WO2019066336A1 - 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법 - Google Patents

투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법 Download PDF

Info

Publication number
WO2019066336A1
WO2019066336A1 PCT/KR2018/010833 KR2018010833W WO2019066336A1 WO 2019066336 A1 WO2019066336 A1 WO 2019066336A1 KR 2018010833 W KR2018010833 W KR 2018010833W WO 2019066336 A1 WO2019066336 A1 WO 2019066336A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
transparent
metal mesh
substrate
Prior art date
Application number
PCT/KR2018/010833
Other languages
English (en)
French (fr)
Inventor
손용구
김주연
이건석
이승헌
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/619,034 priority Critical patent/US11171259B2/en
Priority to JP2019563474A priority patent/JP6869594B2/ja
Priority to EP18863347.3A priority patent/EP3690945A4/en
Priority to CN201880031939.0A priority patent/CN110622316B/zh
Publication of WO2019066336A1 publication Critical patent/WO2019066336A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to an electrode substrate for a transparent light emitting element display and a method of manufacturing the same.
  • the transparent LED display using ITO transparent electrode material has LEDs applied between glass and glass, which makes it possible to produce high-quality images without wires.
  • it is being used for interior decoration of hotels, department stores, etc., and its importance is increasing in the implementation of the media facade on the exterior walls of buildings.
  • Transparent electrodes which are transparent and used for touch screens, have explosively increased in demand due to the spread of smart devices.
  • the most widely used transparent electrodes are indium tin oxide (ITO), which is an oxide of indium and tin.
  • ITO indium tin oxide
  • indium which is the main material of ITO transparent electrode material, is not produced in a large amount of reserves all over the world and is produced only in some countries such as China, and its production cost is high.
  • the resistance value is not constantly applied, there is a disadvantage that the LED light to be displayed is not constant.
  • transparent LEDs using ITO are limited to be used as high-performance and low-cost transparent electrode materials.
  • Transparent electrode materials that are attracting attention as the next generation of new materials include metal meshes, nanowires, carbon nanotubes (CNTs), conductive polymers, and graphene.
  • metal mesh is a new material that occupies 85% of ITO substitute materials, and has low cost and high conductivity.
  • Transparent LED display using metal mesh is easier to maintain than conventional ITO transparent display, can save resources and prevent environmental pollution, and is economical because it reduces manufacturing cost. In addition, it is applicable to various products as a new transparent electrode material because it can be applied to various applications.
  • the present application is intended to provide an electrode substrate for a transparent light emitting device display and a method of manufacturing the same.
  • a wiring electrode portion provided on the transparent substrate and including a metal mesh pattern
  • At least one light emitting element mounting portion provided on the transparent substrate,
  • a blackening layer pattern is formed on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode portion,
  • an electrode substrate for a transparent light emitting device display that does not include a blackening layer pattern on both the upper surface and the side surface of the light emitting device mounting portion.
  • an electrode substrate including a transparent substrate, a wiring electrode portion provided on the transparent substrate and including a metal mesh pattern, and at least one light emitting device mounting portion provided on the transparent substrate;
  • the present invention also provides a method of manufacturing an electrode substrate for a transparent light emitting device display.
  • the blackening layer pattern is provided on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode portion, the visibility of the electrode substrate for a transparent light emitting device display can be lowered.
  • the blackening layer pattern is provided only on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode portion and not on the upper surface and the side surface of the light emitting device mounting portion, It is possible to obtain the effect of maintaining the adhesive force of the solder provided on the substrate.
  • a metal mesh pattern having the same line width, line width, and pitch is applied to the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion, have.
  • the metal mesh pattern of the wiring electrode portion is provided in the entire region of the effective screen portion of the upper surface of the transparent substrate excluding the light emitting device mounting portion pattern, thereby maximizing the width of the common electrode wiring portion and lowering the resistance.
  • FIG. 1 is a schematic view of an electrode substrate for a transparent light emitting device display according to an embodiment of the present application.
  • FIG. 2 is a view schematically showing a method of manufacturing an electrode substrate for a transparent light emitting element display according to an embodiment of the present application.
  • FIG. 3 is a schematic view showing a structure, a camera image and a microscope image of a transparent light emitting device display according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic view showing a structure, a camera image and a microscope image of a transparent light emitting device display according to Comparative Example 1 of the present application.
  • FIG. 5 is a schematic view showing a structure, a camera image, and a microscope image of a transparent light emitting device display according to Comparative Example 2 of the present application.
  • FIG. 6 is a schematic view showing a wiring electrode portion and a light emitting element mounting portion of a transparent light emitting device display according to one embodiment of the present application.
  • FIG. 7 is a diagram schematically showing the line width, pitch, and pitch of a metal mesh pattern according to an embodiment of the present application.
  • Example 8 is a view showing a solder shape after heat treatment and a photograph after adhesion evaluation in Example 1 of the present application.
  • FIG. 9 is a view showing a solder shape after heat treatment and a photograph after adhesion evaluation of Comparative Example 2 of the present application.
  • transparent means to have a transmittance characteristic of about 80% or more in the visible light region (400 nm to 700 nm).
  • Transparent LED displays provide diverse attractions to urban people through information provision services and landscape design, and demand is increasing in various fields.
  • ITO has been used the most as transparent electrode material.
  • due to limitations such as economical efficiency and limited performance, research and technology development using new materials are continuously carried out.
  • Ag nanowire or a transparent metal oxide is introduced to form a transparent electrode wiring.
  • the Ag nanowire and transparent metal oxide have high resistance, there are limitations on the number of LED driving, and there is a limit to maximizing the transparent LED display.
  • the thickness of the Ag nanowire or the transparent metal oxide is increased to lower the resistance, the transmittance of the transparent LED display is lowered.
  • a metal electrode is applied to an electrode substrate of a transparent light emitting device display.
  • a metal electrode there is an advantage that a low resistance can be secured, but a problem that visibility is increased due to an increase in reflectance and a yellow index (YI) may occur.
  • YI yellow index
  • the blackening layer is formed on the surface of the metal electrode in order to suppress such a phenomenon, there may occur a problem that the adhesion of the solder to the LED mounting portion is lowered.
  • the present application aims to provide a transparent light emitting device display which is excellent in resistance characteristics, visibility, etc., and in which the solder adhesion force in the LED mounting portion can be maintained.
  • an electrode substrate for a transparent light emitting element display comprising: a transparent substrate; A wiring electrode portion provided on the transparent substrate and including a metal mesh pattern; And at least one light emitting device mounting part provided on the transparent substrate, wherein the black metal layer pattern is formed on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode part.
  • the transparent substrate may be a glass substrate or a transparent plastic substrate having excellent transparency, surface smoothness, ease of handling, and waterproofness, but is not limited thereto and is not limited as long as it is a transparent substrate ordinarily used for electronic devices.
  • the transparent substrate may be glass; Urethane resin; Polyimide resin; Polyester resin; (Meth) acrylate-based polymer resin; A polyolefin-based resin such as polyethylene or polypropylene, or the like.
  • the wiring electrode portion may include a first common electrode wiring portion, a second common electrode wiring portion, and a signal electrode wiring portion.
  • the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion all include a metal mesh pattern having the same line width, pitch, and pitch, and the metal mesh pattern is formed on the transparent substrate excluding the light- And may be provided in the entire area of the effective screen area.
  • the signal electrode wiring portion may be provided between the first common electrode wiring portion and the second common electrode wiring portion.
  • the first common electrode wiring portion may be a (+) common electrode wiring portion
  • the second common electrode wiring portion may be a (-) common electrode wiring portion
  • the first common electrode wiring portion may be a (-) common electrode wiring portion
  • the second common electrode wiring portion may be a (+) common electrode wiring portion
  • the wiring electrode portion and the light emitting element mounting portion of the transparent light emitting element display according to one embodiment of the present application are schematically shown in Fig.
  • a channel is formed in a structure in which a signal electrode wiring portion passes between a (+) common electrode wiring portion and a (-) common electrode wiring portion, and electrode wiring is not separately provided for each light- And may be connected as a common electrode to the electrode wiring portion and the (-) common electrode wiring portion.
  • the light emitting device mounting portion may be provided at a position where the light emitting device is mounted using a solder, and the light emitting device mounting portion may be provided on the transparent substrate.
  • the number of the light emitting devices may be, And a person skilled in the art can appropriately select it, and is not particularly limited. More specifically, the number of the light emitting elements is related to the resistance of the electrodes, and the number of the light emitting elements can be increased as the electrodes are sufficiently low in resistance and the area of the display is larger. If the number of light emitting devices is increased in the same area, the resolution is increased. If the number of light emitting devices is increased at the same intervals, the area of the display increases and the number of the light emitting devices in the power supply unit may decrease. And the like, by those skilled in the art.
  • the two or more light emitting devices may be connected in series with the signal electrode wiring portion, and may be connected in series with the first common electrode wiring portion and the second common electrode wiring portion. Since the first common electrode wiring portion and the second common electrode wiring portion provide a sufficient amount of current for driving the light emitting element and the color signal of the light emitting element can be transmitted by only a low current, Can be connected.
  • the widths of the electrodes must be different from each other in order to adjust the resistance value according to the arrangement distance of the light emitting devices
  • the width of the electrode connected to the farthest light emitting element is the largest), and it is difficult to configure a low resistance electrode due to the spatial restriction of the electrode arrangement region due to the characteristics of a plurality of light emitting elements.
  • the light emitting device mounting portion may include gold, silver, aluminum, copper, neodymium, molybdenum, nickel, or an alloy thereof, but is not limited thereto.
  • the light emitting element mounting portion is provided at a position where the light emitting element is mounted using a solder, and each of the light emitting element mounting portions includes the first common electrode wiring portion, the second common electrode wiring portion, And at least four electrode pad portions electrically connected to the signal electrode wiring portion.
  • the at least four electrode pad portions may include two signal electrode pad portions, one first common electrode pad portion, and one second common electrode pad portion.
  • the two signal electrode pad portions may be provided at the ends of the signal electrode wiring portions as signal In-out pad portions of the light emitting device, and the first common electrode pad portion and the second common electrode pad portion may respectively have first common electrode wiring portions And may be provided at the end of the second common electrode wiring portion.
  • the transparent substrate may further include at least one capacitor pad portion.
  • the capacitor pad portion may include two capacitor pads. The capacitor pad portion is a pad to which a capacitor is attached, and the capacitor can play a role of stabilizing a current supplied to the light emitting element.
  • the at least four electrode pad portions do not include a metal mesh pattern, and the entire region of each pad portion may be made of metal. More specifically, since the electrode pad portion is a portion covered by the light emitting device to be welded, the entire region of each pad portion may be made of a metal without including the metal mesh pattern.
  • the interval between the at least four electrode pad portions may be 0.1 mm to 1 mm. By providing such an interval, it is possible to prevent a short circuit in consideration of the tolerance in the screen printing of the solder paste for forming a light emitting element at a later time.
  • the shape of the electrode pad portion and the capacitor pad portion is not particularly limited and may be a rectangular shape.
  • the size of the electrode pad portion and the capacitor pad portion may be 0.1 mm 2 to 1 mm 2 , but is not limited thereto.
  • the four electrode pad portions may be bonded to one light emitting element. That is, in one embodiment of the present application, when a plurality of light emitting elements are provided on a transparent substrate, each light emitting element can be bonded to four electrode pad portions.
  • the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion may all include a metal mesh pattern having the same line width, pitch, and pitch.
  • the same line width of the metal mesh pattern means that the standard deviation of the line width is 20% or less, preferably 10% or less, more preferably 5% or less.
  • the same sentence of the metal mesh pattern means that the standard deviation of sentence is 10% or less, preferably 5% or less, more preferably 2% or less.
  • the same pitch of the metal mesh pattern means that the standard deviation of the pitch is 10% or less, preferably 5% or less, more preferably 2% or less.
  • the metal mesh pattern may be provided in the entire region of the effective screen portion on the transparent substrate except the region where the light emitting device is provided. More specifically, the metal mesh pattern may be provided in an area of 80% or more of the total area of the transparent substrate, and may be provided in an area of 99.5% or less. The metal mesh pattern may be provided in an area of 80% or more of the area excluding the FPCB pad area and the light emitting device pad area on the transparent substrate based on the total area of the transparent substrate, % Or less.
  • the FPCB pad region may include an FPCB pad portion for applying an external power source, and the area thereof may be at least three times the total area of the FPCB pad portion and not more than three times the entire area of the FPCB pad portion.
  • the light emitting element pad region includes the above-described electrode pad portion, and the area thereof may be 1.5 times or more of the total area of the electrode pad portion and 3 times or less the total area of the electrode pad portion.
  • the metal mesh pattern of the wiring electrode portion may be a pattern in the art. More specifically, the metal mesh pattern may include a polygonal pattern including at least one of triangular, rectangular, pentagonal, hexagonal, and octagonal shapes.
  • the metal mesh pattern may include a straight line, a curved line, or a closed curve formed by a straight line or a curved line.
  • the metal mesh pattern is provided in the entire region of the effective screen of the top surface of the transparent substrate except for the region where the light emitting device mounting portion is provided, a maximum permissible wiring region can be ensured, Can be improved. More specifically, the sheet resistance of the metal mesh pattern may be 0.1 ⁇ / sq or less.
  • the pitch of the metal mesh pattern may be in the range of 100 ⁇ to 1,000 ⁇ , may be in the range of 100 ⁇ to 600 ⁇ , and may be in the range of 100 ⁇ to 300 ⁇ , which may be adjusted according to the desired transmittance and conductivity.
  • the material of the metal mesh pattern is not particularly limited, but preferably includes at least one of metal and metal alloy.
  • the metal mesh pattern may include, but is not limited to, gold, silver, aluminum, copper, neodymium, molybdenum, nickel, or an alloy thereof.
  • the thickness of the metal mesh pattern is not particularly limited, but may be 3 ⁇ or more and 3 ⁇ to 10 ⁇ in terms of the conductivity of the metal mesh pattern and the economical efficiency of the formation process.
  • the line width of the metal mesh pattern may be 25 ⁇ ⁇ or less and may be 20 ⁇ ⁇ or less, but the present invention is not limited thereto.
  • the smaller the line width of the metal mesh pattern the more advantageous it is from the viewpoint of the transmittance and the wiring recognition property.
  • the resistance can be reduced, and the resistance reduction can be improved by increasing the pitch of the metal mesh pattern.
  • the line width of the metal mesh pattern may be 5 ⁇ ⁇ or more.
  • the opening ratio of the metal mesh pattern that is, the area ratio not covered by the pattern may be 70% or more, 85% or more, and 95% or more.
  • the metal mesh pattern having the same line width, line width, and pitch can be applied to the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion, thereby making it possible to lower the wiring awareness. If the line widths, pitches, or pitches of the metal mesh patterns of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion are not the same, the recognition of the wiring electrode portion may increase, which is not preferable.
  • the metal mesh patterns of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion may be separated from each other by a single wire portion.
  • the disconnection portion means an area where a part of the metal mesh pattern is disconnected and electrical connection is disconnected from each other.
  • the width of the disconnected portion may mean the distance between the closest end of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion.
  • the width of the disconnection portion may be 80 ⁇ or less, 60 ⁇ or less, 40 ⁇ or less, and 30 ⁇ or less, but is not limited thereto.
  • the width of the disconnection portion may be 5 ⁇ or more.
  • the line width 140, the pitch 150 and the pitch 160 of the metal mesh pattern are schematically shown in FIG.
  • the linewidth, pitch and pitch of the metal mesh pattern can be measured using methods known in the art. For example, a method of observing and measuring an SEM cross section, a method of measuring by a non-contact surface shape measuring instrument (Optical Profiler), a method of measuring by a stylus surface level difference measuring instrument (alpha step or Surfacer Profiler)
  • the width of the disconnected portion for separating the metal mesh patterns of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion can be minimized, thereby making it possible to reduce the perception of wiring.
  • the metal mesh patterns of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion may be formed by independent printing processes or simultaneously by a single printing process . Accordingly, the metal mesh patterns of the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion may have the same pitch.
  • the same sentence means that the standard deviation of sentence is less than 10%, preferably less than 5%, or more preferably less than 2%.
  • a printing method is used to form a first common electrode wiring portion with a thin line- It is possible to form the metal mesh pattern of the second common electrode wiring portion and the signal electrode wiring portion.
  • the printing method is not particularly limited, and printing methods such as offset printing, screen printing, gravure printing, flexographic printing, inkjet printing, and nanoimprint can be used, and one or more combined methods may be used.
  • the printing method may be a roll to roll method, a roll to plate method, a plate to roll method or a plate to plate method.
  • reverse offset printing is preferably applied to realize a precise metal mesh pattern.
  • an ink capable of serving as a resist is coated over the entire surface of a silicone rubber called a blanket during etching, and the unnecessary portion is removed through a scribe engraved with a pattern called a primary cleaver, A printing pattern remaining on the blanket may be transferred to a substrate such as a film or a glass on which a metal or the like is deposited, and then a firing and an etching process may be performed to form a desired pattern.
  • the use of such a method has the advantage that uniformity of dispensing in all regions is ensured by using a metal-deposited substrate, and resistance in the thickness direction can be maintained uniformly.
  • the present application may include a direct printing method of forming a desired pattern by directly printing the conductive ink using the reverse offset printing method described above and then firing it. At this time, the pattern is flattened by pressing pressure, and the application of conductivity can be given by a thermo-plasticizing process for connection due to mutual surface fusion of metal nano-particles or a microwave sintering process / laser part sintering process have.
  • an electrode substrate for a transparent light emitting element display includes a transparent substrate 10; A wiring electrode part 20 provided on the transparent substrate 10 and including a metal mesh pattern; And at least one light emitting element mounting part 30 provided on the transparent substrate 10 and a blackening layer pattern 40 is formed on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode part 20 And does not include a blackening layer pattern on both the upper surface and the side surface of the light emitting device mounting portion 30.
  • a method of manufacturing an electrode substrate for a transparent light emitting element display comprising: forming a transparent substrate, a wiring electrode portion provided on the transparent substrate and including a metal mesh pattern, Preparing an electrode substrate including a light emitting device mounting portion of the light emitting device; Forming a resist pattern on both the top surface and the side surface of the at least one light emitting device mounting portion; Forming a blackening layer pattern on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode portion; And removing the resist pattern.
  • the step of forming the resist pattern may be performed by a method known in the art, and more specifically, by a photolithography, an inkjet printing, or a screen printing method, but is not limited thereto.
  • the resist pattern may include at least one of cresol novolak resin, phenol novolak resin, epoxy phenol novolak resin, and polyhydroxystyrene resin, but is not limited thereto.
  • the step of forming the blackening layer pattern may include a step of forming a blackening layer pattern by a plating process using a plating solution containing at least one of copper, selenium, cobalt, nickel, manganese, magnesium, sodium, oxides thereof, .
  • the plating process may be an electrolytic plating process, an electroless plating process, or the like.
  • FIG. 1 A method of manufacturing an electrode substrate for a transparent light emitting element display according to an embodiment of the present application is schematically shown in Fig.
  • one embodiment of the present application provides a transparent light emitting device display including the electrode substrate for the transparent light emitting device display.
  • the transparent light emitting device display may have a structure in which a solder is provided on the light emitting device mounting portion of the electrode substrate for the transparent light emitting device display and a light emitting device is provided on the solder.
  • the method for manufacturing the transparent light emitting device display may be manufactured by using a method known in the art, except for using the electrode substrate for a transparent light emitting device display according to the present application.
  • Copper was deposited to a thickness of 8 mu m through an electrolytic plating process on a 250 mu m thick PET film.
  • a resist pattern was formed on the deposition substrate through a reverse offset printing process. Copper in an area not provided with a resist pattern was removed using a 10% copper chloride-based copper etching solution and a spray etching equipment. The remaining resist pattern was removed by using a 1 wt% aqueous solution of NaOH to prepare an electrode substrate.
  • a structure, a camera image, and a microscope image of the transparent light-emitting device display according to Comparative Example 1 are schematically shown in FIG.
  • the electrode substrate of Comparative Example 1 was immersed in a solution prepared by diluting YBM-100, a YMM copper black treatment agent, in ultrapure water to a concentration of 10% at room temperature for 30 seconds, followed by washing with water and drying. Thus, an electrode substrate having completed the entire blackening process was manufactured.
  • FIG. 1 A structure, a camera image, and a microscope image of the transparent light emitting device display according to Comparative Example 2 are schematically shown in FIG.
  • Resist paste was selectively printed on the electrode substrate of Comparative Example 1 using a screen printing method on the light emitting device mounting portion.
  • the resist for screen printing was prepared by dissolving 40 g of cresol novolak resin having a weight average molecular weight of 10,000 g / mol and 0.1 g of Tego's surfactant Glide-410 in 59.9 g of PGMEA.
  • the electrode substrate on which the resist pattern was formed was immersed in a solution of YBM-100, which is a YMT copper electroplating agent, diluted to 10% concentration in ultrapure water for 30 seconds at room temperature, followed by washing with water and drying to complete the blackening process.
  • YBM-100 which is a YMT copper electroplating agent
  • the electrode substrate on which the blackening treatment was completed was immersed in an aqueous 1 wt% NaOH solution for 30 seconds to remove the remaining resist pattern, followed by washing with water and drying, thereby preparing an electrode substrate having completed the selective blackening treatment.
  • FIG. 1 A structure, a camera image and a microscope image of the transparent light emitting device display according to the first embodiment are schematically shown in FIG.
  • the solder adhesion of the light emitting element mounting portion pattern was evaluated as follows. A solder paste pattern was formed on the light emitting device mounting part pattern using screen printing, and the electrode substrate was heat-treated at 150 ° C for 5 minutes. Thereafter, the number of solder paste patterns desorbed from the light emitting device mounting pattern was measured by 3M Magic Tape Test. Based on a total of 20 solder paste patterns, it was evaluated as OK when the number of patterns removed was 0, and NG when the number of patterns was 3 or more.
  • FIG. 8 shows the shape of the solder after the heat treatment of Example 1 and the evaluation of the adhesion after evaluation, and the shape of the solder after the heat treatment of Comparative Example 2 and the picture after adhesion evaluation are shown in FIG. As shown in Fig. 9, in Comparative Example 2, the phenomenon that the solder was removed after adhesion evaluation was confirmed.
  • the blackened layer pattern is provided on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode part, the visibility of the electrode substrate for a transparent light emitting device display can be lowered have.
  • the blackening layer pattern is provided only on both the upper surface and the side surface of the metal mesh pattern of the wiring electrode portion and not on the upper surface and the side surface of the light emitting device mounting portion, It is possible to obtain the effect of maintaining the adhesive force of the solder provided on the substrate.
  • a metal mesh pattern having the same line width, line width, and pitch is applied to the first common electrode wiring portion, the second common electrode wiring portion, and the signal electrode wiring portion, have.
  • the metal mesh pattern of the wiring electrode portion is provided in the entire region of the effective screen portion of the upper surface of the transparent substrate excluding the light emitting device mounting portion pattern, thereby maximizing the width of the common electrode wiring portion and lowering the resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판은, 투명 기판; 및 상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부; 및 상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하고, 상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 포함하고, 상기 발광소자 실장부의 상부면 및 측면 모두에 흑화층 패턴을 포함하지 않는다.

Description

투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
본 출원은 2017년 9월 26일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0124199호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법에 관한 것이다.
최근 우리나라는 첨단 ICT 기술과 LED 기술의 융합을 통해 화려한 간판뿐만 아니라 공원 및 도심지 내에 다양한 경관 조명을 연출하여 도시민에게 정보 및 볼거리를 제공하고 있다. 특히, ITO 투명 전극 소재를 사용한 투명 LED 디스플레이는 Glass와 Glass 사이에 LED를 적용한 것으로써, 전선이 보이지 않아 고급스러운 연출이 가능한 장점이 있다. 이로 인해 호텔, 백화점 등의 실내 인테리어에 활용되고 있으며, 건물 외벽의 미디어 파사드 구현에 있어 그 중요성이 커지고 있다.
투명하면서도 전기가 흘러 터치스크린 등에 사용되는 투명 전극은 스마트기기가 보급되면서 그 수요가 폭발적으로 늘어났으며, 그 중 가장 많이 사용하는 투명 전극은 인듐과 주석의 산화물인 ITO(Indium Tin Oxide)이다. 그러나, ITO 투명 전극 소재의 주원료인 인듐은 전 세계적으로 매장량이 많지 않고, 중국 등 일부 국가에서만 생산되고 있으며 생산비용이 고가이다. 또한, 저항값이 일정하게 적용되지 않아 표출되는 LED 불빛이 일정하지 않다는 단점을 갖고 있다. 이로 인해 ITO를 활용한 투명 LED는 고성능 저비용의 투명전극 소재로 활용하기에는 한계가 있다.
투명전극 소재로서 ITO가 가장 많은 비중을 차지하며 사용되어 온 것은 사실이나, 경제성, 제한적 성능 등 한계로 인하여 새로운 소재를 활용한 연구와 기술개발이 지속적으로 이루어지고 있다. 차세대 신소재로 주목받고 있는 투명전극 소재로는 메탈메쉬(Metal Mesh), 나노 와이어(Ag Nanowire), 탄소나노튜브(CNT), 전도성 고분자, 그래핀(Graphene) 등이 있다. 그 중 메탈메쉬는 ITO를 대체한 물질의 85%를 차지하는 신소재로서 저비용 고전도도를 갖고 있어 그 활용도 측면에서 시장이 확대되고 있다.
메탈메쉬를 활용한 투명 LED 디스플레이는 기존 ITO 투명 디스플레이보다 유지보수가 용이하고, 자원절약, 환경오염방지를 대폭 줄일 수 있을 뿐만 아니라 제조원가 절감으로 경제적이다. 또한, 다양한 용도로 확대 적용이 가능하여 새로운 투명전극 소재로서 다양한 제품에 적용 및 활용에 가능성을 갖고 있다.
본 출원은 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법을 제공하고자 한다.
본 출원의 일 실시상태는,
투명 기판; 및
상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부; 및
상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하고,
상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 포함하고,
상기 발광소자 실장부의 상부면 및 측면 모두에 흑화층 패턴을 포함하지 않는 투명 발광소자 디스플레이용 전극 기판을 제공한다.
또한, 본 출원의 다른 실시상태는,
투명 기판, 상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부, 및 상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하는 전극 기판을 준비하는 단계;
상기 적어도 하나의 발광소자 실장부의 상부면 및 측면 모두에 레지스트 패턴을 형성하는 단계;
상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 형성하는 단계; 및
상기 레지스트 패턴을 제거하는 단계
를 포함하는 투명 발광소자 디스플레이용 전극 기판의 제조방법을 제공한다.
본 출원의 일 실시상태에 따르면, 상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴이 구비되므로, 투명 발광소자 디스플레이용 전극 기판의 시인성을 낮출 수 있는 특징이 있다.
또한, 상기 흑화층 패턴은 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에만 구비되고, 상기 발광소자 실장부의 상부면 및 측면에는 구비되지 않으므로, 투명 발광소자 디스플레이의 제조시 상기 발광소자 실장부 상에 구비되는 솔더(solder)의 부착력이 유지되는 효과를 얻을 수 있다.
또한, 본 출원의 일 실시상태에 따르면, 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부에 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 적용함으로써 배선의 인지성을 낮출 수 있다. 또한, 상기 배선전극부의 메탈메쉬 패턴은 상기 발광소자 실장부 패턴을 제외한 투명 기판 상부면의 유효화면부 전체 영역에 구비됨으로써, 공통전극 배선부의 넓이를 최대화하여 저항을 낮출 수 있다.
도 1은 본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판을 개략적으로 나타낸 도이다.
도 2는 본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판의 제조방법을 개략적으로 나타낸 도이다.
도 3은 본 출원의 실시예 1에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 개략적으로 나타낸 도이다.
도 4는 본 출원의 비교예 1에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 개략적으로 나타낸 도이다.
도 5는 본 출원의 비교예 2에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 개략적으로 나타낸 도이다.
도 6은 본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이의 배선전극부 및 발광소자 실장부를 개략적으로 나타낸 도이다.
도 7은 본 출원의 일 실시상태에 따른 메탈메쉬 패턴의 선폭, 선고 및 피치를 개략적으로 나타낸 도이다.
도 8은 본 출원의 실시예 1의 열처리 후 솔더 형상 및 부착평가 후의 사진을 나타낸 도이다.
도 9는 본 출원의 비교예 2의 열처리 후 솔더 형상 및 부착평가 후의 사진을 나타낸 도이다.
[부호의 설명]
10: 투명 기판
20: 배선전극부
30: 발광소자 실장부
40: 흑화층 패턴
50: 레지스트 패턴
60: 발광소자
70: 솔더(solder)
80: 제1 공통전극 배선부
90: 제2 공통전극 배선부
100: 전원 인가부
110: 신호전극 배선부
120: 단선부
130: 메탈메쉬 패턴
140: 메탈메쉬 패턴의 선폭
150: 메탈메쉬 패턴의 선고
160: 메탈메쉬 패턴의 피치
이하 본 출원에 대하여 상세히 설명한다.
본 출원에 있어서, "투명"은 가시광선 영역(400nm 내지 700nm)에서 약 80% 이상의 투과율 특성을 갖는 것을 의미하기로 한다.
투명 LED 디스플레이는 정보제공 서비스 및 경관연출 등을 통하여 도시민에게 다양한 볼거리를 제공하고 있으며 다양한 분야에서 수요가 증가하고 있다. 지금까지 투명전극 소재로서 ITO가 가장 많은 비중을 차지하며 사용되어 온 것은 사실이나, 경제성, 제한적 성능 등 한계로 인하여 새로운 소재를 활용한 연구와 기술개발이 지속적으로 이루어지고 있다.
보다 구체적으로, 종래의 투명 LED 디스플레이를 구현함에 있어서, Ag 나노와이어나 투명 금속 산화물(ITO, IZO 등)을 도입하여 투명 전극 배선을 형성하였다. 그러나, Ag 나노와이어나 투명 금속 산화물(ITO, IZO 등)은 저항이 높기 때문에, LED 구동개수에 제한이 있어 투명 LED 디스플레이를 대면적화하는데 한계가 있다. 또한, 저항을 낮추기 위하여, 상기 Ag 나노와이어나 투명 금속 산화물의 두께를 높이게 되면, 투명 LED 디스플레이의 투과율이 떨어지는 문제가 있다.
이에 본 출원에서는 저항 특성, 시인성 등이 우수한 투명 발광소자 디스플레이를 제공하기 위하여, 투명 발광소자 디스플레이의 전극 기판에 금속 전극을 적용하고자 한다. 상기 금속 전극을 적용하는 경우에는, 낮은 저항을 확보할 수 있는 장점이 있으나 반사율 및 YI(Yellow Index) 증가로 인해 외관 시인성이 증가되는 문제가 발생할 수 있다. 이러한 현상을 억제하기 위하여 금속 전극 표면에 흑화층을 형성하는 경우에는, LED 실장부에 솔더(solder) 부착력이 저하되는 문제가 발생할 수 있다.
따라서, 본 출원에서는, 저항 특성, 시인성 등이 우수할 뿐만 아니라, LED 실장부에서의 솔더 부착력이 유지될 수 있는 투명 발광소자 디스플레이를 제공하고자 한다.
본 출원의 일 실시상태에 따른 투명 발광 소자 디스플레이용 전극 기판은, 투명 기판; 상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부; 및 상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하고, 상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 포함한다.
본 출원에 있어서, 상기 투명 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리 기판 또는 투명 플라스틱 기판이 될 수 있으나, 이에 한정되지 않으며, 전자 소자에 통상적으로 사용되는 투명 기판이면 제한되지 않는다. 구체적으로, 상기 투명 기판으는 유리; 우레탄 수지; 폴리이미드 수지; 폴리에스테르수지; (메타)아크릴레이트계 고분자 수지; 폴리에틸렌 또는 폴리프로필렌 등의 폴리올레핀계 수지 등으로 이루어진 것이 될 수 있다.
본 출원에 있어서, 상기 배선전극부는 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부를 포함할 수 있다. 또한, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부는 모두 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 포함하고, 상기 메탈메쉬 패턴은 상기 발광소자 실장부를 제외한 투명 기판 상의 유효화면부 전체 영역에 구비될 수 있다.
상기 신호전극 배선부는 제1 공통전극 배선부와 제2 공통전극 배선부 사이에 구비될 수 있다.
본 출원에 있어서, 상기 제1 공통전극 배선부는 (+) 공통전극 배선부이고, 상기 제2 공통전극 배선부는 (-) 공통전극 배선부일 수 있다. 또한, 상기 제1 공통전극 배선부는 (-) 공통전극 배선부이고, 상기 제2 공통전극 배선부는 (+) 공통전극 배선부일 수 있다.
본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이의 배선전극부 및 발광소자 실장부를 하기 도 6에 개략적으로 나타내었다.
본 출원에 따르면, (+) 공통전극 배선부와 (-) 공통전극 배선부 사이로 신호전극 배선부가 지나가는 구조로 채널이 형성되어, 각각의 발광소자마다 따로 전극 배선이 나오지 않고, 상기 (+) 공통전극 배선부와 (-) 공통전극 배선부에 공통전극으로서 연결될 수 있다.
상기 발광소자 실장부는 솔더(solder)를 이용하여 발광소자가 실장되는 위치에 구비되는 구성으로서, 상기 투명 기판 상에 2개 이상 구비될 수 있고, 상기 발광소자의 개수는 투명 발광소자 디스플레이의 용도 등을 고려하여, 당업자가 적절하게 선택할 수 있으며, 특별히 제한되는 것은 아니다. 보다 구체적으로, 상기 발광소자의 개수는 전극의 저항과 관련이 있으며, 전극이 충분히 저저항이고 디스플레이의 면적이 클수록 발광소자의 개수는 늘어날 수 있다. 동일 면적에 발광소자의 개수가 늘어나면 해상도가 높아지고, 동일 간격으로 발광소자의 개수가 늘어나면 디스플레이의 면적이 커져서 전력 공급부의 전선 라인이 감소할 수 있으므로, 상기 발광소자의 개수는 투명 발광소자 디스플레이의 용도 등을 고려하여, 당업자가 적절하게 선택할 수 있다.
본 출원의 일 실시상태에서, 상기 2개 이상의 발광소자는 신호전극 배선부와 직렬 연결될 수 있고, 제1 공통전극 배선부 및 제2 공통전극 배선부와 직렬 연결될 수 있다. 상기 제1 공통전극 배선부 및 제2 공통전극 배선부는 발광소자가 구동할 수 있는 충분한 전류량을 제공해주며, 발광소자의 색 신호를 보내는 것은 낮은 전류만으로도 신호를 보낼 수 있기 때문에 신호전극 배선부와 직렬 연결될 수 있다. 만약 모든 발광소자의 구동 및 신호를 위해 본 출원과 같은 구조가 아니라 전원 공급부에 각각의 전극으로 병렬로 연결되어 있다면 발광소자의 배치 거리에 따라 저항값을 맞추기 위해 각각 전극폭을 모두 다르게 해야 하며(가장 먼 발광소자에 연결되는 전극 폭이 가장 큼), 다수의 발광소자가 구비되는 특성상 전극 배치 영역의 공간적 제약으로 저저항의 전극을 구성하기 어렵다.
상기 발광소자 실장부는 금, 은, 알루미늄, 구리, 네오디뮴, 몰리브덴, 니켈 또는 이들의 합금을 포함할 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에 있어서, 상기 발광소자 실장부는 솔더(solder)를 이용하여 발광소자가 실장되는 위치에 구비되는 구성으로서, 개개의 발광소자 실장부는 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부와 전기적으로 연결되는 적어도 4개의 전극패드부를 포함할 수 있다. 상기 적어도 4개의 전극패드부는 2개의 신호전극 패드부, 1개의 제1 공통전극 패드부 및 1개의 제2 공통전극 패드부를 포함할 수 있다. 상기 2개의 신호전극 패드부는 발광소자의 신호 In-out 패드부로서 각각 신호전극 배선부의 말단에 구비될 수 있고, 제1 공통전극 패드부 및 제2 공통전극 패드부는 각각 제1 공통전극 배선부와 제2 공통전극 배선부의 말단에 구비될 수 있다.
또한, 상기 투명 기판 상에는 적어도 하나의 캐패시터 패드부를 추가로 포함할 수 있다. 본 출원의 일 실시상태에 있어서, 상기 캐패시터 패드부는 2개 포함할 수 있다. 상기 캐패시터 패드부는 캐패시터가 부착되는 패드로서, 상기 캐패시터는 발광소자에 공급하는 전류를 안정적이게 하는 역할을 수행할 수 있다.
상기 적어도 4개의 전극패드부는 각각 메탈메쉬 패턴을 포함하지 않고, 각각의 패드부 전체 영역이 금속으로 이루어질 수 있다. 보다 구체적으로, 상기 전극패드부는 용접되는 발광소자에 의해 가려지는 부분이므로, 메탈메쉬 패턴을 포함하지 않고, 각각의 패드부 전체 영역이 금속으로 이루어질 수 있다.
상기 적어도 4개의 전극패드부 간의 각각의 간격은 0.1mm 내지 1mm 일 수 있다. 상기와 같은 간격을 가짐으로써, 추후 발광소자 형성을 위한 솔더 페이스트의 스크린 프린팅시 공차를 고려하여 쇼트를 방지할 수 있다.
상기 전극패드부 및 캐패시터 패드부의 형태는 특별히 제한되는 것은 아니며, 사각형 형태일 수 있다. 또한, 상기 전극패드부 및 캐패시터 패드부의 크기는 0.1mm2 내지 1mm2 일 수 있으나, 이에만 한정되는 것은 아니다.
상기 4개의 전극패드부는 1개의 발광소자와 접합될 수 있다. 즉, 본 출원의 일 실시상태에서, 투명 기판 상에 다수의 발광소자가 구비되는 경우에, 각각의 발광소자는 4개의 전극패드부와 접합될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부는 모두 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 포함할 수 있다. 본 출원에 있어서, 상기 메탈메쉬 패턴의 선폭이 동일하다는 것은 선폭의 표준편차가 20% 이하, 바람직하게는 10% 이하, 더욱 바람직하게는 5% 이하인 것을 의미한다. 또한, 본 출원에 있어서, 상기 메탈메쉬 패턴의 선고가 동일하다는 것은 선고의 표준편차가 10% 이하, 바람직하게는 5% 이하, 더욱 바람직하게는 2% 이하인 것을 의미한다. 또한, 본 출원에 있어서, 상기 메탈메쉬 패턴의 피치가 동일하다는 것은 피치의 표준편차가 10% 이하, 바람직하게는 5% 이하, 더욱 바람직하게는 2% 이하인 것을 의미한다.
본 출원의 일 실시상태에 있어서, 상기 메탈메쉬 패턴은 발광소자가 구비되는 영역을 제외한 투명 기판 상의 유효화면부 전체 영역에 구비될 수 있다. 보다 구체적으로, 상기 메탈메쉬 패턴은 상기 투명 기판 상의 전체 면적 대비 80% 이상의 면적의 영역에 구비될 수 있고, 99.5% 이하의 면적에 구비될 수 있다. 또한, 상기 메탈메쉬 패턴은 상기 투명 기판 상의 전체 면적을 기준으로, 투명 기판 상에 구비되는 FPCB 패드부 영역과 발광소자 패드부 영역을 제외한 면적의 80% 이상의 면적의 영역에 구비될 수 있고, 99.5% 이하의 면적에 구비될 수 있다. 본 출원에 있어서, 상기 FPCB 패드부 영역은 외부 전원을 인가하는 FPCB 패드부를 포함하고, 그 면적은 FPCB 패드부의 전체 면적 이상, FPCB 패드부의 전체 면적의 3배 이하일 수 있다. 또한, 본 출원에 있어서, 상기 발광소자 패드부 영역은 전술한 전극 패드부를 포함하고, 그 면적은 전극 패드부 전체 면적의 1.5배 이상, 전극 패드부 전체 면적의 3배 이하일 수 있다.
본 출원에 있어서, 상기 배선전극부의 메탈메쉬 패턴은 당 기술분야의 패턴 형태가 사용될 수 있다. 보다 구체적으로, 상기 메탈메쉬 패턴은 삼각형, 사각형, 오각형, 육각형 및 팔각형 중 하나 이상의 형태를 포함하는 다각형 패턴을 포함할 수 있다.
상기 메탈메쉬 패턴은 직선, 곡선, 또는 직선이나 곡선으로 이루어진 폐곡선을 포함할 수 있다.
상기 메탈메쉬 패턴은 발광소자 실장부가 구비되는 영역을 제외한 투명 기판 상부면의 유효화면부 전체 영역에 구비되므로, 허용되는 최대한의 배선영역을 확보할 수 있고, 이에 따라 투명 발광소자 디스플레이의 저항 특성을 개선할 수 있다. 보다 구체적으로, 상기 메탈메쉬 패턴의 면저항은 0.1 Ω/sq 이하일 수 있다.
상기 메탈메쉬 패턴의 피치는 100㎛ 내지 1,000㎛ 일 수 있고, 100㎛ 내지 600㎛ 일 수 있으며, 100㎛ 내지 300㎛ 일 수 있으나, 이는 당업자가 원하는 투과율 및 전도도에 따라 조절할 수 있다.
상기 메탈메쉬 패턴의 재료는 특별히 한정되지 않지만, 금속 및 금속 합금 중 1종 이상을 포함하는 것이 바람직하다. 상기 메탈메쉬 패턴은 금, 은, 알루미늄, 구리, 네오디뮴, 몰리브덴, 니켈 또는 이들의 합금을 포함할 수 있으나, 이에만 한정되는 것은 아니다.
상기 메탈메쉬 패턴의 선고는 특별히 한정되는 것은 아니지만, 메탈메쉬 패턴의 전도도 및 형성 공정의 경제성 측면에서 3㎛ 이상일 수 있고, 3㎛ 내지 10㎛ 일 수 있다.
상기 메탈메쉬 패턴의 선폭은 25㎛ 이하일 수 있고, 20㎛ 이하일 수 있으나, 이에만 한정되는 것은 아니다. 상기 메탈메쉬 패턴의 선폭이 작을수록 투과율과 배선 인지성 측면에서 유리할 수 있으나 저항 감소를 야기할 수 있고, 이 때 메탈메쉬 패턴의 선고를 높이면 상기 저항 감소를 개선할 수 있다. 상기 메탈메쉬 패턴의 선폭은 5㎛ 이상일 수 있다.
상기 메탈메쉬 패턴의 개구율, 즉 패턴에 의하여 덮여지지 않는 면적 비율은 70% 이상일 수 있고, 85% 이상일 수 있으며, 95% 이상일 수 있다.
본 출원의 일 실시상태에 따르면, 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부에 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 적용함으로써 배선의 인지성을 낮출 수 있다. 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴의 선폭, 피치 또는 선고가 동일하지 않은 경우에는, 배선전극부의 인지성이 증가할 수 있으므로 바람직하지 않다.
본 출원에 있어서, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴은 각각 단선부에 의하여 서로 분리될 수 있다. 상기 단선부는 메탈메쉬 패턴 중 그 일부가 단선되어 전기적 연결을 서로 단절시키는 영역을 의미한다. 상기 단선부의 폭은 이격된 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부 간의 최인접 말단간의 거리를 의미할 수 있다. 상기 단선부의 폭은 80㎛ 이하일 수 있고, 60㎛ 이하일 수 있으며, 40㎛ 이하일 수 있고, 30㎛ 이하일 수 있으나, 이에만 한정되는 것은 아니다. 상기 단선부의 폭은 5㎛ 이상일 수 있다.
또한, 본 출원의 일 실시상태에 따른 메탈메쉬 패턴의 선폭(140), 선고(150) 및 피치(160)를 하기 도 7에 개략적으로 나타내었다. 상기 메탈메쉬 패턴의 선폭, 선고 및 피치는 당 기술분야에 알려진 방법을 이용하여 측정할 수 있다. 예컨대, SEM 단면을 관찰하고 측정하는 방법, 비접촉 표면형상 측정기(Optical Profiler)로 측정하는 방법, 촉침식 표면 단차 측정기(알파스텝 또는 Surfacer Profiler)로 측정하는 방법 등을 이용할 수 있다.
본 출원의 일 실시상태에 따르면, 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴을 각각 분리하는 단선부의 폭을 최소화함으로써, 배선의 인지성을 낮출 수 있다.
본 출원에 있어서, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴은 각각 독립적인 인쇄공정으로 형성할 수도 있고, 1회의 인쇄공정에 의하여 동시에 형성할 수도 있다. 이에 따라, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴은 서로 동일한 선고를 가질 수 있다. 본 출원에 있어서, 선고가 동일하다는 것은 선고의 표준편차가 10% 미만, 바람직하게는 5% 미만, 또는 더욱 바람직하게는 2% 미만인 것을 의미한다.
본 출원에서는 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴을 형성하기 위하여, 인쇄법을 이용함으로써 투명 기판 상에 선폭이 얇으며 정밀한 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴을 형성할 수 있다. 상기 인쇄법으로는 특별히 한정되지 않으며, 오프셋 인쇄, 스크린 인쇄, 그라비아 인쇄, 플렉소 인쇄, 잉크젯 인쇄, 나노 임프린트 등의 인쇄법이 사용될 수 있으며, 이들 중 1종 이상의 복합방법이 사용될 수도 있다. 상기 인쇄법은 롤 대 롤(roll to roll) 방법, 롤 대 평판(roll to plate), 평판 대 롤(plate to roll) 또는 평판 대 평판(plate to plate) 방법을 사용할 수 있다.
본 출원에서는 정밀한 메탈메쉬 패턴을 구현하기 위해서 리버스 오프셋 인쇄법을 응용하는 것이 바람직하다. 이를 위하여 본 출원에서는 블랭킷이라 부르는 실리콘계 고무 위에 에칭시 레지스트 역할을 수행할 수 있는 잉크를 전면적에 걸쳐 코팅한 후 이를 1차 클리쉐라 부르는 패턴이 새겨져 있는 요판을 통하여 필요 없는 부분을 제거하고 2차로 블랭킷에 남아 있는 인쇄 패턴을 메탈 등이 증착되어 있는 필름 혹은 유리와 같은 기재에 전사한 후 이를 소성 및 에칭공정을 거쳐 원하는 패턴을 형성하는 방법을 수행할 수 있다. 이러한 방법을 이용하는 경우 메탈 증착된 기재를 이용함에 따라 전 영역에서의 선고의 균일성이 확보됨에 따라 두께 방향의 저항을 균일하게 유지할 수 있다는 장점을 지니고 있다. 이외에도 본 출원에서는 앞서 구술한 리버스 오프셋 프린팅 방법을 이용하여 전도성 잉크를 직접 인쇄한 후 소성함으로써 원하는 패턴을 형성하는 직접 인쇄방식을 포함할 수 있다. 이 때 패턴의 선고는 누르는 인압에 의하여 평탄화되며, 전도도의 부여는 금속 나노 입자의 상호 표면융착으로 인한 연결을 목적으로 하는 열소성 공정이나 혹은 마이크로웨이브 소성 공정 / 레이저 부분 소성 공정 등으로 부여할 수 있다.
본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판을 하기 도 1에 개략적으로 나타내었다. 하기 도면과 같이, 본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판은 투명 기판(10); 상기 투명 기판(10) 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부(20); 및 상기 투명 기판(10) 상에 구비되는 적어도 하나의 발광소자 실장부(30)를 포함하고, 상기 배선전극부(20)의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴(40)을 포함하고, 상기 발광소자 실장부(30)의 상부면 및 측면 모두에 흑화층 패턴을 포함하지 않는다.
본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판의 제조방법은, 투명 기판, 상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부, 및 상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하는 전극 기판을 준비하는 단계; 상기 적어도 하나의 발광소자 실장부의 상부면 및 측면 모두에 레지스트 패턴을 형성하는 단계; 상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 형성하는 단계; 및 상기 레지스트 패턴을 제거하는 단계를 포함한다.
본 출원에 있어서, 상기 레지스트 패턴을 형성하는 단계는 당 기술분야에 알려진 방법을 이용할 수 있고, 보다 구체적으로 포토리소그래피, 잉크젯 프린팅 또는 스크린 프린팅 방법으로 수행될 수 있으나, 이에만 한정되는 것은 아니다.
상기 레지스트 패턴은 크레졸 노블락 수지, 페놀 노블락 수지, 에폭시 페놀 노블락 수지, 폴리히드록시 스티렌 수지 등을 1종 이상 포함할 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에 있어서, 상기 흑화층 패턴을 형성하는 단계는, 구리, 셀레늄, 코발트, 니켈, 망간, 마그네슘, 나트륨, 이들의 산화물 및 이들의 수산화물 중 1종 이상을 포함하는 도금 용액을 이용한 도금 공정에 의하여 수행될 수 있다. 상기 도금 공정은 전해 도금 공정, 무전해 도금 공정 등일 수 있다.
본 출원의 일 실시상태에 따른 투명 발광소자 디스플레이용 전극 기판의 제조방법을 하기 도 2에 개략적으로 나타내었다.
또한, 본 출원의 일 실시상태는 상기 투명 발광소자 디스플레이용 전극 기판을 포함하는 투명 발광소자 디스플레이를 제공한다.
상기 투명 발광소자 디스플레이는 상기 투명 발광소자 디스플레이용 전극 기판의 발광소자 실장부 상에 솔더가 구비되고, 상기 솔더 상에 발광소자가 구비되는 구조일 수 있다. 상기 투명 발광소자 디스플레이의 제조방법은, 본 출원에 따른 투명 발광소자 디스플레이용 전극 기판을 이용한 것을 제외하고는, 당 기술분야에 알려진 방법을 이용하여 제조할 수 있다.
이하, 실시예를 통하여 본 명세서에 기재된 실시상태를 예시한다. 그러나, 이하의 실시예에 의하여 상기 실시상태들의 범위가 한정되는 것을 의도하는 것은 아니다.
< 실시예 >
< 비교예 1>
250㎛ 두께의 PET 필름 상에 전해도금 공정을 통해 구리를 8㎛ 두께로 증착하였다. 상기 증착 기재 상부에 리버스 오프셋 인쇄 공정을 통하여 레지스트 패턴을 형성하였다. 10% 농도의 염화제2철계 구리 식각액 및 스프레이 식각 설비를 활용하여 레지스트 패턴이 구비되어 있지 않은 영역의 구리를 제거하였다. NaOH 1wt% 수용액을 이용하여 잔존하는 레지스트 패턴을 제거함으로써 전극 기판을 제조하였다.
상기 비교예 1에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 하기 도 4에 개략적으로 나타내었다.
< 비교예 2>
상기 비교예 1의 전극 기판을 YMT사 구리 흑화처리제인 YBM-100을 초순수에 10% 농도로 희석한 용액에 상온에서 30초간 침지한 후 수세 및 건조 공정을 진행하였다. 이에 따라 전면 흑화 공정이 완료된 전극 기판을 제조하였다.
상기 비교예 2에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 하기 도 5에 개략적으로 나타내었다.
< 실시예 1>
상기 비교예 1의 전극 기판 상에 레지스트 페이스트를 스크린 프린팅 방법을 이용하여 발광소자 실장부에 선택적으로 인쇄하였다. 상기 스크린 프린팅용 레지스트는 중량 평균 분자량이 10,000 g/mol인 크레졸 노블락 수지 40g과 Tego사 계면활성제 Glide-410 0.1g을 PGMEA 59.9g에 용해하여 제조하였다.
상기 레지스트 패턴이 구비되어 있는 전극 기판을 YMT사 구리 흑화처리제인 YBM-100을 초순수에 10% 농도로 희석한 용액에 상온에서 30초간 침지한 후 수세 및 건조 공정을 진행하여 흑화 공정을 완료하였다.
상기 흑화 처리가 완료된 전극 기판을 NaOH 1wt% 수용액에 30초간 침지하여 잔존하는 레지스트 패턴을 제거한 후 수세 및 건조 공정을 진행하여 선택 흑화 처리가 완료된 전극 기판을 제조하였다.
상기 실시예 1에 따른 투명 발광소자 디스플레이의 구조, 카메라이미지 및 현미경 이미지를 하기 도 3에 개략적으로 나타내었다.
< 실험예 >
상기 실시예 1 및 비교예 1 ~ 2의 전극 기판의 특성을 평가하여 하기 표 1에 나타내었다.
하기 발광소자 실장부 패턴의 솔더 부착력은 아래와 같이 평가하였다. 상기 발광소자 실장부 패턴에 스크린 프린팅을 이용하여 솔더 페이스트 패턴을 형성하고, 150℃, 5분간 전극 기판을 열처리하였다. 그 후, 3M Magic Tape Test를 통해 상기 발광소자 실장부 패턴에서 탈착된 솔더 페이스트 패턴의 개수를 측정하였다. 총 20개의 솔더 페이스트 패턴을 기준으로 탈착된 패턴의 개수가 0개일 때 OK, 3개 이상일 때 NG로 평가하였다. 상기 실시예 1의 열처리 후 솔더 형상 및 부착평가 후의 사진을 하기 도 8에 나타내었고, 비교예 2의 열처리 후 솔더 형상 및 부착평가 후의 사진을 하기 도 9에 나타내었다. 하기 도 9의 결과와 같이, 비교예 2에서는 부착평가 후 솔더가 탈리되는 현상을 확인할 수 있었다.
하기 반사율 및 Yellow Index는 스펙트로포토미터(SPECTROPHOTOMETER, SolidSpec-3700, Shimadzu Corp.)를 사용하여 측정하였다.
[표 1]
Figure PCTKR2018010833-appb-I000001
상기 결과와 같이, 본 출원의 일 실시상태에 따르면, 상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴이 구비되므로, 투명 발광소자 디스플레이용 전극 기판의 시인성을 낮출 수 있는 특징이 있다.
또한, 상기 흑화층 패턴은 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에만 구비되고, 상기 발광소자 실장부의 상부면 및 측면에는 구비되지 않으므로, 투명 발광소자 디스플레이의 제조시 상기 발광소자 실장부 상에 구비되는 솔더(solder)의 부착력이 유지되는 효과를 얻을 수 있다.
또한, 본 출원의 일 실시상태에 따르면, 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부에 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 적용함으로써 배선의 인지성을 낮출 수 있다. 또한, 상기 배선전극부의 메탈메쉬 패턴은 상기 발광소자 실장부 패턴을 제외한 투명 기판 상부면의 유효화면부 전체 영역에 구비됨으로써, 공통전극 배선부의 넓이를 최대화하여 저항을 낮출 수 있다.

Claims (13)

  1. 투명 기판;
    상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부; 및
    상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하고,
    상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 포함하고,
    상기 발광소자 실장부의 상부면 및 측면 모두에 흑화층 패턴을 포함하지 않는 투명 발광소자 디스플레이용 전극 기판.
  2. 청구항 1에 있어서, 상기 배선전극부는 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부를 포함하는 것인 투명 발광소자 디스플레이용 전극 기판.
  3. 청구항 2에 있어서, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부는 모두 선폭, 선고 및 피치가 동일한 메탈메쉬 패턴을 포함하고,
    상기 메탈메쉬 패턴은 상기 발광소자 실장부를 제외한 투명 기판 상의 유효화면부 전체 영역에 구비되는 것인 투명 발광소자 디스플레이용 전극 기판.
  4. 청구항 1에 있어서, 상기 메탈메쉬 패턴의 선폭은 25㎛ 이하이고, 피치는 100㎛ 내지 1,000㎛ 이며, 선고는 3㎛ 이상인 것인 투명 발광소자 디스플레이용 전극 기판.
  5. 청구항 2에 있어서, 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부의 메탈메쉬 패턴은 각각 단선부에 의하여 서로 분리되고,
    상기 단선부의 폭은 80㎛ 이하인 것인 투명 발광소자 디스플레이용 전극 기판.
  6. 청구항 1에 있어서, 상기 배선전극부 및 발광소자 실장부는 각각 독립적으로 금, 은, 알루미늄, 구리, 네오디뮴, 몰리브덴, 니켈 또는 이들의 합금을 포함하는 것인 투명 발광소자 디스플레이용 전극 기판.
  7. 청구항 2에 있어서, 상기 발광소자 실장부는 상기 제1 공통전극 배선부, 제2 공통전극 배선부 및 신호전극 배선부와 전기적으로 연결되는 적어도 4개의 전극패드부를 포함하는 것인 투명 발광소자 디스플레이용 전극 기판.
  8. 청구항 7에 있어서, 상기 적어도 4개의 전극패드부는 2개의 신호전극 패드부, 1개의 제1 공통전극 패드부 및 1개의 제2 공통전극 패드부를 포함하는 것인 투명 발광소자 디스플레이용 전극 기판.
  9. 투명 기판, 상기 투명 기판 상에 구비되고 메탈메쉬 패턴을 포함하는 배선전극부, 및 상기 투명 기판 상에 구비되는 적어도 하나의 발광소자 실장부를 포함하는 전극 기판을 준비하는 단계;
    상기 적어도 하나의 발광소자 실장부의 상부면 및 측면 모두에 레지스트 패턴을 형성하는 단계;
    상기 배선전극부의 메탈메쉬 패턴의 상부면 및 측면 모두에 흑화층 패턴을 형성하는 단계; 및
    상기 레지스트 패턴을 제거하는 단계
    를 포함하는 투명 발광소자 디스플레이용 전극 기판의 제조방법.
  10. 청구항 9에 있어서, 상기 레지스트 패턴을 형성하는 단계는 포토리소그래피, 잉크젯 프린팅 또는 스크린 프린팅 방법으로 수행되는 것인 투명 발광소자 디스플레이용 전극 기판의 제조방법.
  11. 청구항 9에 있어서, 상기 레지스트 패턴은 크레졸 노블락 수지, 페놀 노블락 수지, 에폭시 페놀 노블락 수지 및 폴리히드록시 스티렌 수지 중 1종 이상을 포함하는 것인 투명 발광소자 디스플레이용 전극 기판의 제조방법.
  12. 청구항 9에 있어서, 상기 흑화층 패턴을 형성하는 단계는, 구리, 셀레늄, 코발트, 니켈, 망간, 마그네슘, 나트륨, 이들의 산화물 및 이들의 수산화물 중 1종 이상을 포함하는 도금 용액을 이용한 도금 공정에 의하여 수행되는 것인 투명 발광소자 디스플레이용 전극 기판의 제조방법.
  13. 청구항 1 내지 8 중 어느 한 항의 투명 발광소자 디스플레이용 전극 기판을 포함하는 투명 발광소자 디스플레이.
PCT/KR2018/010833 2017-09-26 2018-09-14 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법 WO2019066336A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/619,034 US11171259B2 (en) 2017-09-26 2018-09-14 Electrode substrate for transparent light-emitting diode display and method for manufacturing same
JP2019563474A JP6869594B2 (ja) 2017-09-26 2018-09-14 透明発光素子ディスプレイ用電極基板およびその製造方法
EP18863347.3A EP3690945A4 (en) 2017-09-26 2018-09-14 ELECTRODE SUBSTRATE FOR TRANSPARENT LUMINESCENT DIODE DISPLAY UNIT AND ITS MANUFACTURING PROCESS
CN201880031939.0A CN110622316B (zh) 2017-09-26 2018-09-14 用于透明发光二极管显示器的电极基底及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170124199 2017-09-26
KR10-2017-0124199 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019066336A1 true WO2019066336A1 (ko) 2019-04-04

Family

ID=65903412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010833 WO2019066336A1 (ko) 2017-09-26 2018-09-14 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법

Country Status (7)

Country Link
US (1) US11171259B2 (ko)
EP (1) EP3690945A4 (ko)
JP (1) JP6869594B2 (ko)
KR (1) KR102129674B1 (ko)
CN (1) CN110622316B (ko)
TW (1) TWI703748B (ko)
WO (1) WO2019066336A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148594A1 (de) * 2021-01-05 2022-07-14 Ams-Osram International Gmbh Anschlussträger, optoelektronische vorrichtung und verfahren zum herstellen eines anschlussträgers
DE102022122744A1 (de) 2022-09-07 2024-03-07 Ams-Osram International Gmbh Verfahren zum erzeugen von leiterbahnen und transparente verbundscheibe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066336A1 (ko) * 2017-09-26 2019-04-04 주식회사 엘지화학 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
CN109147654A (zh) * 2018-10-30 2019-01-04 京东方科技集团股份有限公司 显示基板及显示装置
KR20200114055A (ko) * 2019-03-27 2020-10-07 주식회사 엘지화학 투명 발광소자 디스플레이
KR102494029B1 (ko) * 2020-09-26 2023-01-31 고준철 투명 led 디스플레이 장치용 필름 및 이의 제조 방법
TWI746237B (zh) * 2020-10-30 2021-11-11 啟耀光電股份有限公司 透光顯示模組的製造方法
TWI789756B (zh) * 2021-05-17 2023-01-11 范文正 柔性透明顯示屏及其柔性線路板
KR20240036313A (ko) 2022-09-13 2024-03-20 에스엔피 주식회사 투명 디스플레이용 전극 기판의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422270B1 (ko) * 2014-01-13 2014-07-24 와이엠티 주식회사 터치 스크린 센서용 메탈 메쉬의 제조방법 및 이를 이용하여 제조된 터치 스크린 센서
KR101482401B1 (ko) * 2013-04-30 2015-01-13 삼성전기주식회사 터치패널을 포함하는 디스플레이장치 및 그 터치패널의 전극패턴 시인성 평가방법
KR20160103818A (ko) * 2015-02-25 2016-09-02 금호전기주식회사 투명 전광 장치
KR101689131B1 (ko) * 2015-07-24 2016-12-23 케이알에코스타 주식회사 메탈 메쉬를 이용한 투명 디스플레이
KR20170079616A (ko) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 투명표시장치
KR20170124199A (ko) 2016-05-02 2017-11-10 배재대학교 산학협력단 인체의 움직임을 이용한 전자기기 제어장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU688038B2 (en) 1994-09-27 1998-03-05 Shinsuke Nishida Display
JP2934662B2 (ja) * 1994-09-27 1999-08-16 フーリエ有限会社 表示装置
US6882012B2 (en) 2000-02-28 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP2001330860A (ja) 2000-02-28 2001-11-30 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2002313914A (ja) * 2001-04-18 2002-10-25 Sony Corp 配線形成方法及びこれを用いた素子の配列方法、画像表示装置の製造方法
JP3864863B2 (ja) * 2002-07-10 2007-01-10 株式会社豊田自動織機 カラー表示装置
TWI403761B (zh) * 2005-02-15 2013-08-01 Fujifilm Corp 透光性導電性膜之製法
JP5046495B2 (ja) * 2005-04-18 2012-10-10 セーレン株式会社 透明導電性フィルムとその製造方法
US7749907B2 (en) * 2006-08-25 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5009116B2 (ja) * 2006-09-28 2012-08-22 富士フイルム株式会社 自発光表示装置、透明導電性フイルム、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
KR100922810B1 (ko) 2007-12-11 2009-10-21 주식회사 잉크테크 흑화 전도성 패턴의 제조방법
JP5245448B2 (ja) 2008-02-22 2013-07-24 カシオ計算機株式会社 有機エレクトロルミネセンス表示装置及びその製造方法
JP2009206116A (ja) * 2008-02-26 2009-09-10 Toray Ind Inc ディスプレイ用フィルター及びその製造方法
KR101105887B1 (ko) 2010-04-26 2012-01-16 (주)케이스원 엘이디 패키지 실장 기판 및 그 제조 방법
JP5692775B2 (ja) 2010-05-19 2015-04-01 Necライティング株式会社 有機エレクトロルミネッセンス素子及びこれを用いた照明器具
KR101504840B1 (ko) 2012-11-30 2015-03-20 주식회사 엘지화학 전도성 기판 및 이의 제조방법
JP5888255B2 (ja) * 2013-01-31 2016-03-16 大日本印刷株式会社 電極フィルム、その製造方法および画像表示装置
KR20150033169A (ko) 2013-09-23 2015-04-01 엘지디스플레이 주식회사 Led 패키지와 이를 이용한 액정 표시 장치
JP6201623B2 (ja) 2013-10-22 2017-09-27 大日本印刷株式会社 電極部材、その製造方法、該電極部材を用いたタッチパネル、および該タッチパネルを配置した画像表示装置
JP6233015B2 (ja) 2013-12-26 2017-11-22 大日本印刷株式会社 電極シート、該電極シートを用いたタッチパネル、該タッチパネルを配置した画像表示装置
WO2015126088A1 (en) * 2014-02-24 2015-08-27 Lg Innotek Co., Ltd. Touch window and display with the same
US10037114B2 (en) * 2014-05-12 2018-07-31 Lg Innotek Co., Ltd. Touch window
CN106462292B (zh) * 2014-06-24 2019-08-13 Vts-触动感应器有限公司 触摸传感器基板、触摸面板、显示装置及触摸传感器基板的制造方法
JP2016071533A (ja) 2014-09-29 2016-05-09 富士フイルム株式会社 タッチパネルセンサーの製造方法、タッチパネルセンサー、タッチパネル、及び、タッチパネル表示装置
JP6633622B2 (ja) 2015-05-01 2020-01-22 東芝ホクト電子株式会社 発光モジュール
KR101752559B1 (ko) 2015-08-17 2017-07-03 엔젯 주식회사 대면적이면서 유연성 기판에도 용이하게 적용할 수 있는 투명전광판 및 이의 제조 방법
CN108369980B (zh) 2015-12-28 2020-07-21 东芝北斗电子株式会社 发光模块
CN109906405B (zh) * 2016-11-09 2022-04-26 株式会社半导体能源研究所 显示装置、显示模块、电子设备以及显示装置的制造方法
US10756118B2 (en) * 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
WO2018100466A1 (en) * 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
KR102329084B1 (ko) * 2017-06-30 2021-11-18 엘지디스플레이 주식회사 터치 스크린 패널 및 터치 스크린 일체형 표시 장치
US11397498B2 (en) * 2017-08-30 2022-07-26 Nissha Co., Ltd. Electrode film and method for manufacturing same
WO2019066336A1 (ko) * 2017-09-26 2019-04-04 주식회사 엘지화학 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482401B1 (ko) * 2013-04-30 2015-01-13 삼성전기주식회사 터치패널을 포함하는 디스플레이장치 및 그 터치패널의 전극패턴 시인성 평가방법
KR101422270B1 (ko) * 2014-01-13 2014-07-24 와이엠티 주식회사 터치 스크린 센서용 메탈 메쉬의 제조방법 및 이를 이용하여 제조된 터치 스크린 센서
KR20160103818A (ko) * 2015-02-25 2016-09-02 금호전기주식회사 투명 전광 장치
KR101689131B1 (ko) * 2015-07-24 2016-12-23 케이알에코스타 주식회사 메탈 메쉬를 이용한 투명 디스플레이
KR20170079616A (ko) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 투명표시장치
KR20170124199A (ko) 2016-05-02 2017-11-10 배재대학교 산학협력단 인체의 움직임을 이용한 전자기기 제어장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690945A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148594A1 (de) * 2021-01-05 2022-07-14 Ams-Osram International Gmbh Anschlussträger, optoelektronische vorrichtung und verfahren zum herstellen eines anschlussträgers
DE102022122744A1 (de) 2022-09-07 2024-03-07 Ams-Osram International Gmbh Verfahren zum erzeugen von leiterbahnen und transparente verbundscheibe

Also Published As

Publication number Publication date
KR20190035517A (ko) 2019-04-03
CN110622316A (zh) 2019-12-27
JP2020519966A (ja) 2020-07-02
US11171259B2 (en) 2021-11-09
TWI703748B (zh) 2020-09-01
JP6869594B2 (ja) 2021-05-12
EP3690945A4 (en) 2020-10-28
TW201921750A (zh) 2019-06-01
US20200144455A1 (en) 2020-05-07
CN110622316B (zh) 2023-04-14
KR102129674B1 (ko) 2020-07-02
EP3690945A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2019066336A1 (ko) 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
WO2020040516A1 (ko) 투명 발광소자 디스플레이용 전극 기판 및 이를 포함하는 투명 발광소자 디스플레이
WO2019022500A1 (ko) 투명 발광소자 디스플레이
WO2019139241A1 (ko) 투명 발광소자 디스플레이
WO2016137056A1 (ko) 투명 전광 장치
WO2018124804A1 (ko) Uv 임프린팅 기술을 이용한 투명 발광장치 제조 방법 및 그에 따라 제조되는 투명 발광장치
WO2015065055A1 (ko) 전도성 필름, 그의 제조방법 및 그를 포함하는 디스플레이 장치
WO2020040518A1 (ko) 투명 발광소자 디스플레이용 매립형 전극 기판 및 이의 제조방법
WO2012091487A2 (ko) 전극 및 이를 포함하는 전자소자
WO2012177102A2 (ko) 탄소나노튜브필름 제조 방법
WO2019059589A1 (ko) 투명 발광소자 디스플레이용 전극 기판 및 이의 제조방법
WO2019066379A1 (ko) 투명 발광소자 디스플레이
WO2015163535A1 (ko) 나노구조의 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법
WO2022139203A1 (ko) 투명 기판을 이용한 led 발광보드, 그 제조방법
WO2014178546A1 (ko) 터치 패널 및 이의 제조 방법
WO2017061761A1 (ko) 전극 접속부 및 이를 포함하는 터치 스크린 패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863347

Country of ref document: EP

Effective date: 20200428