WO2017082677A1 - 유기발광소자용 투명 전극 및 이의 제조 방법 - Google Patents

유기발광소자용 투명 전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017082677A1
WO2017082677A1 PCT/KR2016/013009 KR2016013009W WO2017082677A1 WO 2017082677 A1 WO2017082677 A1 WO 2017082677A1 KR 2016013009 W KR2016013009 W KR 2016013009W WO 2017082677 A1 WO2017082677 A1 WO 2017082677A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
light emitting
emitting device
transparent electrode
zinc oxide
Prior art date
Application number
PCT/KR2016/013009
Other languages
English (en)
French (fr)
Inventor
금동기
금중한
한관연
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2017082677A1 publication Critical patent/WO2017082677A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a transparent electrode for an organic light emitting device and a manufacturing method thereof.
  • An organic light emitting diode display is a self-luminous display that displays an image with an organic light emitting diode that emits light. Unlike a liquid crystal display, an organic light emitting diode display does not require a separate light source, so that thickness and weight may be relatively reduced. In addition, the organic light emitting diode display has attracted attention as a next-generation display device for portable electronic devices because it exhibits high quality characteristics such as low power consumption, high luminance, and high response speed.
  • An organic light emitting device is a device that uses light generated when the electrons and holes combine to dissipate light.
  • an organic light emitting diode basically includes an electrode for injecting holes, an electrode for injecting electrons, and a light emitting layer, and a light emitting layer is laminated between an anode, which is an electrode for injecting holes, and a cathode, which is an electrode for injecting electrons. It has a structure. Specifically, electrons are injected at the cathode of the organic light emitting device and holes are injected at the anode, and these charges move in opposite directions by an external electric field, and then combine in the light emitting layer to emit light while emitting light.
  • the light emitting layer is formed of a single molecule organic material or a polymer.
  • Electrode properties are very important in organic light emitting devices.
  • an organic light emitting device used for illumination is typically composed of pixels having a light emitting area of one side of 5 cm or more in length. Because of such a large light emitting area, when the surface resistance of the electrode is high, electrons or holes are not uniformly injected over the entire area, and thus light emission spots are generated or uniform luminance cannot be obtained in all the light emitting regions.
  • the light transmittance is lowered, which basically lowers the light extraction efficiency of the organic light emitting device.
  • Korean Patent Publication No. 2014-14683 discloses an organic light emitting display device and a method of manufacturing the same.
  • An object of the present invention is to provide a transparent electrode for an organic light emitting device that can improve the electrical conductivity of the transparent electrode of the organic light emitting device.
  • An object of the present invention is to provide a transparent electrode for an organic light emitting device that can improve the light extraction efficiency of the organic light emitting device.
  • An object of the present invention is to provide a method for producing a transparent electrode for an organic light emitting device.
  • a transparent electrode for an organic light emitting device comprising a substrate and a conductive nano barrier rib positioned on the substrate.
  • a transparent electrode for an organic light emitting device In the above 1, wherein the nano barrier ribs are 5 to 300nm in thickness, a transparent electrode for an organic light emitting device.
  • a transparent electrode for an organic light emitting device In the above 2, wherein the height of the nano barrier rib is 50 to 2,000nm, a transparent electrode for an organic light emitting device.
  • a transparent electrode for an organic light emitting device In the above 1, wherein the nano barrier ribs form a predetermined pattern, a transparent electrode for an organic light emitting device.
  • the pattern is a linear pattern; Mesh pattern; Or an opening pattern in which the opening has a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a figure shape in which the opening is combined; transparent electrode for an organic light emitting element.
  • a transparent electrode for an organic light emitting device In the above 1, wherein the nano barrier ribs are at least a portion of the barrier ribs connected to each other on the substrate, a transparent electrode for an organic light emitting device.
  • the nano barrier ribs are In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo At least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -A silver-aluminum zinc oxide (AZO-Ag-AZO) comprising at least one metal oxide selected from the group consisting of, transparent
  • the organic light emitting device is disposed so that the conductive nano barrier ribs on the viewing side of the organic light emitting device.
  • the organic light emitting device comprising the above organic light emitting device of 10.
  • An organic light emitting display device including the organic light emitting diode of the above 10.
  • the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr At least one metal selected from the group consisting of Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-aluminum zinc oxide (AZO-Ag-AZO) comprising at least one metal oxide selected from the group consisting of
  • the transparent electrode for an organic light emitting device of the present invention includes a conductive nano-barrier, and can be applied to the organic light emitting device to minimize the decrease in transmittance while improving the electrical conductivity of the transparent electrode.
  • the transparent electrode for an organic light emitting device of the present invention can significantly improve the light extraction efficiency of the organic light emitting device.
  • FIG. 1 is a schematic perspective view of an auxiliary electrode for an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of an auxiliary electrode for an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of an auxiliary electrode for an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 4 is a schematic process diagram of a method of manufacturing an auxiliary electrode for an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 5 is a schematic process diagram of a method of manufacturing an auxiliary electrode for an organic light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of an auxiliary electrode for an organic light emitting diode according to an embodiment of the present invention.
  • the present invention includes a substrate and a conductive nano-barrier positioned on the substrate, which is applied to an organic light emitting device to improve the electrical conductivity of the electrode while minimizing a decrease in transmittance, but also to improve the light extraction efficiency.
  • the present invention relates to a transparent electrode for a device and a manufacturing method thereof.
  • the transparent electrode for an organic light emitting device of the present invention includes a substrate 100 and a conductive nano barrier rib 200 positioned on the substrate 100.
  • the substrate 100 is not particularly limited as long as it has transparency and appropriate strength.
  • the substrate 100 may include cycloolefin such as silicon, quartz, glass, polymer, metal, metal oxide, nonmetal oxide, norbornene or polycyclic norbornene-based monomer.
  • Vinyl copolymer polyester, polystyrene, polyamide, polyetherimide, polyacryl, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol , Polyvinyl acetal, poly Substrate 100 comprising materials such as ether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyurethane and epoxy Can be. These materials can be used individually or in mixture of 2 or more types.
  • the thickness of the substrate 100 is not particularly limited, and may be, for example, 10 ⁇ m to 500 ⁇ m.
  • the conductive nano barrier rib 200 is positioned on the substrate 100.
  • the conductive nano barrier rib 200 is in contact with the transparent electrode of the organic light emitting device to improve the electrical conductivity of the transparent electrode, or as such a function of the transparent electrode can do. As the nano-thick bulkhead, the decrease in transmittance can be minimized.
  • the conductive nano barrier rib 200 is positioned to face the organic light emitting layer, and as shown in FIG. 1, the light path of the organic light emitting layer is reflected by touching the barrier and the light path is changed. As a result, the amount of light extracted to the outside increases, and light extraction efficiency may be improved.
  • the conductive nano barrier rib 200 is made of a conductive material, for example, In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti At least one metal selected from the group consisting of Ag, Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -At least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-A
  • the thickness of the nano barrier ribs 200 is not particularly limited as long as the thickness of the nano barrier rib 200 may be improved to improve the electrical conductivity, minimize the decrease in transmittance, and improve the light extraction efficiency, and for example, the thickness may be 5 nm to 200 nm. 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in conductivity and durability, and if it is more than 200nm, the transmittance may be lowered.
  • the height of the nano barrier rib 200 is not particularly limited as long as it is within a range capable of exhibiting sufficient electrical conductivity and light extraction efficiency, and may be, for example, 50 nm to 2,000 nm. If the thickness is less than 50 nm, the degree of light extraction improvement may be insignificant. If the thickness is more than 2,000 nm, problems such as deterioration of durability of the organic light emitting device may occur due to the presence of an excessive gap.
  • the nano barrier 200 may be located alone or as a plurality of walls.
  • the distance between the nano barrier ribs 200 is not particularly limited, and may be, for example, 10 nm to 3 ⁇ m, and preferably 10 nm to 200 nm in view of improving light extraction efficiency. .
  • the plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
  • the distance between the nano barrier ribs 200 may be, for example, 5 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • the nano barrier rib 200 may have at least some of the barrier ribs connected to each other on the substrate 100. In that case the electrical conductivity can be further improved.
  • FIG. 4 (f) also shows a case where at least some of the nano barrier ribs forming the opening pattern of the hexagonal openings are connected to each other on the substrate.
  • the nano barrier rib 200 may form a predetermined pattern.
  • the opening pattern may have a polygon such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radiation, an irregular shape. It may have a shape such as a single closed curve. 3 illustrates an opening pattern having an opening of a hexagon, but a mesh pattern is illustrated in FIG. 6, but is not limited thereto.
  • the opening pattern is a pattern having an opening surrounded by nano barrier ribs, and the opening pattern may be located alone or in plurality.
  • each opening pattern may be located at regular or irregular intervals.
  • the plurality of opening patterns may be connected or spaced apart from each other, and may be located in line symmetry, point symmetry, or irregularly.
  • the opening pattern may include an opening shape of the figure illustrated above; A shape in which the illustrated figure is combined; Alternatively, at least one of the figures may have a mixed shape, and the openings may be arranged periodically or aperiodically.
  • the transparent electrode for an organic light emitting diode of the present invention may further include a polymer pattern 420 between at least some of the conductive nano barrier ribs 200.
  • any polymer polymer known in the art may be used as long as it is a transparent polymer, and examples thereof include epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, and polyurethane. And polymer resins such as polyesters. These can be used individually or in mixture of 2 or more types.
  • the transparent electrode for an organic light emitting diode of the present invention may further include a transparent conductive layer (not shown) positioned between the substrate 100 and the conductive nano barrier rib 200.
  • the transparent conductive layer serves to further improve the electrical conductivity.
  • Transparent conductive layer is indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide Silver-indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO), Metal oxides such as aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO); Carbon-based materials such as carbon nanotubes (CNT) and graphene; It may be formed of conductive polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI). These can be used individually or in mixture of 2 or more types.
  • PEDOT poly (3,4-ethylenedioxythiophene
  • the present invention provides an organic light emitting device including the transparent electrode for the organic light emitting device.
  • the organic light emitting device is usually provided with two electrodes, among which the viewing side electrode is composed of a transparent electrode to enable light extraction or incidence.
  • the organic light emitting device of the present invention may include the transparent electrode for the organic light emitting device as a viewing side electrode.
  • the organic light emitting device of the present invention may include the transparent electrode for the organic light emitting device as an auxiliary electrode of the viewing side electrode.
  • the conductive nano barrier ribs may be arranged to be in contact with the viewing electrode.
  • the organic light emitting device of the present invention may exhibit high electrical conductivity by including the transparent electrode for the organic light emitting device, and at the same time, may exhibit excellent light extraction efficiency.
  • the present invention provides an organic light emitting display device and an organic light emitting display device including the organic light emitting device.
  • the organic light emitting diode When the organic light emitting diode is included in the organic light emitting diode display, the organic light emitting diode may include a conventional configuration required when applied to a display device such as a pixel definition layer and a reflector.
  • the present invention provides a method for manufacturing the transparent electrode for the organic light emitting device.
  • the conductive layer 300 is formed on the substrate 100.
  • the formation method of the conductive layer 300 is not particularly limited, and physical vapor deposition, chemical vapor deposition, plasma deposition, plasma polymerization, thermal deposition, thermal oxidation, anodic oxidation, cluster ion beam deposition, screen printing, gravure printing, flexo It may be by a method known in the art, such as a printing method, an offset printing method, an inkjet coating method, a dispenser printing method, a photolithography method.
  • Examples of the conductive material used for the conductive layer 300 include In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag At least one metal selected from the group consisting of Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -One or more metal oxides selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO) may
  • the conductive layer 300 is present under the polymer pattern 420.
  • the conductive layer 300 is present under the nano-barrier formed by the process to be described later, so that the nano-barrier is connected to each other on the substrate 100 by the conductive layer 300.
  • electrical conductivity can be improved.
  • the polymer pattern 420 is formed on the conductive layer 300.
  • the polymer pattern 420 may be formed by forming and patterning the polymer resin layer 410 on the conductive layer 300.
  • a polymer resin known in the art can be used without limitation, and for example, epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, polyurethane, poly It may be a polymer resin such as ester-based. These can be used individually or in mixture of 2 or more types.
  • the patterning method of the polymer resin layer 410 is not particularly limited and is, for example, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, photolithography, nanoimprinting, or the like.
  • the method may be used, and in terms of further improving the light extraction efficiency, the nano imprinting method may be used, but is not limited thereto.
  • Patterning may be performed such that the conductive layer 300 of the patterning portion is exposed to facilitate etching of the conductive layer 300.
  • the conductive layer 300 exposed between the patterns is ion milled and etched, and a nano-thick coating layer is formed on the side surface of the polymer pattern 420 to form the nano barrier rib 200. do.
  • the ion milling method is a method of physically etching the conductive layer 300 by irradiating an ion beam.
  • the ion milling method accelerates ions by a voltage difference and physically impacts the conductive layer 300.
  • the metal particles are torn off and attached to the side of the polymer pattern 420, a nano-thick coating layer may be formed on the side of the polymer pattern 420.
  • the nano-thick coating layer corresponds to the nano barrier rib 200.
  • the gas used to form the ions can be, for example, argon, helium, nitrogen, hydrogen, oxygen or a mixture of these, preferably argon.
  • Ion milling conditions are not particularly limited, for example, 10-1 form a plasma in the gas under the pressure 5 Torr to 10 -3 Torr can then be accomplished by accelerating the plasma by 100eV ⁇ 1500eV. If the energy is less than 100 eV, it may be difficult to etch the conductive layer 300, and if the energy is more than 1500 eV, the polymer pattern 420 may be damaged, thereby making it difficult to generate the nano barrier ribs.
  • the thickness of the nano barrier ribs 200 is not particularly limited as long as the thickness of the nano barrier rib 200 may be improved to improve the electrical conductivity, minimize the decrease in transmittance, and improve the light extraction efficiency, and for example, the thickness may be 5 nm to 200 nm. 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in conductivity and durability, and if it is more than 200nm, the transmittance may be lowered.
  • the height of the nano barrier rib 200 is not particularly limited as long as it is within a range capable of exhibiting sufficient electrical conductivity and light extraction efficiency, and may be, for example, 50 nm to 2,000 nm. If the thickness is less than 50 nm, the degree of light extraction improvement may be insignificant. If the thickness is more than 2,000 nm, problems such as deterioration of durability of the organic light emitting device may occur due to the presence of an excessive gap.
  • the nano barrier 200 may be located alone or as a plurality of walls.
  • the plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
  • the spacing of the nano barrier ribs 200 is not particularly limited, and may be, for example, 10 nm to 3 ⁇ m, and preferably 10 nm to 200 nm in view of improving light extraction efficiency.
  • the gap may be implemented by forming the polymer resin layer 410 by nanoimprinting.
  • the distance between the nano barrier ribs 200 may be, for example, 5 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • This may be implemented by forming the polymer resin layer 410 by the above-described methods other than the nanoimprinting method, specifically, the photolithography method, but is not limited thereto.
  • the plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
  • the nano barrier rib 200 may form a predetermined pattern.
  • the opening pattern may have a polygon such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radiation, an irregular shape. It may have a shape such as a single closed curve. 3 illustrates an opening pattern having an opening of a hexagon, but a mesh pattern is illustrated in FIG. 6, but is not limited thereto.
  • the opening pattern is a pattern having an opening surrounded by nano barrier ribs, and the opening pattern may be located alone or in plurality.
  • each opening pattern may be located at regular or irregular intervals.
  • the plurality of opening patterns may be connected or spaced apart from each other, and may be located in line symmetry, point symmetry, or irregularly.
  • the opening pattern may include an opening shape of the figure illustrated above; A shape in which the illustrated figure is combined; Alternatively, at least one of the figures may have a mixed shape, and the openings may be arranged periodically or aperiodically.
  • the method for manufacturing a transparent electrode for an organic light emitting device of the present invention may further include removing the polymer pattern 420 as shown in FIG.
  • the method for manufacturing a transparent electrode for an organic light emitting device according to the present invention may further include forming a transparent conductive layer (not shown) on the substrate 100 before forming the conductive layer 300. .
  • Forming a transparent conductive layer can further improve electrical conductivity.
  • Transparent conductive layer is indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide Silver-indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO), Metal oxides such as aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO); Carbon-based materials such as carbon nanotubes (CNT) and graphene; It may be formed of conductive polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI). These can be used individually or in mixture of 2 or more types.
  • PEDOT poly (3,4-ethylenedioxythiophene
  • the method of forming the transparent conductive layer is not particularly limited, and methods exemplified as the method of forming the conductive layer 300 may be used.
  • the present invention provides a method of manufacturing a transparent electrode for an organic light emitting device according to another embodiment.
  • the polymer pattern 420 is formed on the substrate 100 as shown in FIG.
  • the polymer pattern 420 may be formed by forming and patterning the polymer resin layer 410 on the substrate 100.
  • a polymer resin known in the art can be used without limitation, and for example, epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, polyurethane, poly It may be a polymer resin such as ester-based. These can be used individually or in mixture of 2 or more types.
  • the patterning method of the polymer resin layer 410 is not particularly limited and is, for example, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, photolithography, nanoimprinting, or the like.
  • the method of may be used, and in terms of further improving the light extraction efficiency, it may be preferably by the nanoimprinting method.
  • the conductive layer 300 is formed on the substrate 100 on which the polymer pattern 420 is formed.
  • the conductive layer 300 is a conductive material such as at least one metal or at least one metal oxide described above, and may be a physical vapor deposition method, a chemical vapor deposition method, a plasma deposition method, a plasma polymerization method, a thermal vapor deposition method, a thermal oxidation method, an anodization method, a cluster ion beam deposition method, It may be formed by a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, an inkjet coating method, a dispenser printing method, a photolithography method, but is not limited thereto.
  • the conductive layer 300 is ion milled and etched, and a nano-thick coating layer is formed on the side surface of the polymer pattern 420 to form the nano barrier rib 200.
  • the gas used to form the ions can be, for example, argon, helium, nitrogen, hydrogen, oxygen or a mixture of these, preferably argon.
  • Ion milling conditions are not particularly limited, for example, 10-1 form a plasma in the gas under the pressure 5 Torr to 10 -3 Torr can then be accomplished by accelerating the plasma by 100eV ⁇ 1500eV. If the energy is less than 100 eV, it may be difficult to etch the conductive layer 300, and if the energy is more than 1500 eV, the polymer pattern 420 may be damaged, thereby making it difficult to generate the nano barrier ribs.
  • the thickness of the nano barrier ribs 200 is not particularly limited as long as the thickness of the nano barrier rib 200 may be improved to improve the electrical conductivity, minimize the decrease in transmittance, and improve the light extraction efficiency, and for example, the thickness may be 5 nm to 200 nm. 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in conductivity and durability, and if it is more than 200nm, the transmittance may be lowered.
  • the height of the nano barrier rib 200 is not particularly limited as long as it is within a range capable of exhibiting sufficient electrical conductivity and light extraction efficiency, and may be, for example, 50 nm to 2,000 nm. If the thickness is less than 50 nm, the degree of light extraction improvement may be insignificant. If the thickness is more than 2,000 nm, problems such as deterioration of durability of the organic light emitting device may occur due to the presence of an excessive gap.
  • the nano barrier 200 may be located alone or as a plurality of walls.
  • the spacing of the nano barrier ribs 200 is not particularly limited, and may be, for example, 10 nm to 3 ⁇ m, and preferably 10 nm to 200 nm in view of improving light extraction efficiency.
  • the gap may be implemented by forming the polymer resin layer 410 by nanoimprinting.
  • the distance between the nano barrier ribs 200 may be, for example, 5 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • This may be implemented by forming the polymer resin layer 410 by the above-described methods other than the nanoimprinting method, specifically, the photolithography method, but is not limited thereto.
  • the plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
  • the nano barrier rib 200 may form a predetermined pattern.
  • the opening pattern may have a polygon such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radiation, an irregular shape. It may have a shape such as a single closed curve. 3 illustrates an opening pattern having an opening of a hexagon, but a mesh pattern is illustrated in FIG. 6, but is not limited thereto.
  • the opening pattern is a pattern having an opening surrounded by nano barrier ribs, and the opening pattern may be located alone or in plurality.
  • each opening pattern may be located at regular or irregular intervals.
  • the plurality of opening patterns may be connected or spaced apart from each other, and may be located in line symmetry, point symmetry, or irregularly.
  • the opening pattern may include an opening shape of the figure illustrated above; A shape in which the illustrated figure is combined; Alternatively, at least one of the figures may have a mixed shape, and the openings may be arranged periodically or aperiodically.
  • FIG. 5D is a cross-sectional view along the line AA ′ of FIG. 3.
  • the method for manufacturing a transparent electrode for an organic light emitting device according to the present invention may further include forming a transparent conductive layer (not shown) on the substrate 100 before forming the conductive layer 300. .
  • Forming a transparent conductive layer can further improve electrical conductivity.
  • Transparent conductive layer is indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide Silver-indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO), Metal oxides such as aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO); Carbon-based materials such as carbon nanotubes (CNT) and graphene; It may be formed of conductive polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI). These can be used individually or in mixture of 2 or more types.
  • PEDOT poly (3,4-ethylenedioxythiophene
  • the method of forming the transparent conductive layer is not particularly limited, and methods exemplified as the method of forming the conductive layer 300 may be used.
  • substrate 200 conductive nano barrier ribs
  • conductive layer 410 polymer resin layer

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기발광소자용 투명 전극 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 기판 및 상기 기판 상에 위치한 도전성 나노 격벽을 포함함으로써, 유기발광소자에 적용되어 전극의 전기 전도도는 개선하면서 투과율 저하는 최소화할 뿐만 아니라, 오히려 광 추출 효율을 더욱 개선할 수 있는 유기발광소자용 투명 전극 및 이의 제조 방법에 관한 것이다.

Description

유기발광소자용 투명 전극 및 이의 제조 방법
본 발명은 유기발광소자용 투명 전극 및 이의 제조 방법에 관한 것이다.
유기 발광 표시 장치(organic light emitting diode display)는 빛을 방출하는 유기발광소자(organic light emitting diode)를 가지고 화상을 표시하는 자발광형 표시 장치이다. 유기 발광 표시 장치는 액정 표시 장치(liquid crystal display)와 달리 별도의 광원을 필요로 하지 않으므로 상대적으로 두께와 무게를 줄일 수 있다. 또한, 유기 발광 표시 장치는 낮은 소비 전력, 높은 휘도 및 높은 반응 속도 등의 고품위 특성을 나타내므로 휴대용 전자 기기의 차세대 표시 장치로 주목받고 있다.
유기발광소자는 전자(electron)와 정공(hole)이 결합하여 발광 소멸할 때 발생하는 빛을 이용하는 소자이다. 일반적으로 유기발광소자는 기본적으로 정공을 주입하기 위한 전극, 전자를 주입하기 위한 전극 및 발광층을 포함하며, 상기 정공을 주입하기 위한 전극인 양극과 전자를 주입하기 위한 전극인 음극 사이에 발광층이 적층되어 있는 구조를 가진다. 구체적으로, 유기발광소자의 음극에서는 전자가 주입되고 양극에서는 정공이 주입되어, 이들 전하가 외부 전기장에 의해 서로 반대 방향으로 이동을 한 후 발광층에서 결합하여 발광 소멸하면서 빛을 낸다. 이러한 유기발광소자에서 발광층은 단분자 유기물이나 고분자(polymer)에 의해 형성된다.
유기발광소자에서 전극 특성은 매우 중요하다. 예를 들어, 조명용으로 사용되는 유기발광소자는 통상적으로 한 변의 길이가 5 cm 또는 그 이상인 발광 면적을 가지는 픽셀로 이루어진다. 이와 같은 큰 발광면적을 가지기 때문에, 전극의 표면 저항이 높으면, 전자 또는 정공이 전체 면적에 걸쳐서 균일하게 주입되지 않고, 따라서 발광얼룩이 발생하거나, 전 발광 영역에서 균일한 휘도를 얻을 수 없다.
그런데, 투명 전극의 전도도 개선을 위해 두께를 두껍게 하는 경우에는 광 투과율이 저하되어, 기본적으로 낮은 유기발광소자의 광 추출 효율을 더 낮추게 되는 문제가 있다.
한국공개특허 제2014-14683호에는 유기 발광 표시 장치 및 이의 제조방법이 개시되어 있다.
본 발명은 유기발광소자의 투명 전극의 전기 전도도를 개선할 수 있는 유기발광소자용 투명 전극을 제공하는 것을 목적으로 한다.
본 발명은 유기발광소자의 광 추출 효율을 개선할 수 있는 유기발광소자용 투명 전극을 제공하는 것을 목적으로 한다.
본 발명은 상기 유기발광소자용 투명 전극의 제조 방법을 제공하는 것을 목적으로 한다.
1. 기판 및 상기 기판 상에 위치한 도전성 나노 격벽을 포함하는, 유기발광소자용 투명 전극.
2. 위 1에 있어서, 상기 나노 격벽은 두께가 5 내지 300nm인, 유기발광소자용 투명 전극.
3. 위 2에 있어서, 상기 나노 격벽의 높이는 50 내지 2,000nm인, 유기발광소자용 투명 전극.
4. 위 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 유기발광소자용 투명 전극.
5. 위 4에 있어서, 상기 패턴은 선형 패턴; 메쉬 패턴; 또는 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 결합된 도형 형상을 갖는 개구 패턴;인, 유기발광소자용 투명 전극.
6. 위 1에 있어서, 상기 나노 격벽은 격벽 사이 중 적어도 일부가 기판 상에서 서로 이어진 것인, 유기발광소자용 투명 전극.
7. 위 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 유기발광소자용 투명 전극.
8. 위 1에 있어서, 상기 도전성 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 유기발광소자용 투명 전극.
9. 위 1에 있어서, 상기 기판과 도전성 나노 격벽 사이에 위치한 투명 도전층을 더 포함하는, 유기발광소자용 투명 전극.
10. 위 1 내지 9 중 어느 한 항의 유기발광소자용 투명 전극을 포함하는, 유기발광소자.
11. 위 10에 있어서, 상기 유기발광소자용 투명 전극은 유기발광소자의 시인측 전극인, 유기발광소자.
12. 위 10에 있어서, 유기발광소자의 시인측 전극 상에 도전성 나노 격벽이 접촉하도록 배치된, 유기발광소자.
13. 위 10의 유기발광소자를 포함하는 유기발광조명장치.
14. 위 10의 유기발광소자를 포함하는 유기발광표시장치.
15. 기판 상에 도전층을 형성하는 단계;
상기 도전층 상에 고분자 패턴을 형성하는 단계; 및
상기 패턴 사이로 노출된 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;를 포함하는, 유기발광소자용 투명 전극의 제조 방법.
16. 기판 상에 고분자 패턴을 형성하는 단계;
상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계; 및
상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;를 포함하는, 유기발광소자용 투명 전극의 제조 방법.
17. 위 15 또는 16에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 유기발광소자용 투명 전극의 제조 방법.
18. 위 15 또는 16에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 유기발광소자용 투명 전극의 제조 방법.
19. 위 15 또는 16에 있어서, 상기 고분자 패턴은 포토리소그래피법으로 형성하는, 유기발광소자용 투명 전극의 제조 방법.
20. 위 15 또는 16에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 유기발광소자용 투명 전극의 제조 방법.
21. 위 15 또는 16에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 유기발광소자용 투명 전극의 제조 방법.
22. 위 15 또는 16에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 유기발광소자용 투명 전극의 제조 방법.
23. 위 15 또는 16에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
24. 위 15에 있어서, 도전층의 형성 전에 기판 상에 투명 도전층을 형성하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
25. 위 16에 있어서, 레지스트 패턴의 형성 전에 기판 상에 투명 도전층을 형성하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
본 발명의 유기발광소자용 투명 전극은 도전성 나노 격벽을 포함하여, 유기발광소자에 적용되어 투명 전극의 전기 전도도는 개선하면서 투과율 저하는 최소화할 수 있다.
본 발명의 유기발광소자용 투명 전극은 유기발광소자의 광 추출 효율을 현저히 개선할 수 있다.
도 1은 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 개략적인 사시도이다.
도 2는 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 개략적인 사시도이다.
도 3은 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 개략적인 사시도이다.
도 4는 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 제조 방법의 개략적인 공정도이다.
도 5는 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 제조 방법의 개략적인 공정도이다.
도 6은 본 발명의 일 구현예에 따른 유기발광소자용 보조전극의 개략적인 사시도이다.
본 발명은 기판 및 상기 기판 상에 위치한 도전성 나노 격벽을 포함함으로써, 유기발광소자에 적용되어 전극의 전기 전도도는 개선하면서 투과율 저하는 최소화할 뿐만 아니라, 오히려 광 추출 효율을 더욱 개선할 수 있는 유기발광소자용 투명 전극 및 이의 제조 방법에 관한 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
본 발명의 유기발광소자용 투명 전극은 기판(100) 및 상기 기판(100) 상에 위치한 도전성 나노 격벽(200)을 포함한다.
기판(100)은 투명성 및 적정 강도를 가지는 것이라면 특별히 한정되지 않으며, 예를 들면 실리콘, 석영, 유리, 고분자, 금속, 금속 산화물, 비금속 산화물, 노르보르넨이나 다환 노르보르넨계 단량체와 같은 시클로올레핀을 포함하는 단량체의 단위를 갖는 시클로올레핀계 유도체, 디아세틸셀룰로오스, 트리아세틸셀룰로오스, 아세틸셀룰로오스부틸레이트, 이소부틸에스테르셀룰로오스, 프로피오닐셀룰로오스, 부티릴셀룰로오스 또는 아세틸프로피오닐셀룰로오스 등에서 선택되는 셀룰로오스, 에틸렌-아세트산비닐공중합체, 폴리에스테르, 폴리스티렌, 폴리아미드, 폴리에테르이미드, 폴리아크릴, 폴리이미드, 폴리에테르술폰, 폴리술폰, 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 폴리염화비닐, 폴리염화비닐리덴, 폴리비닐알콜, 폴리비닐아세탈, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리메틸메타아크릴레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리우레탄, 에폭시 등의 소재를 포함하는 기판(100)일 수 있다. 이들 소재는 단독 또는 2종 이상 혼합하여 사용할 수 있다.
기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10㎛ 내지 500㎛일 수 있다.
도 1에 예시된 바와 같이, 도전성 나노 격벽(200)은 기판(100) 상에 위치한다.
본 발명의 유기발광소자용 투명 전극이 유기발광소자에 적용되면, 도전성 나노 격벽(200)은 유기발광소자의 투명 전극에 접촉하여 투명 전극의 전기 전도도를 개선하거나, 그 자체로서 투명 전극의 기능을 할 수 있다. 그리고, 나노 두께의 격벽으로서 투과율 저하는 최소화할 수 있다.
뿐만 아니라, 도전성 나노 격벽(200)이 유기 발광층에 대향하도록 위치하여, 도 1에 도시된 바와 같이, 유기 발광층의 광이 격벽에 닿아 반사됨으로써 광 경로가 변화한다. 이에 따라 외부로 추출되는 광량이 증가하여, 광 추출 효율이 개선될 수 있다.
도전성 나노 격벽(200)은 도전성 재료로 제조된 것으로서, 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있다.
나노 격벽(200)의 두께는 상기 전기 전도도 개선, 투과율 저하 최소화 및 광 추출 효율 개선 효과를 달성할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 두께가 5nm 내지 200nm일 수 있고, 바람직하게는 5nm 내지 100nm, 보다 바람직하게는 5nm 내지 50nm, 가장 바람직하게는 10nm 내지 30nm일 수 있다. 두께가 5nm 미만이면 전도성 및 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.
나노 격벽(200)의 높이는 충분한 전기 전도도 및 광 추출 효율을 나타낼 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 50nm 내지 2,000nm일 수 있다. 두께가 50nm 미만이면 광 추출 개선 정도가 미미할 수 있고, 2,000nm 초과이면 과다한 갭의 존재로 유기발광소자의 내구성 저하 등의 문제가 발생할 수 있다.
나노 격벽(200)은 단독으로 또는 복수개의 벽으로서 위치할 수 있다.
복수개의 벽이 병렬하여 위치하는 경우, 나노 격벽(200)간 간격은 특별히 한정되지 않으며, 예를 들면 10nm 내지 3㎛일 수 있고, 광 추출 효율 개선의 측면에서 바람직하게는 10nm 내지 200nm일 수 있다.
복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.
본 발명의 다른 일 구현예에 따르면 상기 나노 격벽(200)의 간격은 예를 들면 5㎛ 내지 200㎛일 수 있으나 이에 제한되는 것은 아니다.
나노 격벽(200)은 도 2에 예시된 바와 같이 격벽 사이 중 적어도 일부가 기판(100) 상에서 서로 이어진 것일 수 있다. 그러한 경우에 전기 전도도가 보다 개선될 수 있다. 도 4 (f)에도 육각형 개구부의 개구 패턴을 이룬 나노 격벽의 사이 중 적어도 일부가 기판 상에서 서로 이어진 경우가 도시되어 있다.
나노 격벽(200)은 소정의 패턴을 이룰 수 있다. 예를 들면 개구 패턴으로서, 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 등의 다각형, 또는 이들이 결합된 형상을 가질 수도 있고, 선형 패턴, 메쉬 패턴, 지그재그, 나선형, 방사선형, 불규칙한 단일 폐곡선 등의 형상을 가질 수도 있다. 도 3에는 육각형의 개구부를 갖는 개구 패턴인 경우, 도 6에는 메쉬 패턴인 경우가 예시되어 있으나, 이에 제한되는 것은 아니다.
개구 패턴은 나노 격벽들로 둘러쌓이면서 개구부를 갖는 패턴으로서, 개구 패턴은 단독 또는 복수개로 위치할 수 있다.
복수개의 개구 패턴이 위치하는 경우, 각 개구 패턴은 규칙적 또는 불규칙적인 간격으로 위치할 수 있다. 또한, 복수개의 개구 패턴은 서로 연결되거나 이격되어 위치할 수 있으며, 선대칭, 점대칭 또는 불규칙하게 위치할 수 있다.
개구 패턴은 개구부가 상기 예시한 도형 형상; 상기 예시한 도형이 결합된 형상; 또는 이들 중 적어도 1개 이상의 도형이 혼재된 형상을 가질 수 있는 것으로서, 개구부는 주기적으로, 또는 비주기적으로 배열될 수 있다.
본 발명의 유기발광소자용 투명 전극은 도전성 나노 격벽(200) 사이 중 적어도 일부에 고분자 패턴(420)을 더 포함할 수 있다.
고분자 패턴(420)으로는 투명 고분자라면 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
본 발명의 유기발광소자용 투명 전극은 기판(100)과 도전성 나노 격벽(200) 사이에 위치한 투명 도전층(미도시)을 더 포함할 수 있다.
투명 도전층은 전기 전도도를 더욱 개선하는 역할을 한다.
투명 도전층은 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등의 금속산화물류; 탄소나노튜브(CNT), 그래핀 (graphene) 등의 탄소계 물질류; 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리아닐린(PANI) 등의 전도성 고분자 물질류로 형성된 것일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
또한, 본 발명은 상기 유기발광소자용 투명전극을 포함한 유기발광소자를 제공한다.
유기발광소자는 통상 2개의 전극을 구비하는데, 그 중 시인측 전극은 광 추출 또는 입사가 가능하도록 투명 전극으로 구성된다.
본 발명의 유기발광소자는 상기 유기발광소자용 투명 전극을 시인측 전극으로써 포함할 수 있다.
또한, 본 발명의 유기발광소자는 상기 유기발광소자용 투명 전극을 시인측 전극의 보조전극으로써 구비할 수도 있다. 그러한 경우에 도전성 나노 격벽이 시인측 전극 상이 접촉하도록 배치될 수 있다
본 발명의 유기발광소자는 상기 유기발광소자용 투명 전극을 포함함으로써, 높은 전기 전도도를 나타낼 수 있고, 이와 동시에 우수한 광 추출 효율도 나타낼 수 있다.
또한, 본 발명은 상기 유기발광소자를 포함한 유기발광조명장치 및 유기발광표시장치를 제공한다.
유기발광소자가 유기발광표시장치에 포함되는 경우, 유기발광소자는 화소정의막, 반사판 등 표시장치에 적용될 때 필요한 통상의 구성을 포함할 수 있다.
또한, 본 발명은 상기 유기발광소자용 투명 전극의 제조 방법을 제공한다.
이하 본 발명의 일 구현예에 따른 유기발광소자용 투명 전극의 제조 방법을 설명한다.
먼저, 도 4 (b)와 같이 기판(100) 상에 도전층(300)을 형성한다.
도전층(300)의 형성 방법은 특별히 한정되지 않으며, 물리적 증착법, 화학적 증착법, 플라즈마 증착법, 플라즈마 중합법, 열 증착법, 열 산화법, 양극 산화법, 클러스터 이온빔 증착법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법 등의 당 분야에 공지된 방법에 의할 수 있다.
도전층(300)에 사용되는 도전성 소재로는 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
고분자 패턴(420)의 형성 전에 도전층(300)을 먼저 형성하는 경우, 고분자 패턴(420) 하에 도전층(300)이 존재한다. 그러한 경우 후술할 공정에 의해 형성되는 나노 격벽 하에 도전층(300)이 존재하여, 나노 격벽이 도전층(300)에 의해 기판(100) 상에서 서로 이어지게 된다. 이에, 전기 전도도가 개선될 수 있다.
이후에, 도 4 (c), (d)와 같이 상기 도전층(300) 상에 고분자 패턴(420)을 형성한다.
고분자 패턴(420)은 도전층(300) 상에 고분자 수지층(410)을 형성하고, 이를 패터닝하여 형성할 수 있다.
고분자 수지층(410)으로는 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
고분자 수지층(410)의 패터닝 방법은 특별히 한정되지 않고 예를 들면 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법, 나노 임프린팅 등의 방법을 사용할 수 있으며, 광 추출 효율을 더욱 개선할 수 있다는 측면에서 바람직하게는 나노 임프린팅법에 의할 수 있으나, 이에 제한되는 것은 아니다.
패터닝은 도전층(300)의 식각이 용이하도록 패터닝 부위의 도전층(300)이 노출되도록 수행될 수 있다.
이후에, 도 4 (e)와 같이 상기 패턴 사이로 노출된 도전층(300)을 이온 밀링하여 식각하고, 상기 고분자 패턴(420)의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽(200)을 형성한다.
이온 밀링법은 이온빔을 조사하여 도전층(300)을 물리적으로 식각하는 방법으로, 이온을 전압차로 가속화시켜 도전층(300)에 물리적인 충격을 가한다. 이에 금속 입자들이 뜯겨져 나가서 고분자 패턴(420)의 측면에 부착되어, 고분자 패턴(420)의 측면에 나노 두께의 코팅층이 형성될 수 있다.
나노 두께의 코팅층이 나노 격벽(200)에 해당한다.
이온 형성에 사용되는 기체는 예를 들면 아르곤, 헬륨, 질소, 수소, 산소 또는 이들의 혼합 기체일 수 있고, 바람직하게는 아르곤일 수 있다.
이온 밀링 조건은 특별히 한정되지 않으며, 예를 들면 10- 5Torr 내지 10-3Torr의 압력 하에서 기체로 플라즈마를 형성한 다음, 플라즈마를 100eV ~ 1500eV로 가속화하여 수행할 수 있다. 에너지가 100eV 미만인 경우 도전층(300)의 식각이 어려울 수 있고, 1500eV 초과이면 고분자 패턴(420)이 손상되어 나노 격벽의 생성이 어려울 수 있다.
나노 격벽(200)의 두께는 상기 전기 전도도 개선, 투과율 저하 최소화 및 광 추출 효율 개선 효과를 달성할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 두께가 5nm 내지 200nm일 수 있고, 바람직하게는 5nm 내지 100nm, 보다 바람직하게는 5nm 내지 50nm, 가장 바람직하게는 10nm 내지 30nm일 수 있다. 두께가 5nm 미만이면 전도성 및 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.
나노 격벽(200)의 높이는 충분한 전기 전도도 및 광 추출 효율을 나타낼 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 50nm 내지 2,000nm일 수 있다. 두께가 50nm 미만이면 광 추출 개선 정도가 미미할 수 있고, 2,000nm 초과이면 과다한 갭의 존재로 유기발광소자의 내구성 저하 등의 문제가 발생할 수 있다.
나노 격벽(200)은 단독으로 또는 복수개의 벽으로서 위치할 수 있다.
복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.
복수개의 벽이 병렬하여 위치하는 경우, 나노 격벽(200)의 간격은 특별히 한정되지 않으며, 예를 들면 10nm 내지 3㎛일 수 있고, 광 추출 효율 개선의 측면에서 바람직하게는 10nm 내지 200nm일 수 있다. 상기 간격은 나노 임프린팅법으로 고분자 수지층(410)을 형성함으로써 구현할 수 있다.
본 발명의 다른 일 구현예에 따르면 상기 나노 격벽(200)의 간격은 예를 들면 5㎛ 내지 200㎛일 수 있으나 이에 제한되는 것은 아니다. 이는 나노 임프린팅법 이외의 전술한 방법, 구체적으로 포토리소그래피법으로 고분자 수지층(410)을 형성함으로써 구현할 수 있으나 이에 제한되는 것은 아니다.
복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.
나노 격벽(200)은 소정의 패턴을 이룰 수 있다. 예를 들면 개구 패턴으로서, 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 등의 다각형, 또는 이들이 결합된 형상을 가질 수도 있고, 선형 패턴, 메쉬 패턴, 지그재그, 나선형, 방사선형, 불규칙한 단일 폐곡선 등의 형상을 가질 수도 있다. 도 3에는 육각형의 개구부를 갖는 개구 패턴인 경우, 도 6에는 메쉬 패턴인 경우가 예시되어 있으나, 이에 제한되는 것은 아니다.
개구 패턴은 나노 격벽들로 둘러쌓이면서 개구부를 갖는 패턴으로서, 개구 패턴은 단독 또는 복수개로 위치할 수 있다.
복수개의 개구 패턴이 위치하는 경우, 각 개구 패턴은 규칙적 또는 불규칙적인 간격으로 위치할 수 있다. 또한, 복수개의 개구 패턴은 서로 연결되거나 이격되어 위치할 수 있으며, 선대칭, 점대칭 또는 불규칙하게 위치할 수 있다.
개구 패턴은 개구부가 상기 예시한 도형 형상; 상기 예시한 도형이 결합된 형상; 또는 이들 중 적어도 1개 이상의 도형이 혼재된 형상을 가질 수 있는 것으로서, 개구부는 주기적으로, 또는 비주기적으로 배열될 수 있다.
필요에 따라, 본 발명의 유기발광소자용 투명 전극의 제조 방법은 도 4 (f)와 같이 상기 고분자 패턴(420)을 제거하는 단계를 더 포함할 수 있다.
필요에 따라, 본 발명의 유기발광소자용 투명 전극의 제조 방법은 도전층(300)을 형성하기 전에, 기판(100) 상에 투명 도전층(미도시)을 형성하는 단계를 더 포함할 수 있다.
투명 도전층을 형성하면 전기 전도도를 더욱 개선할 수 있다.
투명 도전층은 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등의 금속산화물류; 탄소나노튜브(CNT), 그래핀 (graphene) 등의 탄소계 물질류; 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리아닐린(PANI) 등의 전도성 고분자 물질류로 형성된 것일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
투명 도전층의 형성 방법은 특별히 한정되지 않으며, 도전층(300) 형성 방법으로 예시한 방법들을 사용할 수 있다.
또한, 본 발명은 또 다른 일 구현예에 따른 유기발광소자용 투명 전극의 제조 방법을 제공한다.
이하, 또 다른 일 구현예에 따른 유기발광소자용 투명 전극의 제조 방법을 설명한다.
먼저, 도 5 (a)와 같이 기판(100) 상에 고분자 패턴(420)을 형성한다.
고분자 패턴(420)은 기판(100) 상에 고분자 수지층(410)을 형성하고, 이를 패터닝하여 형성할 수 있다.
고분자 수지층(410)으로는 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
고분자 수지층(410)의 패터닝 방법은 특별히 한정되지 않고 예를 들면 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법, 나노 임프린팅 등의 방법을 사용할 수 있으며, 광 추출 효율을 더욱 개선할 수 있다는 측면에서 바람직하게는 나노 임프린팅법에 의할 수 있다.
이후에, 도 5 (b)와 같이 상기 고분자 패턴(420)이 형성된 기판(100) 상에 도전층(300)을 형성한다.
도전층(300)은 전술한 1종 이상의 금속, 1종 이상의 금속산화물 등의 도전성 소재로, 물리적 증착법, 화학적 증착법, 플라즈마 증착법, 플라즈마 중합법, 열 증착법, 열 산화법, 양극 산화법, 클러스터 이온빔 증착법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법 등의 방법으로 형성할 수 있으나, 이에 제한되는 것은 아니다.
이후에, 도 5 (c)와 같이 상기 도전층(300)을 이온 밀링하여 식각하고, 상기 고분자 패턴(420)의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽(200)을 형성한다.
이온 형성에 사용되는 기체는 예를 들면 아르곤, 헬륨, 질소, 수소, 산소 또는 이들의 혼합 기체일 수 있고, 바람직하게는 아르곤일 수 있다.
이온 밀링 조건은 특별히 한정되지 않으며, 예를 들면 10- 5Torr 내지 10-3Torr의 압력 하에서 기체로 플라즈마를 형성한 다음, 플라즈마를 100eV ~ 1500eV로 가속화하여 수행할 수 있다. 에너지가 100eV 미만인 경우 도전층(300)의 식각이 어려울 수 있고, 1500eV 초과이면 고분자 패턴(420)이 손상되어 나노 격벽의 생성이 어려울 수 있다.
나노 격벽(200)의 두께는 상기 전기 전도도 개선, 투과율 저하 최소화 및 광 추출 효율 개선 효과를 달성할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 두께가 5nm 내지 200nm일 수 있고, 바람직하게는 5nm 내지 100nm, 보다 바람직하게는 5nm 내지 50nm, 가장 바람직하게는 10nm 내지 30nm일 수 있다. 두께가 5nm 미만이면 전도성 및 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.
나노 격벽(200)의 높이는 충분한 전기 전도도 및 광 추출 효율을 나타낼 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 50nm 내지 2,000nm일 수 있다. 두께가 50nm 미만이면 광 추출 개선 정도가 미미할 수 있고, 2,000nm 초과이면 과다한 갭의 존재로 유기발광소자의 내구성 저하 등의 문제가 발생할 수 있다.
나노 격벽(200)은 단독으로 또는 복수개의 벽으로서 위치할 수 있다.
복수개의 벽이 병렬하여 위치하는 경우, 나노 격벽(200)의 간격은 특별히 한정되지 않으며, 예를 들면 10nm 내지 3㎛일 수 있고, 광 추출 효율 개선의 측면에서 바람직하게는 10nm 내지 200nm일 수 있다. 상기 간격은 나노 임프린팅법으로 고분자 수지층(410)을 형성함으로써 구현할 수 있다.
본 발명의 다른 일 구현예에 따르면 상기 나노 격벽(200)의 간격은 예를 들면 5㎛ 내지 200㎛일 수 있으나 이에 제한되는 것은 아니다. 이는 나노 임프린팅법 이외의 전술한 방법, 구체적으로 포토리소그래피법으로 고분자 수지층(410)을 형성함으로써 구현할 수 있으나 이에 제한되는 것은 아니다.
복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.
나노 격벽(200)은 소정의 패턴을 이룰 수 있다. 예를 들면 개구 패턴으로서, 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 등의 다각형, 또는 이들이 결합된 형상을 가질 수도 있고, 선형 패턴, 메쉬 패턴, 지그재그, 나선형, 방사선형, 불규칙한 단일 폐곡선 등의 형상을 가질 수도 있다. 도 3에는 육각형의 개구부를 갖는 개구 패턴인 경우, 도 6에는 메쉬 패턴인 경우가 예시되어 있으나, 이에 제한되는 것은 아니다.
개구 패턴은 나노 격벽들로 둘러쌓이면서 개구부를 갖는 패턴으로서, 개구 패턴은 단독 또는 복수개로 위치할 수 있다.
복수개의 개구 패턴이 위치하는 경우, 각 개구 패턴은 규칙적 또는 불규칙적인 간격으로 위치할 수 있다. 또한, 복수개의 개구 패턴은 서로 연결되거나 이격되어 위치할 수 있으며, 선대칭, 점대칭 또는 불규칙하게 위치할 수 있다.
개구 패턴은 개구부가 상기 예시한 도형 형상; 상기 예시한 도형이 결합된 형상; 또는 이들 중 적어도 1개 이상의 도형이 혼재된 형상을 가질 수 있는 것으로서, 개구부는 주기적으로, 또는 비주기적으로 배열될 수 있다.
필요에 따라, 본 발명의 유기발광소자용 투명 전극의 제조 방법은 도 5 (d)와 같이 고분자 패턴(420)을 제거함으로써, 그 측면에 형성된 나노 격벽(200)만이 남을 수 있다. 도 5 (d)는 도 3의 A-A' 단면이다.
필요에 따라, 본 발명의 유기발광소자용 투명 전극의 제조 방법은 도전층(300)을 형성하기 전에, 기판(100) 상에 투명 도전층(미도시)을 형성하는 단계를 더 포함할 수 있다.
투명 도전층을 형성하면 전기 전도도를 더욱 개선할 수 있다.
투명 도전층은 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO) 등의 금속산화물류; 탄소나노튜브(CNT), 그래핀 (graphene) 등의 탄소계 물질류; 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리아닐린(PANI) 등의 전도성 고분자 물질류로 형성된 것일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
투명 도전층의 형성 방법은 특별히 한정되지 않으며, 도전층(300) 형성 방법으로 예시한 방법들을 사용할 수 있다.
[부호의 설명]
100: 기판 200: 도전성 나노 격벽
300: 도전층 410: 고분자 수지층
420: 고분자 패턴

Claims (25)

  1. 기판 및 상기 기판 상에 위치한 도전성 나노 격벽을 포함하는, 유기발광소자용 투명 전극.
  2. 청구항 1에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 유기발광소자용 투명 전극.
  3. 청구항 2에 있어서, 상기 나노 격벽의 높이는 50 내지 2,000nm인, 유기발광소자용 투명 전극.
  4. 청구항 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 유기발광소자용 투명 전극.
  5. 청구항 4에 있어서, 상기 패턴은 선형 패턴; 메쉬 패턴; 또는 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 결합된 도형 형상 을 갖는 개구 패턴;인, 유기발광소자용 투명 전극.
  6. 청구항 1에 있어서, 상기 나노 격벽은 격벽 사이 중 적어도 일부가 기판 상에서 서로 이어진 것인, 유기발광소자용 투명 전극.
  7. 청구항 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 유기발광소자용 투명 전극.
  8. 청구항 1에 있어서, 상기 도전성 나노 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 유기발광소자용 투명 전극.
  9. 청구항 1에 있어서, 상기 기판과 도전성 나노 격벽 사이에 위치한 투명 도전층을 더 포함하는, 유기발광소자용 투명 전극.
  10. 청구항 1 내지 9 중 어느 한 항의 유기발광소자용 투명 전극을 포함하는, 유기발광소자.
  11. 청구항 10에 있어서, 상기 유기발광소자용 투명 전극은 유기발광소자의 시인측 전극인, 유기발광소자.
  12. 청구항 10에 있어서, 유기발광소자의 시인측 전극 상에 도전성 나노 격벽이 접촉하도록 배치된, 유기발광소자.
  13. 청구항 10의 유기발광소자를 포함하는 유기발광조명장치.
  14. 청구항 10의 유기발광소자를 포함하는 유기발광표시장치.
  15. 기판 상에 도전층을 형성하는 단계;
    상기 도전층 상에 고분자 패턴을 형성하는 단계; 및
    상기 패턴 사이로 노출된 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;를 포함하는, 유기발광소자용 투명 전극의 제조 방법.
  16. 기판 상에 고분자 패턴을 형성하는 단계;
    상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계;
    상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하는 단계; 및
    상기 고분자 패턴을 제거하여 나노 격벽을 형성하는 단계;를 포함하는, 유기발광소자용 투명 전극의 제조 방법.
  17. 청구항 15 또는 16에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 유기발광소자용 투명 전극의 제조 방법.
  18. 청구항 15 또는 16에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 유기발광소자용 투명 전극의 제조 방법.
  19. 청구항 15 또는 16에 있어서, 상기 고분자 패턴은 포토리소그래피법으로 형성하는, 유기발광소자용 투명 전극의 제조 방법.
  20. 청구항 15 또는 16에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 유기발광소자용 투명 전극의 제조 방법.
  21. 청구항 15 또는 16에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 유기발광소자용 투명 전극의 제조 방법.
  22. 청구항 15 또는 16에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 유기발광소자용 투명 전극의 제조 방법.
  23. 청구항 15 또는 16에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
  24. 청구항 15에 있어서, 도전층의 형성 전에 기판 상에 투명 도전층을 형성하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
  25. 청구항 16에 있어서, 레지스트 패턴의 형성 전에 기판 상에 투명 도전층을 형성하는 단계를 더 포함하는, 유기발광소자용 투명 전극의 제조 방법.
PCT/KR2016/013009 2015-11-11 2016-11-11 유기발광소자용 투명 전극 및 이의 제조 방법 WO2017082677A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0158164 2015-11-11
KR1020150158164A KR20170055239A (ko) 2015-11-11 2015-11-11 유기발광소자용 투명 전극 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017082677A1 true WO2017082677A1 (ko) 2017-05-18

Family

ID=58695822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013009 WO2017082677A1 (ko) 2015-11-11 2016-11-11 유기발광소자용 투명 전극 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20170055239A (ko)
WO (1) WO2017082677A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615372B2 (en) 2017-12-22 2020-04-07 Samsung Electronics Co., Ltd. Light emitting device and display apparatus including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063104B2 (en) * 2018-12-28 2021-07-13 Lg Display Co., Ltd. Light emitting display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139948A (ko) * 2011-06-20 2012-12-28 한국과학기술원 나노구조 패턴이 형성된 투명전극 및 그 제조방법
KR20130025289A (ko) * 2011-09-01 2013-03-11 광주과학기술원 나노컵 또는 나노링 구조의 촉매 금속 및 이를 이용한 전극
KR101328483B1 (ko) * 2012-05-10 2013-11-13 전자부품연구원 금속 메쉬 구조를 갖는 투명 전극 박막 및 그 제조방법
JP5397377B2 (ja) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
KR20150016119A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 투명 전도성 적층체, 투명 전도성 적층체를 포함하는 투명 전극, 및 투명 전도성 적층체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397377B2 (ja) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
KR20120139948A (ko) * 2011-06-20 2012-12-28 한국과학기술원 나노구조 패턴이 형성된 투명전극 및 그 제조방법
KR20130025289A (ko) * 2011-09-01 2013-03-11 광주과학기술원 나노컵 또는 나노링 구조의 촉매 금속 및 이를 이용한 전극
KR101328483B1 (ko) * 2012-05-10 2013-11-13 전자부품연구원 금속 메쉬 구조를 갖는 투명 전극 박막 및 그 제조방법
KR20150016119A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 투명 전도성 적층체, 투명 전도성 적층체를 포함하는 투명 전극, 및 투명 전도성 적층체의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615372B2 (en) 2017-12-22 2020-04-07 Samsung Electronics Co., Ltd. Light emitting device and display apparatus including the same

Also Published As

Publication number Publication date
KR20170055239A (ko) 2017-05-19

Similar Documents

Publication Publication Date Title
US10985339B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
WO2015065055A1 (ko) 전도성 필름, 그의 제조방법 및 그를 포함하는 디스플레이 장치
WO2015016598A1 (ko) 투명 전도성 적층체, 투명 전도성 적층체를 포함하는 투명 전극, 및 투명 전도성 적층체의 제조방법
US6626721B1 (en) Organic electroluminescent device with supplemental cathode bus conductor
WO2015174678A1 (ko) 전도성 구조체 및 이의 제조방법
WO2012090771A1 (ja) 蒸着膜の形成方法及び表示装置の製造方法
WO2019066336A1 (ko) 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
WO2015026071A1 (ko) 터치 감지 전극 및 이를 구비하는 터치 스크린 패널
WO2017082677A1 (ko) 유기발광소자용 투명 전극 및 이의 제조 방법
US20180307341A1 (en) Touch devices including nanoscale conductive films
JP2006114506A (ja) レーザー熱転写装置,有機電界発光素子の製造方法および有機電界発光素子
WO2015046769A1 (ko) 터치 감지 전극 및 이를 구비하는 터치 스크린 패널
KR20140055351A (ko) 나노 와이어를 이용한 투명도전막 및 그 제조방법과 이를 이용한 어레이 기판, 유기전계발광소자 및 터치패널
WO2015080422A1 (ko) 기판의 제조방법, 기판, 유기 전계 발광소자의 제조방법 및 유기 전계 발광소자
WO2018201564A1 (zh) 一种有机发光器件及其制造方法
CN110911466A (zh) 一种基板及其制备方法、母板的制备方法、掩膜版和蒸镀装置
WO2019066379A1 (ko) 투명 발광소자 디스플레이
WO2016047936A4 (ko) 플렉서블 기판 및 그 제조방법
WO2020040378A1 (ko) 표시 장치의 제조 방법
US20060226422A1 (en) Electroluminescent device
WO2020103252A1 (zh) 基板、显示面板和显示装置
KR100714017B1 (ko) 유기 발광표시장치
WO2019160296A1 (ko) 컬러필터 일체형 유연성 터치센서 및 그 제조 방법
JP4263474B2 (ja) 表示装置用素子基板の製造方法及び転写体
WO2017173679A1 (zh) 触摸显示面板、其制备方法以及触摸显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864603

Country of ref document: EP

Kind code of ref document: A1