WO2017085826A1 - テープフィーダ及び部品実装機 - Google Patents
テープフィーダ及び部品実装機 Download PDFInfo
- Publication number
- WO2017085826A1 WO2017085826A1 PCT/JP2015/082494 JP2015082494W WO2017085826A1 WO 2017085826 A1 WO2017085826 A1 WO 2017085826A1 JP 2015082494 W JP2015082494 W JP 2015082494W WO 2017085826 A1 WO2017085826 A1 WO 2017085826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sprocket
- tape feeder
- pitch
- tape
- component
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/02—Feeding of components
Definitions
- the present invention relates to a tape feeder and a component mounter equipped with a function of compensating for an error in the feed pitch for each tooth of a sprocket that feeds a component supply tape by a predetermined pitch.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2009-135549
- a feed pitch for each sprocket tooth due to manufacturing variations and assembly variations of a sprocket for pitch-feeding a component supply tape. Therefore, the error in the feed pitch for each sprocket tooth causes the component in the component supply tape to be displaced from the component suction position for each pitch feed, causing a component suction error.
- Patent Document 1 in the tape feeder adjustment process, the tape feeder is set on an adjustment jig, the sprocket is rotated by one pitch, and the upper teeth ( The teeth that engage with the feed holes of the component supply tape are imaged, and the process of recognizing the position (tooth number) of the teeth from the image is performed for all the teeth of the sprocket, and the position data of each tooth is stored in the nonvolatile in the tape feeder. And then refer to the position data of each tooth stored in the memory in the tape feeder when the tape feeder is set in the component mounter and the component suction operation is executed. The component suction position is corrected in accordance with the feed pitch error for each sprocket tooth to prevent component suction errors.
- the rotation angle from the reference angle of the sprocket is detected by counting pulses generated periodically from the encoder in synchronization with the rotation of the motor or sprocket with a pulse counter. Is reset each time one rotation (360 ° rotation), and the rotation angle from the reference angle of the sprocket is detected from the count value of the pulse counter by associating the count value of the pulse counter with the rotation angle from the reference angle of the sprocket. I can do it.
- the pulse counter may be configured by a hardware circuit or microcomputer software, but in any configuration, the count value of the pulse counter disappears when the power is turned off.
- the count value of the pulse counter disappears when the power is turned off.
- the count value of the pulse counter can be retained even after the power is turned off and stored in the memory at the next power-on.
- the sprocket stop angle rotation angle from the reference angle
- the tape feeder can be removed from the component mounting machine or supplied with the component while the power is turned off.
- the sprocket stop angle may be shifted while the power is turned off.
- the sprocket will rotate from an unknown rotation angle that deviates from the previous sprocket stop angle when the power was turned off. May start.
- the rotation angle from the reference angle of the sprocket is unknown during the period from when the power is turned on until the reference angle is detected by rotating the sprocket (the period until the sprocket rotates once at the maximum). Since the position (tooth number) cannot be specified, the error in the feed pitch for each tooth of the sprocket cannot be compensated, and there is a possibility that a component suction error will occur.
- the present invention is to recognize the position of the sprocket teeth immediately after the tape feeder is turned on, and to prevent a component adsorption error due to a feed pitch error for each sprocket tooth.
- the present invention is to rotate the sprocket with a motor while meshing the sprocket teeth with the feed holes of the component supply tape in which a large number of parts are arranged at a predetermined pitch.
- the motor or the sprocket or a rotating member that rotates in conjunction with the rotation thereof
- An encoder that outputs a pulse each time it rotates a predetermined angle; a pulse counter that counts the output pulses of the encoder and resets the count value every time the sprocket makes one rotation (360 ° rotation) from a reference angle; and the pulse Recognizes the rotation angle of the sprocket from the reference angle based on the count value of the counter
- a control unit that controls the pitch feed operation of the sprocket and corrects an error in the feed pitch for each tooth of the sprocket, and at least the encoder and the pulse when the tape feeder is powered off Even when the power supply to the counter is maintained and the tape feeder is turned off, the pulse is output from the encoder each time the motor, the sprocket, or a rotating member that
- a backup power supply for updating the count value of the counter is provided, and the control unit recognizes the rotation angle of the sprocket from the reference angle based on the count value of the pulse counter immediately after the tape feeder is turned on, Each time the sprocket pitch feeds, the pulse counter The position of the sprocket tooth meshing with the feed hole of the component supply tape is detected based on the count value, and the feed pitch error is corrected by the feed pitch correction amount set for the tooth. It is.
- the power supply to at least the encoder and pulse counter is maintained by the backup power supply when the tape feeder is turned off. If the sprocket rotates even when the tape feeder is turned off, the pulse counter counts according to the rotation angle. The value is updated, and the correspondence between the count value of the pulse counter and the rotation angle from the reference angle of the sprocket is maintained. As a result, even if the sprocket rotates while the tape feeder is turned off, the rotation angle from the reference angle of the sprocket can be recognized based on the count value of the pulse counter immediately after the tape feeder is turned on.
- the feed set to the teeth by detecting the position of the teeth of the sprocket meshing with the feed holes of the component supply tape based on the count value of the pulse counter every time the sprocket is pitch-fed immediately after the feeder power is turned on.
- the feed pitch error can be corrected by the pitch correction amount. This makes it possible to accurately position the leading component in the component supply tape at the component suction position for each sprocket pitch feed operation immediately after the tape feeder power is turned on. Mistakes can be prevented.
- an encoder capable of detecting forward / reverse rotation is used as the encoder, and the output pulse count of the encoder is used as the pulse counter. It is preferable to use an up / down counter that switches operation up / down according to the direction of rotation. As a result, the correspondence between the count value of the pulse counter and the rotation angle from the reference angle of the sprocket can be maintained regardless of whether the sprocket rotates in the forward or reverse direction while the tape feeder is powered off. it can.
- the feed pitch correction amount for each sprocket tooth may be stored in a non-volatile memory in the tape feeder.
- the present invention is not limited to the above-described configuration for correcting the feed pitch error for each sprocket tooth, so that the control unit of the component mounting machine corrects the component suction position in accordance with the feed pitch error for each sprocket tooth.
- the tape feeder is equipped with a backup power supply that maintains power supply to at least the encoder and pulse counter while the tape feeder is powered off, and the count value of the pulse counter is transmitted from the control unit of the tape feeder to the control unit of the component mounting machine. Then, the control unit of the component mounting machine recognizes the rotation angle from the reference angle of the sprocket based on the count value of the pulse counter transmitted from the control unit of the tape feeder immediately after the tape feeder is turned on.
- the position of the sprocket teeth engaged with the feed hole of the component supply tape is detected based on the count value of the pulse counter for each pitch feed operation of the sprocket, and the component suction position correction amount set for the teeth is detected. Correct the component suction position with, and suck the component in the component supply tape with the suction nozzle at the corrected component suction position. Unishi and may be. Even in this case, it is possible to reduce or eliminate the deviation between the stop position of the leading component in the component supply tape and the component suction position every time the sprocket pitch feeds immediately after the tape feeder is turned on. It is possible to prevent component adsorption mistakes immediately after the power is turned on.
- FIG. 1 is a front view showing a configuration of a main part of a tape feeder in Embodiment 1 of the present invention.
- FIG. 2 is a side view showing the configuration of the sprocket drive mechanism of the tape feeder.
- FIG. 3 is a block diagram showing the configuration of the control system of the tape feeder.
- FIG. 4 is a flowchart showing the flow of processing of the pitch feed operation control program according to the first embodiment.
- FIG. 5 is a flowchart showing the flow of processing of the component suction operation control program of the second embodiment.
- a reel (not shown) around which the component supply tape 12 is wound is set to be replaceable on the tape feeder 11, and the component supply tape 12 drawn from the reel is placed on the top end side of the upper surface of the tape feeder 11 by the tape guide 13. It is guided to the component suction position.
- the component supply tape 12 is formed by arranging a large number of components on a carrier tape at a predetermined pitch and attaching a cover tape (also called a top tape) on the upper surface of the carrier tape. The cover tape on the upper surface of the component supply tape 12 is peeled off before the component suction position to expose the internal components, and the components in the component supply tape 12 are sucked by the suction nozzle of the component mounter at the component suction position. ing.
- a sprocket 15 for pitch-feeding the component supply tape 12 is rotatably supported via a rotary shaft 16 below the component suction position. Teeth 17 are formed on the outer periphery of the sprocket 15 at a predetermined pitch, and the teeth 17 of the sprocket 15 are meshed with feed holes (not shown) formed at a predetermined pitch along one side edge of the component supply tape 12. However, the sprocket 15 is rotated by a motor 19 to pitch-feed the component supply tape 12. By sequentially feeding the component supply tape 12 by the arrangement pitch of the components on the component supply tape 12 in one pitch feed operation, the components in the component supply tape 12 are sent one by one to the component suction position for each pitch feed operation. It has become.
- the sprocket drive mechanism 18 for rotationally driving the sprocket 15 uses a motor 19 such as a step motor or a servo motor as a drive source, and is fitted to a gear 21 fitted to the rotary shaft 20 of the motor 19 and the rotary shaft 16 of the sprocket 15.
- the intermediate gear 23 is rotatably arranged via the rotary shaft 24 between the gear 22 and the gear 22 of the motor 19, the intermediate gear 23, and the gear 22 of the sprocket 15 are engaged with each other.
- the rotational force of the motor 19 is transmitted to the sprocket 15 through the path of the gear 21 ⁇ the intermediate gear 23 ⁇ the gear 22 so that the sprocket 15 rotates in conjunction with the rotation of the motor 19.
- the number of gears constituting the sprocket drive mechanism 18, the gear ratio, and the like may be appropriately changed.
- the sprocket drive mechanism 18 is provided with a magnetic encoder 26 that periodically outputs pulses in synchronization with the rotation of the motor 19 and the sprocket 15.
- the magnetic encoder 26 is configured to detect a magnetism generated by a disk-shaped magnet 27 magnetized with, for example, an N pole and an S pole with a magnetic detection element 25 (see FIG. 2) and output a pulse. .
- the encoder 26 determines the rotation angle in both the forward and reverse directions.
- the A-phase magnetic detection element 25 and the B-phase magnetic detection element are arranged at positions shifted by 90 ° along the outer circumference of the disk-shaped magnet 27.
- the A-phase pulse and B-phase pulse are output at a phase shifted by 90 ° during one rotation (360 ° rotation), and the rotation direction can be determined by the generation order of the A-phase pulse and the B-phase pulse. Yes.
- a disk-shaped magnet 27 of the encoder 26 is rotatably supported via a rotating shaft 28, and is used for detecting rotation between a gear 29 fitted to the rotating shaft 28 of the disk-shaped magnet 27 and a gear 21 of the motor 19.
- An intermediate gear 30 is rotatably arranged via a rotation shaft 31, and the gear 21 of the motor 19, the rotation detection intermediate gear 30, and the gear 29 of the disk-shaped magnet 27 are engaged with each other. Thereby, the rotational force of the motor 19 is transmitted to the disk-shaped magnet 27 of the encoder 26 through the path of the gear 21 ⁇ the rotation detecting intermediate gear 30 ⁇ the gear 29, and the disk-shaped magnet 27 is interlocked with the rotation of the motor 19. It is designed to rotate.
- the disk-shaped magnet 27 of the encoder 26 makes one rotation (360 ° rotation), and the encoder 26 outputs an A-phase pulse.
- the gear ratio is designed so that the B-phase pulse is output with a phase shifted by 90 °.
- the tape feeder 11 is provided with a pulse counter 32 that counts the A-phase and B-phase pulses output from the encoder 26.
- the pulse counter 32 is composed of a logic circuit (hardware), and is composed of an up / down counter that switches up / down of the counting operation of the A-phase and B-phase pulses output from the encoder 26 according to the rotation direction. Has been.
- the pulse counter 32 determines the rotation direction based on the generation order of the A phase pulse and the B phase pulse, counts up the pulse count value in the forward rotation, counts down the pulse count value in the reverse rotation, and sprocket 15 Is configured to reset the pulse count value every time one rotation (360 ° rotation) from the reference angle (that is, every time the sprocket 15 reaches the count value for one rotation).
- sprocket 15 Is configured to reset the pulse count value every time one rotation (360 ° rotation) from the reference angle (that is, every time the sprocket 15 reaches the count value for one rotation).
- the control unit 33 of the tape feeder 11 is mainly composed of a microcomputer, and rotates from the reference angle of the sprocket 15 based on the count value of the pulse counter 32 by executing a pitch feed operation control program of FIG. The angle is recognized, a control signal is output to the drive circuit 34, the motor 19 is driven to control the pitch feed operation of the sprocket 15, and the feed pitch error for each tooth 17 of the sprocket 15 is corrected.
- the tape feeder 11 is provided with a power / signal connector 35 to be connected to a power / signal connector on the component mounting machine side, and the tape feeder 11 is set on a feeder set base of the component mounting machine.
- the power / signal connector 35 is connected to the power / signal connector on the component mounter side, and power is supplied from the component mounter side to the tape feeder 11, and the control unit 33 of the tape feeder 11 and the component mounter are connected.
- a signal can be transmitted to and received from a control unit (not shown).
- the tape feeder 11 is provided with a backup power source 36 that maintains power supply to at least the encoder 26 and the pulse counter 32 while the power is off.
- the backup power source 36 may be configured using a primary battery or a secondary battery, or may be configured using a power storage circuit using a capacitor or the like.
- the backup power source 36 has a circuit so that the power supply from the backup power source 36 is kept cut off when the tape feeder 11 is set on the component mounter and power is supplied from the component mounter side. It is configured.
- the backup power source 36 is configured by a power storage circuit using a capacitor or the like, the circuit is configured so that the power storage circuit or the like is charged when power is supplied from the component mounter side.
- the power is also supplied to the control unit 33 of the tape feeder 11.
- the circuit of the backup power source 36 is configured so that power is not supplied from the backup power source 36 to the control unit 33 while the power of the tape feeder 11 is off.
- the control unit 33 of the tape feeder 11 recognizes the rotation angle from the reference angle of the sprocket 15 based on the count value of the pulse counter 32 immediately after the tape feeder 11 is turned on, and for each pitch feed operation of the sprocket 15, Based on the count value of the pulse counter 32, the position (tooth number) of the tooth 17 of the sprocket 15 meshing with the feed hole of the component supply tape 12 is detected, and the feed pitch is set with the feed pitch correction amount set for the tooth 17. Correct the error.
- the feed pitch correction amount for each tooth 17 of the sprocket 15 may be stored in a non-volatile memory (not shown) in the tape feeder 11, or executed by the control unit 33 of the tape feeder 11.
- the pitch feed operation control program may be set. Hereinafter, processing contents of the pitch feed operation control program of FIG. 4 will be described.
- step 101 it is determined whether or not it is the pitch feed operation execution timing. Quit this program without doing it.
- step 101 determines whether the pitch feed operation execution timing is reached. If it is determined in step 101 that the pitch feed operation execution timing is reached, the process proceeds to step 102 where the count value of the pulse counter 32 is read. In the next step 103, the sprocket is based on the count value of the pulse counter 32. The rotation angle from the reference angle of 15 is recognized, and the position (tooth number) of the tooth 17 of the sprocket 15 meshing with the feed hole of the component supply tape 12 is detected.
- step 104 the process proceeds to step 104, and the target count value (target rotation angle) of the pitch feed operation is corrected by the feed pitch correction amount set in the tooth number.
- step 105 the pitch feed operation is executed to stop the rotation of the sprocket 15 at a rotation angle at which the count value of the pulse counter 32 reaches the corrected target count value.
- the power supply to at least the encoder 26 and the pulse counter 32 is maintained by the backup power source 36 while the tape feeder 11 is powered off. Therefore, if the sprocket 15 rotates even when the tape feeder 11 is powered off, the rotation The count value of the pulse counter 32 is updated according to the angle, and the correspondence between the count value of the pulse counter 32 and the rotation angle from the reference angle of the sprocket 15 is maintained. Thus, even if the sprocket 15 rotates while the tape feeder 11 is turned off, the rotation angle from the reference angle of the sprocket 15 is recognized based on the count value of the pulse counter 32 immediately after the tape feeder 11 is turned on.
- the feed pitch error can be corrected by the feed pitch correction amount set for the tooth 17.
- Embodiment 2 of the present invention will be described with reference to FIG.
- substantially the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted or simplified, and different parts are mainly described.
- the feed pitch error for each tooth 17 of the sprocket 15 is corrected based on the count value of the pulse counter 32 for each pitch feed operation of the sprocket 15, but in the second embodiment of the present invention, A control unit (not shown) of the component mounting machine executes the component suction operation control program of FIG. 5 to correct the component suction position according to the feed pitch error for each tooth 17 of the sprocket 15. .
- the tape feeder 11 includes the backup power source 36 that maintains power supply to at least the encoder 26 and the pulse counter 32 while the power of the tape feeder 11 is turned off, as in the first embodiment. 11, the count value of the pulse counter 32 is transmitted to the control unit of the component mounting machine, and the control unit of the component mounting machine executes the component suction operation control program of FIG.
- the rotation angle from the reference angle of the sprocket 15 is recognized based on the count value of the pulse counter 32 transmitted from the control unit 33 of the tape feeder 11 immediately after the power is turned on, and every pitch feed operation of the sprocket 15 is performed. Based on the count value of the pulse counter 32, the screw meshed with the feed hole of the component supply tape 12.
- the position (tooth number) of the tooth 17 of the rocket 15 is detected, the component suction position is corrected by the component suction position correction amount set to the tooth 17, and the component in the component supply tape 12 is corrected at the corrected component suction position. Is sucked by a suction nozzle.
- the component suction position correction amount for each tooth 17 of the sprocket 15 is set in accordance with the feed pitch error for each tooth 17 and is stored in a non-volatile memory (not shown) of the component mounter.
- it may be set in the component suction operation control program of FIG. 5 executed by the control unit of the component mounting machine.
- processing contents of the component suction operation control program of FIG. 5 will be described.
- step 201 it is determined whether or not it is the component suction operation execution timing. Quit this program without doing it.
- step 201 determines whether it is the component suction operation execution timing. If it is determined in step 201 that it is the component suction operation execution timing, the process proceeds to step 202 where the count value of the pulse counter 32 is read. In the next step 203, the sprocket is based on the count value of the pulse counter 32. The rotation angle from the reference angle of 15 is recognized, and the position (tooth number) of the tooth 17 of the sprocket 15 meshing with the feed hole of the component supply tape 12 is detected.
- step 204 the process proceeds to step 204, where the component suction position is corrected by the component suction position correction amount set for the detected tooth number. Thereafter, the process proceeds to step 205, where the component suction operation is executed, and the component in the component supply tape 12 is sucked by the suction nozzle at the corrected component suction position.
- the control unit of the component mounting machine executes the component suction operation control program of FIG. 5, so that the component supply tape is based on the count value of the pulse counter 32 for each pitch feed operation of the sprocket 15.
- the position (tooth number) of the tooth 17 of the sprocket 15 meshing with the 12 feed holes is detected, the component suction position is corrected with the component suction position correction amount set for the tooth 17, and the component suction after correction is performed. Since the component in the component supply tape 12 is adsorbed by the adsorption nozzle at the position, the stop position of the leading component in the component supply tape 12 every time the sprocket 15 performs a pitch feed operation immediately after the tape feeder 11 is turned on. Deviation from the component suction position can be reduced or eliminated, and component suction mistakes can be prevented immediately after the tape feeder 11 is turned on.
- the magnetic encoder 26 is used.
- the encoder system and configuration are not limited, and an encoder having various configurations can be used. is there.
- the rotation angle of the motor 19 is detected by the encoder 26 via the rotation detecting intermediate gear 30 (rotating member).
- the rotation detecting intermediate gear 30 is omitted and the motor is omitted.
- the rotation angle of 19 may be directly detected by the encoder, or the rotation angle of the sprocket 15 or the intermediate gear 23 may be detected by the encoder. What is necessary is just to comprise so that a pulse may be output from an encoder, whenever the rotating member (intermediate gears 23, 30 etc.) rotated in conjunction with it rotates a predetermined angle.
- the present invention is not limited to the configurations of the first and second embodiments, and the circuit configuration of the backup power source 36 may be changed, or the configuration of the tape feeder 11 may be variously changed. Needless to say, various modifications can be made.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
テープフィーダ(11)には、部品供給テープ(12)をピッチ送りするスプロケット(15)の回転に同期して周期的にパルスを出力する磁気式のエンコーダ(26)と、このエンコーダの出力パルスをカウントするパルスカウンタ(32)と、テープフィーダの電源オフ中に少なくともエンコーダ及びパルスカウンタへの電源供給を維持するバックアップ電源(36)とが設けられている。テープフィーダの制御部(33)は、テープフィーダの電源投入直後からパルスカウンタのカウント値に基づいてスプロケットの基準角度からの回転角度を認識して、スプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて部品供給テープの送り孔に噛み合っている該スプロケットの歯(17)の位置を検出して該歯に設定された送りピッチ補正量で送りピッチの誤差を補正する。
Description
本発明は、部品供給テープを所定ピッチずつ送るスプロケットの歯毎の送りピッチの誤差を補償する機能を搭載したテープフィーダ及び部品実装機に関する発明である。
例えば、特許文献1(特開2009-135549号公報)に記載されているように、テープフィーダにおいては、部品供給テープをピッチ送りするスプロケットの製造ばらつきや組立ばらつき等によってスプロケットの歯毎の送りピッチに誤差が生じるため、このスプロケットの歯毎の送りピッチの誤差が、ピッチ送り毎に部品供給テープ内の部品を部品吸着位置から位置ずれさせて部品吸着ミスを発生させる原因となる。
この対策として、特許文献1では、テープフィーダの調整工程で、テープフィーダを調整治具にセットして、スプロケットを1ピッチずつ回転させて、その上方からカメラでスプロケットの回転中心の上方の歯(部品供給テープの送り孔に噛み合う歯)を撮像して、その画像から歯の位置(歯番号)を画像認識する処理をスプロケットの全ての歯について行い、各歯の位置データをテープフィーダ内の不揮発性のメモリに記憶しておき、その後、このテープフィーダを部品実装機にセットして部品吸着動作を実行する際に、テープフィーダ内のメモリに記憶されている各歯の位置データを参照して、スプロケットの歯毎の送りピッチの誤差に応じて部品吸着位置を補正することで、部品吸着ミスを防止するようにしている。
ところで、スプロケットの歯毎の送りピッチの誤差を補正するには、補正対象となる歯がスプロケットのどこの位置(回転角度)の歯であるかを認識する必要があり、そのためには、スプロケットの基準角度からの回転角度を正確に検出する必要がある。
一般に、スプロケットの基準角度からの回転角度の検出は、モータやスプロケットの回転に同期してエンコーダから周期的に発生するパルスをパルスカウンタでカウントすると共に、このパルスカウンタのカウント値をスプロケットが基準角度から1回転(360°回転)する毎にリセットして、パルスカウンタのカウント値をスプロケットの基準角度からの回転角度と関連付けることで、パルスカウンタのカウント値からスプロケットの基準角度からの回転角度を検出できるようにしている。
この場合、パルスカウンタは、ハード回路で構成しても良いし、マイクロコンピュータのソフトウエアで構成しても良いが、いずれの構成でも、電源オフ時にパルスカウンタのカウント値が消えてしまう。ソフトウエアでパルスカウンタを構成する場合は、パルスカウンタのカウント値を不揮発性のメモリに記憶しておけば、電源オフ後もパルスカウンタのカウント値を保持でき、次の電源投入時にメモリに記憶されているパルスカウンタのカウント値を読み込むことで、前回の電源オフ時のスプロケットの停止角度(基準角度からの回転角度)が分かるが、テープフィーダは電源オフ中に部品実装機から取り外したり、部品供給テープを交換したりするため、電源オフ中にスプロケットの停止角度がずれる可能性があり、次の電源投入時に前回の電源オフ時のスプロケットの停止角度からずれた不明な回転角度からスプロケットが回転し始める可能性がある。このため、電源投入後にスプロケットを回転させて基準角度を検出するまでの期間(スプロケットが最大で1回転するまでの期間)は、スプロケットの基準角度からの回転角度が不明であり、スプロケットの歯の位置(歯番号)を特定できないため、スプロケットの歯毎の送りピッチの誤差を補償することができず、部品吸着ミスが発生する可能性がある。
そこで、本願発明は、テープフィーダの電源投入直後からスプロケットの歯の位置を認識してスプロケットの歯毎の送りピッチの誤差による部品吸着ミスを防止できるようにすることである。
上記課題を解決するために、本発明は、多数の部品が所定ピッチで配列された部品供給テープの送り孔にスプロケットの歯を噛み合わせながら、該スプロケットをモータで回転させて該部品供給テープを前記所定ピッチずつピッチ送りして該部品供給テープ内の部品を1個ずつ部品実装機の吸着ノズルで吸着するテープフィーダにおいて、前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎にパルスを出力するエンコーダと、前記エンコーダの出力パルスをカウントしてそのカウント値を前記スプロケットが基準角度から1回転(360°回転)する毎にリセットするパルスカウンタと、前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して前記スプロケットのピッチ送り動作を制御すると共に該スプロケットの歯毎の送りピッチの誤差を補正する制御部とを備えたテープフィーダであって、前記テープフィーダの電源オフ中に少なくとも前記エンコーダ及び前記パルスカウンタへの電源供給を維持して前記テープフィーダの電源オフ中でも前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎に前記エンコーダからパルスを出力して前記パルスカウンタのカウント値を更新するバックアップ電源を備え、前記制御部は、前記テープフィーダの電源の投入直後から前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して、前記スプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて前記部品供給テープの送り孔に噛み合っている該スプロケットの歯の位置を検出して該歯に設定された送りピッチ補正量で送りピッチの誤差を補正することを特徴とするものである。
この構成では、テープフィーダの電源オフ中に少なくともエンコーダ及びパルスカウンタへの電源供給をバックアップ電源により維持するため、テープフィーダの電源オフ中でもスプロケットが回転すれば、その回転角度に応じてパルスカウンタのカウント値が更新され、パルスカウンタのカウント値とスプロケットの基準角度からの回転角度との対応関係が維持される。これにより、テープフィーダの電源オフ中にスプロケットが回転しても、テープフィーダの電源の投入直後からパルスカウンタのカウント値に基づいてスプロケットの基準角度からの回転角度を認識することが可能となり、テープフィーダの電源の投入直後からスプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて部品供給テープの送り孔に噛み合っている該スプロケットの歯の位置を検出して該歯に設定された送りピッチ補正量で送りピッチの誤差を補正することができる。これにより、テープフィーダの電源の投入直後からスプロケットのピッチ送り動作毎に部品供給テープ内の先頭の部品を部品吸着位置に精度良く位置決めすることが可能となり、テープフィーダの電源の投入直後から部品吸着ミスを防止することができる。
テープフィーダの電源オフ中は、スプロケットが正逆いずれの方向にも回転可能であるため、前記エンコーダとして、正逆回転検出可能なエンコーダを用いて、前記パルスカウンタとして、前記エンコーダの出力パルスのカウント動作のアップ/ダウンを回転方向に応じて切り換えるアップダウンカウンタを用いると良い。これにより、テープフィーダの電源オフ中にスプロケットが正回転/逆回転のいずれの方向に回転しても、パルスカウンタのカウント値とスプロケットの基準角度からの回転角度との対応関係を維持することができる。
また、スプロケットの歯毎の送りピッチ補正量は、テープフィーダ内の不揮発性のメモリに記憶するようにしても良い。
本発明は、上述したスプロケットの歯毎の送りピッチの誤差を補正する構成に限定されず、スプロケットの歯毎の送りピッチの誤差に応じて部品実装機の制御部が部品吸着位置を補正するようにしても良い。具体的には、テープフィーダの電源オフ中に少なくともエンコーダ及びパルスカウンタへの電源供給を維持するバックアップ電源を備え、該テープフィーダの制御部からパルスカウンタのカウント値を部品実装機の制御部へ送信し、該部品実装機の制御部は、前記テープフィーダの電源の投入直後から該テープフィーダの制御部から送信されてくるパルスカウンタのカウント値に基づいてスプロケットの基準角度からの回転角度を認識して、該スプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて部品供給テープの送り孔に噛み合っている該スプロケットの歯の位置を検出して該歯に設定された部品吸着位置補正量で部品吸着位置を補正し、補正後の部品吸着位置で該部品供給テープ内の部品を吸着ノズルで吸着するようにしても良い。このようにしても、テープフィーダの電源の投入直後からスプロケットのピッチ送り動作毎に部品供給テープ内の先頭の部品の停止位置と部品吸着位置とのずれを減少又は無くすことができて、テープフィーダの電源の投入直後から部品吸着ミスを防止することができる。
以下、本発明を実施するための形態を具体化した2つの実施例1,2を説明する。
本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1及び図2を参照してテープフィーダ11の構成を説明する。
まず、図1及び図2を参照してテープフィーダ11の構成を説明する。
テープフィーダ11には、部品供給テープ12を巻回したリール(図示せず)が交換可能にセットされ、該リールから引き出された部品供給テープ12がテープガイド13によってテープフィーダ11の上面先端側の部品吸着位置へ案内されるようになっている。尚、図示はしないが、部品供給テープ12は、キャリアテープに多数の部品を所定ピッチで配列して該キャリアテープの上面にカバーテープ(トップテープとも呼ばれる)を貼着して形成したものであり、部品吸着位置の手前で部品供給テープ12上面のカバーテープを剥離して内部の部品を露出させ、部品吸着位置で部品実装機の吸着ノズルで該部品供給テープ12内の部品を吸着するようにしている。
部品吸着位置の下方には、部品供給テープ12をピッチ送りするスプロケット15が回転軸16を介して回転可能に支持されている。スプロケット15の外周には、歯17が所定ピッチで形成され、部品供給テープ12の片方の側縁に沿って所定ピッチで形成された送り孔(図示せず)にスプロケット15の歯17を噛み合わせながら、該スプロケット15をモータ19で回転させて該部品供給テープ12をピッチ送りするように構成されている。1回のピッチ送り動作で部品供給テープ12の部品の配列ピッチ分だけ部品供給テープ12を順送りすることで、ピッチ送り動作毎に部品供給テープ12内の部品を1個ずつ部品吸着位置へ送るようになっている。
このスプロケット15を回転駆動するスプロケット駆動機構18は、ステップモータ、サーボモータ等のモータ19を駆動源とし、該モータ19の回転軸20に嵌着したギア21とスプロケット15の回転軸16に嵌着したギア22との間に、中間ギヤ23が回転軸24を介して回転可能に配置され、モータ19のギア21と中間ギヤ23とスプロケット15のギア22とが噛み合っている。これにより、モータ19の回転力がギア21→中間ギヤ23→ギア22の経路でスプロケット15に伝達されて該スプロケット15が該モータ19の回転に連動して回転するようになっている。尚、スプロケット駆動機構18を構成するギヤの数やギヤ比等は適宜変更しても良いことは言うまでもない。
このスプロケット駆動機構18には、モータ19やスプロケット15の回転に同期して周期的にパルスを出力する磁気式のエンコーダ26が設けられている。この磁気式のエンコーダ26は、例えばN極とS極を着磁した円盤状磁石27が発生する磁気を磁気検出素子25(図2参照)で検出してパルスを出力するように構成されている。この場合、テープフィーダ11の電源オフ中に、スプロケット15(モータ19)が正回転/逆回転いずれの方向にも回転可能であることを考慮して、エンコーダ26は、正逆両方向の回転角度を検出できるように、A相用の磁気検出素子25とB相用の磁気検出素子(図示せず)とが円盤状磁石27の外周に沿って90°ずれた位置に配置され、円盤状磁石27が1回転(360°回転)する間にA相パルスとB相パルスが90°ずれた位相で出力されて、A相パルスとB相パルスの発生順序によって回転方向を判定できるように構成されている。
エンコーダ26の円盤状磁石27は、回転軸28を介して回転可能に支持され、該円盤状磁石27の回転軸28に嵌着したギア29とモータ19のギア21との間に、回転検出用中間ギヤ30が回転軸31を介して回転可能に配置され、モータ19のギア21と回転検出用中間ギヤ30と円盤状磁石27のギア29とが噛み合っている。これにより、モータ19の回転力がギア21→回転検出用中間ギヤ30→ギア29の経路でエンコーダ26の円盤状磁石27に伝達されて該円盤状磁石27が該モータ19の回転に連動して回転するようになっている。
本実施例1では、例えば、モータ19が120°(スプロケット15外周の1mm相当分)回転する毎にエンコーダ26の円盤状磁石27が1回転(360°回転)して、エンコーダ26からA相パルスとB相パルスが90°ずれた位相で出力されるようにギヤ比が設計されている。
図3に示すように、テープフィーダ11には、エンコーダ26から出力されるA相、B相のパルスをカウントするパルスカウンタ32が設けられている。このパルスカウンタ32は、論理回路(ハードウエア)で構成され、エンコーダ26から出力されるA相、B相のパルスのカウント動作のアップ/ダウンを回転方向に応じて切り換えるアップダウンカウンタを用いて構成されている。この場合、パルスカウンタ32は、A相パルスとB相パルスの発生順序によって回転方向を判定し、正回転ではパルスのカウント値をカウントアップし、逆回転ではパルスのカウント値をカウントダウンし、スプロケット15が基準角度から1回転(360°回転)する毎(つまりスプロケット15の1回転分のカウント値に達する毎)にパルスのカウント値をリセットするように構成されている。これにより、スプロケット15が正回転/逆回転いずれの方向に回転しても、パルスカウンタ32のカウント値とスプロケット15の基準角度からの回転角度との対応関係が維持されて、正回転/逆回転いずれの回転方向でも、パルスカウンタ32のカウント値によってスプロケット15の基準角度からの回転角度を認識できるようになっている。
テープフィーダ11の制御部33は、マイクロコンピュータを主体として構成され、後述する図4のピッチ送り動作制御プログラムを実行することで、パルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識して駆動回路34に制御信号を出力し、モータ19を駆動してスプロケット15のピッチ送り動作を制御すると共に、該スプロケット15の歯17毎の送りピッチの誤差を補正する。
テープフィーダ11には、部品実装機側の電源・信号用コネクタと接続する電源・信号用コネクタ35が設けられ、テープフィーダ11を部品実装機のフィーダセット台にセットすることで、該テープフィーダ11の電源・信号用コネクタ35が部品実装機側の電源・信号用コネクタと接続され、部品実装機側からテープフィーダ11に電源が供給されると共に、テープフィーダ11の制御部33と部品実装機の制御部(図示せず)との間で信号を送受信可能な状態になる。
テープフィーダ11には、電源オフ中に少なくともエンコーダ26及びパルスカウンタ32への電源供給を維持するバックアップ電源36が設けられている。このバックアップ電源36は、一次電池や二次電池を用いて構成しても良いし、コンデンサ等を用いた蓄電回路等で構成しても良い。このバックアップ電源36は、テープフィーダ11が部品実装機にセットされて部品実装機側から電源が供給されているときには、バックアップ電源36からの電源供給が遮断された状態に維持されるように回路が構成されている。コンデンサ等を用いた蓄電回路等でバックアップ電源36を構成する場合は、部品実装機側から電源が供給されているときに蓄電回路等に充電されるように回路が構成されている。一方、テープフィーダ11が部品実装機から取り外されて部品実装機側からの電源供給が遮断されているときには、バックアップ電源36から電源線を介してエンコーダ26及びパルスカウンタ32に電源が供給される。これにより、テープフィーダ11の電源オフ中でも、スプロケット15が回転すれば、その回転に同期してエンコーダ26からA相、B相のパルスが90°ずれた位相で出力されてパルスカウンタ32のカウント値が更新される。これにより、テープフィーダ11の電源オフ中にスプロケット15が回転しても、パルスカウンタ32のカウント値とスプロケット15の基準角度からの回転角度との対応関係が維持され、パルスカウンタ32のカウント値によってスプロケット15の基準角度からの回転角度を認識できるようになっている。
テープフィーダ11が部品実装機にセットされて部品実装機側から電源が供給されているときには、その電源がテープフィーダ11の制御部33にも供給される。テープフィーダ11の電源オフ中は、バックアップ電源36から制御部33に電源が供給されないようにバックアップ電源36の回路が構成されている。
テープフィーダ11の制御部33は、テープフィーダ11の電源の投入直後からパルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識して、スプロケット15のピッチ送り動作毎に該パルスカウンタ32のカウント値に基づいて部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出して該歯17に設定された送りピッチ補正量で送りピッチの誤差を補正する。このスプロケット15の歯17毎の送りピッチ補正量は、テープフィーダ11内の不揮発性のメモリ(図示せず)に記憶するようにしても良いし、テープフィーダ11の制御部33が実行する図4のピッチ送り動作制御プログラムに設定するようにしても良い。以下、図4のピッチ送り動作制御プログラムの処理内容を説明する。
図4のピッチ送り動作制御プログラムは、テープフィーダ11の電源オン中に制御部33によって所定周期で繰り返し実行される。テープフィーダ11の電源が投入されると、本プログラムが起動され、まず、ステップ101で、ピッチ送り動作実行タイミングであるか否かを判定し、ピッチ送り動作実行タイミングでなければ、以降の処理を行うことなく、本プログラムを終了する。
一方、上記ステップ101で、ピッチ送り動作実行タイミングであると判定されれば、ステップ102に進み、パルスカウンタ32のカウント値を読み込み、次のステップ103で、パルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識して、部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出する。
この後、ステップ104に進み、ピッチ送り動作の目標カウント値(目標回転角度)を歯番号に設定された送りピッチ補正量で補正する。この後、ステップ105に進み、ピッチ送り動作を実行してパルスカウンタ32のカウント値が補正後の目標カウント値に達する回転角度でスプロケット15の回転を停止させる。
以上説明した図4のピッチ送り動作制御プログラムによってスプロケット15のピッチ送り動作を繰り返すことで、ピッチ送り動作毎にパルスカウンタ32のカウント値に基づいて部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出して該歯17に設定された送りピッチ補正量で送りピッチの誤差を補正する。
本実施例1では、テープフィーダ11の電源オフ中に少なくともエンコーダ26及びパルスカウンタ32への電源供給をバックアップ電源36により維持するため、テープフィーダ11の電源オフ中でもスプロケット15が回転すれば、その回転角度に応じてパルスカウンタ32のカウント値が更新され、パルスカウンタ32のカウント値とスプロケット15の基準角度からの回転角度との対応関係が維持される。これにより、テープフィーダ11の電源オフ中にスプロケット15が回転しても、テープフィーダ11の電源の投入直後からパルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識することが可能となり、テープフィーダ11の電源の投入直後からスプロケット15のピッチ送り動作毎に該パルスカウンタ32のカウント値に基づいて部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出して該歯17に設定された送りピッチ補正量で送りピッチの誤差を補正することができる。これにより、テープフィーダ11の電源の投入直後からスプロケット15のピッチ送り動作毎に部品供給テープ12内の先頭の部品を部品吸着位置に精度良く位置決めすることが可能となり、テープフィーダ11の電源の投入直後から部品吸着ミスを防止することができる。
次に、図5を用いて本発明の実施例2を説明する。但し、上記実施例1と実質的に同一の部分は、同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。
上記実施例1では、スプロケット15のピッチ送り動作毎にパルスカウンタ32のカウント値に基づいてスプロケット15の歯17毎の送りピッチの誤差を補正するようにしたが、本発明の実施例2では、部品実装機の制御部(図示せず)が図5の部品吸着動作制御プログラムを実行することで、スプロケット15の歯17毎の送りピッチの誤差に応じて部品吸着位置を補正するようにしている。
本実施例2でも、テープフィーダ11は、上記実施例1と同様に、テープフィーダ11の電源オフ中に少なくともエンコーダ26及びパルスカウンタ32への電源供給を維持するバックアップ電源36を備え、該テープフィーダ11の制御部33からパルスカウンタ32のカウント値を部品実装機の制御部へ送信し、該部品実装機の制御部は、図5の部品吸着動作制御プログラムを実行することで、テープフィーダ11の電源の投入直後から該テープフィーダ11の制御部33から送信されてくるパルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識して、該スプロケット15のピッチ送り動作毎に該パルスカウンタ32のカウント値に基づいて部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出して該歯17に設定された部品吸着位置補正量で部品吸着位置を補正し、補正後の部品吸着位置で該部品供給テープ12内の部品を吸着ノズルで吸着するようにしている。この場合、スプロケット15の歯17毎の部品吸着位置補正量は、歯17毎の送りピッチの誤差に合わせて設定され、部品実装機の不揮発性のメモリ(図示せず)に記憶するようにしても良いし、部品実装機の制御部が実行する図5の部品吸着動作制御プログラムに設定するようにしても良い。以下、図5の部品吸着動作制御プログラムの処理内容を説明する。
図5の部品吸着動作制御プログラムは、部品実装機の電源オン中に部品実装機の制御部によって所定周期で繰り返し実行される。部品実装機の電源が投入されると、本プログラムが起動され、まず、ステップ201で、部品吸着動作実行タイミングであるか否かを判定し、部品吸着動作実行タイミングでなければ、以降の処理を行うことなく、本プログラムを終了する。
一方、上記ステップ201で、部品吸着動作実行タイミングであると判定されれば、ステップ202に進み、パルスカウンタ32のカウント値を読み込み、次のステップ203で、パルスカウンタ32のカウント値に基づいてスプロケット15の基準角度からの回転角度を認識して、部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出する。
この後、ステップ204に進み、検出した歯番号に設定された部品吸着位置補正量で部品吸着位置を補正する。この後、ステップ205に進み、部品吸着動作を実行して、補正後の部品吸着位置で部品供給テープ12内の部品を吸着ノズルで吸着する。
以上説明した本実施例2では、部品実装機の制御部が図5の部品吸着動作制御プログラムを実行することで、スプロケット15のピッチ送り動作毎にパルスカウンタ32のカウント値に基づいて部品供給テープ12の送り孔に噛み合っている該スプロケット15の歯17の位置(歯番号)を検出して該歯17に設定された部品吸着位置補正量で部品吸着位置を補正して、補正後の部品吸着位置で部品供給テープ12内の部品を吸着ノズルで吸着するようにしたので、テープフィーダ11の電源の投入直後からスプロケット15のピッチ送り動作毎に部品供給テープ12内の先頭の部品の停止位置と部品吸着位置とのずれを減少又は無くすことができて、テープフィーダ11の電源の投入直後から部品吸着ミスを防止することができる。
尚、上記実施例1,2では、磁気式のエンコーダ26を用いたが、光学式のエンコーダを用いても良い等、エンコーダの方式や構成は限定されず、種々の構成のエンコーダを使用可能である。
また、上記実施例1,2では、モータ19の回転角度を回転検出用中間ギヤ30(回転部材)を介してエンコーダ26で検出するようにしたが、回転検出用中間ギヤ30を省略してモータ19の回転角度をエンコーダで直接検出するようにしたり、或は、スプロケット15や中間ギヤ23の回転角度をエンコーダで検出するようにしても良く、要は、モータ19又はスプロケット15又はこれらの回転に連動して回転する回転部材(中間ギヤ23,30等)が所定角度回転する毎にエンコーダからパルスを出力するように構成すれば良い。
その他、本発明は、上記実施例1,2の構成に限定されず、バックアップ電源36の回路構成を変更したり、テープフィーダ11の構成を種々変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
11…テープフィーダ、12…部品供給テープ、15…スプロケット、17…歯、18…スプロケット駆動機構、19…モータ、23…中間ギヤ、26…エンコーダ、27…円盤状磁石、30…回転検出用中間ギヤ(回転部材)、32…パルスカウンタ、33…制御部、36…バックアップ電源
Claims (4)
- 多数の部品が所定ピッチで配列された部品供給テープの送り孔にスプロケットの歯を噛み合わせながら、該スプロケットをモータで回転させて該部品供給テープを前記所定ピッチずつピッチ送りして該部品供給テープ内の部品を1個ずつ部品実装機の吸着ノズルで吸着するテープフィーダにおいて、
前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎にパルスを出力するエンコーダと、
前記エンコーダの出力パルスをカウントしてそのカウント値を前記スプロケットが基準角度から1回転する毎にリセットするパルスカウンタと、
前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して前記スプロケットのピッチ送り動作を制御すると共に該スプロケットの歯毎の送りピッチの誤差を補正する制御部とを備えたテープフィーダであって、
前記テープフィーダの電源オフ中に少なくとも前記エンコーダ及び前記パルスカウンタへの電源供給を維持して前記テープフィーダの電源オフ中でも前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎に前記エンコーダからパルスを出力して前記パルスカウンタのカウント値を更新するバックアップ電源を備え、
前記制御部は、前記テープフィーダの電源の投入直後から前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して、前記スプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて前記部品供給テープの送り孔に噛み合っている該スプロケットの歯の位置を検出して該歯に設定された送りピッチ補正量で送りピッチの誤差を補正することを特徴とするテープフィーダ。 - 前記エンコーダは、正逆回転検出可能なエンコーダであり、
前記パルスカウンタは、前記エンコーダの出力パルスのカウント動作のアップ/ダウンを回転方向に応じて切り換えるアップダウンカウンタであることを特徴とする請求項1に記載のテープフィーダ。 - 前記スプロケットの歯毎の送りピッチ補正量は、前記制御部が実行するピッチ送り動作制御プログラムに設定されていることを特徴とする請求項1又は2に記載のテープフィーダ。
- 多数の部品が所定ピッチで配列された部品供給テープの送り孔にスプロケットの歯を噛み合わせながら、該スプロケットをモータで回転させて該部品供給テープを前記所定ピッチずつピッチ送りするテープフィーダを備え、該テープフィーダがピッチ送りする部品供給テープ内の部品を部品吸着位置で1個ずつ吸着ノズルで吸着して回路基板に実装する部品実装機において、
前記テープフィーダは、
前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎にパルスを出力するエンコーダと、
前記エンコーダの出力パルスをカウントしてそのカウント値を前記スプロケットが基準角度から1回転する毎にリセットするパルスカウンタと、
前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して前記スプロケットのピッチ送り動作を制御する制御部と、
前記テープフィーダの電源オフ中に少なくとも前記エンコーダ及び前記パルスカウンタへの電源供給を維持して前記テープフィーダの電源オフ中でも前記モータ又は前記スプロケット又はこれらの回転に連動して回転する回転部材が所定角度回転する毎に前記エンコーダからパルスを出力して前記パルスカウンタのカウント値を更新するバックアップ電源とを備え、
前記テープフィーダの制御部は、前記パルスカウンタのカウント値を前記部品実装機の制御部へ送信し、
前記部品実装機の制御部は、前記テープフィーダの電源の投入直後から前記テープフィーダの制御部から送信されてくる前記パルスカウンタのカウント値に基づいて前記スプロケットの前記基準角度からの回転角度を認識して、前記スプロケットのピッチ送り動作毎に該パルスカウンタのカウント値に基づいて前記部品供給テープの送り孔に噛み合っている該スプロケットの歯の位置を検出して該歯に設定された部品吸着位置補正量で前記部品吸着位置を補正し、補正後の部品吸着位置で該部品供給テープ内の部品を前記吸着ノズルで吸着することを特徴とする部品実装機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017551456A JP6717850B2 (ja) | 2015-11-19 | 2015-11-19 | テープフィーダ及び部品実装機 |
PCT/JP2015/082494 WO2017085826A1 (ja) | 2015-11-19 | 2015-11-19 | テープフィーダ及び部品実装機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/082494 WO2017085826A1 (ja) | 2015-11-19 | 2015-11-19 | テープフィーダ及び部品実装機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017085826A1 true WO2017085826A1 (ja) | 2017-05-26 |
Family
ID=58718619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082494 WO2017085826A1 (ja) | 2015-11-19 | 2015-11-19 | テープフィーダ及び部品実装機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6717850B2 (ja) |
WO (1) | WO2017085826A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018110188A (ja) * | 2017-01-05 | 2018-07-12 | パナソニックIpマネジメント株式会社 | 部品実装システムおよび部品供給装置の評価方法 |
CN111108820A (zh) * | 2017-09-25 | 2020-05-05 | 株式会社富士 | 带式供料器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287776A (ja) * | 2009-06-12 | 2010-12-24 | Sony Corp | 部品供給装置、部品実装装置、部品供給方法、位置決め装置及び位置決め方法 |
JP2015103773A (ja) * | 2013-11-28 | 2015-06-04 | パナソニックIpマネジメント株式会社 | テープフィーダ、部品実装装置および部品供給方法 |
-
2015
- 2015-11-19 WO PCT/JP2015/082494 patent/WO2017085826A1/ja active Application Filing
- 2015-11-19 JP JP2017551456A patent/JP6717850B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287776A (ja) * | 2009-06-12 | 2010-12-24 | Sony Corp | 部品供給装置、部品実装装置、部品供給方法、位置決め装置及び位置決め方法 |
JP2015103773A (ja) * | 2013-11-28 | 2015-06-04 | パナソニックIpマネジメント株式会社 | テープフィーダ、部品実装装置および部品供給方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018110188A (ja) * | 2017-01-05 | 2018-07-12 | パナソニックIpマネジメント株式会社 | 部品実装システムおよび部品供給装置の評価方法 |
CN111108820A (zh) * | 2017-09-25 | 2020-05-05 | 株式会社富士 | 带式供料器 |
EP3691430A4 (en) * | 2017-09-25 | 2020-09-09 | Fuji Corporation | BAND FEEDING DEVICE |
CN111108820B (zh) * | 2017-09-25 | 2021-03-16 | 株式会社富士 | 带式供料器 |
Also Published As
Publication number | Publication date |
---|---|
JP6717850B2 (ja) | 2020-07-08 |
JPWO2017085826A1 (ja) | 2018-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4672491B2 (ja) | テープフィーダおよび表面実装機 | |
WO2017109840A1 (ja) | テープフィーダ及び部品実装機 | |
JP4882411B2 (ja) | フィーダ調整装置、フィーダ調整方法およびテープフィーダ | |
JP4999656B2 (ja) | 部品供給装置のテープフィーダ | |
WO2017085826A1 (ja) | テープフィーダ及び部品実装機 | |
JP5616718B2 (ja) | 部品供給装置 | |
JP6909300B2 (ja) | テープフィーダ | |
JP6959346B2 (ja) | テープフィーダ | |
JP6341720B2 (ja) | テープフィーダ及びこのテープフィーダの制御方法 | |
US11147199B2 (en) | Tape feeder | |
JP2015191954A (ja) | テープフィーダ及びテープフィーダの制御方法 | |
JP6928173B2 (ja) | テープ送り装置およびテープ送り方法 | |
KR101231186B1 (ko) | 전동 피더의 모터위상 보정방법 | |
JP2023012130A (ja) | テープ送り装置およびテープ送り方法 | |
JP2020136620A (ja) | 部品供給装置および部品供給装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15908766 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017551456 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15908766 Country of ref document: EP Kind code of ref document: A1 |