a giant magnetoresistive head is also considered necessary. For this reason, evaluation using an SPT recording head and a TMR reproducing head was performed here.
  • the read track width of the reproducing head was set to 75 nm.
  • the recording wavelength is set to 300 kFCI (kilo Flux Changes per Inch), and the SNR is determined by the ratio between the zero-to-peak voltage of the reproduced waveform and the voltage obtained from the integrated value of the noise spectrum in the band of 0 kFCI to 600 kFCI. Calculated and obtained.
  • the minimum SNR required to establish a recording / reproducing system is about 17 dB in the case of a value obtained by the measurement method used for evaluating the recording / reproducing characteristics (so-called “Broadband SNR”). Furthermore, it is desirable to further set an SNR margin in consideration of a decrease in output caused by sliding of the magnetic tape and the magnetic head and a decrease in practical characteristics such as deformation of the magnetic tape. Considering this margin, it is considered that the SNR is preferably 20 dB or more.
  • the linear recording density is 600 kBPI (Bit Per Inch)
  • the track pit is twice the track width of the reproducing head
  • Table 2A shows the configurations of the magnetic tapes of Examples 1 to 19.
  • Table 2B shows the configurations of the magnetic tapes of Examples 1 to 19.
  • Table 2C shows the evaluation results of the magnetic tapes of Examples 1 to 19.
  • Table 3A shows the configurations of the magnetic tapes of Comparative Examples 1 to 15.
  • Table 3B shows the configurations of the magnetic tapes of Comparative Examples 1 to 15.
  • Table 3C shows the evaluation results of the magnetic tapes of Comparative Examples 1 to 15.
  • the seed layer contains Cr, Ni, and Fe, and the (111) plane of the face-centered cubic structure is preferentially oriented so as to be parallel to the surface of the polymer film as the substrate.
  • the intensity ratio of line diffraction is 60 cps / nm or more.
  • the underlayer includes a column structure containing Co and O, wherein the ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more, and the average particle size is 3 nm or more and 13 nm or less. For this reason, a good vertical coercive force Hc and a vertical squareness ratio Rs are compatible, and a good SNR is obtained.
  • a long substrate having flexibility A first layer is provided on the substrate, includes Cr, Ni and Fe, has a face-centered cubic lattice structure, and is preferentially oriented so that a (111) plane of the face-centered cubic structure is parallel to the surface of the substrate.
  • a second structure is provided on the first layer, includes Co and O, has a column structure in which a ratio of an average atomic concentration of O to an average atomic concentration of Co is 1 or more, and an average particle diameter is 3 nm or more and 13 nm or less.
  • a magnetic recording medium comprising: a perpendicular recording layer provided on the third layer.
  • the soft magnetic layer includes a first soft magnetic layer, an intermediate layer, and a second soft magnetic layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

磁気記録媒体は、可とう性を有する長尺状の基体と、基体上に設けられ、Cr、NiおよびFeを含み、面心立方格子構造を有し、該面心立方構造の(111)面が基体表面に平行になるように優先配向している第1層と、第1層上に設けられ、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する第2層と、第2層上に設けられ、Ruを含む第3層と、第3層上に設けられた垂直記録層とを備える。

Description

磁気記録媒体
 本技術は、磁気記録媒体に関する。詳しくは、垂直記録層を備える磁気記録媒体に関する。
 近年、IT(情報技術)社会の発展、図書館および公文書館などの電子化、ならびにビジネス文書の長期保管により、データストレージ用磁気記録媒体の大容量化の要求が高まっている。このような要求に応えるべく、垂直記録層を備える磁気記録媒体が提案されている。
 例えば特許文献1には、上述の磁気記録媒体として、非磁性支持体上に、少なくとも、アモルファス層、シード層、下地層、磁性層および保護層が順次形成されたものが開示されている。
特開2005-196885号公報
 本技術の目的は、高いSNRを有する磁気記録媒体を提供することにある。
 上述の課題を解決するために、本技術は、可とう性を有する長尺状の基体と、基体上に設けられ、Cr、NiおよびFeを含み、面心立方格子構造を有し、該面心立方構造の(111)面が基体表面に平行になるように優先配向している第1層と、第1層上に設けられ、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する第2層と、第2層上に設けられ、Ruを含む第3層と、第3層上に設けられた垂直記録層とを備える磁気記録媒体である。
 以上説明したように、本技術によれば、高いSNRを有する磁気記録媒体を提供できる。
図1は、本技術の一実施形態に係る磁気記録媒体の構成の一例を模式的に示す断面図である。 図2は、本技術の一実施形態に係る磁気記録媒体の製造に用いられるスパッタ装置の構成の一例を模式的に示す概略図である。 図3Aは、本技術の一実施形態の変形例1に係る磁気記録媒体の構成の一例を模式的に示す断面図である。図3Bは、本技術の一実施形態の変形例2に係る磁気記録媒体の構成の一例を模式的に示す断面図である。図3Bは、本技術の一実施形態の変形例3に係る磁気記録媒体の構成の一例を模式的に示す断面図である。
 本技術の実施形態について図面を参照しながら以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 本技術の実施形態について以下の順序で説明する。
 1 磁気記録媒体の構成
 2 スパッタ装置の構成
 3 磁気記録媒体の製造方法
 4 効果
 5 変形例
[1 磁気記録媒体の構成]
 本技術の一実施形態に係る磁気記録媒体10は、いわゆる長尺状の単層垂直磁気記録媒体であり、図1に示すように、基体11と、基体11の一方の主面(以下「表面」という。)上に設けられたシード層(第1層)12と、シード層12上に設けられた下地層(第2層)13と、下地層13上に設けられた中間層(第3層)14と、中間層14上に設けられた記録層15とを備える。この磁気記録媒体10が、必要に応じて、記録層15上に設けられた保護層16と、保護層16上に設けられた潤滑層17と、基体11の他方の主面(以下「裏面」という。)上に設けられたバックコート層18とをさらに備えるようにしてもよい。
 なお、本明細書では、軟磁性裏打ち層(Soft magnetic underlayer、以下「SUL」という。)を持たない磁気記録媒体を「単層垂直磁気記録媒体」といい、SULを持つ磁気記録媒体を「二層垂直磁気記録媒体」という。
 一実施形態に係る磁気記録媒体10は、今後ますます需要が高まることが期待されるデータアーカイブ用ストレージメディアとして用いて好適なものである。この磁気記録媒体10は、例えば、現在のストレージ用塗布型磁気記録媒体の10倍以上の面記録密度、すなわち50Gb/in2の面記録密度を実現することが可能である。このような面記録密度を有する磁気記録媒体10を用いて、一般のリニア記録方式のデータカートリッジを構成した場合には、データカートリッジ1巻当たり50TB以上の大容量記録が可能になる。この磁気記録媒体10は、リング型の記録ヘッドと巨大磁気抵抗効果(Giant Magnetoresistive:GMR)型の再生ヘッドを用いる記録再生装置に用いて好適なものである。
(基体)
 支持体となる基体11は、可撓性を有する長尺状の非磁性基体である。非磁性基体はフィルムであり、フィルムの厚さは、例えば3μm以上8μm以下である。基体11の材料としては、例えば、一般的な磁気記録媒体に用いられる可撓性の高分子樹脂材料を用いることができる。このような高分子材料の具体例としては、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、ポリイミド類、ポリアミド類またはポリカーボネートなどが挙げられる。
(シード層)
 シード層12は、Cr、NiおよびFeを含み、面心立方格子(fcc)構造を有し、この面心立方構造の(111)面が基体11の表面に平行になるように優先配向している。ここで、優先配向とは、X線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度が他の結晶面からの回折ピークより大きい状態、またはX線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度のみが観察される状態を意味する。
 シード層12のX線回折の強度比率は、SNRの向上の観点から、好ましくは60cps/nm以上、より好ましくは70cps/nm以上、さらにより好ましくは80cps/nm以上である。ここで、シード層12のX線回折の強度比率は、シード層12のX線回折の強度I(cps)をシード層12の厚さD(nm)で除算して求められる値(I/D(cps/nm))である。
 シード層12に含まれるCr、NiおよびFeは、以下の式(A)で表される平均組成を有することが好ましい。
 CrX(NiYFe100-Y100-X ・・・(A)
(但し、Xは10≦X≦45、Yは60≦Y≦90の範囲内である。)
 Xが上記範囲から外れると、Cr、Ni、Feの面心立方格子構造の(111)配向が低下し、SNRの悪化する傾向がある。同様にYが上記範囲から外れると、Cr、Ni、Feの面心立方格子構造の(111)配向が低下し、SNRの悪化する傾向がある。
 シード層12の厚さは、5nm以上40nm以下であることが好ましい。シード層12の厚さがこの範囲から外れると、Cr、Ni、Feの面心立方格子構造の(111)配向が低下し、SNRの悪化する傾向がある。
(下地層)
 下地層13は、面心立方格子構造を有するCoおよびOを含み、カラム(柱状結晶)構造を有している。CoおよびOを含む下地層13では、Ruを含む中間層14とほぼ同様の効果(機能)が得られる。Coの平均原子濃度に対するOの平均原子濃度の濃度比((Oの平均原子濃度)/(Coの平均原子濃度))が1以上である。濃度比が1未満であると、下地層13を設ける効果が低下し、SNRが低下する傾向がある。また、下地層13は、面心立方格子構造を有するNiおよびOを含むカラム(柱状結晶)構造の層でもよい。
 カラム構造は、SNR向上の観点から、傾斜していることが好ましい。その傾斜の方向は、長尺状の磁気記録媒体10の長手方向であることが好ましい。このように長手方向が好ましいのは、以下の理由による。本実施形態に係る磁気記録媒体10は、いわゆるリニア記録用の磁気記録媒体であり、記録トラックは磁気記録媒体10の長手方向に平行となる。また、本実施形態に係る磁気記録媒体10は、いわゆる垂直磁気記録媒体でもあり、記録特性の観点からすると、記録層15の結晶配向軸が垂直方向であることが好ましいが、下地層13のカラム構造の傾きの影響で、記録層15の結晶配向軸に傾きが生じる場合がある。リニア記録用である磁気記録媒体10においては、記録時のヘッド磁界との関係上、磁気記録媒体10の長手方向に記録層15の結晶配向軸が傾いている構成が、磁気記録媒体10の幅方向に記録層15の結晶配向軸が傾いている構成に比べて、結晶配向軸の傾きによる記録特性への影響を低減できる。磁気記録媒体10の長手方向に記録層15の結晶配向軸を傾かせるためには、上記のように下地層13のカラム構造の傾斜方向を磁気記録媒体10の長手方向とすることが好ましい。
 カラム構造の傾斜角は、好ましくは0°より大きく60°以下であることが好ましい。傾斜角が0°より大きく60°以下の範囲では、下地層13に含まれるカラムの先端形状の変化が大きくほぼ三角山状になるため、グラニュラ構造の効果が高まり、低ノイズ化し、SNRが向上する傾向がある。一方、傾斜角が60°を超えると、下地層13に含まれるカラムの先端形状の変化が小さくほぼ三角山状とはなりにくいため、低ノイズ効果が薄れる傾向がある。
 カラム構造の平均粒径は、3nm以上13nm以下である。平均粒径が3nm未満であると、記録層15に含まれるカラム構造の平均粒径が小さくなるため、現在の磁性材料では記録を保持する能力が著しく低下する傾向がある。一方、平均粒径が13nmを超えると、ノイズが増大し、SNRが低下する傾向がある。
 下地層13の厚さは、10nm以上150nm以下であることが好ましい。下地層13の厚さが10nm未満であると、下地層13の面心立方格子構造の(111)配向が低下する傾向がある。一方、下地層13の厚さが150nmを超えると、カラムの粒径が大きくなりノイズが増大するため、SNRが低下する傾向がある。
(中間層)
 中間層14は、記録層15と同様の結晶構造を有していることが好ましい。記録層15がCo系合金を含んでいる場合には、中間層14は、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。記録層15の配向性を高め、かつ、中間層14と記録層15との格子定数のマッチングを比較的良好にできるからである。六方細密充填構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO2、Ru-TiO2またはRu-ZrO2などのRu合金酸化物が挙げられる。
 中間層14の厚さは、一般的な磁気記録媒体における中間層よりも薄くてもよく、例えば、1nm以上5nm以下とすることが可能である。中間層14の下に上述の構成を有するシード層12および下地層13を設けているので、中間層14の厚さが上述のように薄くても良好なSNRが得られる。
(記録層)
 記録層15は、いわゆる垂直磁気記録層であり、記録密度を向上する観点から、Co系合金を含むグラニュラ磁性層であることが好ましい。このグラニュラ磁性層は、Co系合金を含む強磁性結晶粒子と、この強磁性結晶粒子を取り巻く非磁性粒界(非磁性体)とから構成されている。より具体的には、このグラニュラ磁性層は、Co系合金を含むカラム(柱状結晶)と、このカラムを取り囲み、それぞれのカラムを磁気的に分離する非磁性粒界(例えばSiO2などの酸化物)とから構成されている。この構造では、それぞれのカラムが磁気的に分離した構造を有する記録層15を構成することができる。
 Co系合金は、六方細密充填(hcp)構造を有し、そのc軸が膜面に対して垂直方向(膜厚方向)に配向している。Co系合金としては、少なくともCo、CrおよびPtを含有するCoCrPt系合金を用いることが好ましい。CoCrPt系合金は、特に限定されるものではなく、CoCrPt合金がさらに添加元素を含んでいてもよい。添加元素としては、例えば、NiおよびTaなどからなる群より選ばれる1種以上の元素が挙げられる。
 強磁性結晶粒子を取り巻く非磁性粒界は、非磁性金属材料を含んでいる。ここで、金属には半金属を含むものとする。非磁性金属材料としては、例えば、金属酸化物および金属窒化物のうちの少なくとも一方を用いることができ、グラニュラ構造をより安定に維持する観点からすると、金属酸化物を用いることが好ましい。金属酸化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHfなどからなる群より選ばれる少なくとも1種以上の元素を含む金属酸化物が挙げられ、少なくともSi酸化物(すなわちSiO2)を含んでいる金属酸化物が好ましい。その具体例としては、SiO2、Cr23、CoO、Al23、TiO2、Ta25、ZrO2またはHfO2などが挙げられる。金属窒化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHfなどからなる群より選ばれる少なくとも1種以上の元素を含む金属窒化物が挙げられる。その具体例としては、SiN、TiNまたはAlNなどが挙げられる。
 強磁性結晶粒子に含まれるCoCrPt系合金と、非磁性粒界に含まれるSi酸化物とが、以下の式(B)に示す平均組成を有していることが好ましい。反磁界の影響を抑え、かつ、十分な再生出力を確保できる飽和磁化量Msを実現でき、これにより、記録再生特性の更なる向上を実現できるからである。
 (CoxPtyCr100-x-y100-z-(SiO2z ・・・(B)
(但し、式(B)中において、x、y、zはそれぞれ、69≦X≦75、10≦y≦16、9≦Z≦12の範囲内の値である。)
 なお、上記組成は次のようにして求めることができる。磁気記録媒体10の保護層16側からイオンミリングしながら、オージェ電子分光法(Auger Electron Spectroscopy、以下「AES」という。)による記録層15の深さ方向分析(デプスプロファイル測定)を行い、膜厚方向におけるCo、Pt、Cr、SiおよびOの平均組成(平均原子数比率)を求める。
(保護層)
 保護層16は、例えば、炭素材料または二酸化ケイ素(SiO2)を含み、保護層16の膜強度の観点からすると、炭素材料を含んでいることが好ましい。炭素材料としては、例えば、グラファイト、ダイヤモンド状炭素(Diamond-Like Carbon:DLC)またはダイヤモンドなどが挙げられる。
(潤滑層)
 潤滑層17は、少なくとも1種の潤滑剤を含んでいる。潤滑層17は、必要に応じて各種添加剤、例えば防錆剤をさらに含んでいてもよい。潤滑剤は、少なくとも2つのカルボキシル基と1つのエステル結合とを有し、下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含んでいる。潤滑剤は、下記の一般式(1)で表されるカルボン酸系化合物以外の種類の潤滑剤をさらに含んでいてもよい。
一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
 上記カルボン酸系化合物は、下記の一般式(2)または(3)で表されるものが好ましい。
一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
一般式(3):
Figure JPOXMLDOC01-appb-C000003
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
 潤滑剤は、上記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含んでいることが好ましい。
 一般式(1)で示されるカルボン酸系化合物を含む潤滑剤を記録層15または保護層16などに塗布すると、疎水性基である含フッ素炭化水素基又は炭化水素基Rf間の凝集力により潤滑作用が発現する。Rf基が含フッ素炭化水素基である場合には、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20であるのが好ましい。Rf基は、飽和又は不飽和、直鎖又は分岐鎖又は環状であってよいが、とくに飽和で直鎖であるのが好ましい。
 例えば、Rf基が炭化水素基である場合には、下記一般式(4)で表される基であることが望ましい。
一般式(4):
Figure JPOXMLDOC01-appb-C000004
(但し、一般式(4)において、lは、8~30、より望ましくは12~20の範囲から選ばれる整数である。)
 また、Rf基が含フッ素炭化水素基である場合には、下記一般式(5)で表される基であることが望ましい。
一般式(5):
Figure JPOXMLDOC01-appb-C000005
(但し、一般式(5)において、mとnは、それぞれ次の範囲から選ばれる整数で、m=2~20、n=3~18、より望ましくは、m=4~13、n=3~10である。)
 フッ化炭化水素基は、上記のように1箇所に集中していても、また下記一般式(6)のように分散していてもよく、-CF3や-CF2-ばかりでなく-CHF2や-CHF-等であってもよい。
一般式(6):
Figure JPOXMLDOC01-appb-C000006
(但し、一般式(6)において、n1+n2=n、m1+m2=mである。)
 一般式(4)、(5)および(6)において炭素数を上記のように限定したのは、アルキル基または含フッ素アルキル基を構成する炭素数(l、又は、mとnの和)が上記下限以上であると、その長さが適度の長さとなり、疎水性基間の凝集力が有効に発揮され、良好な潤滑作用が発現し、摩擦・摩耗耐久性が向上するからである。また、その炭素数が上記上限以下であると、上記カルボン酸系化合物からなる潤滑剤の、溶媒に対する溶解性が良好に保たれるからである。
 特に、Rf基は、フッ素原子を含有すると、摩擦係数の低減、さらには走行性の改善等に効果がある。但し、含フッ素炭化水素基とエステル結合との間に炭化水素基を設け、含フッ素炭化水素基とエステル結合との間を隔てて、エステル結合の安定性を確保して加水分解を防ぐのがよい。
 また、Rf基がフルオロアルキルエーテル基、又はパーフルオロポリエーテル基を有するものであるのもよい。
 R基は、なくてもよいが、ある場合には、比較的炭素数の少ない炭化水素鎖であるのがよい。
 また、Rf基又はR基は、構成元素として窒素、酸素、硫黄、リン、ハロゲンなどの元素を含み、既述した官能基に加えて、ヒドロキシル基、カルボキシル基、カルボニル基、アミノ基、及びエステル結合等を更に有していてもよい。
 一般式(1)で示されるカルボン酸系化合物は、具体的には以下に示す化合物の少なくとも1種であることが好ましい。すなわち、潤滑剤は、以下に示す化合物を少なくとも1種含んでいることが好ましい。
CF3(CF2)7(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)10COOCH(COOH)CH2COOH
C17H35COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)2OCOCH2CH(C18H37)COOCH(COOH)CH2COOH
CF3(CF2)7COOCH(COOH)CH2COOH
CHF2(CF2)7COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)2OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)6OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)11OCOCH2CH(COOH)CH2COOH
CF3(CF2)3(CH2)6OCOCH2CH(COOH)CH2COOH
C18H37OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)4COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)4COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)7COOCH(COOH)CH2COOH
CF3(CF2)9(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)12COOCH(COOH)CH2COOH
CF3(CF2)5(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)7CH(C9H19)CH2CH=CH(CH2)7COOCH(COOH)CH2COOH
CF3(CF2)7CH(C6H13)(CH2)7COOCH(COOH)CH2COOH
CH3(CH2)3(CH2CH2CH(CH2CH2(CF2)9CF3))2(CH2)7COOCH(COOH)CH2COOH
 一般式(1)で示されるカルボン酸系化合物は、環境への負荷の小さい非フッ素系溶剤に可溶であり、炭化水素系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤などの汎用溶剤を用いて、塗布、浸漬、噴霧などの操作を行えるという利点を備えている。具体的には、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロヘキサノンなどの溶媒を挙げることができる。
 保護層16が炭素材料を含む場合には、潤滑剤として上記カルボン酸系化合物を保護層16上に塗布すると、保護層16上に潤滑剤分子の極性基部である2つのカルボキシル基と少なくとも1つのエステル結合基が吸着され、疎水性基間の凝集力により特に耐久性の良好な潤滑層17を形成することができる。
 なお、潤滑剤は、上述のように磁気記録媒体10の表面に潤滑層17として保持されるのみならず、磁気記録媒体10を構成する記録層15および保護層16などの層に含まれ、保有されていてもよい。
(バックコート層)
 バックコート層18は、例えば、結着剤、無機粒子および潤滑剤を含んでいる。バックコート層18が、必要に応じて硬化剤および帯電防止剤などの各種添加剤を含んでいてもよい。
[2 スパッタ装置の構成]
 以下、図2を参照して、本技術の一実施形態に係る磁気記録媒体10の製造に用いられるスパッタ装置20の構成の一例について説明する。このスパッタ装置20は、シード層12、下地層13、中間層14および記録層15の成膜に用いられる連続巻取式スパッタ装置であり、図2に示すように、成膜室21と、金属キャン(回転体)であるドラム22と、カソード23a~23dと、供給リール24と、巻き取りリール25と、複数のガイドロール27a~27c、28a~28cとを備える。スパッタ装置20は、例えばDC(直流)マグネトロンスパッタリング方式の装置であるが、スパッタリング方式はこの方式に限定されるものではない。
 成膜室21は、排気口26を介して図示しない真空ポンプに接続され、この真空ポンプにより成膜室21内の雰囲気が所定の真空度に設定される。成膜室21の内部には、回転可能な構成を有するドラム22、供給リール24および巻き取りリール25が配置されている。成膜室21の内部には、供給リール24とドラム22との間における基体11の搬送をガイドするための複数のガイドロール27a~27cが設けられていると共に、ドラム22と巻き取りリール25との間における基体11の搬送をガイドするための複数のガイドロール28a~28cが設けられている。スパッタ時には、供給リール24から巻き出された基体11が、ガイドロール27a~27c、ドラム22およびガイドロール28a~28cを介して巻き取りリール25に巻き取られる。ドラム22は円柱状の形状を有し、長尺状の基体11はドラム22の円柱面状の周面に沿わせて搬送される。ドラム22には、図示しない冷却機構が設けられており、スパッタ時には、例えば-20℃程度に冷却される。成膜室21の内部には、ドラム22の周面に対向して複数のカソード23a~23dが配置されている。これらのカソード23a~23dにはそれぞれターゲットがセットされている。具体的には、カソード23a、23b、23c、23dにはそれぞれ、シード層12、下地層13、中間層14、記録層15を成膜するためのターゲットがセットされている。これらのカソード23a~23dにより複数の種類の膜、すなわちシード層12、下地層13、中間層14および記録層15が同時に成膜される。
 上述の構成を有するスパッタ装置20では、シード層12、下地層13、中間層14および記録層15をRoll to Roll法により連続成膜することができる。
[3 磁気記録媒体の製造方法]
 本技術の一実施形態に係る磁気記録媒体10は、例えば、以下のようにして製造することができる。
 まず、図2に示したスパッタ装置20を用いて、シード層12、下地層13、中間層14および記録層15を基体11の表面上に成膜する。具体的には以下のようにして成膜する。まず、成膜室21を所定の圧力になるまで真空引きする。その後、成膜室21内にArガスなどのプロセスガスを導入しながら、カソード23a~23dにセットされたターゲットをスパッタする。これにより、シード層12、下地層13、中間層14および記録層15が、走行する基体11の表面に順次成膜される。
 スパッタ時の成膜室21の雰囲気は、例えば、1×10-5Pa~5×10-5Pa程度に設定される。シード層12、下地層13、中間層14および記録層15の膜厚および特性(例えば磁気特性)は、基体11を巻き取るテープライン速度、スパッタ時に導入するArガスなどのプロセスガスの圧力(スパッタガス圧)、および投入電力などを調整することにより制御可能である。
 次に、記録層15上に保護層16を成膜する。保護層16の成膜方法としては、例えば化学気相成長(Chemical Vapor Deposition:CVD)法または物理蒸着(physical vapor deposition:PVD)法を用いることができる。
 次に、結着剤、無機粒子および潤滑剤などを溶剤に混練、分散させることにより、バックコート層成膜用の塗料を調製する。次に、基体11の裏面上にバックコート層成膜用の塗料を塗布して乾燥させることにより、バックコート層18を基体11の裏面上に成膜する。
 次に、例えば潤滑剤を保護層16上に塗布し、潤滑層17を成膜する。潤滑剤の塗布方法としては、例えば、グラビアコーティング、ディップコーティングなどの各種塗布方法を用いることができる。次に、必要に応じて、磁気記録媒体10を所定の幅に裁断する。以上により、図1に示した磁気記録媒体10が得られる。
[4 効果]
 上述の一実施形態に係る磁気記録媒体10は、基体11と中間層14との間にシード層12および下地層13を備えている。シード層12は、Cr、NiおよびFeを含み、面心立方格子構造を有し、この面心立方構造の(111)面が基体11の表面に平行になるように優先配向している。下地層13は、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する。これにより、中間層14の厚さを薄くして高価な材料であるRuをできるだけ使用せずに、良好な結晶配向を有し、かつ高い抗磁力を有する記録層15を実現できる。したがって、高いSNRを有する磁気記録媒体10を提供できる。
 中間層14に含まれるRuは、記録層15の主成分であるCoと同じ六方稠密格子構造を有する。このため、Ruには、記録層15の結晶配向性向上とグラニュラ性促進とを両立させる効果がある。また、中間層14に含まれるRuの結晶配向を更に向上させるために、中間層14の下に下地層13およびシード層12を設けている。一実施形態に係る磁気記録媒体10においては、Ruを含む中間層14とほぼ同様の効果(機能)を、面心立方格子構造を有する安価なCoOを含む下地層13で実現している。このため、中間層14の厚さを薄くできる。また、下地層13の結晶配向を高めるために、Cr、NiおよびFeを含むシード層12を設けている。
[5 変形例]
(変形例1)
 磁気記録媒体10は、図3Aに示すように、下地層13上に2層構造を有する中間層31を備えるようにしてもよい。中間層31は、下地層13上に設けられた第1中間層31aと、第1中間層31a上に設けられた第2中間層31bとを備える。第1中間層31aは、例えばNiW、NiWZr、NiWAlまたはTaを含んでいる。第2中間層31bは、上述の一実施形態における中間層14と同様である。
(変形例2)
 磁気記録媒体10は、いわゆる二層垂直磁気記録媒体であり、図3Bに示すように、基体11とシード層12との間に単層のSUL32をさらに備えるようにしてもよい。この磁気記録媒体10は、単磁極型(Single Pole Type:SPT)の記録ヘッドとトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドを用いる記録再生装置に用いて好適なものである。
 SUL13の膜厚は、好ましくは40nm以上、より好ましくは40nm以上140nm以下である。SUL13は、アモルファス状態の軟磁性材料を含んでいる。軟磁性材料としては、例えば、Co系材料またはFe系材料などを用いることができる。Co系材料としては、例えば、CoZrNb、CoZrTa、CoZrTaNbなどが挙げられる。Fe系材料としては、例えば、FeCoB、FeCoZr、FeCoTaなどが挙げられる。
 変形例2に係る磁気記録媒体10では、垂直磁性層である記録層15の下にSUL19を設けることで、記録ヘッドからの磁界強度を高めることができる。したがって、高密度記録に適した磁気記録媒体10を実現できる。
(変形例3)
 磁気記録媒体10は、図3Cに示すように、基体11とシード層12との間にAntiparallel Coupled SUL(以下「APC-SUL」という。)33を備えるようにしてもよい。
 APC-SUL33は、薄い中間層33bを介して2つの軟磁性層33a、33cを積層し、中間層33bを介した交換結合を利用して積極的に磁化を反平行に結合させた構造を有している。軟磁性層33a、33cの膜厚は略同一であることが好ましい。軟磁性層33a、33cのトータルの膜厚は、好ましくは40nm以上、より好ましくは40nm以上140nm以下である。トータルの膜厚が40nm以上であると、より良好な記録再生特性を得ることができる。一方、トータルの膜厚が140nm以下であると、APC-SUL33の成膜時間が長くなり、生産性の低下を招くことを回避できる。軟磁性層33a、33cの材料は同一の材料であることが好ましく、その材料としては変形例2におけるSUL32と同様の材料を用いることができる。中間層33bの膜厚は、例えば0.8nm以上1.4nm以下、好ましくは0.9nm以上1.3nm以下、より好ましくは1.1nm程度である。中間層33bの膜厚を0.9nm以上1.3nm以下の範囲内に選択することで、より良好な記録再生特性を得ることができる。中間層33bの材料としては、V、Cr、Mo、Cu、Ru、Rh、およびReが挙げられ、特に、Ruを含んでいることが好ましい。
 変形例3に係る磁気記録媒体10では、APC-SUL33を用いているので、上層部である軟磁性層33aと下層部である軟磁性層33cとが反平行に交換結合し、残留磁化状態で上下層トータルの磁化量はゼロなる。これにより、APC-SUL33中の磁区が動いた場合に発生する、スパイク状のノイズの発生を抑えることができる。したがって、記録再生特性を更に向上することができる。
(変形例4)
 上述の一実施形態では、シード層12、下地層13、中間層14および記録層15をスパッタリング法により形成する場合について説明したが、それらの層の少なくとも1層、例えば下地層13を蒸着法により形成するようにしてもよい。また、上述の変形例1~3における中間層31、SUL32およびAPC-SUL33をスパッタリング法により形成するようにしてもよいし、蒸着法により形成するようにしてもよい。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
 本実施例において、シード層、下地層、中間層、記録層および保護層の各層の厚さは、以下のようにして求められたものである。まず、磁気テープをその膜断面方向に薄く加工して試料片を作製した。次に、その試料片を透過型電子顕微鏡(Transmission Electron Microscope、以下「TEM」という。)により観察し、そのTEM像から各層の厚さを測定した。
 また、本実施例において、シード層の組成は、以下のようにして求められたものである。まず、磁気テープをイオンミリングして、AESによるシード層の深さ方向分析(デプスプロファイル測定)を行った。次に、得られたデプスプロファイルから、膜厚方向におけるCr、NiおよびFeの平均組成(平均原子数比率)を求めた。
(実施例1)
(シード層の成膜工程)
 まず、以下の成膜条件にて、非磁性基体としての長尺の高分子フィルムの表面上に、CrX(NiYFe100-Y100-X(但し、X=40、Y=81)からなるシード層を10nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:CrNiFeターゲット
 ガス種:Ar
 ガス圧:0.25Pa
 投入電力:1.75W/mm2
(下地層の成膜工程)
 次に、以下の成膜条件にて、シード層上にCoOからなる下地層を50nm成膜した。
 成膜方式:RFマグネトロンスパッタリング方式
 ターゲット:CoOターゲット
 ガス種:Ar
 ガス圧:1Pa
 投入電力:0.75W/mm2
 マスク:なし
(中間層の成膜工程)
 次に、以下の成膜条件にて、下地層上にRuからなる中間層を2nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:0.5Pa
(記録層の成膜工程)
 次に、以下の成膜条件にて、中間層上に(CoCrPt)-(SiO2)からなる磁気記録層を14nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:(CoCrPt)-(SiO2)ターゲット
 ガス種:Ar
 ガス圧:1.5Pa
(保護層の成膜工程)
 次に、以下の成膜条件にて、記録層上にカーボンからなる保護層を5nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:カーボンターゲット
 ガス種:Ar
 ガス圧:1.0Pa
(潤滑層の成膜工程)
 次に、潤滑剤を保護層上に塗布し、潤滑層を成膜した。
(バックコート層の成膜工程)
 次に、高分子フィルムの裏面上にバックコート層成膜用の塗料を塗布、乾燥することにより、バックコート層を形成した。以上により、目的とする磁気テープが得られた。
(実施例2、3)
 シード層の成膜工程において、シード層の膜厚を5nm、40nmに変更する以外は実施例1と同様にして磁気テープを得た。
(実施例4、5、6)
 シード層の成膜工程において、シード層の組成をCrX(NiYFe100-Y100-X(但し、X=40、Y=60、70、90)に変更する以外は実施例1と同様にして磁気テープを得た。
(実施例7、8)
 シード層の成膜工程において、シード層の組成をCrX(NiYFe100-Y100-X(但し、X=10、45、Y=81)に変更する以外は実施例1と同様にして磁気テープを得た。
(実施例9)
 下地層の成膜工程において、以下の成膜条件にて、シード層上にCoOからなる下地層を50nm成膜した。
 成膜方式:蒸着方式
 入射角:90°(但し、入射角は、高分子フィルム表面を基準(0°)とした蒸着材料の入射角である。)
 酸素導入量:1000sccm
(実施例10、11)
 下地層の成膜工程において、下地層の膜厚を100nm、150nmnに変更する以外は実施例1と同様にして磁気テープを得た。
(実施例12)
 下地層の成膜工程において、投入電力を1.25W/mm2に変更する以外は実施例1と同様にして磁気テープを得た。
(実施例13、14)
 下地層の成膜工程において、成膜条件の入射角を60°、70°に変更する以外は実施例9と同様にして磁気テープを得た。
(実施例15、16)
 下地層の成膜工程において、マスクを用いると共に、そのマスク角度を60°、70°とする以外は実施例1と同様にして磁気テープを得た。なお、マスク角度を60°、70°に調整することによって、スパッタされた原子が高分子フィルム表面に入射する角度が約60°、70°に設定された。なお、入射角は、高分子フィルム表面を基準(0°)とした角度である。
(実施例17)
 中間層の成膜工程と磁気記録層の成膜工程との間に、以下の中間層の成膜工程をさらに備える以外は実施例1と同様にして磁気テープを得た。
(中間層の成膜工程)
 以下の成膜条件にて、下地層上にNiWからなる中間層を10nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:NiWターゲット
 ガス種:Ar
 ガス圧:0.5Pa
(実施例18)
 シード層の成膜工程前において、以下の単層構造のSULの成膜工程をさらに備える以外は、実施例1と同様にして磁気テープを得た。
(単層構造のSULの成膜工程)
 以下の成膜条件にて、長尺の高分子フィルムの表面上にCoZrNbからなる単層構造のSULを20nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
(実施例19)
 単層構造のSULの成膜工程に代えて、以下のAPC-SULの成膜工程を備える以外は、実施例18と同様にして磁気テープを得た。
(APC-SULの成膜工程)
 まず、以下の成膜条件にて、長尺の高分子フィルムの表面上にCoZrNbからなる第1軟磁性層を50nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
 次に、以下の成膜条件にて、第1軟磁性層上にRuからなる中間層を1.0nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:0.3Pa
 次に、以下の成膜条件にて、中間層上にCoZrNbからなる第2軟磁性層を50nm成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
(比較例1、2、3、4)
 シード層の成膜工程において、シード層の膜厚を2nm、4nm、45nm、50nmに変更する以外は実施例1と同様にして磁気テープを得た。
(比較例5)
 シード層の成膜工程において、ガス圧を1Paに変更する以外は実施例1と同様にして磁気テープを得た。
(比較例6、7)
 シード層の成膜工程において、シード層の組成をCrX(NiYFe100-Y100-X(X=5、50、Y=81)に変更する以外は実施例1と同様にして磁気テープを得た。
(比較例8、9)
 シード層の成膜工程において、シード層の組成をCrX(NiYFe100-Y100-X(X=40、Y=55、95)に変更する以外は実施例1と同様にして磁気テープを得た。
(比較例10、11、12)
 下地層の成膜工程において、酸素導入量を500sccm、700sccm、900sccmに変更する以外は実施例9と同様にして磁気テープを得た。
(比較例13)
 下地層の成膜工程において、下地層の膜厚を160nmに変更する以外は実施例1と同様にして磁気テープを得た。
(比較例14)
 下地層の成膜工程において、ガス圧を0.5Paに変更する以外は実施例1と同様にして磁気テープを得た。
(比較例15)
 下地層の成膜工程において、投入電力を1.5W/mm2に変更する以外は実施例1と同様にして磁気テープを得た。
(特性評価)
 上述のようにして得られた実施例1~19、比較例1~15の磁気テープについて、以下の評価を行った。
(O、Co原子濃度比)
 まず、磁気テープをイオンミリングして、AESにより下地層の深さ方向分析を行うことにより、深さ方向におけるCo、O原子それぞれの平均原子濃度(at(atomic)%)を求めた。次に、O原子の平均原子濃度に対するCo原子の平均原子濃度の濃度比((Co原子の平均原子濃度)/(O原子の平均原子濃度))を求めた。
(平均粒径)
 まず、磁気テープの表面から中間層までをイオンミリングにより除去するとともに、磁気テープの裏面側よりシード層までをイオンミリングにより除去した。次に、残った膜片をTEMにより観察し、そのTEM像から無作為に粒子を100個選び出し、各粒子の面積Sを求めた。次に、粒子の断面形状が円形であると仮定して、以下の式から各粒子の粒径(直径)Rを求めた。
 R=2×(S/π)1/2
 次に、求めた100個の粒子の粒径を単純に平均(算術平均)してカラムの平均粒径を求めた。
(カラムの傾斜角)
 まず、磁気テープをその膜断面方向に薄く加工して試料片を作製した。次に、その試料片をTEM観察し、そのTEM像から下地層のカラムの傾斜角を測定した。ここで、傾斜角は、下地層のシード層側の表面(界面)を基準(0°)として測定された角度である。
(X線回折強度比率)
 まず、磁気テープの膜法面内にて(θ-2θ)特性を測定した。その結果、2θ:44°(Ni fcc(111面))にピークが観察され、Niの面心立方格子(fcc)構造の(111)面が高分子フィルム表面に平行になるように優先配向していることがわかった。次に、2θ:44°(Ni fcc(111面))のピーク強度Iをシード層の厚さDで除算した値(I/D)をX線回折強度比率として求めた。なお、シード層の厚さは、上述したように、作製した試料片をTEM観察することにより求めたものである。
 表1に、X線回折強度の測定条件を示す。
Figure JPOXMLDOC01-appb-T000001
 なお、データ処理ソフトとしては、付属のピークサーチソフトとXRD解析処理ソフトJADEを使用した。
(磁気特性)
 磁気テープの垂直保磁力Hcおよび垂直角型比Rsを振動試料磁力計(Vibrating Sample Magnetometer:VSM)を用いて測定した。
(記録再生特性)
[SULを持たない磁気テープの場合]
 以下のようにして記録再生特性を評価した。まず、リング型の記録ヘッドと巨大磁気抵抗効果(Giant Magnetoresistive:GMR)型の再生ヘッドを用い、ピエゾステージによりこのヘッドを往復振動させることにより記録再生を行う、所謂、ドラッグテスタにて測定を行った。ここで、再生ヘッドのリードトラック幅は120nmとした。次に、記録波長を250kFCI(kilo Flux Changes per Inch)とし、SNRを、再生波形のゼロ・トゥ・ピーク電圧と、ノイズスペクトラムを0kFCI~500kFCIの帯域で積分した値から求めた電圧との比により計算して求めた。
 一般に、記録再生システムを成立させるのに最低必要となるSNRは、上記記録再生特性の評価に用いた測定方法(所謂 Broadband SNR)で得られる値の場合17dB程度といわれている。更に、磁気テープと磁気ヘッドの摺動にて発生する出力低下や、磁気テープの変形などの実用上の特性低下を考慮した場合、更にSNRマージンを設定することが望ましい。このマージンを考慮すると、SNRは20dB以上であることが好ましいと考えられる。
[SULを持つ磁気テープの場合]
以下のようにして記録再生特性を評価した。まず、Single Pole型の記録ヘッドとトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドを用い、ピエゾステージによりこのヘッドを往復振動させることにより記録再生を行う、所謂、ドラッグテスタにて測定を行った。100Gb/in2を超える高記録密度記録領域では、垂直磁気記録媒体であっても主に記録の問題で、十分な記録再生特性を実現することが難しく、垂直方向に急峻な磁界を発生できる単磁極(Single Pole Type:SPT)ヘッドと軟磁性裏打ち層(SUL)を有する2層垂直記録媒体の組み合わせが必要である。また、巨大磁気抵抗ヘッドに比べて磁気抵抗変化率が大きく再生感度の高いトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドも必要と思われる。そのような理由から、ここでは、SPT記録ヘッドとTMR再生ヘッドによる評価を実施した。ここで、再生ヘッドのリードトラック幅は75nmとした。次に、記録波長を300kFCI(kilo Flux Changes per Inch)とし、SNRを、再生波形のゼロ・トゥ・ピーク電圧と、ノイズスペクトラムを0kFCI~600kFCIの帯域で積分した値から求めた電圧との比により計算して求めた。
 一般に、記録再生システムを成立させるのに最低必要となるSNRは、上記記録再生特性の評価に用いた測定方法(所謂 Broadband SNR)で得られる値の場合17dB程度といわれている。更に、磁気テープと磁気ヘッドの摺動にて発生する出力低下や、磁気テープの変形などの実用上の特性低下を考慮した場合、更にSNRマージンを設定することが望ましい。このマージンを考慮すると、SNRは20dB以上であることが好ましいと考えられる。
 なお、本実施例の磁気テープでは、線記録密度が600kBPI(Bit Per Inch)であり、トラックピットを再生ヘッドのトラック幅の2倍として、トラック密度が169kTPI(Tracks Per Inch)であると考えると、600kBPI×169kTPI=101Gb/in2の面記録密度を実現できることになる。
 表2Aに、実施例1~19の磁気テープの構成を示す。
Figure JPOXMLDOC01-appb-T000002
 表2Bに、実施例1~19の磁気テープの構成を示す。
Figure JPOXMLDOC01-appb-T000003
 表2Cに、実施例1~19の磁気テープの評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表3Aに、比較例1~15の磁気テープの構成を示す。
Figure JPOXMLDOC01-appb-T000005
 表3Bに、比較例1~15の磁気テープの構成を示す。
Figure JPOXMLDOC01-appb-T000006
 表3Cに、比較例1~15の磁気テープの評価結果を示す。
Figure JPOXMLDOC01-appb-T000007
 上記評価結果から以下のことがわかる。
 実施例1~19では、(1)シード層がCr、NiおよびFeを含み、面心立方構造の(111)面が基体としての高分子フィルムの表面に平行になるように優先配向し、X線回折の強度比率は、60cps/nm以上である。また、(2)下地層がCoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する。このため、良好な垂直保磁力Hcおよび垂直角型比Rsが両立され、良好なSNRが得られている。
 比較例1~9では、(1)X線回折の強度比率が60cps/nm未満である。このため、良好な垂直保磁力Hcおよび垂直角型比Rsが両立されず、良好なSNRが得られていない。
 比較例10~12では、(2)Coの平均原子濃度に対するOの平均原子濃度の比が1未満である。このため、良好な垂直保磁力Hcおよび垂直角型比Rsが両立されず、良好なSNRが得られていない。
 比較例10~12では、(2)カラム構造の平均粒径が3nm以上13nm以下から外れている。このため、良好な垂直保磁力Hcおよび垂直角型比Rsが両立されず、良好なSNRが得られていない。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 可とう性を有する長尺状の基体と、
 前記基体上に設けられ、Cr、NiおよびFeを含み、面心立方格子構造を有し、該面心立方構造の(111)面が前記基体表面に平行になるように優先配向している第1層と、
 前記第1層上に設けられ、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する第2層と、
 前記第2層上に設けられ、Ruを含む第3層と、
 前記第3層上に設けられた垂直記録層と
 を備える磁気記録媒体。
(2)
 前記第1層におけるX線回折の強度比率は、60cps/nm以上である(1)に記載の磁気記録媒体。
(3)
 前記第1層に含まれるCr、NiおよびFeは、以下の式(A)で表される平均組成を有する(1)または(2)に記載の磁気記録媒体。
 CrX(NiYFe100-Y100-X ・・・(A)
(但し、Xは10≦X≦45、Yは60≦Y≦90の範囲内である。)
(4)
 前記第1層の厚さは、5nm以上40nm以下である(1)から(3)のいずれかに記載の磁気記録媒体。
(5)
 前記第2層の厚さは、10nm以上150nm以下である(1)から(4)のいずれかに記載の磁気記録媒体。
(6)
 前記カラム構造の傾斜角は、60°以上90°以下である(1)から(5)のいずれかに記載の磁気記録媒体。
(7)
 前記基体と前記第1層との間に設けられた軟磁性層をさらに備える(1)から(6)のいずれかに記載の磁気記録媒体。
(8)
 前記軟磁性層は、第1軟磁性層と、中間層と、第2軟磁性層とを備える(7)に記載の磁気記録媒体。
(9)
 前記垂直記録層は、Co、PtおよびCrを含む粒子が酸化物で分離されたグラニュラ構造を有する(1)から(8)のいずれかに記載の磁気記録媒体。
(10)
 下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含む潤滑層をさらに備える(1)から(9)のいずれかに記載の磁気記録媒体。
一般式(1):
Figure JPOXMLDOC01-appb-C000007
(式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
(11)
 下記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含む潤滑層をさらに備える(1)から(9)のいずれかに記載の磁気記録媒体。
一般式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
一般式(3):
Figure JPOXMLDOC01-appb-C000009
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
(12)
 Rfは、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20である、飽和若しくは不飽和の含フッ素炭化水素である(11)に記載の磁気記録媒体。
 10  磁気記録媒体
 11  基体
 12  シード層
 13  下地層
 14、31  中間層
 15  記録層
 16  保護層
 17  潤滑層
 18  バックコート層
 20  スパッタ装置
 21  成膜室
 22  ドラム
 23a、23b、23c  カソード
 24  供給リール
 25  巻き取りリール
 31a  第1中間層
 31b  第2中間層
 32 SUL
 33 APC-SUL
 33a、33c  軟磁性層
 33b  中間層

Claims (12)

  1.  可とう性を有する長尺状の基体と、
     前記基体上に設けられ、Cr、NiおよびFeを含み、面心立方格子構造を有し、該面心立方構造の(111)面が前記基体表面に平行になるように優先配向している第1層と、
     前記第1層上に設けられ、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する第2層と、
     前記第2層上に設けられ、Ruを含む第3層と、
     前記第3層上に設けられた垂直記録層と
     を備える磁気記録媒体。
  2.  前記第1層におけるX線回折の強度比率は、60cps/nm以上である請求項1に記載の磁気記録媒体。
  3.  前記第1層に含まれるCr、NiおよびFeは、以下の式(A)で表される平均組成を有する請求項1に記載の磁気記録媒体。
     CrX(NiYFe100-Y100-X ・・・(A)
    (但し、Xは10≦X≦45、Yは60≦Y≦90の範囲内である。)
  4.  前記第1層の厚さは、5nm以上40nm以下である請求項1に記載の磁気記録媒体。
  5.  前記第2層の厚さは、10nm以上150nm以下である請求項1に記載の磁気記録媒体。
  6.  前記カラム構造の傾斜角は、60°以下である請求項1に記載の磁気記録媒体。
  7.  前記基体と前記第1層との間に設けられた軟磁性層をさらに備える請求項1に記載の磁気記録媒体。
  8.  前記軟磁性層は、第1軟磁性層と、中間層と、第2軟磁性層とを備える請求項7に記載の磁気記録媒体。
  9.  前記垂直記録層は、Co、PtおよびCrを含む粒子が酸化物で分離されたグラニュラ構造を有する請求項1に記載の磁気記録媒体。
  10.  下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含む潤滑層をさらに備える請求項1に記載の磁気記録媒体。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
  11.  下記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含む潤滑層をさらに備える請求項1に記載の磁気記録媒体。
    一般式(2):
    Figure JPOXMLDOC01-appb-C000011
    (式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
    一般式(3):
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
  12.  Rfは、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20である、飽和若しくは不飽和の含フッ素炭化水素である請求項11に記載の磁気記録媒体。
PCT/JP2016/004903 2015-11-17 2016-11-16 磁気記録媒体 WO2017085931A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016005258.8T DE112016005258T5 (de) 2015-11-17 2016-11-16 Magnetaufzeichnungsmedium
CN201680065922.8A CN108352170B (zh) 2015-11-17 2016-11-16 磁记录介质
US15/765,600 US10789979B2 (en) 2015-11-17 2016-11-16 Magnetic recording medium
JP2017551534A JP6825573B2 (ja) 2015-11-17 2016-11-16 磁気記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015225006 2015-11-17
JP2015-225006 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017085931A1 true WO2017085931A1 (ja) 2017-05-26

Family

ID=58719216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004903 WO2017085931A1 (ja) 2015-11-17 2016-11-16 磁気記録媒体

Country Status (5)

Country Link
US (1) US10789979B2 (ja)
JP (1) JP6825573B2 (ja)
CN (1) CN108352170B (ja)
DE (1) DE112016005258T5 (ja)
WO (1) WO2017085931A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093447A1 (ja) * 2017-11-08 2019-05-16 ソニー株式会社 磁気記録媒体
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
US10839847B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10839846B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US10937457B2 (en) 2019-04-26 2021-03-02 Sony Corporation Magnetic recording medium
US11017809B2 (en) 2019-03-29 2021-05-25 Sony Corporation Magnetic recording medium having a controlled dimensional variation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621020B2 (en) * 2017-04-07 2023-04-04 Sony Corporation Magnetic recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256640A (ja) * 2000-03-14 2001-09-21 Hitachi Maxell Ltd 磁気記録媒体及び磁気記録装置
JP2002083420A (ja) * 2000-06-26 2002-03-22 Victor Co Of Japan Ltd 薄膜磁気テープの製造方法及び薄膜磁気テープ
JP2006202373A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
JP2008117506A (ja) * 2006-10-12 2008-05-22 Fuji Electric Device Technology Co Ltd 垂直磁気記録媒体
WO2016185695A1 (ja) * 2015-05-18 2016-11-24 ソニー株式会社 磁気記録媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652998B2 (en) 2000-06-26 2003-11-25 Jvc Victor Company Of Japan, Ltd. Producing method of thin film magnetic tape and the thin film magnetic tape
JP3867544B2 (ja) * 2001-10-16 2007-01-10 ソニー株式会社 磁気記録媒体およびその製造方法
JP2005032352A (ja) * 2003-07-14 2005-02-03 Toshiba Corp 粒子分散型膜を下地に用いた磁気記録媒体、その製造方法、および磁気記録再生装置
CN100440324C (zh) * 2003-09-30 2008-12-03 富士通株式会社 垂直磁记录介质以及磁存储装置
JP2005196885A (ja) 2004-01-08 2005-07-21 Sony Corp 磁気記録媒体
US7833640B2 (en) * 2005-08-19 2010-11-16 Hitachi Global Storage Technologies Netherlands B.V. Intermediate tri-layer structure for perpendicular recording media
JP2007273057A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd 垂直磁気記録媒体および磁気記憶装置
US8488276B1 (en) * 2008-09-30 2013-07-16 WD Media, LLC Perpendicular magnetic recording medium with grain isolation magnetic anistropy layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256640A (ja) * 2000-03-14 2001-09-21 Hitachi Maxell Ltd 磁気記録媒体及び磁気記録装置
JP2002083420A (ja) * 2000-06-26 2002-03-22 Victor Co Of Japan Ltd 薄膜磁気テープの製造方法及び薄膜磁気テープ
JP2006202373A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
JP2008117506A (ja) * 2006-10-12 2008-05-22 Fuji Electric Device Technology Co Ltd 垂直磁気記録媒体
WO2016185695A1 (ja) * 2015-05-18 2016-11-24 ソニー株式会社 磁気記録媒体

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191150A (ja) * 2017-11-08 2020-11-26 ソニー株式会社 磁気記録媒体およびカートリッジ
JPWO2019093447A1 (ja) * 2017-11-08 2020-06-25 ソニー株式会社 磁気記録媒体およびカートリッジ
US11302354B2 (en) 2017-11-08 2022-04-12 Sony Corporation Magnetic recording medium having controlled dimensional variation
JP2020161208A (ja) * 2017-11-08 2020-10-01 ソニー株式会社 磁気記録媒体およびカートリッジ
JP2020161207A (ja) * 2017-11-08 2020-10-01 ソニー株式会社 磁気記録媒体およびカートリッジ
JP7167968B2 (ja) 2017-11-08 2022-11-09 ソニーグループ株式会社 磁気記録媒体およびカートリッジ
WO2019093447A1 (ja) * 2017-11-08 2019-05-16 ソニー株式会社 磁気記録媒体
US10867630B2 (en) 2017-11-08 2020-12-15 Sony Corporation Magnetic recording medium having a dimensional variation
US10839846B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US11315594B2 (en) 2019-03-29 2022-04-26 Sony Corporation Magnetic recording medium having controlled dimensional variation
US10839847B2 (en) 2019-03-29 2020-11-17 Sony Corporation Magnetic recording medium having a dimensional variation
US11521650B2 (en) 2019-03-29 2022-12-06 Sony Corporation Magnetic recording medium having a controlled dimensional variation
US11017809B2 (en) 2019-03-29 2021-05-25 Sony Corporation Magnetic recording medium having a controlled dimensional variation
US11302353B2 (en) 2019-03-29 2022-04-12 Sony Corporation Magnetic recording medium having controlled dimensional variation
US11749304B2 (en) 2019-03-29 2023-09-05 Sony Corporation Magnetic recording medium having controlled dimensional variation
US11664054B2 (en) 2019-04-05 2023-05-30 Sony Corporation Cartridge including tape-shaped magnetic recording medium
US10796724B1 (en) 2019-04-05 2020-10-06 Sony Corporation Magnetic recording medium
US11107505B2 (en) 2019-04-05 2021-08-31 Sony Corporation Cartridge
US11423946B2 (en) 2019-04-05 2022-08-23 Sony Group Corporation Cartridge including tape-shaped magnetic recording medium
US10803904B1 (en) 2019-04-26 2020-10-13 Sony Corporation Magnetic recording cartridge
US11250884B2 (en) 2019-04-26 2022-02-15 Sony Corporation Magnetic recording cartridge
US11056143B2 (en) 2019-04-26 2021-07-06 Sony Corporation Magnetic recording medium
US10984833B2 (en) 2019-04-26 2021-04-20 Sony Corporation Magnetic recording cartridge
US11631430B2 (en) 2019-04-26 2023-04-18 Sony Group Corporation Magnetic recording medium
US10937457B2 (en) 2019-04-26 2021-03-02 Sony Corporation Magnetic recording medium
US10720181B1 (en) 2019-04-26 2020-07-21 Sony Corporation Magnetic recording cartridge

Also Published As

Publication number Publication date
US20190080712A1 (en) 2019-03-14
US10789979B2 (en) 2020-09-29
CN108352170A (zh) 2018-07-31
CN108352170B (zh) 2020-03-03
DE112016005258T5 (de) 2018-08-16
JPWO2017085931A1 (ja) 2018-08-30
JP6825573B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6531764B2 (ja) 磁気記録媒体
JP7167968B2 (ja) 磁気記録媒体およびカートリッジ
JP6825573B2 (ja) 磁気記録媒体
JP6307879B2 (ja) 磁気記録媒体およびその製造方法
JP6597775B2 (ja) 磁気記録媒体
JP6083389B2 (ja) 磁気記録媒体
JP6205871B2 (ja) 磁気記録媒体
JP7074129B2 (ja) 磁気記録媒体
JP6221907B2 (ja) 磁気記録媒体
JP6733798B1 (ja) 磁気記録媒体
JP7264157B2 (ja) 磁気記録テープと磁気記録テープカートリッジ
JPWO2020152994A1 (ja) 磁気記録テープ及び磁気記録テープカートリッジ
JP2020166920A (ja) 磁気記録媒体
JP2005174519A (ja) 磁気記録媒体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551534

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005258

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865935

Country of ref document: EP

Kind code of ref document: A1