WO2017081886A1 - マイクロ波を利用したマグネシウム製錬装置及び製錬方法 - Google Patents

マイクロ波を利用したマグネシウム製錬装置及び製錬方法 Download PDF

Info

Publication number
WO2017081886A1
WO2017081886A1 PCT/JP2016/070086 JP2016070086W WO2017081886A1 WO 2017081886 A1 WO2017081886 A1 WO 2017081886A1 JP 2016070086 W JP2016070086 W JP 2016070086W WO 2017081886 A1 WO2017081886 A1 WO 2017081886A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
raw material
magnesium
heating chamber
reducing agent
Prior art date
Application number
PCT/JP2016/070086
Other languages
English (en)
French (fr)
Inventor
和田 雄二
鈴木 榮一
米谷 真人
藤井 知
貞治 二宮
聡 長南
美穂 福井
Original Assignee
オリコン・エナジー株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリコン・エナジー株式会社, 国立大学法人東京工業大学 filed Critical オリコン・エナジー株式会社
Publication of WO2017081886A1 publication Critical patent/WO2017081886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents

Definitions

  • the present invention relates to a magnesium smelting apparatus and a smelting method, and more specifically, heats magnesium by irradiating microwaves, generates magnesium vapor, and captures it to extract high-purity metallic magnesium.
  • the present invention relates to a magnesium smelting apparatus and a smelting method.
  • the Pigeon method is known as a smelting method for metallic magnesium.
  • a mixture of magnesium oxide and a reducing agent such as ferrosilicon is placed in a vacuum apparatus, and the mixture is evaporated by heating to 1150 ° C. or higher, and the cooling provided in the vacuum apparatus.
  • This is a method in which metallic magnesium is taken out by vapor deposition on the part.
  • fossil fuels such as coal are often used as a heating source by burning. Since the Pigeon method uses fossil fuels such as coal as a heating source, carbon dioxide and particulate pollutants (PM) are released by the combustion of coal and the like, which is one of the causes of environmental pollution. .
  • Patent Document 1 uses an “electric furnace” as a heating source. “High-purity magnesium having a vacuum refining unit and a heating unit including an electric furnace for heating the main component. Manufacturing apparatus ". In this technology, the magnesium metal used as a raw material is put in a crucible, and this is put into an electric furnace and heated as a whole, and the part that does not contribute to the reduction of magnesium is heated. There is a problem of inefficiency.
  • Patent Document 2 uses “microwave” as a heating source.
  • a microwave reactor that irradiates microwaves into a reactor having a casing made of a magnesia-based refractory A microwave iron furnace characterized by having an oscillator, a raw material supply device for supplying a raw material containing iron ore and a carbon source into the reaction furnace, and a take-out part for taking out hot metal from the reaction furnace. is there.
  • iron is heated and melted by microwave irradiation, but the object is iron, and there is no mention of magnesium reduction or smelting.
  • Non-Patent Document 1 also uses “microwave” as a heating source, and heats and reduces magnesium by irradiating the microwave with magnesium.
  • microwave microwave
  • Non-Patent Document 1 only publishes academic research results, does not consider industrial aspects, and has a problem that a sufficient amount of magnesium cannot be obtained.
  • the object of the present invention is to reduce adverse effects on the environment such as air pollution, efficiently irradiate the target with microwaves, minimize the energy required for reduction, and reduce metallic magnesium at a low cost. It is to smelt.
  • the object of the present invention is achieved by the following means. 1. It consists of a heating chamber that heats and reduces raw materials, and a condensation chamber that aggregates raw materials evaporated by heating,
  • the heating chamber is provided with a microwave source as a heating source for reducing the raw material, which is a mixture of magnesium oxide and a reducing agent, under a reduced pressure atmosphere,
  • the heating chamber is covered with a shield made of a conductive material, and has a multi-mode or single-mode resonance structure,
  • a magnesium smelting apparatus wherein a cylindrical steam outlet having a choke structure formed of a conductive material is provided between the heating chamber and the condensation chamber.
  • the microwave source has a monitoring device that monitors the traveling wave and reflected wave of the microwave in order to determine the end point of the reduction reaction based on the magnitude of the reflected wave, and according to the magnitude of the reflected wave obtained by the monitoring device. Wherein the intensity of the oscillating microwave is adjusted, and when the reflected wave exceeds 40% of the traveling wave, a control device for stopping the oscillation of the microwave is provided. Smelting equipment.
  • a heater for heating the steam outlet is provided to prevent condensation of the produced magnesium vapor, 4.
  • the magnesium smelting apparatus according to any one of claims 1 to 3, wherein a temperature of the steam outlet is heated to 200 ° C. or higher by the heater and radiant heat generated by heating the raw material.
  • the shield made of a conductive material covering the heating chamber is in the shape of a polyhedron, 5.
  • the shield made of a conductive material covering the heating chamber is in the shape of a cube, 1 to 4 above, wherein the shape of the shield can be changed to an octagonal prism by installing reflectors made of a conductive material on the four sides extending horizontally or vertically of the cube.
  • the magnesium smelting device according to any one of the above.
  • a microwave inlet for introducing the microwave into the heating chamber is provided below the raw material installation position, 7.
  • the waveguide connecting the microwave introduction port or the heating chamber and the microwave source is provided with a microwave transmission window made of a material that transmits microwaves, and the microwave transmission window has a double structure.
  • the magnesium smelting apparatus according to any one of 1 to 7 above.
  • a method of reducing magnesium by irradiating a raw material which is a mixture of magnesium oxide and a reducing agent, by irradiating with microwaves under a reduced pressure atmosphere
  • the microwave to irradiate is a multimode or single mode resonance state
  • At least one of a microwave absorbent, a catalyst, or a binder is added to the raw material, and the raw material is pressure-molded to form a briquette, and a reducing agent and / or a microwave is placed inside the briquette.
  • a magnesium smelting method wherein at least one layer made of an absorbent is formed.
  • a method of reducing magnesium by irradiating a raw material which is a mixture of magnesium oxide and a reducing agent, by irradiating with microwaves under a reduced pressure atmosphere
  • the microwave to irradiate is a multimode or single mode resonance state
  • At least one of a microwave absorbent, a catalyst, or a binder is added to the raw material, and the raw material is pressure-molded to form a briquette, and a reducing agent and / or a microwave is placed inside the briquette.
  • a magnesium smelting method wherein at least one aggregate made of an absorbent is formed.
  • the interior is heated from the dielectric loss and Joule loss of the raw material by irradiating the raw material, which is a mixture of magnesium oxide and a reducing agent, with microwaves in a reduced pressure atmosphere.
  • the heating chamber is covered with a conductive material and becomes an electromagnetic shield, the microwave is confined in the heating chamber, and the steam outlet has a choke structure, so that electromagnetic energy (microwave) energy is only in the heating chamber. Be trapped.
  • microwaves are in a multi-mode or single-mode resonance state, and electromagnetic energy is consumed only by heating the raw material, so that the raw material can be efficiently irradiated with microwaves, and energy required for reduction can be obtained. Can be minimized.
  • Magnesium vapor evaporated by heating by microwave irradiation reaches the condensing chamber from the vapor outlet and is condensed and solidified on the wall of the condensing chamber by being cooled by the cooling device.
  • This agglomerated magnesium high-purity metallic magnesium can be obtained.
  • the invention described in 2 above is provided with a monitoring device for monitoring the magnitude of the reflected wave of the microwave and a control device for adjusting the irradiation intensity of the microwave.
  • This control device increases the microwave irradiation intensity when the amount of raw materials is large, reduces the microwave irradiation intensity when the remaining amount of raw materials decreases, and stops the microwave irradiation when there are no more raw materials. To do. The conditions for stopping will be described in detail. When the reflected wave exceeds 40% of the traveling wave, the microwave oscillation is stopped.
  • the monitoring device it becomes possible to grasp the amount of the raw material based on the magnitude of the reflected wave, and by providing the control device, a microwave having a necessary size according to the amount of the raw material can be obtained. , And waste of energy consumption can be suppressed.
  • the diameter of the vapor outlet is set to 1/8 or less of the wavelength of the microwave oscillated from the microwave source, and the length is set to 1/4 or more of the wavelength of the microwave.
  • the steam outlet can be a choke structure, and the microwave can be confined in the heating chamber. Thereby, the raw material can be efficiently irradiated with microwaves, and the energy required for reduction can be minimized.
  • the invention shown in the above item 4 by providing a heater at the steam outlet and heating, it is possible to prevent or suppress the condensed magnesium vapor from adhering to the steam outlet.
  • the heating temperature of the steam outlet to 200 ° C. or higher by the radiant heat generated by the heater and the raw material heating, condensation of magnesium vapor at the steam outlet can be prevented / suppressed. Can move without delay.
  • temperature adjustment is possible by using a heater as a heating means, and furthermore, energy consumption due to heater heating can be suppressed by using radiant heat generated by heating the raw materials.
  • the electromagnetic wave distribution in the heating chamber can be changed by installing a reflector made of a conductive substance in the heating chamber and changing the shape of the shield. It can be irradiated efficiently.
  • the seventh aspect of the present invention it is possible to solve the problem that a gas is generated from the raw material by heating, the microwave is reflected by the plasma generated by the gas, and the microwave energy does not reach the raw material.
  • a gas is generated from the raw material by microwave heating, and a plasma is generated on the raw material by the generation of this gas.
  • This plasma has the property of reflecting microwaves like a metal plate. When plasma is generated between the microwave inlet and the raw material, the microwaves are reflected by this and become reflected waves, increasing energy loss. I will let you. Therefore, the energy loss can be prevented / suppressed by providing a microwave introduction port below the raw material so that no plasma is interposed between the microwave introduction port and the raw material.
  • the sealing property of the heating chamber can be improved and the reduced pressure state can be maintained.
  • doubling the microwave transmission window it is possible to prevent a sudden inflow of air even if one window breaks, and to oxidize, ignite, or burn the magnesium generated in the heating chamber. Can be prevented.
  • the generation of plasma can be suppressed by maintaining the pressure in the heating chamber at the time of heating by irradiating the raw material with microwaves at 20 Pa or less.
  • a microwave can be concentrated on the heating of a raw material, and energy efficiency can be improved.
  • the produced magnesium vapor can be aggregated and solidified, and this can be recovered.
  • the aggregated magnesium can be taken out of the condensation chamber together with the inner wall by adopting a configuration in which the inner wall is removable, the aggregated magnesium can be easily recovered.
  • the raw material is a briquette that forms a layer or aggregate containing a reducing agent and / or a microwave absorber, thereby causing an induced current and a magnetic loss due to a microwave magnetic field. Heat can be generated, and the contact area with magnesium oxide can be increased to increase the reaction field and improve the yield.
  • the temperature rise rate of the raw material is increased and a high ultimate temperature is realized.
  • the metallic reducing agent has a conductivity of 10 3 S / m or more and has a magnetic loss, it is possible to effectively perform dielectric heating by magnetic field and heating by magnetic loss.
  • the temperature rising rate of the raw material is increased and a high ultimate temperature is realized.
  • the carbon-based reducing agent has no magnetic loss, and has a large electrical conductivity and dielectric loss. Therefore, when mixed with an insulating material, heating due to Joule loss and dielectric loss due to an electric field can be effectively applied.
  • the temperature rise rate of the raw material can be increased and a high ultimate temperature can be realized.
  • the schematic block diagram showing one Example of the magnesium smelting apparatus which concerns on this invention Schematic configuration diagram showing another embodiment of the magnesium smelting apparatus according to the present invention Block diagram showing the configuration of the microwave source Bar graph and line graph showing the relationship between reflected wave and reaction end point
  • Schematic configuration diagram showing an embodiment in which a reflector is installed in the heating chamber When a reflector is not installed (a) a temperature distribution diagram in the shield at a point in time immediately after the start of microwave irradiation, (b) a temperature distribution diagram in the shield 20 minutes after the start of microwave irradiation.
  • FIG. 1 and 2 are schematic configuration diagrams showing an embodiment of a magnesium smelting apparatus (hereinafter also simply referred to as “magnesium smelting apparatus”) 1 according to the present invention.
  • the magnesium smelting apparatus 1 includes a heating chamber 2, a condensation chamber 3, a microwave source 4, a waveguide 5, a shield 6, a partition wall 7, and a steam outlet 8.
  • FIG. 1 shows a configuration in which the heating chamber 2 and the condensing chamber 3 are arranged in the horizontal direction (left and right direction), and FIG. 2 shows the heating chamber 2 and the condensing chamber 3 arranged in the vertical direction (up and down direction). It is an Example of a structure.
  • a microwave source 4 is connected to the heating chamber 2 via a waveguide 5, and the heating chamber 2 is surrounded by a shield 6. 3, a partition wall 7 and a steam outlet 8 are provided.
  • the heating chamber 2 is a space for heating the raw material 9, and is formed by a heating chamber casing 21 formed of a material that can withstand high temperatures.
  • a raw material 9 is installed in the heating chamber 2, and the raw material 9 is irradiated with microwaves and heated.
  • the heating chamber casing 21 is formed of a material that does not absorb microwaves and does not react with magnesium vapor and has a heat-resistant temperature of 1200 ° C. or higher.
  • the raw material 9 When the raw material 9 is put directly into the heating chamber 2 without using the raw material container 11, it can be formed of, for example, an alumina refractory, a zirconia refractory, or a magnesia refractory.
  • the raw material 9 When the raw material 9 is arranged using the raw material container 11, it can be formed of heat-resistant steel or stainless alloy and may be integrated with the shield 6.
  • the heating chamber 2 is preferably provided with a configuration for installing and fixing the raw material 9.
  • a raw material mounting table 10 serving as a mounting table for installing and fixing the raw material 9 in the heating chamber 2 is provided, and after the raw material 9 is accommodated in the raw material container 11, The structure mounted on the raw material mounting base 10 can be mentioned.
  • the raw material placing table 10 and the raw material container 11 can be fixed by a publicly known means.
  • materials of the raw material mounting table 10 and the raw material container 11 alumina-based refractories, zirconia-based refractories, and magnesia-based refractories that do not absorb microwaves and do not react with magnesium oxide and magnesium and have heat resistance of 1200 ° C. or higher. You can list things.
  • the heating chamber 2 is provided with a charging port (not shown) for charging the raw material 9.
  • a charging port (not shown) for charging the raw material 9.
  • the insertion port can have a door-like form that can be opened and closed.
  • a configuration in which the raw material container 11 is in a pull-out form and is taken in and out from the door-shaped inlet can be given.
  • the raw material 9 is basically a mixture of magnesium oxide and a reducing agent, and at least one (including adding all) of a microwave absorber, a catalyst, or a binder is added as an additive. it can. And it is preferable to make these into briquettes by pressure molding.
  • magnesium oxide is a concept that includes magnesium oxide and a magnesium composite oxide, and includes magnesium oxide, dolomite, light-burned dolomite, and the like.
  • Examples of the reducing agent include ferrosilicon, silicon, activated carbon, lime nitrogen, calcium and aluminum, but are not limited thereto, and publicly known reducing agents in the technical field according to the present invention may be used. However, these may be used in combination of two or more.
  • microwave absorber examples include silicon carbide, but are not limited thereto, and publicly known microwave absorbers in the technical field according to the present invention may be used, or a combination of two or more thereof. It can also be used.
  • the catalyst examples include calcium fluoride and aluminum.
  • the catalyst is not limited to this, and a publicly known catalyst in the technical field according to the present invention may be used, or a combination of two or more thereof may be used. it can.
  • binder examples include lignin, but are not limited thereto, and publicly known and publicly known binders in the technical field according to the present invention may be used, or these may be used in combination of two or more.
  • the raw material 9 is preferably placed at a position where the magnetic field or electric field strength of the heating chamber 2 is strong depending on the type of reducing agent used. Specifically, when using a metal-based reducing agent, it is preferable to install it at a position where the electric field strength is strong when using a magnetic field and when using a carbon-based reducing agent. Therefore, it is preferable to provide the above-described raw material mounting table 10 in the heating chamber 2 so that the raw material 9 can be installed at a predetermined position, and the raw material 9 is accommodated in the raw material container 11 and installed. Alternatively, as will be described later, it is preferable to install the reflector 12 in the heating chamber 2 so that the magnetic field or the electric field concentrates on the installation position of the raw material 9.
  • the condensation chamber 3 is a space for cooling magnesium vapor generated by heating the raw material 9 in the heating chamber 2, and is formed by a cooling chamber casing 31.
  • the inner wall 32 of the condensation chamber 3 can be cooled by the cooling device 13. As a result, the magnesium vapor adheres to the condensation chamber wall 32 and aggregates and solidifies.
  • the heating chamber 2 and the condensation chamber 3 are connected by a steam outlet 8 described later.
  • the condensation chamber wall 32 is preferably configured to be removable from the condensation chamber 3. By making the inner wall 32 removable, the aggregated magnesium can be taken out of the condensation chamber 3 together with the inner wall 32, so that the aggregated magnesium can be easily recovered.
  • the cooling device 13 may be one that is connected to a cooling device such as water cooling or one that has a function of circulating water, gas, or other refrigerants to cool and uses publicly known means without any particular limitation. it can. Alternatively, air cooling can be performed without using the cooling device 13. Regardless of whether or not the cooling device 13 is used, the temperature of the condensing chamber wall 32 is preferably 200 ° C. or less.
  • the alkaline capacitor 14 is for attaching vapor other than magnesium (impurities including alkali metals such as calcium) that have flowed into the condensation chamber 3. Since magnesium vapor and other metal vapors have different vapor pressures, only metal vapor other than magnesium can be deposited.
  • the alkaline capacitor 14 can be used by being connected to a cooling device such as water cooling or a publicly known means having a function of circulating and cooling water, gas or other refrigerants without any particular limitation.
  • the condensing chamber 3 is provided with an outlet (not shown) for taking out the obtained magnesium metal.
  • the outlet can be a door-like form that can be opened and closed.
  • a vacuum pump V for reducing the pressure of the heating chamber 2 and the condensation chamber 3 is connected to the condensation chamber 3.
  • an exhaust valve (not shown) is provided in order to release the reduced pressure state.
  • a publicly known method can be adopted without any particular limitation. For example, after the microwave irradiation is stopped, the raw material becomes a temperature of 100 ° C. or lower.
  • a method can be employed in which the condensation chamber 3 is leaked from the exhaust valve so as to be at atmospheric pressure from the reduced pressure state, and the metallic magnesium is scraped out from the take-out port.
  • the microwave source 4 is a device that includes a microwave oscillator 41 and oscillates a microwave for irradiating the raw material 9 installed in the heating chamber 2. As shown in FIG. 3, the microwave source 4 is preferably composed of a microwave oscillator 41, an isolator 42, a monitoring device 43, a tuner 44, an applicator 45, and a control device 46.
  • the microwave oscillator 41 is a device that oscillates and propagates microwaves.
  • a combination of a magnetron and a waveguide can be employed.
  • the isolator 42 is a device that allows the traveling wave to pass to the applicator 45 side, absorbs the reflected wave to the dummy load, and prevents the reflected wave from being transmitted to the oscillator 41.
  • the monitoring device 43 is a device that measures and monitors the magnitudes of traveling waves and reflected waves, particularly power. By providing the monitoring device 43, it is possible to grasp the remaining amount of the raw material based on the magnitude of the reflected wave and to detect the end point of the raw material reduction reaction.
  • the tuner 44 is a device that performs matching with a load.
  • the applicator 45 is a mechanism that irradiates and heats a raw material with a microwave, and may include a waveguide 5 and a heating chamber 2 connected to the microwave source 4.
  • the control device 46 adjusts the intensity of the oscillating microwave according to the magnitude of the reflected wave obtained by the monitoring device 43, and stops the oscillation of the microwave when the reflected wave exceeds a certain magnitude. It is.
  • the control device 46 is preferably configured to stop the oscillation of the microwave when the monitoring device 43 detects that the reflected wave of the microwave exceeds 40% of the traveling wave.
  • the temperature rapidly decreases. This is because when the reflected wave / traveling wave exceeds 40%, the raw material is changed to a residue (main component is calcium silicate), or the ore shape capable of absorbing microwaves is collapsed. This indicates that the reduction reaction of the raw material has been completed. Therefore, it is preferable to stop the oscillation of the microwave when the reflected wave / traveling wave exceeds 40%.
  • main component is calcium silicate
  • the waveguide 5 is a member for propagating the microwave oscillated by the microwave source 4 to the heating chamber 2, and is provided at a position where the microwave source 4 and the heating chamber 2 are connected.
  • the microwave source 4 and the waveguide 5 can employ known publicly-known techniques without any particular limitation in addition to the above-described configuration.
  • the shield 6 is formed of a conductive material such as metal, and is provided to cover the heating chamber 2 and shield electromagnetic waves from the outside.
  • the shield 6 may be installed in a manner that covers the heating chamber 2, but as shown in FIGS. 1 and 2, it is installed in a manner that covers the heating chamber 2, and the heat insulating material I (see FIGS. 8) is preferably provided on the outside thereof.
  • the heat insulating material I a material such as porous alumina that does not absorb microwaves, does not react with magnesium vapor, and has a heat resistant temperature of about 1200 ° C. can be used.
  • the shield 6 reflects a microwave, does not react with magnesium, and is formed of a material made of a conductive material having a heat resistant temperature of 1200 ° C. or higher.
  • the shield 6 can be formed of a heat resistant steel, a stainless alloy, or the like.
  • the shield 6 is basically a rectangular parallelepiped (hexahedron) shape, and by installing a reflecting plate 12 made of a conductive material on the side of the rectangular parallelepiped, the shape is changed to a polyhedron of 7 or more planes.
  • the electromagnetic wave distribution can be changed.
  • the reflection plate 12 can be installed on at least one side to change the electromagnetic wave distribution in the heating chamber 2.
  • FIG. 5 is a schematic view of an example in which the shape of the shield 8 is changed to a icosahedron (octagonal prism) by installing the reflecting plate 12 on four sides extending in the horizontal direction.
  • the shape of the shield 6 may be previously formed as a polyhedron of seven or more.
  • a microwave heating simulation of the heating chamber 2 was performed using magnesium oxide (MgO) as a raw material 9 and activated carbon as a reducing agent. The results are shown in FIGS. In this heating simulation, the raw material 9 is covered with the heat insulating material I.
  • MgO magnesium oxide
  • FIG. 6 shows a temperature distribution in the shield 6 when the shape of the shield 6 is a rectangular parallelepiped.
  • FIG. 6A shows the temperature distribution immediately after the start of microwave irradiation
  • FIG. 6B shows the temperature distribution when 20 minutes have passed since the start of microwave irradiation. It is.
  • FIG. 6 (a) one exothermic point is recognized in the lower part of the raw material 9, but the exothermic point is small and small in other parts.
  • FIG. 6B temperature unevenness is recognized in the raw material 9. From these temperature distributions, it can be seen that when the reflector 12 is not installed on the shield 6, the raw material 9 is not uniformly irradiated with the microwaves, and the raw material 9 is uneven in temperature.
  • FIG. 7 (a) shows the temperature distribution at the time immediately after the start of microwave irradiation
  • FIG. 7 (b) shows the temperature distribution at the time when 20 minutes have passed since the start of microwave irradiation.
  • FIG.7 (c) is a schematic diagram which shows the installation angle of the reflecting plate 12 at the time of observing FIG.7 (a) or (b) from the side.
  • FIG. 8 shows the temperature distribution in the shield 6 when the reflector 12 is installed at an angle of 55 degrees with respect to the upper and lower surfaces of the shield 6.
  • FIG. 8A shows the temperature distribution at the time immediately after the start of the microwave irradiation
  • FIG. 8B shows the temperature distribution at the time when 20 minutes have passed from the start of the microwave irradiation.
  • FIG.8 (c) is a schematic diagram which shows the installation angle of the reflecting plate 12 when FIG.8 (a) or (b) is observed from the side.
  • FIG. 8A although it seems that the raw material 9 has one exothermic point, it is very weak.
  • FIG. 8B temperature unevenness is recognized in the raw material 9. From these temperature distributions, it is considered that the microwave energy is not concentrated on the raw material 9 as compared with the temperature distribution of FIG.
  • the reflector 12 is installed at an angle of 45 degrees with respect to the upper and lower surfaces of the shield 6. It has been found that the shape is preferably an octagonal prism shape with an internal angle of 135 degrees.
  • the partition wall 7 is a wall that separates the heating chamber 2 and the condensing chamber 3 and does not absorb microwaves, does not react with magnesium oxide or magnesium, and is formed of a material having heat shielding properties and heat resistance.
  • a material having heat shielding properties and heat resistance For example, an alumina refractory or a zirconia refractory having heat resistance of 1200 ° C. or higher can be used.
  • heat resistant steel or stainless alloy is suitable for the metal plate, and alumina refractory, zirconia refractory or magnesia refractory is suitable for the ceramic.
  • the steam outlet 8 is a passage connecting the heating chamber 2 and the condensation chamber 3 and can be provided by making a hole in the partition wall 7.
  • the steam outlet 8 is a passage through which magnesium vapor generated in the heating chamber 2 moves to the condensing chamber 3 and has a choke structure that prevents microwave leakage.
  • One or a plurality of the steam outlets 8 can be provided, and the number thereof is not limited.
  • the steam outlet 8 has a side wall formed of a conductive material such as metal and has a cylindrical shape.
  • the diameter of the steam outlet 8 is 1/8 or less of the wavelength of the microwave oscillated from the microwave source 4, preferably 1/64 or more, and the length is also the microwave oscillated from the microwave source 4.
  • the wavelength is 1/4 or more, preferably 1 wavelength or less.
  • the partition wall 7 is provided with a heater 15 for heating the steam outlet 8, particularly the side wall of the steam outlet 8. It is preferable that the temperature of the steam outlet 8 is maintained at 200 ° C. or higher, preferably 500 ° C. or higher, by radiant heat generated by heating by the heater 15 and heating of the raw material 9 in the heating chamber 2. By heating the steam outlet 8 to such a temperature, it is possible to prevent the magnesium vapor passing therethrough from adhering to the steam outlet 8 and to move it to the condensation chamber 3 without delay.
  • the heater 15 can employ a publicly known one such as a SiC heater without any particular limitation.
  • the adhesion rate shown in FIG. 9 is a numerical value calculated from “magnesium amount adhered to the inner wall of the heat retaining portion at a distance within 20 cm from the location where magnesium vapor is generated / magnesium vapor amount where magnesium is generated ⁇ 100 (%)”. It is. The amount of adhered magnesium is visually observed. According to this experimental result, it is understood that the temperature at the vapor outlet necessary for allowing magnesium vapor to pass without adhering should be 200 ° C. or higher, preferably 500 ° C. or higher.
  • a portion introduced from the microwave source 4 into the heating chamber 2 through the waveguide 5 is referred to as a microwave inlet 16.
  • the microwave introduction port 16 is preferably provided below the installation position of the raw material 9 in the heating chamber 2 (see FIGS. 1 and 2).
  • Dolomite or light-burned dolomite which is the raw material 9, has the property of adsorbing water and gas in the air, so that the water and gas are released under reduced pressure.
  • microwaves When microwaves are irradiated there, plasma is generated. Since the gas is released to the upper part of the raw material 9, plasma is generated on the upper part of the raw material 9.
  • This plasma has the property of reflecting microwaves like a metal plate. When plasma is generated between the microwave inlet and the raw material, the microwaves are reflected to become reflected waves, and the microwave energy is reduced. The raw material is not reached, and energy loss is increased.
  • the above-mentioned problem is a problem peculiar to magnesium that the raw material 9 in the present invention is a dolomite having a property of adsorbing water or gas or a light-burned dolomite, but the microwave inlet 16 is located more than the position of the raw material 9.
  • This problem can be solved by a configuration unique to the present invention provided below.
  • the distance between the microwave introduction port 16 and the raw material 9 is within one wavelength. With this configuration, generation of unnecessary standing waves can be suppressed and efficient raw material heating can be performed.
  • a microwave transmission window 51 at the waveguide 5, particularly at the microwave inlet 16 which is the tip of the waveguide 5 on the heating chamber 2 side. Moreover, it is more preferable that the microwave transmission window 51 is provided in a double manner. Thereby, the sealing performance of the heating chamber 2 can be enhanced, and a reduced pressure state can be maintained.
  • the microwave introduction port 16 which can be regarded as the distal end portion of the waveguide 5 on the heating chamber 2 side, is provided below the raw material 9.
  • the microwave transmission window 51 is damaged due to the dropping of the raw material 9 or the like. If the microwave transmission window 51 is doubled, even if a single window breaks, it is possible to prevent a rapid inflow of air, and to oxidize, ignite or burn the magnesium generated in the heating chamber 2. Can be prevented.
  • the microwave transmission window 51 is formed of a microwave transmission material such as a quartz plate.
  • the microwave transmission window 51 can be attached to the waveguide 5 by providing two flange portions.
  • a vacuum pump V is connected to the magnesium smelting apparatus 1.
  • the heating chamber 2 and the condensation chamber 3 are depressurized.
  • a publicly known and publicly available vacuum apparatus can be used without any particular limitation, for example, a rotary pump can be used.
  • a filter (not shown) may be provided between the condenser chamber 3 and the like.
  • the raw material 9 is preferably a briquette in which a layer 91 or an aggregate 92 including a reducing agent (which may include a microwave absorber) is formed.
  • a reducing agent which may include a microwave absorber
  • the layer 91 or the aggregate 92 is formed by the reducing agent.
  • a microwave absorber is added to the raw material 9
  • the layer 91 or the assembly 92 is formed by a reducing agent or a microwave absorber or reduced regardless of whether a catalyst or a binder is added. Formed by the agent and the microwave absorber.
  • the layer 91 or the assembly 92 is formed by the reducing agent.
  • FIG. 12 shows a mode in which a layer 91 made of a reducing agent such as ferrosilicon is formed on a raw material 9 mainly made of dolomite (magnesium oxide).
  • a layer 91 made of a reducing agent such as ferrosilicon is formed on a raw material 9 mainly made of dolomite (magnesium oxide).
  • a flat briquette of ferrosilicon (reducing agent) is wrapped with dolomite (magnesium oxide), and this can be molded by pressurization,
  • it can be formed by mixing dolomite and ferrosilicon having different particle diameters and pressurizing so as to form a ferrosilicon layer in the briquette.
  • FIG. 13 shows an aspect in which an aggregate 92 made of a reducing agent such as ferrosilicon is formed on a raw material 9 mainly made of dolomite (magnesium oxide).
  • the upper figure shows a single aggregate, and the lower figure shows a plurality of aggregates.
  • the mode in the case of an aggregate is represented.
  • the means for forming the raw material 9 having an aggregate structure but it can be molded by mixing dolomite and ferrosilicon having different particle diameters and pressurizing so as to form an aggregate of ferrosilicon.
  • FIG. 14 the experimental data showing the difference in the temperature rise by the briquette shape of the raw material 9 are shown.
  • the ore in which the reducing agent is dispersed and mixed gradually increases in temperature after the microwave output exceeds 900 W.
  • briquettes in which reducing agents are mixed in layers rapidly rise in temperature after the microwave output exceeds 600 W
  • briquettes in which reducing agents are mixed as aggregates see FIG. 12). 13
  • the above-mentioned problem is caused by including a reducing agent that causes an induced current in the briquette that is the raw material 9 as a layer 91 or an aggregate 92 in the raw material.
  • a reducing agent that causes an induced current in the briquette that is the raw material 9 as a layer 91 or an aggregate 92 in the raw material.
  • the point can be solved.
  • a metal-based reducing agent can be used as the reducing agent.
  • the temperature rise rate of the raw material 9 can be increased and a high ultimate temperature can be realized. That is, since the metallic reducing agent has a conductivity of 10 3 S / m or more and has a magnetic loss, it is possible to effectively perform dielectric heating by magnetic field and heating by magnetic loss.
  • the raw material 9 containing the agent By disposing the raw material 9 containing the agent at a position where the magnetic field strength is high in the heating chamber 2, the temperature rising rate of the raw material 9 can be increased and a high ultimate temperature can be realized.
  • FIG. 15 shows experimental data observing the behavior of heating by the electric and magnetic fields in the heating chamber 2 in the case of using a metal-based reducing agent.
  • Ferrosilicon was used as the metal reducing agent. According to this, it was found that heating by a magnetic field is effective when a metal-based substance is used as a reducing agent.
  • aluminum is also useful in addition to ferrosilicon.
  • a carbon-based reducing agent can be used as the reducing agent.
  • the temperature rising rate of the raw material 9 can be increased, and a high ultimate temperature can be realized. That is, the carbon-based reducing agent has no magnetic loss, and has a large electrical conductivity and dielectric loss. Therefore, when mixed with an insulating material, heating due to Joule loss and dielectric loss due to an electric field can be effectively applied.
  • the raw material 9 containing the carbon-based reducing agent By disposing the raw material 9 containing the carbon-based reducing agent at a position where the electric field strength is high in the heating chamber 2, the temperature rising rate of the raw material 9 can be increased and a high ultimate temperature can be realized.
  • the heating chamber 2 is depressurized by a vacuum pump V or the like. In this case, it is preferable to maintain the pressure of the heating chamber 2 at 20 Pa or less. Thereby, generation
  • FIG. 16 shows experimental data for verifying the effect of the pressure in the heating chamber 2 on the presence or absence of plasma generation.
  • a heat insulation box and a crucible containing raw materials were installed in a separable flask, the inside of the flask was decompressed, and microwaves were irradiated to confirm the presence or absence of plasma generation. According to this, when the pressure exceeded 20 Pa, plasma was generated, and when the pressure was reduced to 20 Pa or less, the plasma disappeared.
  • the raw material 9 is mainly composed of magnesium oxide and a reducing agent.
  • Magnesium oxide can be dolomite or light-burned dolomite.
  • ferrosilicon or activated carbon can be used as the reducing agent.
  • the raw material 9 is pressure-molded to form a briquette.
  • the raw material 9 is preferably a briquette in which a layer 91 or an aggregate 92 including a reducing agent (which may include a microwave absorber) is formed.
  • the layer 91 or the aggregate 92 is formed by the reducing agent.
  • the layer 91 or the assembly 92 is formed by a reducing agent or a microwave absorber or reduced regardless of whether a catalyst or a binder is added. Formed by the agent and the microwave absorber.
  • the layer 91 or the assembly 92 is formed by the reducing agent.
  • the formed raw material 9 is installed in the heating chamber 2 from the inlet.
  • the raw material 9 is preferably accommodated in the raw material container 11 and placed on the raw material placing table 10.
  • the position where the raw material 9 is installed is preferably a position where the magnetic field strength is strong when a metal reducing agent is used as the reducing agent, and a position where the electric field strength is strong when a carbon-based reducing agent is used.
  • the position of the raw material 9 may be fixed, and the reflective plate 12 may be installed in the heating chamber 2 so that the position of the raw material 9 is adjusted so that the magnetic field strength or the electric field strength is increased.
  • the heating chamber 2 is depressurized by a vacuum pump V.
  • the pressure in the heating chamber 2 is preferably 20 Pa or less.
  • the microwave applied to the raw material 9 is in a multimode or single mode resonance state. When the raw material 9 is irradiated with microwaves, the raw material 9 is heated. When the raw material 9 reaches 1000 ° C. or higher, the reduction reaction of magnesium oxide proceeds and magnesium vapor is generated.
  • Magnesium vapor passes through the vapor outlet 8, reaches the condensation chamber 3, and is condensed on the condensation chamber wall 32.
  • the condensation chamber 3 preferably cools the inner wall 32 by the cooling device 13, and more preferably 200 ° C. or less.
  • Metal vapor other than magnesium adheres to the alkaline capacitor 14 due to the difference in vapor pressure.
  • the raw material 9 is gradually consumed, and the reflected wave of the microwave increases.
  • the magnitude of this reflected wave is measured by the monitoring device 43, the output of the microwave is adjusted by the control device 46, and when the magnitude of the reflected wave reaches a certain value, the control device 46 stops the microwave oscillator 41. . It is preferable to stop the oscillation of the microwave when it is detected that the reflected wave of the microwave exceeds 40% of the traveling wave.
  • the heating chamber 2 is leaked from the exhaust valve so that the pressure is reduced to the atmospheric pressure, and the inlet is opened to remove the residue.
  • the condensing chamber 3 is leaked from the exhaust valve so that the pressure is reduced from the reduced pressure state to the atmospheric pressure.
  • Magnesium adhering to the condensation chamber wall 32 is collected so as to scrape out the magnesium. Note that there is no limitation on the means for taking out magnesium, and a publicly known technique in this type of technical field can be adopted without any particular limitation. For example, if the condensing chamber wall 32 is configured to be removable from the condensing chamber 3, magnesium can be collected after the condensing chamber wall 32 to which magnesium has adhered is taken out of the condensing chamber 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

【課題】空気汚染などの環境への悪影響を抑えると共に、ターゲットに対してマイクロ波を効率よく照射し、還元に必要なエネルギーを最小限に抑え、金属マグネシウムを低コストで還元し製錬する。 【解決手段】原材料を加熱し還元する加熱室と、加熱により蒸発した原材料を凝集する凝縮室から構成され、前記加熱室には、酸化マグネシウムと還元剤の混合物である原材料を、減圧雰囲気下において還元するための加熱源として、マイクロ波源が設けられ、前記加熱室は、導電性物質から成るシールドで覆われており、マルチモード又はシングルモードの共振構造であり、前記加熱室と前記凝縮室の間に、導電性物質から形成されたチョーク構造を有する円筒形の蒸気出口が設けられる構成である。

Description

マイクロ波を利用したマグネシウム製錬装置及び製錬方法
 本発明は、マグネシウムの製錬装置及び製錬方法に関し、詳しくは、マイクロ波を照射してマグネシウムを加熱し、マグネシウム蒸気を発生させることにより、それを捕捉して高純度の金属マグネシウムを取り出すことができるマグネシウム製錬装置及び製錬方法に関する。
 従来から、金属マグネシウムの製錬方法として、ピジョン法が知られている。このピジョン法とは、真空装置内に、酸化マグネシウムをフェロシリコン等の還元剤と混合したものを配置し、これを1150℃以上に加熱することで蒸発させ、同真空装置内に設けられた冷却部分に蒸着させることによって、金属マグネシウムを取り出すという方法である。このピジョン法では、多くの場合、石炭等の化石燃料を燃焼させることによって加熱源としている。このピジョン法は、石炭等の化石燃料を加熱源としていることから、石炭等の燃焼によって、二酸化炭素や粒子状汚染物質(PM)が放出され、環境汚染の原因の一つとされる問題がある。
 一方、加熱源として、化石燃料以外を用いた技術も提案されている。
 特許文献1に記載の技術は、加熱源として「電気炉」を用いたものであり、「真空精製部と、これを加熱する電気炉を備えた加熱部とを主要構成部とする高純度マグネシウムの製造装置」に関するものである。この技術では、原料となる金属マグネシウムをるつぼに入れ、これを電気炉に入れて、全体的に加熱するという手段を採用しており、マグネシウムの還元に寄与しない部分まで加熱することになり、エネルギー効率が悪いという問題がある。
 特許文献2に記載の技術は、加熱源として「マイクロ波」を用いたものであり、「マグネシア系耐火物からなる筐体を有する反応炉と、この反応炉内にマイクロ波を照射するマイクロ波発振器と、前記反応炉内に鉄鉱石及び炭素源を含む原料を供給する原料供給装置と、前記反応炉から溶銑を取り出す取出部と、を有することを特徴とするマイクロ波製鉄炉」に関するものである。この技術は、マイクロ波の照射により鉄を加熱し、溶融させるものであるが、対象物は鉄であり、マグネシウムの還元や製錬については触れられていない。
 非特許文献1に記載の技術も、加熱源として「マイクロ波」を用いたものであり、マグネシウムにマイクロ波を照射することによって加熱し、還元するものである。しかし、非特許文献1は、学術的な研究成果を公表しているに過ぎず、工業的な面が考慮されておらず、十分な量のマグネシウムを得ることができないという問題がある。
特開平10-158753 特開2009-35776
Carbothermic Reduction of MgO by Microwave Irradiation, Materials Transactions, vol.44 No.4, pp.722-726
 そこで、本発明の課題は、空気汚染などの環境への悪影響を抑えると共に、ターゲットに対してマイクロ波を効率よく照射し、還元に必要なエネルギーを最小限に抑え、金属マグネシウムを低コストで還元し製錬することにある。
 上記本発明の課題は、下記の手段により達成される。
1.原材料を加熱し還元する加熱室と、加熱により蒸発した原材料を凝集する凝縮室から構成され、
 前記加熱室には、酸化マグネシウムと還元剤の混合物である原材料を、減圧雰囲気下において還元するための加熱源として、マイクロ波源が設けられ、
 前記加熱室は、導電性物質から成るシールドで覆われており、マルチモード又はシングルモードの共振構造であり、
 前記加熱室と前記凝縮室の間に、導電性物質から形成されたチョーク構造を有する円筒形の蒸気出口が設けられることを特徴とするマグネシウム製錬装置。
2.マイクロ波源は、反射波の大きさによって還元反応の終点を判定するため、マイクロ波の進行波と反射波を監視するモニタリング装置を有し、前記モニタリング装置によって得られた反射波の大きさに応じて、発振するマイクロ波の強度を調整し、反射波が進行波の40%を超えると、マイクロ波の発振を停止する制御装置が設けられていることを特徴とする上記1に記載のマグネシウム製錬装置。
3.蒸気出口の直径が、マイクロ波源から発振されるマイクロ波の波長の1/8以下であり、長さが、前記マイクロ波の波長の1/4以上であることを特徴とする上記1又は2に記載のマグネシウム製錬装置。
4.生成マグネシウム蒸気の凝縮を防ぐために蒸気出口を加熱するヒーターが設けられ、
 前記ヒーターと、原材料加熱によって生じる輻射熱によって、前記蒸気出口の温度が、200℃以上に加熱されることを特徴とする上記1~3のいずれかに記載のマグネシウム製錬装置。
5.加熱室を覆う導電性物質から成るシールドは、多面体の形状であり、
 この多面体の少なくとも1辺に、導電性物質から成る反射板を設置することで、前記シールドの形状を変更できる構成であることを特徴とする上記1~4のいずれかに記載のマグネシウム製錬装置。
6.加熱室を覆う導電性物質から成るシールドは、立方体の形状であり、
 この立方体の水平方向又は垂直方向に伸びる4辺に、導電性物質から成る反射板を設置することで、前記シールドの形状を、八角柱に変更できる構成であることを特徴とする上記1~4のいずれかに記載のマグネシウム製錬装置。
7.マイクロ波を加熱室に導入するマイクロ波導入口を、原材料の設置位置より下方に設けると共に、
 前記マイクロ波導入口は、前記原材料の設置位置から一波長以内の距離であることを特徴とする上記1~6のいずれかに記載のマグネシウム製錬装置。
8.マイクロ波導入口又は加熱室とマイクロ波源を接続する導波管には、マイクロ波を透過する材料からなるマイクロ波透過窓が設けられ、前記マイクロ波透過窓が、二重構造であることを特徴とする上記1~7のいずれかに記載のマグネシウム製錬装置。
9.マイクロ波を原材料に照射する際の加熱室内の圧力が、20Pa以下に保持される構成であることを特徴とする上記1~8のいずれかに記載のマグネシウム製錬装置。
10.凝縮室には、取り外し可能な内壁が設けられ、この内壁が200℃以下に保持され、生成マグネシウム蒸気を凝集及び回収することを特徴とする上記1~9のいずれかに記載のマグネシウム製錬装置。
11.酸化マグネシウムと還元剤の混合物である原材料に、減圧雰囲気下においてマイクロ波を照射して加熱し、マグネシウムを還元する方法において、
 照射するマイクロ波は、マルチモード又はシングルモードの共振状態であり、
 前記原材料には、マイクロ波吸収剤、触媒又はバインダーのうち少なくとも1つが添加され、この原材料を加圧成形して団鉱とすることで、この団鉱の内部には還元剤及び/又はマイクロ波吸収剤からなる層が少なくとも1層形成されていることを特徴とするマグネシウム製錬方法。
12.酸化マグネシウムと還元剤の混合物である原材料に、減圧雰囲気下においてマイクロ波を照射して加熱し、マグネシウムを還元する方法において、
 照射するマイクロ波は、マルチモード又はシングルモードの共振状態であり、
 前記原材料には、マイクロ波吸収剤、触媒又はバインダーのうち少なくとも1つが添加され、この原材料を加圧成形して団鉱とすることで、この団鉱の内部には還元剤及び/又はマイクロ波吸収剤からなる集合体が少なくとも1つ形成されていることを特徴とするマグネシウム製錬方法。
13.還元剤として、金属系還元剤が用いられ、これを含む原材料が、加熱室において相対的に磁場強度の強い位置に配置されることを特徴とする上記11又は12に記載のマグネシウム製錬方法。
14.還元剤として、炭素系還元剤が用いられ、これを含む原材料が、加熱室において相対的に電場強度の強い位置に配置されることを特徴とする上記11又は12に記載のマグネシウム製錬方法。
 上記1に示す発明によれば、酸化マグネシウムと還元剤の混合物である原材料に対し、減圧雰囲気下においてマイクロ波を照射することで、原材料の誘電損失やジュール損失から、内部が加熱される。加熱室が、導電性材料で覆われ電磁シールドとなることから、マイクロ波は加熱室に閉じ込められ、更に、蒸気出口が、チョーク構造となることにより、加熱室にのみ電磁波(マイクロ波)エネルギーが閉じ込められる。これらの構造により、マイクロ波は、マルチモード又はシングルモードの共振状態となり、電磁波エネルギーは、原材料の加熱のみで消費され、原材料にマイクロ波を効率よく照射することができ、還元に必要なエネルギーを最小限に抑えることができる。
 マイクロ波照射による加熱により蒸発したマグネシウム蒸気は、蒸気出口から凝縮室に達し、冷却装置によって冷却されることで凝縮室内壁に凝集し固化する。この凝集したマグネシウムを取り出すことで、高純度の金属マグネシウムを得ることができる。
 これらの構成によれば、化石燃料を燃焼することがないので、空気汚染などの環境への悪影響を抑えることができると共に、ターゲットである原材料に対してマイクロ波を効率よく照射することができ、還元に必要なエネルギーを最小限に抑えることができ、金属マグネシウムを低コストで製錬することができる。
 上記2に示す発明は、マイクロ波の反射波の大きさを監視するモニタリング装置と、マイクロ波の照射強度を調整する制御装置とが設けられている。この制御装置は、原材料の量が多いときには、マイクロ波の照射強度を大きくし、原材料の残量が減少すれば、マイクロ波の照射強度を小さくし、原材料が無くなれば、マイクロ波の照射を停止するものである。停止する条件について詳述すれば、反射波が進行波の40%を超えると、マイクロ波の発振を停止する構成である。
 原材料にマイクロ波を照射する際、原材料の量が多い場合には、マイクロ波の電磁波エネルギーは原材料に吸収される。一方で、還元反応が進み、原材料が消費され量が少なくなると、電磁波エネルギーは原材料で消費され尽さず、余ったエネルギーがマイクロ波の照射口に戻り、反射波となる。即ち、反射波が小さければ、原材料の残量は多く、反対に、反射波が大きければ、原材料の残量は少ないことが分かる。
 このように、モニタリング装置を設けることによって、反射波の大きさにより、原材料の量を把握することが可能になり、制御装置を設けることによって、原材料の量に応じて必要な大きさのマイクロ波を照射することができ、消費エネルギーの無駄を抑制することができる。
 上記3に示す発明によれば、蒸気出口の直径を、マイクロ波源から発振されるマイクロ波の波長の1/8以下とし、長さを、マイクロ波の波長の1/4以上とすることで、蒸気出口をチョーク構造とすることができ、マイクロ波を加熱室に閉じ込めることができる。これにより、原材料にマイクロ波を効率よく照射することができ、還元に必要なエネルギーを最小限に抑えることができる。
 上記4に示す発明によれば、蒸気出口にヒーターを設けて加熱することで、この蒸気出口に生成マグネシウム蒸気が凝縮して付着することを防止又は抑制できる。特に、ヒーターと原材料加熱によって生じる輻射熱によって、蒸気出口の加熱温度を200℃以上とすることで、蒸気出口におけるマグネシウム蒸気の凝縮を防止・抑制することができ、このマグネシウム蒸気を加熱室から凝縮室まで滞りなく移動させることができる。また、加熱手段として、ヒーターを用いることで温度調整を可能とし、更には、原材料加熱によって生じる輻射熱をも利用することで、ヒーター加熱によるエネルギー消費を抑制することができる。
 上記5~6に示す発明によれば、加熱室に導電性物質からなる反射板を設置し、シールドの形状を変化させることによって、加熱室内の電磁波分布を変えることができ、マイクロ波を原材料に効率よく照射させることができる。
 上記7に示す発明によれば、加熱により原材料からガスが生じ、このガスにより発生するプラズマによって、マイクロ波が反射され、マイクロ波エネルギーが原材料に到達しないという問題を解消できる。
 上記効果を詳述する。マイクロ波加熱によって原材料からはガスが生じ、このガスの発生により原材料の上部にプラズマ発生する。このプラズマは、マイクロ波を金属板のように反射する性質を有しており、マイクロ波導入口と原材料の間にプラズマが発生すると、マイクロ波はこれに反射されて反射波となり、エネルギーロスを増大させることになる。そこで、マイクロ波導入口を原材料よりも下方に設け、マイクロ波導入口と原材料との間にプラズマが介在しない構成とすることで、上記エネルギーロスを防止・抑制することができる。
 また、上記7に示す発明によれば、マイクロ波導入口と原材料の設置位置の距離を、一波長以内とすることで、不要な定在波の発生を抑え、効率的な原材料加熱が可能となる。
 上記8に示す発明によれば、マイクロ波導入口にマイクロ波透過窓を設けることで、加熱室の密封性を高めることができ、減圧状態を維持することができる。また、マイクロ波透過窓を二重にすることで、一枚の窓が破損する事態に至っても、空気の急激な流入を防ぐことができ、加熱室内で生じたマグネシウムの酸化、発火又は燃焼を防止することができる。
 上記9に示す発明によれば、マイクロ波を原材料に照射して加熱する際の加熱室内の圧力を、20Pa以下に保持することで、プラズマの発生を抑えることができる。これにより、マイクロ波を原材料の加熱に集中させることができ、エネルギー効率を高めることができる。
 上記10に示す発明によれば、凝縮室に取り外し可能な内壁を設け、この内壁を200℃以下に冷却すれば、生成マグネシウム蒸気を凝集・固化することができ、これを回収することができる。また、内壁を取り外し可能な構成とすることで、凝集したマグネシウムを内壁ごと凝縮室の外に取出すことができるので、この凝集したマグネシウムを容易に回収することができる。
 上記11~12に示す発明によれば、原材料を、還元剤及び/又はマイクロ波吸収剤を含む層又は集合体を形成した団鉱とすることで、マイクロ波の磁場による誘導電流と磁性損失による加熱を発生させることができ、更に、酸化マグネシウムとの接触面積を増やして反応場を増加させ、収率を向上させることができる。
 上記13に示す発明によれば、還元剤として金属系還元剤を用い、これを含む原材料を磁場強度の強い位置に配置することで、原材料の昇温速度を早め、高い到達温度を実現することができる。
 即ち、金属系還元剤は、103S/m以上の導電性を有し、磁性損失を有することから、磁場による誘電加熱や磁性損失による加熱を有効に作用させることができ、この金属系還元剤を含む原材料を、加熱室における磁場強度の高い位置に配置することで、原材料の昇温速度を早め、高い到達温度を実現することができる。
 上記14に示す発明によれば、還元剤として炭素系還元剤を用い、これを含む原材料を電場強度の強い位置に配置することで、原材料の昇温速度を早め、高い到達温度を実現することができる。
 即ち、炭素系還元剤は、磁性損失がなく、導電性と誘電損失が大きいことから、絶縁材料と混合させることにより、電場によるジュール損失と誘電損失による加熱を有効に作用させることができ、この炭素系還元剤を含む原材料を、加熱室における電場強度の高い位置に配置することで、原材料の昇温速度を早め、高い到達温度を実現することができる。
本発明に係るマグネシウム製錬装置の一実施例を表す概略構成図 本発明に係るマグネシウム製錬装置の他の実施例を表す概略構成図 マイクロ波源の構成を表すブロック図 反射波と反応の終点の関係を示す棒グラフ及び折線グラフ 加熱室に反射板を設置した実施例を示す概略構成図 反射板を設置しない場合における、(a)マイクロ波照射開始から間もない時点でのシールド内の温度分布図、(b)マイクロ波照射開始から20分後のシールド内の温度分布図 反射板をシールドの上下の面に対して45度の角度で設置した場合における、(a)マイクロ波照射開始から間もない時点でのシールド内の温度分布図、(b)マイクロ波照射開始から20分後のシールド内の温度分布図、(c)反射板の設置角度を示す模式図 反射板をシールドの上下の面に対して55度の角度で設置した場合における、(a)マイクロ波照射開始から間もない時点でのシールド内の温度分布図、(b)マイクロ波照射開始から20分後のシールド内の温度分布図、(c)反射板の設置角度を示す模式図 温度とマグネシウム蒸気の付着率を示す棒グラフ マイクロ波導入口を原材料の上部に設置した場合におけるマイクロ波とプラズマの関係を示す図 マイクロ波導入口を原材料の下部に設置した場合におけるマイクロ波とプラズマの関係を示す説明図 原材料を層構造に成形した態様を示す図 原材料を集合体構造に成形した態様を示す図 原材料の団鉱形状による温度上昇の相違を表す折線グラフ 原材料の還元剤として金属系還元剤を用いた場合における加熱室内の電場と磁場の加熱の挙動を示す折線グラフ 加熱室の圧力とプラズマの発生の関係を示す折線グラフ
 以下、添付の図面に従って本発明を詳細に説明する。
 本発明に係るマグネシウム製錬装置(以下、単に「マグネシウム製錬装置」ともいう。)1の実施例を表す概略構成図を、図1及び2に示す。
 図1又は2に示されるように、マグネシウム製錬装置1は、加熱室2、凝縮室3、マイクロ波源4、導波管5、シールド6、隔壁7及び蒸気出口8から構成される。
 図1は、加熱室2と凝縮室3とが水平方向(左右方向)に並べられた構成であり、図2は、加熱室2と凝縮室3とが垂直方向(上下方向)に並べられた構成の実施例である。図1~2に示されるいずれの実施例も、加熱室2にはマイクロ波源4が導波管5を介して接続され、加熱室2はシールド6で包囲されており、加熱室2と凝縮室3の間には、隔壁7と蒸気出口8が設けられる。
 加熱室2は、原材料9を加熱する空間であり、高温に耐え得る材料から形成された加熱室筐体21によって形成される。加熱室2に原材料9が設置され、この原材料9にマイクロ波を照射して加熱する。
 加熱室筐体21は、マイクロ波を吸収せず、かつマグネシウム蒸気と反応せず、耐熱温度が1200℃以上である材料で形成される。原材料容器11を用いず、加熱室2に直接原材料9を投入する場合は、例えば、アルミナ系耐火物やジルコニア系耐火物やマグネシア系耐火物で形成することができる。原材料容器11を用いて原材料9を配置する場合は、耐熱鋼やステンレス合金で形成することができ、シールド6と一体となっていても良い。
 加熱室2には、原材料9を設置・固定するための構成が設けられることが好ましい。例えば、図1~2に示されるように、加熱室2内に原材料9を設置・固定するための置き台となる原材料載置台10を設け、原材料9を原材料容器11に収容した上で、前記原材料載置台10の上に載置する構成を挙げることができる。この際、原材料載置台10と原材料容器11とは、公知公用の手段で固定することができる。
 原材料載置台10と原材料容器11の材質として、マイクロ波を吸収せず、かつ酸化マグネシウム及びマグネシウムと反応せず、1200℃以上の耐熱性を有するアルミナ系耐火物やジルコニア系耐火物やマグネシア系耐火物を挙げることができる。
 また、加熱室2には、原材料9を投入するための投入口(図示しない)が設けられる。投入口の構造や形態に限定はなく、本発明に係る技術分野における公知公用の技術を特別な制限なく採用することができる。例えば、投入口は、開閉可能な扉状の形態を挙げることができる。例えば、原材料容器11を引き出し式の形態とし、この扉状の投入口から出し入れする構成を挙げることができる。
 原材料9は、酸化マグネシウムと還元剤の混合物であることを基本とし、添加物として、マイクロ波吸収剤、触媒又はバインダーのうち少なくとも1つ(全てを添加することを含む。)を添加することができる。そして、これらを加圧成形により団鉱とすることが好ましい。
 本発明において、酸化マグネシウムとは、酸化マグネシウム及びマグネシウム複合酸化物を含む概念であり、酸化マグネシウム、ドロマイト、軽焼ドロマイト等を含むものである。
 還元剤としては、例えば、フェロシリコンやシリコン、活性炭や石灰窒素、カルシウムやアルミニウム等を挙げることができるが、これに限らず、本発明に係る技術分野における公知公用の還元剤を用いてもよいし、これらを2つ以上の組み合わせで用いても構わない。
 マイクロ波吸収剤としては、炭化ケイ素を挙げることができるが、これに限らず、本発明に係る技術分野における公知公用のマイクロ波吸収剤を用いてもよいし、これらを2つ以上の組み合わせで用いることもできる。
 触媒としては、フッ化カルシウムやアルミニウムを挙げることができるが、これに限らず、本発明に係る技術分野における公知公用の触媒を用いてもよいし、これらを2つ以上の組み合わせで用いることもできる。
 バインダーとしては、リグニンを挙げることができるが、これに限らず、本発明に係る技術分野における公知公用のバインダーを用いてもよいし、これらを2つ以上の組み合わせで用いることもできる。
 原材料9は、使用する還元剤の種類によって、加熱室2の磁場あるいは電場強度の強い位置に設置することが好ましい。詳しくは、金属系還元剤を用いる場合は磁場、炭素系還元剤を用いる場合は電場強度の強い位置に設置することが好ましい。そのため、加熱室2には、原材料9を所定の位置に設置できるように、上述した原材料載置台10を設け、原材料9を原材料容器11に収容して設置することが好ましい。あるいは、後述するように、原材料9の設置位置に対して、磁場あるいは電場が集中するよう、加熱室2内に反射板12を設置することが好ましい。
 凝縮室3は、加熱室2にて原材料9を加熱することで生じたマグネシウム蒸気を冷却する空間であり、冷却室筐体31によって形成される。
 凝縮室3の内壁32は、冷却装置13によって冷却される構成とすることができる。これにより、マグネシウム蒸気は、この凝縮室内壁32に付着し、凝集し固化する。加熱室2と凝縮室3とは、後述する蒸気出口8によって接続されている。
 凝縮室内壁32は、凝縮室3から取り外しが可能な構成とすることが好ましい。内壁32を取り外し可能な構成とすることで、凝集したマグネシウムを内壁32ごと凝縮室3の外に取出すことができるので、この凝集したマグネシウムを容易に回収することができる。
 尚、冷却装置13は、水冷等の冷却装置と接続されたものや、水、ガスその他の冷媒を循環させて冷却する機能を有するものを、公知公用の手段を特別の制限なく採用することができる。あるいは、冷却装置13を採用せず、空冷することもできる。
 冷却装置13を用いるか否かによらず、凝縮室内壁32の温度は、200℃以下であることが好ましい。
 凝縮室3には、アルカリコンデンサ14を設けることが好ましい。アルカリコンデンサ14は、凝縮室3に流入してきたマグネシウム以外の蒸気(カルシウム等のアルカリ金属を含む不純物等)を付着させるためのものである。マグネシウム蒸気とそれ以外の金属蒸気は、蒸気圧が異なるので、マグネシウム以外の金属蒸気のみを付着させることができる。アルカリコンデンサ14は、水冷等の冷却装置や、水、ガスその他の冷媒を循環させて冷却する機能を有する公知公用の手段と特別の制限なく接続し、使用することができる。
 凝縮室3には、得られた金属マグネシウムを取り出すため、取出口(図示しない)が設けられる。取出口の構造や形態に限定はなく、本発明に係る技術分野における公知公用の技術を特別な制限なく採用することができる。例えば、取出口は、開閉可能な扉状の形態を挙げることができる。
 凝縮室3には、加熱室2と凝縮室3を減圧するための真空ポンプVが接続される。また、減圧状態を解除するために、排気弁(図示しない)が設けられる。
 凝縮室3にて得られた金属マグネシウムの取出し方法としては、公知公用の方法を特別の制限なく採用でき、例えば、マイクロ波の照射を停止した後、原材料が100℃以下の温度になってから、凝縮室3を減圧状態から大気圧になるよう排気弁からリークし、取出し口から金属マグネシウムを掻き出す方法を採用することができる。
 マイクロ波源4は、マイクロ波発振器41を含み、加熱室2に設置された原材料9に照射するためのマイクロ波を発振させる装置である。
 マイクロ波源4は、図3に示されるように、マイクロ波発振器41、アイソレータ42、モニタリング装置43、チューナ44、アプリケータ45及び制御装置46から構成されることが好ましい。
 マイクロ波発振器41は、マイクロ波を発振し伝播する装置であり、例えば、マグネトロンと導波管の組み合わせを採用することができる。
 アイソレータ42は、進行波をアプリケータ45側に通過させ、反射波をダミーロードに吸収させ、反射波が発振器41に伝わることを防止する装置である。
 モニタリング装置43は、進行波と反射波の大きさ、特に電力を測定し監視する装置である。このモニタリング装置43を設けることにより、反射波の大きさによって原材料の残量を把握し、かつ、原材料の還元反応の終点を検知することが可能になる。
 チューナ44は、負荷とのマッチングをとる装置である。
 アプリケータ45は、マイクロ波を原材料に照射して加熱する機構であり、マイクロ波源4に接続された導波管5や加熱室2を含む場合がある。
 制御装置46は、モニタリング装置43で得られた反射波の大きさに応じて、発振するマイクロ波の強度を調整し、反射波が一定の大きさを超えると、マイクロ波の発振を停止する装置である。
 特に、制御装置46は、モニタリング装置43によって、マイクロ波の反射波が進行波の40%を超えたことを検知した場合に、マイクロ波の発振を停止させる構成であることが好ましい。図4の「反射波と反応の終点」に関する実験データによれば、マイクロ波の反射波が進行波の40%を超えると、温度が急激に下降している。これは、反射波/進行波が40%を超えると、原材料が残渣(主成分は、ケイ酸カルシウム。)に変化したことで、あるいはマイクロ波を吸収可能な団鉱形状が崩壊したことで、原材料の還元反応が終了していることを示すものである。従って、反射波/進行波が40%を超えたところで、マイクロ波の発振を停止することが好ましい。これにより、原材料の残量に応じて必要な大きさのマイクロ波を照射することができると共に、還元反応が終了したことを検知してマイクロ波の発振を停止することができるので、消費エネルギーの無駄を抑制することができる。
 導波管5は、マイクロ波源4で発振されたマイクロ波を、加熱室2に伝播するための部材であり、マイクロ波源4と加熱室2とを接続する位置に設けられる。
 マイクロ波源4と導波管5は、上述した構成のほか、公知公用の技術を特別の制限なく採用することができる。
 シールド6は、金属等の導電性物質によって形成され、加熱室2を覆い、電磁波を外界と遮断するために設けられている。シールド6は、加熱室2を覆う態様で設置されていればよいが、図1~2に示されるように、加熱室2を覆う態様で設置され、加熱室2に断熱材I(図6~8参照。)が設けられる構成では、その外側に設置されることが好ましい。
 なお、この断熱材Iは、多孔質アルミナ等のマイクロ波を吸収せず、マグネシウム蒸気と反応せず、更に耐熱温度1200℃程度のものを用いることができる。この断熱材Iは、原材料9を覆う態様で加熱室2内に設けることで、マイクロ波照射によって加熱された原材料9が発する熱を、原材料9近辺に保持・保温し、加熱効率を高めることができる。
 シールド6は、マイクロ波を反射し、かつマグネシウムと反応せず、耐熱温度が1200℃以上の導電性物質からなる材料で形成され、例えば、耐熱鋼、ステンレス合金などで形成することができる。
 シールド6は、直方体(6面体)の形状を基本とし、この直方体の辺部に導電性物質からなる反射板12を設置することで、形状を7面体以上の多面体に変更し、加熱室2内の電磁波分布を変更可能な構成とすることができる。反射板12は、少なくとも1辺に設置することで、加熱室2内の電磁波分布を変更することができる。図5は、水平方向に伸びる4辺に、反射板12を設置することで、シールド8の形状を10面体(八角柱)に変更した例の概略図である。
 なお、シールド6の形状は、予め7面体以上の多面体に形成してもよい。
 反射板12を設置した場合の効果について、以下に述べる。原材料9に、酸化マグネシウム(MgO)と、還元剤として活性炭を用い、加熱室2のマイクロ波加熱シミュレーションを行った。この結果を、図6~8に示す。なお、この加熱シミュレーションでは、原材料9を断熱材Iで覆っている。
 先ず、シールド6の形状が直方体である場合における、このシールド6内の温度分布を図6に示す。図6(a)は、マイクロ波の照射を開始して間もない時点での温度分布であり、図6(b)は、マイクロ波の照射を開始して20分経過した時点での温度分布である。
 図6(a)では、原材料9の下部に発熱点が1箇所認められるが、その他の箇所に発熱点は少なく、かつ小さい。図6(b)では、原材料9に温度ムラが認められる。
 これらの温度分布から、シールド6に反射板12を設置しない場合には、マイクロ波が原材料9に均一に照射されておらず、原材料9に温度ムラが生じていることがわかる。
 次に、上記した直方体のシールド6に対して、水平方向に伸びる4辺に、反射板12を設置することで電場分布を変えることを試みた(図5参照)。反射板12は、シールド6の上下の面に対して45度の角度で設置した。
 この場合の温度分布を、図7に示す。図7(a)は、マイクロ波の照射を開始して間もない時点での温度分布であり、図7(b)は、マイクロ波の照射を開始して20分経過した時点での温度分布である。図7(c)は、図7(a)又は(b)を側方から観察した場合における、反射板12の設置角度を示す模式図である。
 図7(a)では、原材料9の下部に2箇所の発熱点が認められ、全体的に温度が高い。図7(b)では、原材料9全体が集中的に加熱されており、温度ムラがみられない。
 これらの温度分布から、原材料9に対して効果的に加熱されていることが分かり、加熱室2内の電波分布が改善され、原材料9に対してマイクロ波が効率的に照射されていることが分かる。
 その後、反射板12の設置角度を変えて試験した。例として、図8に、反射板12をシールド6の上下の面に対して55度の角度で設置した場合における、シールド6内の温度分布を示す。
 図8(a)は、マイクロ波の照射を開始して間もない時点での温度分布であり、図8(b)は、マイクロ波の照射を開始して20分経過した時点での温度分布である。図8(c)は、図8(a)又は(b)を側方から観察した場合における、反射板12の設置角度を示す模式図である。
 図8(a)では、原材料9に1箇所の発熱点があるとみられるが、極めて微弱である。図8(b)では、原材料9に温度ムラが認められる。
 これらの温度分布から、図7の温度分布に比して、原材料9にマイクロ波エネルギーが集中していないと考えられ、温度ムラが生じていることが分かる。
 これらの結果から、加熱室2の中央部に設置した原材料9を迅速かつ均一に加熱するには、反射板12をシールド6の上下の面に対して45度の角度で設置し、シールド6の形状を、それぞれの内角が135度の八角柱の形状とすることが好ましいとわかった。
 隔壁7は、加熱室2と凝縮室3とを隔てる壁体であり、マイクロ波を吸収せず、酸化マグネシウムやマグネシウムと反応せず、遮熱性と耐熱性を有する材料で形成される。例えば、1200℃以上の耐熱性を有するアルミナ系耐火物やジルコニア系耐火物を用いることができる。また、金属製板の表面にセラミックスを吹きつけ、耐火性を付与したものを用いてもよい。この場合、金属製板は耐熱鋼やステンレス合金が適し、セラミックスはアルミナ系耐火物やジルコニア系耐火物やマグネシア系耐火物が適している。
 蒸気出口8は、加熱室2と凝縮室3を接続する通路であり、隔壁7に孔を穿設することで設けることができる。蒸気出口8は、加熱室2で生じたマグネシウム蒸気が、凝縮室3に移動するための通路であり、マイクロ波の漏えいを防止するチョーク構造である。この蒸気出口8は、1つ又は複数設けることができ、その数量に限定はない。
 蒸気出口8は、金属等の導電性物質で側壁が形成され、その形状は、円筒型である。
 蒸気出口8の直径は、マイクロ波源4から発振されるマイクロ波の波長の1/8以下であり、好ましくは1/64以上であって、長さは、同じくマイクロ波源4から発振されるマイクロ波の波長の1/4以上であり、好ましくは1波長以下に形成されている。かかる大きさに蒸気出口8を形成することで、チョーク構造となり、蒸気出口8からマイクロ波が漏洩することを防ぐことができる。この構造により、加熱室2に電磁波(マイクロ波)エネルギーが閉じ込められ、マイクロ波は、マルチモード又はシングルモードの共振状態となり、電磁波エネルギーは、原材料9のみで消費され、原材料9にマイクロ波を効率よく照射することができ、還元に必要なエネルギーを最小限に抑えることができる。
 隔壁7には、蒸気出口8を、特に蒸気出口8の側壁を加熱するためのヒーター15が設けられる。ヒーター15による加熱と、加熱室2の原材料9の加熱から生じる輻射熱により、蒸気出口8の温度は、200℃以上、好ましくは500℃以上に維持されることが好ましい。蒸気出口8をかかる温度に加熱することで、通過するマグネシウム蒸気が蒸気出口8に付着することを防ぎ、滞りなく凝縮室3まで移動させることができる。この場合、ヒーター15は、SiCヒーター等、公知公用のものを特別の制限なく採用することができる。
 蒸気出口8の温度を200℃以上に加熱することにより、マグネシウム蒸気の付着を防止できることを見出すため、次のような実験を行った。
 先ず、長さ700mmの石英試験管の底部に、マグネシウム蒸気発生源(マグネシウムリボン等)を置き、真空ポンプと接続して減圧状態とした。
 次に、マグネシウム蒸気が通過あるいは凝縮する箇所(保温部)を電熱コイル等で任意の温度に加熱、保温した上で、マグネシウム蒸気発生源の設置部分を電気炉等で加熱し、マグネシウム蒸気を発生させた。
 そして、保温部へのマグネシウム付着挙動を観察したところ、図9に示す結果を得た。なお、図9に示す付着率とは、「マグネシウム蒸気の発生箇所から20cm以内の距離における保温部内壁に付着したマグネシウム量/マグネシウム発生箇所におけるマグネシウム蒸気量×100(%)」から算出された数値である。付着したマグネシウム量は、目視によるものである。
 この実験結果によれば、マグネシウム蒸気を付着させずに通過させるために必要な蒸気出口の温度は200℃以上、好ましくは500℃以上とするべきことがわかる。
 上述のとおり、マイクロ波源4から導波管5を介して加熱室2内に導入される部分を、マイクロ波導入口16とする。
 このマイクロ波導入口16は、加熱室2における原材料9の設置位置よりも下方に設けられることが好ましい(図1~2参照)。
 原材料9であるドロマイトや軽焼ドロマイトは、空気中の水やガスを吸着する性質を持つため、減圧状態ではそれらの水やガスが放出される。そこに、マイクロ波が照射されるとプラズマが発生する。ガスは原材料9の上部に放出されるため、原材料9の上部にプラズマが発生する。このプラズマは、マイクロ波を金属板のように反射する性質を有しており、マイクロ波導入口と原材料の間にプラズマが発生すると、マイクロ波はこれに反射されて反射波となり、マイクロ波エネルギーが原材料に到達せず、エネルギーロスを増大させることになる。
 図10に示されるように、マイクロ波導入口16を、原材料9の位置よりも上部に設けた場合、マイクロ波導入口16と原材料9の間にプラズマPが発生する。
 一方で、図11に示されるように、マイクロ波導入口16を、原材料9の位置よりも下部に設ければ、マイクロ波導入口16と原材料9の間プラズマPは介在しない。この場合において、プラズマPに到達するマイクロ波エネルギーは、原材料加熱に使用された余剰分であり、原材料はプラズマPに妨害されず加熱される。従って、マイクロ波を原材料9に対して効率よく照射することができ、エネルギーロスを防止・抑制することができる。更に、プラズマPに到達した余剰分のマイクロ波エネルギーは、プラズマPに反射され、再度原材料9に当たるため、エネルギーロスの抑制のみならず、エネルギー効率の向上にも寄与する。
 上記した問題点は、本発明における原材料9が、水やガスを吸着する性質を持つドロマイトや軽焼ドロマイトであるというマグネシウムに特有の課題であるが、マイクロ波導入口16を原材料9の位置よりも下方に設けるという本発明特有の構成であれば、この問題点を解決することができる。
 また、マイクロ波導入口16と原材料9の設置位置の距離は、一波長以内とすることが好ましい。この構成とすることにより、不要な定在波の発生を抑え、効率的な原材料加熱が可能となる。
 導波管5、特に導波管5の加熱室2側の先端であるマイクロ波導入口16には、図1~2に示されるように、マイクロ波透過窓51を設けることが好ましい。また、このマイクロ波透過窓51は、二重に設けられることがより好ましい。これにより、加熱室2の密封性を高めることができ、減圧状態を維持することができる。
 また、上述のとおり、導波管5の加熱室2側の先端部ともいえるマイクロ波導入口16は、原材料9よりも下部に設けられることが好ましい。この構成では、原材料9の落下等によって、マイクロ波透過窓51が破損することも考えられる。マイクロ波透過窓51を二重にすれば、一枚の窓が破損する事態に至っても、空気の急激な流入を防ぐことができ、加熱室2内で生じたマグネシウムの酸化、発火又は燃焼を防止することができる。
 マイクロ波透過窓51は、石英板等のマイクロ波透過材料によって形成される。マイクロ波透過窓51は、導波管5に2箇所のフランジ部を設けて取り付けることができる。
 マグネシウム製錬装置1には、真空ポンプVが接続される。原材料9に対してマイクロ波を照射する際には、加熱室2と凝縮室3を減圧する。使用する真空ポンプVに限定はなく、公知公用の真空装置を特別の制限なく使用することができ、例えば、ロータリーポンプを使用することができる。また、マグネシウム蒸気などが真空ポンプVへ流入するのを防ぐため、凝縮室3との間にフィルタ(図示しない)を設けてもよい。
 原材料9は、図12~13に示されるように、還元剤(マイクロ波吸収剤を含んでもよい)を含む層91又は集合体92を形成した団鉱とすることが好ましい。これにより、マイクロ波の磁場による誘導電流と磁性損失による加熱を発生させることができ、更に、酸化マグネシウムとの接触面積を増やして反応場を増加させ、収率を向上させることができる。
 原材料9が、酸化マグネシウムと還元剤からなる場合、層91又は集合体92は、還元剤によって形成される。原材料9に、マイクロ波吸収剤が添加される場合、触媒又はバインダーが添加されるか否かによらず、層91又は集合体92は、還元剤又はマイクロ波吸収剤によって形成されるか、還元剤及びマイクロ波吸収剤によって形成される。原材料9に、触媒若しくはバインダーのいずれか1つ又は触媒及びバインダーの両方が添加され、マイクロ波吸収剤が添加されない場合、層91又は集合体92は、還元剤によって形成される。
 図12は、主にドロマイト(酸化マグネシウム)からなる原材料9に、フェロシリコン等の還元剤からなる層91が形成された態様を表し、上図は1層の場合、下図は多層の場合の態様を表す。層構造を有する原材料9の形成手段に限定はないが、1層の場合は、フェロシリコン(還元剤)の扁平な団鉱をドロマイト(酸化マグネシウム)で包み、これを加圧することで成形でき、多層の場合は、粒径の異なるドロマイトとフェロシリコンとを混合し、団鉱内でフェロシリコンの層を形成するように加圧することで成形することができる。
 図13は、主にドロマイト(酸化マグネシウム)からなる原材料9に、フェロシリコン等の還元剤からなる集合体92が形成された態様を表し、上図は1つの集合体の場合、下図は複数の集合体の場合の態様を表す。集合体構造を有する原材料9の形成手段に限定はないが、粒径の異なるドロマイトとフェロシリコンとを混合し、フェロシリコンの集合体を形成するように加圧することで成形することができる。
 図14に、原材料9の団鉱形状による温度上昇の相違を表す実験データを示す。
 これによれば、還元剤が分散して混合された団鉱は、マイクロ波出力が900Wを超えてから緩やかに温度上昇している。これに対して、還元剤が層状に混合された団鉱(図12参照)は、マイクロ波出力が600Wを超えてから急激に温度上昇し、還元剤が集合体として混合された団鉱(図13参照)は、マイクロ波出力が900Wを超えてから急激に温度上昇している。これらの結果から、原材料9を還元剤が層状又は集合体として混合された団鉱として成形することで、原材料9を効率的に加熱できることがわかる。
 軽焼ドロマイト又は酸化マグネシウムと還元剤(フェロシリコン等)の粉末原料を、均一に混合して圧縮成形し、これにより得られた団鉱である原材料9にマイクロ波を照射した場合、ドロマイトが絶縁体であるため原材料に誘導電流が流れず、団鉱を加熱することはできない。これを解決するため、既存の外部加熱によって原材料を一定温度まで加熱し、マイクロ波吸収能を高めた上で、原材料に対してマイクロ波を照射する手段も考えられる。
 しかし、本発明のように、初期加熱からマイクロ波を用いる場合は、原材料9である団鉱内に誘導電流を流す還元剤を、層91又は集合体92として原材料に内包させることで、上記問題点を解決することができる。本発明では、原材料9を加熱するだけでなく、還元反応を行う必要があるため、反応表面を確保するため、薄い層91を多重に設けるか、小さな集合体92を多数含ませることが好ましい。
 還元剤として金属系還元剤を用いことができる。これを含む原材料9を磁場強度の強い位置に配置することで、原材料9の昇温速度を早め、高い到達温度を実現することができる。即ち、金属系還元剤は、103S/m以上の導電性を有し、磁性損失を有することから、磁場による誘電加熱や磁性損失による加熱を有効に作用させることができ、この金属系還元剤を含む原材料9を、加熱室2における磁場強度の高い位置に配置することで、原材料9の昇温速度を早め、高い到達温度を実現することができる。
 図15に、金属系還元剤を用いた場合における、加熱室2内の電場と磁場それぞれによる加熱の挙動を観察した実験データを示す。金属系還元剤としては、フェロシリコンを用いた。
 これによれば、金属系の物質を還元剤として使用した場合には、磁場による加熱が効果的であることがわかった。
 なお、金属系還元剤としては、フェロシリコンの他、アルミニウムも有用である。
 また、還元剤として炭素系還元剤を用いることもできる。これを含む原材料9を電場強度の強い位置に配置することで、原材料9の昇温速度を早め、高い到達温度を実現することができる。即ち、炭素系還元剤は、磁性損失がなく、導電性と誘電損失が大きいことから、絶縁材料と混合させることにより、電場によるジュール損失と誘電損失による加熱を有効に作用させることができ、この炭素系還元剤を含む原材料9を、加熱室2における電場強度の高い位置に配置することで、原材料9の昇温速度を早め、高い到達温度を実現することができる。
 加熱室2は、真空ポンプV等によって減圧されるが、この場合、加熱室2の圧力を20Pa以下に保持することが好ましい。これにより、プラズマの発生を抑え、マイクロ波を原材料9の加熱に集中させることができ、プラズマ発生によるエネルギーロスを削減することができる。
 プラズマPの発生が微量である場合には、図10~11に示されるように、プラズマPが原材料9の上部に留まるため、上記したようにマイクロ波導入口16を原材料9の位置よりも下方に設ける構成で、プラズマPによるエネルギーロスという問題点を解消できる。
 しかし、プラズマPの発生が大量になると、原材料9の上部に留まらないため、上記構成では上記問題点を解消できないばかりか、導波管5にプラズマPが走り、マイクロ波源4を破損する要因ともなりかねない。
 そこで、加熱室2の圧力を20Pa以下に保持することで、プラズマPの発生を抑えることが有用となる。
 図16に、加熱室2の圧力が、プラズマ発生の有無に及ぼす影響を検証した実験データを示す。この実験は、セパラブルフラスコ内に保温箱と原材料入り坩堝を設置し、フラスコ内を減圧し、マイクロ波を照射して、プラズマの発生の有無を確認した。
 これによれば、圧力が20Paを超えるとプラズマが発生し、20Pa以下に減圧するとプラズマが消失した。
 続いて、本発明に係るマグネシウム製錬装置1を使用した、マグネシウムの製錬方法について説明する。
 原材料9は、主に、酸化マグネシウムと還元剤から構成される。酸化マグネシウムは、ドロマイトや軽焼ドロマイトを用いることができる。還元剤は、フェロシリコンや活性炭を用いることができる。
 原材料9には、上記酸化マグネシウムと還元剤の他、マイクロ波吸収剤(炭化ケイ素等)、触媒(フッ化カルシウム等)及びバインダー(リグニン等)のうち少なくとも1つを加えてもよい。
 原材料9は、これらを加圧成形して、団鉱とすることが好ましい。
 原材料9は、図12~13に示されるように、還元剤(マイクロ波吸収剤を含んでもよい)を含む層91又は集合体92を形成した団鉱とすることが好ましい。原材料9が、酸化マグネシウムと還元剤からなる場合、層91又は集合体92は、還元剤によって形成される。原材料9に、マイクロ波吸収剤が添加される場合、触媒又はバインダーが添加されるか否かによらず、層91又は集合体92は、還元剤又はマイクロ波吸収剤によって形成されるか、還元剤及びマイクロ波吸収剤によって形成される。原材料9に、触媒若しくはバインダーのいずれか1つ又は触媒及びバインダーの両方が添加され、マイクロ波吸収剤が添加されない場合、層91又は集合体92は、還元剤によって形成される。
 成形した原材料9は、投入口から加熱室2に設置する。原材料9は、原材料容器11に収容し、原材料載置台10に載置することが好ましい。原材料9を設置する位置は、還元剤として金属系還元剤を用いた場合には、磁場強度の強い位置に、炭素系還元剤を用いた場合には、電場強度の強い位置とすることが好ましい。また、原材料9の位置は固定し、加熱室2に反射板12を設置することで、原材料9の位置が、磁場強度又は電場強度が強くなるように調整してもよい。
 加熱室2は、真空ポンプVによって減圧する。加熱室2の圧力は、20Pa以下であることが好ましい。
 原材料9に照射するマイクロ波は、マルチモード又はシングルモードの共振状態である。
 原材料9にマイクロ波を照射すると、原材料9は加熱され、1000℃以上になると、酸化マグネシウムの還元反応が進み、マグネシウム蒸気が発生する。
 マグネシウム蒸気は、蒸気出口8を通過し、凝縮室3に到達し、凝縮室内壁32に凝集される。凝縮室3は、冷却装置13によって内壁32を冷却することが好ましく、200℃以下とすることがより好ましい。
 マグネシウム以外の金属蒸気は、その蒸気圧の違いから、アルカリコンデンサ14に付着する。
 反応が進むと、原材料9は次第に消費され、マイクロ波の反射波が多くなる。この反射波の大きさをモニタリング装置43で測定し、制御装置46でマイクロ波の出力を調整し、反射波の大きさが一定の値に達したら、制御装置46はマイクロ波発振器41を停止する。マイクロ波の反射波が進行波の40%を超えたことを検知した場合に、マイクロ波の発振を停止させることが好ましい。 
 マイクロ波の発振を停止した後、原材料9が100℃以下の温度になってから、加熱室2を減圧状態から大気圧になるよう排気弁からリークし、投入口を開放して残渣を取り除く。
 また、同じくマイクロ波の照射を停止した後、原材料9が100℃以下の温度になってから、凝縮室3を減圧状態から大気圧になるよう排気弁からリークし、取出口を開放して金属マグネシウムを掻き出すようにして、凝縮室内壁32に付着したマグネシウムを採取する。なお、マグネシウムの取り出し手段に限定はなく、この種の技術分野における公知公用の技術を特別の制限なく採用することができる。例えば、凝縮室内壁32を凝縮室3から取り外し可能な構成とすれば、マグネシウムが付着した凝縮室内壁32を凝縮室3から取出した上で、マグネシウムを収集することができる。
 1 マグネシウム製錬装置
 2 加熱室
  21 加熱室筐体
 3 凝縮室
  31 凝縮室筐体
  32 凝縮室内壁
 4 マイクロ波源
  41 マイクロ波発振器
  42 アイソレータ
  43 モニタリング装置
  44 チューナ
  45 アプリケータ
  46 制御装置
 5 導波管
  51 マイクロ波透過窓
 6 シールド
 7 隔壁
 8 蒸気出口
 9 原材料
  91 層
  92 集合体
 10 原材料載置台
 11 原材料容器
 12 反射板
 13 冷却装置
 14 アルカリコンデンサ
 15 ヒーター
 16 マイクロ波導入口
 I 断熱材
 P プラズマ
 V 真空ポンプ

Claims (14)

  1.  原材料を加熱し還元する加熱室と、加熱により蒸発した原材料を凝集する凝縮室から構成され、
     前記加熱室には、酸化マグネシウムと還元剤の混合物である原材料を、減圧雰囲気下において還元するための加熱源として、マイクロ波源が設けられ、
     前記加熱室は、導電性物質から成るシールドで覆われており、マルチモード又はシングルモードの共振構造であり、
     前記加熱室と前記凝縮室の間に、導電性物質から形成されたチョーク構造を有する円筒形の蒸気出口が設けられることを特徴とするマグネシウム製錬装置。
  2.  マイクロ波源は、反射波の大きさによって還元反応の終点を判定するため、マイクロ波の進行波と反射波を監視するモニタリング装置を有し、前記モニタリング装置によって得られた反射波の大きさに応じて、発振するマイクロ波の強度を調整し、反射波が進行波の40%を超えると、マイクロ波の発振を停止する制御装置が設けられていることを特徴とする請求項1に記載のマグネシウム製錬装置。
  3.  蒸気出口の直径が、マイクロ波源から発振されるマイクロ波の波長の1/8以下であり、長さが、前記マイクロ波の波長の1/4以上であることを特徴とする請求項1又は2に記載のマグネシウム製錬装置。
  4.  生成マグネシウム蒸気の凝縮を防ぐために蒸気出口を加熱するヒーターが設けられ、
     前記ヒーターと、原材料加熱によって生じる輻射熱によって、前記蒸気出口の温度が、200℃以上に加熱されることを特徴とする請求項1~3のいずれかに記載のマグネシウム製錬装置。
  5.  加熱室を覆う導電性物質から成るシールドは、多面体の形状であり、
     この多面体の少なくとも1辺に、導電性物質から成る反射板を設置することで、前記シールドの形状を変更できる構成であることを特徴とする請求項1~4のいずれかに記載のマグネシウム製錬装置。
  6.  加熱室を覆う導電性物質から成るシールドは、立方体の形状であり、
     この立方体の水平方向又は垂直方向に伸びる4辺に、導電性物質から成る反射板を設置することで、前記シールドの形状を、八角柱に変更できる構成であることを特徴とする請求項1~5のいずれかに記載のマグネシウム製錬装置。
  7.  マイクロ波を加熱室に導入するマイクロ波導入口を、原材料の設置位置より下方に設けると共に、
     前記マイクロ波導入口は、前記原材料の設置位置から一波長以内の距離であることを特徴とする請求項1~6のいずれかに記載のマグネシウム製錬装置。
  8.  マイクロ波導入口又は加熱室とマイクロ波源を接続する導波管には、マイクロ波を透過する材料からなるマイクロ波透過窓が設けられ、前記マイクロ波透過窓が、二重構造であることを特徴とする請求項1~7のいずれかに記載のマグネシウム製錬装置。
  9.  マイクロ波を原材料に照射する際の加熱室内の圧力が、20Pa以下に保持される構成であることを特徴とする請求項1~8のいずれかに記載のマグネシウム製錬装置。
  10.  凝縮室には、取り外し可能な内壁が設けられ、この内壁が200度以下に保持され、生成マグネシウム蒸気を凝集及び回収することを特徴とする請求項1~9のいずれかに記載のマグネシウム製錬装置。
  11.  酸化マグネシウムと還元剤の混合物である原材料に、減圧雰囲気下においてマイクロ波を照射して加熱し、マグネシウムを還元する方法において、
     照射するマイクロ波は、マルチモード又はシングルモードの共振状態であり、
     前記原材料には、マイクロ波吸収剤、触媒又はバインダーのうち少なくとも1つが添加され、
     この原材料を加圧成形して団鉱とすることで、この団鉱の内部には還元剤及び/又はマイクロ波吸収剤からなる層が少なくとも1層形成されていることを特徴とするマグネシウム製錬方法。
  12.  酸化マグネシウムと還元剤の混合物である原材料に、減圧雰囲気下においてマイクロ波を照射して加熱し、マグネシウムを還元する方法において、
     照射するマイクロ波は、マルチモード又はシングルモードの共振状態であり、
     前記原材料には、マイクロ波吸収剤、触媒又はバインダーのうち少なくとも1つが添加され、
     この原材料を加圧成形して団鉱とすることで、この団鉱の内部には還元剤及び/又はマイクロ波吸収剤からなる集合体が少なくとも1つ形成されていることを特徴とするマグネシウム製錬方法。
  13.  還元剤として、金属系還元剤が用いられ、これを含む原材料が、加熱室において相対的に磁場強度の強い位置に配置されることを特徴とする請求項11又は12に記載のマグネシウム製錬方法。
  14.  還元剤として、炭素系還元剤が用いられ、これを含む原材料が、加熱室において相対的に電場強度の強い位置に配置されることを特徴とする請求項11又は12に記載のマグネシウム製錬方法。
PCT/JP2016/070086 2015-11-13 2016-07-07 マイクロ波を利用したマグネシウム製錬装置及び製錬方法 WO2017081886A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222785A JP2017088974A (ja) 2015-11-13 2015-11-13 マイクロ波を利用したマグネシウム製錬装置及び製錬方法
JP2015-222785 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017081886A1 true WO2017081886A1 (ja) 2017-05-18

Family

ID=58694977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070086 WO2017081886A1 (ja) 2015-11-13 2016-07-07 マイクロ波を利用したマグネシウム製錬装置及び製錬方法

Country Status (2)

Country Link
JP (1) JP2017088974A (ja)
WO (1) WO2017081886A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098410A (zh) * 2020-01-06 2020-05-05 黄河水利职业技术学院 一种用于土木工程建筑的环保型混凝土加工设备
WO2024056107A1 (zh) * 2022-09-13 2024-03-21 西安固盛镁新材料技术有限责任公司 一种绿色环保的铝热法还原镁生产方法
WO2024056108A1 (zh) * 2022-09-13 2024-03-21 西安固盛镁新材料技术有限责任公司 一种绿色环保的铝热法还原镁生产装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323311A (ja) * 2000-05-11 2001-11-22 Nippon Steel Corp 溶銑又は溶鋼の精錬方法
JP2004526864A (ja) * 2001-05-31 2004-09-02 フアン,シャオディ マイクロ波による直接金属製造方法
JP2006348367A (ja) * 2005-06-20 2006-12-28 Masahiro Kudo 金属酸化物の資源化方法
CN101376928A (zh) * 2008-10-10 2009-03-04 重庆高岭投资(集团)有限公司 微波加热皮江法炼镁的工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323311A (ja) * 2000-05-11 2001-11-22 Nippon Steel Corp 溶銑又は溶鋼の精錬方法
JP2004526864A (ja) * 2001-05-31 2004-09-02 フアン,シャオディ マイクロ波による直接金属製造方法
JP2006348367A (ja) * 2005-06-20 2006-12-28 Masahiro Kudo 金属酸化物の資源化方法
CN101376928A (zh) * 2008-10-10 2009-03-04 重庆高岭投资(集团)有限公司 微波加热皮江法炼镁的工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098410A (zh) * 2020-01-06 2020-05-05 黄河水利职业技术学院 一种用于土木工程建筑的环保型混凝土加工设备
CN111098410B (zh) * 2020-01-06 2021-03-02 黄河水利职业技术学院 一种用于土木工程建筑的环保型混凝土加工设备
WO2024056107A1 (zh) * 2022-09-13 2024-03-21 西安固盛镁新材料技术有限责任公司 一种绿色环保的铝热法还原镁生产方法
WO2024056108A1 (zh) * 2022-09-13 2024-03-21 西安固盛镁新材料技术有限责任公司 一种绿色环保的铝热法还原镁生产装置

Also Published As

Publication number Publication date
JP2017088974A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5945373B1 (ja) マイクロ波を利用したマグネシウム製錬装置及び製錬方法
Amini et al. Electrification of materials processing via microwave irradiation: A review of mechanism and applications
WO2017081886A1 (ja) マイクロ波を利用したマグネシウム製錬装置及び製錬方法
CN101376928B (zh) 微波加热皮江法炼镁的工艺
RU2235945C2 (ru) Небольшая плавильная печь с ионным разложением
Ma et al. Microwave-assisted catalytic combustion of diesel soot
CN107087339A (zh) 一种双腔激励的增强型微波等离子体炬发生装置
JP5877448B2 (ja) マイクロ波を応用した加熱装置
CN102967140B (zh) 一种整体式微波真空烧结炉
KR101461787B1 (ko) 가열유닛 및 이를 포함한 환원로
JP2019534235A (ja) マイクロ波によるセラミック部品の熱処理の方法
JP2018016850A (ja) 加熱室に回収部を有するマイクロ波製錬装置
JP6726617B2 (ja) マイクロ波複合加熱炉
CN103269535A (zh) 微波材料学工作站
JP2008272529A (ja) マイクロ波によるアスベスト廃棄物の処理方法
JP2010517924A (ja) シリコン精製装置
CN103194578B (zh) 微波能高温气氛热处理炉
JP6431104B2 (ja) マイクロ波を利用した金属蒸気の発生方法
CN105779694B (zh) 一种加热钢液的方法
JP2005108449A (ja) マイクロ波加熱装置
JP6572517B1 (ja) 加熱装置および熱風発生装置
KR101482384B1 (ko) 가열유닛 및 이를 포함한 환원로
Leonelli et al. Microwave processing of ceramic and ceramic matrix composites
JP5729278B2 (ja) 固体還元炉
RU2282787C1 (ru) Пиролизный регенератор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863850

Country of ref document: EP

Kind code of ref document: A1