WO2017084177A1 - 显示器及其有机发光二极管器件 - Google Patents

显示器及其有机发光二极管器件 Download PDF

Info

Publication number
WO2017084177A1
WO2017084177A1 PCT/CN2015/099373 CN2015099373W WO2017084177A1 WO 2017084177 A1 WO2017084177 A1 WO 2017084177A1 CN 2015099373 W CN2015099373 W CN 2015099373W WO 2017084177 A1 WO2017084177 A1 WO 2017084177A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
glass substrate
hole
anode layer
Prior art date
Application number
PCT/CN2015/099373
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/913,365 priority Critical patent/US9966573B2/en
Publication of WO2017084177A1 publication Critical patent/WO2017084177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode

Definitions

  • the present invention relates to the field of semiconductor technologies, and in particular, to an organic light emitting diode device and a display using the same.
  • An organic light emitting diode device generally consists of a cathode layer, an anode layer, and a light emitting layer.
  • the cathode layer is generally made of a metal material such as Al (aluminum) and the anode is made of a material such as ITO (indium tin oxide). Electrons and holes are injected from the cathode and the anode, respectively, and excitons are formed in the organic light-emitting layer to excite the light-emitting layer material to emit light.
  • ITO indium tin oxide
  • the structure of the device exhibits a top emission state, and the production line is often placed at the bottom due to the destruction of the organic material by ITO evaporation, thereby adopting a bottom-emitting structure. That is, light is emitted from the cathode layer.
  • the organic light emitting diode device includes at least the organic light emitting layer 101, the anode layer 102, and the glass layer 103.
  • the refractive index of the anode layer 102 is greater than the refractive index of the glass layer 103.
  • the present invention provides a display and an organic light emitting diode device thereof to solve the technical problem that total reflection occurs between the glass layer and the air layer in the prior art, thereby resulting in low efficiency of light extraction.
  • an organic light emitting diode device which comprises a glass substrate, an anode layer, an organic layer and a cathode layer which are sequentially stacked, and the refractive index of the anode layer is larger than the a refractive index of the glass substrate, wherein the anode layer has a through hole such that a portion of the light emitted by the organic layer is directly incident to the glass substrate through the through hole to reduce the anode a total reflection phenomenon of a contact surface between the electrode layer and the glass substrate; a dielectric layer is disposed between the glass substrate and the anode layer; a refractive index of the dielectric layer is smaller than a refractive index of the organic layer, and the dielectric layer is provided with The through hole corresponding to the through hole allows a part of the light emitted from the organic layer to sequentially pass through the through hole, and the through hole directly enters the glass substrate.
  • the through hole has a diameter of between 1 mm and 1000 mm.
  • the plurality of through holes are evenly distributed on the anode layer.
  • the dielectric layer has a refractive index greater than the refractive index of the organic layer.
  • the total area of the plurality of through holes is less than 30% of the area of overlap of the anode layer and the dielectric layer.
  • the organic layer has a refractive index lower than that of the anode layer.
  • the glass substrate has a refractive index of 1.45 and the anode layer has a refractive index of 1.9.
  • an organic light emitting diode device including a glass substrate, an anode layer, an organic layer, and a cathode layer which are sequentially stacked, and the anode layer has a refractive index greater than the glass. a refractive index of the substrate, wherein the anode layer has a through hole such that a portion of the light emitted by the organic layer is directly incident to the glass substrate through the through hole to reduce the total contact surface of the anode layer and the glass substrate Reflection phenomenon.
  • the through hole has a diameter of between 1 mm and 1000 mm.
  • the plurality of through holes are evenly distributed on the anode layer.
  • a dielectric layer is disposed between the glass substrate and the anode layer.
  • the dielectric layer has a refractive index greater than the refractive index of the organic layer.
  • the dielectric layer has a refractive index smaller than a refractive index of the organic layer, and the dielectric layer is provided with a through hole corresponding to the through hole, so that part of the light emitted by the organic layer passes through The through hole and the through hole are directly incident on the glass substrate.
  • the total area of the plurality of through holes is less than 30% of the area of overlap of the anode layer and the dielectric layer.
  • the organic layer has a refractive index lower than that of the anode layer.
  • the glass substrate has a refractive index of 1.45 and the anode layer has a refractive index of 1.9.
  • another technical solution adopted by the present invention is to provide a display including the above-described organic light emitting diode device.
  • the beneficial effects of the present invention are: different from the prior art, the display of the present invention and the organic light emitting diode device thereof, the anode layer has a through hole such that part of the light emitted by the organic layer is directly incident through the through hole to
  • the glass substrate reduces the total reflection phenomenon of the contact surface of the anode layer and the glass substrate, thereby improving the light extraction rate of the organic light emitting diode device.
  • FIG. 1 is a schematic diagram showing a portion of an optical path of an organic light emitting diode device in the prior art
  • FIG. 2 is a schematic block diagram showing the structure of an organic light emitting diode device according to a preferred embodiment of the present invention
  • FIG. 3 is a plan view of an organic layer of the organic light emitting diode device shown in FIG. 2;
  • FIG. 4 is a schematic diagram showing the structure of an organic light emitting diode device according to another preferred embodiment of the present invention.
  • Fig. 5 is a schematic block diagram showing the structure of an organic light emitting diode device according to another preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the structure of an organic light emitting diode device according to a preferred embodiment of the present invention
  • FIG. 3 is a plan view of the organic layer 30 of the organic light emitting diode device shown in FIG. 2.
  • the organic light emitting diode device 1 of the present embodiment includes a glass substrate 10, an anode layer 20, an organic layer 30, and a cathode layer 40 which are sequentially laminated.
  • the electrons and holes in this embodiment are injected from the cathode layer 40 and the anode layer 20, respectively, and excitons are formed in the organic layer 30 and the material of the organic layer 30 is excited to emit light.
  • the light excited from the organic layer 30 passes through the anode layer 20, and then It is emitted from the glass substrate 10.
  • the anode layer 20 has a refractive index n 1 greater than a refractive index n 2 of the glass substrate 10, wherein the anode layer 20 has a through hole 21 such that a portion of the light emitted by the organic layer 30 is directly incident through the through hole 21.
  • the glass substrate 10 is applied to reduce the total reflection phenomenon of the contact surface of the anode layer 20 with the glass substrate 10.
  • the refractive index of the organic layer 30 may be smaller than the refractive index n 1 of the anode layer 20, and at this time, the refractive index of the organic layer may be 30 is larger or smaller than the refractive index n 2 of the glass substrate 10, air.
  • the refractive index is smaller than the refractive index n 1 of the glass substrate 10.
  • the refractive index of air 1, preferably, the refractive index n 2 of the glass substrate 10 is 1.45, and the refractive index n 1 of the anode layer 20 is 1.9.
  • the refractive indices of the glass substrate 10 and the anode layer 20 are also It can be other ratios.
  • the light emitted from the organic light-emitting diode device 1 from the organic layer 30 has two optical paths a and b (of course, there are other optical paths, which are not explained here because they do not involve the improvement of the present invention) .
  • the optical path a part of the light emitted from the organic layer 30 is refracted when it is incident on the anode layer 20, and part of the light emitted from the anode layer 20 is incident on the glass substrate 10, and the same portion of the light is refracted.
  • the angle of refraction ⁇ 2 of the light in the anode layer 20 is greater than the exit angle ⁇ 1 .
  • the incident angle ⁇ 3 of the glass substrate 10 is equal to the angle of refraction ⁇ 2 of the anode layer 20, ⁇ 3 is greater than ⁇ 1 , which means that the light is
  • the incident angle ⁇ 3 of the glass substrate 10 becomes larger with respect to ⁇ 1 , and the larger ⁇ 3 may even be greater than or equal to the critical angle of the glass layer 103 such that part of the light is totally reflected between the glass layer 103 and the air layer, thereby The efficiency of light output is low. From this, it can be seen that the incident angle ⁇ 3 of the glass layer 103 can be reduced to avoid the total reflection phenomenon that occurs when ⁇ 3 is greater than or equal to the critical angle of the glass layer 103, that is, the refraction angle ⁇ 2 is reduced.
  • the refractive index n 1 of the anode layer 20 can be reduced.
  • the purpose of the small refraction angle ⁇ 2 in the present embodiment, by providing the through hole 21 in the anode layer 20, since the through hole 21 is air, the refractive index of the air is smaller than the refractive index n 1 of the anode layer 20, so that the light incident at the incident angle ⁇ 1 can enter the glass substrate. After 10, the phenomenon of total reflection can be reduced, that is, see the optical path b.
  • the diameter of the through hole 21 is between 1 mm and 1000 mm, and preferably, the diameter of the through hole 21 is 10 mm, 15 mm or 50 mm.
  • the through holes 21 may be 10-300.
  • the through holes 21 are 20 or 80, and the through holes 21 are not excessive.
  • the conductivity of the anode layer 20 is greatly affected.
  • the center distance of the adjacent two through holes 21 is 20-100 mm, and preferably, the center distance of the adjacent two through holes 21 is 50 mm.
  • the through hole 21 may be provided only on the anode layer 20 side, and the through hole 21 may be uniformly provided on both sides of the anode layer 20, and the through hole 21 may not be provided in the middle.
  • the total area of the plurality of through holes 21 is less than 30% of the overlapping area of the anode layer 20 and the glass substrate 10.
  • the area of the anode layer 20 in this embodiment may be Greater than or equal to the area of the glass substrate 10, the area of the anode layer 20 may also be smaller than that of the glass substrate 10, as long as the area of the anode layer 20 overlapping the glass substrate 10 is greater than 30% of the total area of all the through holes 21. This allows the anode layer 20 to have sufficient space to simultaneously inject holes, ensuring the conduction performance of the anode layer 20.
  • the through hole 21 in this embodiment may be a through hole, a curved hole, or a spiral hole.
  • the through hole 21 is a curved and spiral hole, the light may enter the glass substrate 10 after being reflected multiple times.
  • the through hole 21 may be a circular shape, a regular polygon such as an equilateral triangle or a rhombus, or a heart shape or a star shape.
  • the cathode layer in this embodiment may be made of one or more metal materials of Ag, Al, Ca, In, Li, Mg, etc., and the anode layer is made of ITO (indium tin oxide) or the like, and ITO is formed by an evaporation method. .
  • FIG. 4 is a schematic diagram showing the structure of an organic light emitting diode device according to another preferred embodiment of the present invention.
  • the organic light emitting diode device 1 of the present embodiment is substantially the same as the first embodiment, and the difference is in this embodiment.
  • the organic light emitting diode device 1 has a plurality of dielectric layers 50.
  • the organic light emitting diode device 1 of the present embodiment includes a glass substrate 10, a dielectric layer 50, an anode layer 20, an organic layer 30, and a cathode layer 40 which are sequentially stacked.
  • the refractive index of the anode layer 20 in this embodiment is greater than the refractive index of the glass substrate 10, and the refractive index of the dielectric layer 50 is greater than the refractive index of the organic layer 30, wherein the anode layer 20 has a through hole 21 such that Part of the light emitted by the organic layer 30 is directly incident on the dielectric layer 50 through the through hole 21 to reduce the total reflection phenomenon of the contact surface of the anode layer 20 and the glass substrate 10.
  • FIG. 5 is a schematic diagram showing the structure of an organic light emitting diode device 1 according to another preferred embodiment of the present invention.
  • the dielectric layer 50 may have a refractive index smaller than the organic layer 30.
  • the dielectric layer 50 is provided with a through hole 51 corresponding to the through hole 21, so that part of the light emitted from the organic layer 30 sequentially passes through the through hole 21, and the through hole 51 directly enters the through hole 51.
  • the glass substrate 10 is. Specifically, the through hole 51 communicates with the through hole 21 .
  • the total area of the plurality of through holes 51 in this embodiment is less than 30% of the area of overlap of the dielectric layer 50 and the glass substrate 10.
  • the present invention also provides a display comprising the above-described organic light emitting diode device 1.
  • the anode layer 20 has a through hole 21 such that a part of the light emitted from the organic layer 30 is directly incident on the glass substrate 10 through the through hole 21.
  • the total reflection phenomenon of the contact surface of the anode layer 20 and the glass substrate 10 is lowered, thereby improving the light extraction rate of the organic light emitting diode device 1.

Abstract

一种有机发光二极管器件(1),包括依次层叠的玻璃衬底(10)、阳极层(20)、有机层(30)以及阴极层(40),该阳极层(20)的折射率大于该玻璃衬底(10)的折射率,其中,该阳极层(20)具有贯穿孔(21)以使得由该有机层(30)所出射的部分光通过该贯穿孔(21)直接入射至该玻璃衬底(10)以降低该阳极层(20)与该玻璃衬底(10)接触面的全反射现象。

Description

显示器及其有机发光二极管器件 【技术领域】
本发明涉及半导体技术领域,特别涉及一种有机发光二极管器件以及使用该有机发光二极管器件的显示器。
【背景技术】
有机发光二极管器件一般由阴极层、阳极层和发光层组成。阴极层一般采用Al(铝)等金属材料而阳极采用ITO(氧化铟锡)等材料。电子和空穴分别从阴极和阳极注入,在有机发光层形成激子并激发发光层材料发光。目前实验室的产品多以透明阳极ITO为主,此时器件结构呈现出顶发射的状态,而生产线由于ITO蒸镀对有机材料的破坏,往往将其置于底部,从而采用底发光的结构,即光线从阴极层射出。
由于现行多数有机发光二极管器件采用阳极层发光结构,激发光通过透明电极ITO和玻璃出射。在这一模式中,由于折射率的固有属性,易发生全反射,如下图1所示的有机发光二极管器件光路图,有机发光二极管器件至少包括有机发光层101、阳极层102以及玻璃层103,阳极层102的折射率大于玻璃层103的折射率,部分光从有机发光层101入射至阳极层102后,在阳极层102发生了折射,使得阳极层102光的折射角θ2大于入射角θ1,由于θ2=θ3,使得玻璃层103的入射角θ3变大(即θ3大于θ1),甚至大于或等于玻璃层103临界角度,从而使得部分光在玻璃层103和空气层之间发生了全反射,导致出光的效率较低。
【发明内容】
本发明提供一种显示器及其有机发光二极管器件,以解决现有技术中在玻璃层和空气层之间发生了全反射,从而导致出光的效率较低的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种有机发光二极管器件,其中,包括依次层叠的玻璃衬底、阳极层、有机层以及阴极层,该阳极层的折射率大于该玻璃衬底的折射率,其中,该阳极层具有贯穿孔以使得由该有机层所出射的部分光通过该贯穿孔直接入射至该玻璃衬底以降低该阳 极层与该玻璃衬底接触面的全反射现象;该玻璃衬底与该阳极层之间设有介质层;该介质层的折射率小于该有机层的折射率,且该介质层设有与该贯穿孔对应的通孔,使得由该有机层所出射的部分光依次穿过该贯穿孔、该通孔直接入射至该玻璃衬底。
根据本发明一优选实施例,该贯穿孔的直径为1mm-1000mm之间。
根据本发明一优选实施例,该贯穿孔为多个,均匀分布于该阳极层。
根据本发明一优选实施例,该介质层的折射率大于该有机层的折射率。
根据本发明一优选实施例,多个该贯穿孔的总面积小于该阳极层与该介质层重叠面积的30%。
根据本发明一优选实施例,该有机层的折射率小于该阳极层的折射率。
根据本发明一优选实施例,该玻璃衬底的折射率为1.45,该阳极层的折射率为1.9。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种有机发光二极管器件,其包括依次层叠的玻璃衬底、阳极层、有机层以及阴极层,该阳极层的折射率大于该玻璃衬底的折射率,其中,该阳极层具有贯穿孔以使得由该有机层所出射的部分光通过该贯穿孔直接入射至该玻璃衬底以降低该阳极层与该玻璃衬底接触面的全反射现象。
根据本发明一优选实施例,该贯穿孔的直径为1mm-1000mm之间。
根据本发明一优选实施例,该贯穿孔为多个,均匀分布于该阳极层。
根据本发明一优选实施例,该玻璃衬底与该阳极层之间设有介质层。
根据本发明一优选实施例,该介质层的折射率大于该有机层的折射率。
根据本发明一优选实施例,该介质层的折射率小于该有机层的折射率,且该介质层设有与该贯穿孔对应的通孔,使得由该有机层所出射的部分光依次穿过该贯穿孔、该通孔直接入射至该玻璃衬底。
根据本发明一优选实施例,多个该贯穿孔的总面积小于该阳极层与该介质层重叠面积的30%。
根据本发明一优选实施例,该有机层的折射率小于该阳极层的折射率。
根据本发明一优选实施例,该玻璃衬底的折射率为1.45,该阳极层的折射率为1.9。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示器,其包括上述的有机发光二极管器件。
本发明的有益效果是:区别于现有技术的情况,本发明的显示器及其有机发光二极管器件,该阳极层具有贯穿孔以使得由该有机层所出射的部分光通过该贯穿孔直接入射至该玻璃衬底以降低该阳极层与该玻璃衬底接触面的全反射现象,从而提高有机发光二极管器件的出光率。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是现有技术中有机发光二极管器件部分光路示意简图;
图2是本发明一优选实施例的有机发光二极管器件的结构示意简图;
图3是图2所示的有机发光二极管器件的有机层的俯视图;
图4是本发明另一优选实施例的有机发光二极管器件的结构示意简图;
图5是本发明另一优选实施例的有机发光二极管器件的结构示意简图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参阅图2和图3,图2是本发明一优选实施例的有机发光二极管器件的结构示意简图,图3是图2所示的有机发光二极管器件的有机层30的俯视图。
本实施例的有机发光二极管器件1包括依次层叠的玻璃衬底10、阳极层20、有机层30以及阴极层40。
本实施例中的电子和空穴分别从阴极层40和阳极层20注入,在有机层30形成激子并激发有机层30的材料发光,从有机层30激发的光穿过阳极层20,再从玻璃衬底10出射。该阳极层20的折射率n1大于该玻璃衬底10的折射率n2,其中,该阳极层20具有贯穿孔21以使得由该有机层30所出射的部分光通过该贯穿孔21直接入射至该玻璃衬底10以降低该阳极层20与该玻璃衬底10接触 面的全反射现象。
在其实它施例中,有机层30的折射率可以小于该阳极层20的折射率n1,此时,有机层的折射率可以30大于或小于该玻璃衬底10的折射率n2,空气的折射率小于该玻璃衬底10的折射率n1。一般地,空气的折射率1,优选地,玻璃衬底10的折射率n2为1.45,该阳极层20的折射率n1为1.9,当然,玻璃衬底10与阳极层20的折射率也可以是其它比率。
如图2所示,有机发光二极管器件1从有机层30所出射的光有a、b两条光路(当然还有其它的光路,因不涉及本发明改进的重点,故此处不作一一阐述)。关于光路a,有机层30所出射的部分光入射至阳极层20时部分光发生了折射,而阳极层20所出射的部分光入射至玻璃衬底10时同样部分光发生了折射,由此可知,光在阳极层20的折射角θ2大于出射角θ1,由于玻璃衬底10的入射角θ3等于阳极层20的折射角θ2,所以θ3大于θ1,也就意味着光在玻璃衬底10的入射角θ3相对θ1变大,而变大的θ3甚至可能大于或等于玻璃层103临界角度,使得部分光在玻璃层103和空气层之间发生了全反射,从而导致出光的效率较低。由此可知,可减小玻璃层103的入射角θ3来避免θ3大于或等于玻璃层103临界角度时发生的全反射现象,即减小折射角θ2。根据折射定律n1sinθ1=n2sinθ2可知,在玻璃衬底10的折射率n2、入射角θ1不变的情况下,可以通过减小阳极层20的折射率n1来达到减小折射角θ2的目的。本实施例中通过在阳极层20设置贯穿孔21,由于贯穿孔21为空气,其空气折射率小于阳极层20的折射率n1,从而可使得以入射角θ1入射的光进入玻璃衬底10后可减少全反射的现象,即见光路b。
该贯穿孔21的直径为1mm-1000mm之间,优选地,贯穿孔21的直径为10mm、15mm或50mm。
本实施例中的贯穿孔21为多个,均匀分布于该阳极层20,贯穿孔21可以为10-300个,优选地,贯穿孔21为20或80个,贯穿孔21不宜过多,过多影响阳极层20的导通性。
进一步地,相邻的两个贯穿孔21的中心距为20-100mm,优选地,相邻的两个贯穿孔21的中心距为50mm。当然,也可只有阳极层20一侧设置贯穿孔21,还可以在相对阳极层20的两侧均匀设置贯穿孔21,中间不设置贯穿孔21。
值得说明的是,本实施例中多个该贯穿孔21的总面积小于该阳极层20与该玻璃衬底10重叠面积的30%。具体地,本实施例中的阳极层20的面积可以 大于或等于玻璃衬底10的面积,阳极层20的面积也可以比玻璃衬底10小,只要阳极层20与该玻璃衬底10面积重叠部分大于所有贯穿孔21的总面积的30%即可,这样可以使得阳极层20同时有足够的空间注入空穴,确保阳极层20的导通性能。
本实施例中的贯穿孔21可以是直通的孔,也可以是弯曲孔,还可以是螺旋孔,当贯穿孔21为弯曲和螺旋孔时光可经过多次反射后再进入玻璃衬底10。贯穿孔21可以是圆形,也可以是正三角形、菱形等正多边形,还可以是心形或星形等。
本实施例中的阴极层可以采用Ag、Al、Ca、In、Li、Mg等中的一种以上金属材料制成,而阳极层采用ITO(氧化铟锡)等材料,ITO通过蒸镀方法形成。
实施例二
请参阅图4,图4是本发明另一优选实施例的有机发光二极管器件的结构示意简图,本实施例的有机发光二极管器件1与第一实施例大体相同,不同之处本实施例中的有机发光二极管器件1多一层介质层50。
具体地,本实施例的有机发光二极管器件1包括依次层叠的玻璃衬底10、介质层50、阳极层20、有机层30以及阴极层40。
本实施例中的阳极层20的折射率大于该玻璃衬底10的折射率,且该介质层50的折射率大于该有机层30的折射率,其中,该阳极层20具有贯穿孔21以使得由该有机层30所出射的部分光通过该贯穿孔21直接入射至该介质层50以降低该阳极层20与该玻璃衬底10接触面的全反射现象。
进一步地,请参阅图5,图5是本发明另一优选实施例的有机发光二极管器件1的结构示意简图,在其它实施例中,也可以是介质层50的折射率小于该有机层30的折射率,此时,该介质层50设有与该贯穿孔21对应的通孔51,使得由该有机层30所出射的部分光依次穿过该贯穿孔21、该通孔51直接入射至该玻璃衬底10。具体地,通孔51与该贯穿孔21相通。
同样地,本实施例中多个该通孔51的总面积小于该介质层50与该玻璃衬底10重叠面积的30%。
本发明还提供了一种显示器,其包括上述的有机发光二极管器件1。
本发明的显示器及其有机发光二极管器件1,该阳极层20具有贯穿孔21以使得由该有机层30所出射的部分光通过该贯穿孔21直接入射至该玻璃衬底10 以降低该阳极层20与该玻璃衬底10接触面的全反射现象,从而提高有机发光二极管器件1的出光率。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种有机发光二极管器件,其中,包括依次层叠的玻璃衬底、阳极层、有机层以及阴极层,所述阳极层的折射率大于所述玻璃衬底的折射率,其中,所述阳极层具有贯穿孔以使得由所述有机层所出射的部分光通过所述贯穿孔直接入射至所述玻璃衬底以降低所述阳极层与所述玻璃衬底接触面的全反射现象;
    所述玻璃衬底与所述阳极层之间设有介质层;
    所述介质层的折射率小于所述有机层的折射率,且所述介质层设有与所述贯穿孔对应的通孔,使得由所述有机层所出射的部分光依次穿过所述贯穿孔、所述通孔直接入射至所述玻璃衬底。
  2. 根据权利要求1所述的有机发光二极管器件,其中,所述贯穿孔的直径为1mm-1000mm之间。
  3. 根据权利要求1所述的有机发光二极管器件,其中,所述贯穿孔为多个,均匀分布于所述阳极层。
  4. 根据权利要求1所述的有机发光二极管器件,其中,所述介质层的折射率大于所述有机层的折射率。
  5. 根据权利要求1所述的有机发光二极管器件,其中,多个所述贯穿孔的总面积小于所述阳极层与所述介质层重叠面积的30%。
  6. 根据权利要求1所述的有机发光二极管器件,其中,所述有机层的折射率小于所述阳极层的折射率。
  7. 根据权利要求1所述的有机发光二极管器件,其中,所述玻璃衬底的折射率为1.45,所述阳极层的折射率为1.9。
  8. 一种有机发光二极管器件,其中,包括依次层叠的玻璃衬底、阳极层、有机层以及阴极层,所述阳极层的折射率大于所述玻璃衬底的折射率,其中,所述阳极层具有贯穿孔以使得由所述有机层所出射的部分光通过所述贯穿孔直接入射至所述玻璃衬底以降低所述阳极层与所述玻璃衬底接触面的全反射现象。
  9. 根据权利要求8所述的有机发光二极管器件,其中,所述贯穿孔的直径为1mm-1000mm之间。
  10. 根据权利要求8所述的有机发光二极管器件,其中,所述贯穿孔为多个,均匀分布于所述阳极层。
  11. 根据权利要求8所述的有机发光二极管器件,其特征在于,所述玻璃 衬底与所述阳极层之间设有介质层。
  12. 根据权利要求11所述的有机发光二极管器件,其中,所述介质层的折射率大于所述有机层的折射率。
  13. 根据权利要求11所述的有机发光二极管器件,其特征在于,所述介质层的折射率小于所述有机层的折射率,且所述介质层设有与所述贯穿孔对应的通孔,使得由所述有机层所出射的部分光依次穿过所述贯穿孔、所述通孔直接入射至所述玻璃衬底。
  14. 根据权利要求11所述的有机发光二极管器件,其中,多个所述贯穿孔的总面积小于所述阳极层与所述介质层重叠面积的30%。
  15. 根据权利要求8所述的有机发光二极管器件,其中,所述有机层的折射率小于所述阳极层的折射率。
  16. 根据权利要求8所述的有机发光二极管器件,其中,所述玻璃衬底的折射率为1.45,所述阳极层的折射率为1.9。
  17. 一种显示器,其中,所述显示器包括权利要求16所述的有机发光二极管器件。
PCT/CN2015/099373 2015-11-19 2015-12-29 显示器及其有机发光二极管器件 WO2017084177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/913,365 US9966573B2 (en) 2015-11-19 2015-12-29 Display apparatus and an organic light-emitting diode device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510808947.XA CN105261710B (zh) 2015-11-19 2015-11-19 显示器及其有机发光二极管器件
CN201510808947.X 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017084177A1 true WO2017084177A1 (zh) 2017-05-26

Family

ID=55101290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099373 WO2017084177A1 (zh) 2015-11-19 2015-12-29 显示器及其有机发光二极管器件

Country Status (3)

Country Link
US (1) US9966573B2 (zh)
CN (1) CN105261710B (zh)
WO (1) WO2017084177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034155A (zh) * 2017-11-29 2019-07-19 乐金显示有限公司 用于照明装置的oled面板及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677743B (zh) * 2018-05-04 2019-11-21 元太科技工業股份有限公司 電泳顯示裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243182A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 有機el素子
CN102034846A (zh) * 2009-09-30 2011-04-27 统宝光电股份有限公司 图像显示系统
CN103390726A (zh) * 2012-05-09 2013-11-13 三星康宁精密素材株式会社 用于显示器的多孔玻璃基板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220305B2 (ja) * 2003-05-22 2009-02-04 三星エスディアイ株式会社 有機エレクトロルミネセンス素子
JP4600254B2 (ja) * 2005-11-22 2010-12-15 セイコーエプソン株式会社 発光装置および電子機器
US20080238310A1 (en) * 2007-03-30 2008-10-02 Forrest Stephen R OLED with improved light outcoupling
EP2725877A1 (en) * 2011-06-24 2014-04-30 Showa Denko K.K. Organic light emitting element and method for manufacturing organic light emitting element
KR101602418B1 (ko) 2012-04-06 2016-03-10 코닝정밀소재 주식회사 광추출 효율이 향상된 유기 발광소자용 기판, 그 제조방법 및 이를 구비하는 유기 발광소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243182A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 有機el素子
CN102034846A (zh) * 2009-09-30 2011-04-27 统宝光电股份有限公司 图像显示系统
CN103390726A (zh) * 2012-05-09 2013-11-13 三星康宁精密素材株式会社 用于显示器的多孔玻璃基板及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034155A (zh) * 2017-11-29 2019-07-19 乐金显示有限公司 用于照明装置的oled面板及其制造方法
CN110034155B (zh) * 2017-11-29 2023-07-18 乐金显示有限公司 用于照明装置的oled面板及其制造方法

Also Published As

Publication number Publication date
CN105261710B (zh) 2017-05-10
CN105261710A (zh) 2016-01-20
US9966573B2 (en) 2018-05-08
US20180040853A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
US9595648B2 (en) Light-emitting device
US20180198093A1 (en) Oled display panel and manufacture method thereof
US10164202B2 (en) Organic electroluminescence device including an organic electroluminescence element above a contact hole
US9640782B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
US9935160B2 (en) OLED display device having pixel separation layer sidewall comprising curved sections
US8987767B2 (en) Light emitting device having improved light extraction efficiency
JP2012204103A (ja) 有機電界発光素子、表示装置および照明装置
KR20130076401A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP6650522B2 (ja) Oled発光ダイオード及び表示装置
US9401496B2 (en) Organic light-emitting display apparatus
WO2017084177A1 (zh) 显示器及其有机发光二极管器件
US9887389B2 (en) Organic light emitting device
CN106486512B (zh) 一种有机发光二极管器件及有机发光显示器
US10276834B2 (en) Organic light-emitting device
KR20140074446A (ko) 광추출 효율이 향상된 발광 소자 및 그 제조 방법
KR102608318B1 (ko) 유기발광장치
TWI424226B (zh) 面光源與顯示面板
JP2015095383A (ja) 発光装置
KR102293473B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP4708934B2 (ja) 有機elパネル
WO2017075880A1 (zh) Oled显示器及其显示模组
KR20160008797A (ko) 광추출 효율이 향상된 유기발광소자
KR20140131680A (ko) 광추출 기판 및 이를 포함하는 유기발광소자
KR100977964B1 (ko) 유기 전계 발광소자
TW201415685A (zh) 有機發光二極體照明裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913365

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908673

Country of ref document: EP

Kind code of ref document: A1