WO2017080128A1 - 石墨烯压力传感器及其制备方法和用途 - Google Patents

石墨烯压力传感器及其制备方法和用途 Download PDF

Info

Publication number
WO2017080128A1
WO2017080128A1 PCT/CN2016/076062 CN2016076062W WO2017080128A1 WO 2017080128 A1 WO2017080128 A1 WO 2017080128A1 CN 2016076062 W CN2016076062 W CN 2016076062W WO 2017080128 A1 WO2017080128 A1 WO 2017080128A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
graphene pressure
pressure sensing
region
Prior art date
Application number
PCT/CN2016/076062
Other languages
English (en)
French (fr)
Inventor
金虎
彭鹏
王增奎
周振义
顾永强
Original Assignee
常州二维碳素科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州二维碳素科技股份有限公司 filed Critical 常州二维碳素科技股份有限公司
Publication of WO2017080128A1 publication Critical patent/WO2017080128A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Definitions

  • the invention relates to a graphene pressure sensor and a preparation method and use thereof.
  • the ZnO or PVDF piezoelectric pressure sensor is not very sensitive to the hopping signal, which is not conducive to the capture of a given pressure signal during microcircuit design, making it difficult to perform digital algorithms.
  • ZnO pressure sensitive touch sensors are sensitive to acid and alkali solutions, and are prone to chemical reactions, especially for electronic products that are often in contact with the human body, which may seriously affect the stability of the sensor.
  • Patent CN104359597A discloses a pressure sensor which uses two flexible substrates and carbon nanotube or graphene films respectively covering the inner surface, and the electrodes are respectively located at inner two ends of the two flexible substrates.
  • the two layers of the substrate are staggered and assembled.
  • the contact area of the upper and lower layers of the graphene (or carbon nanotube) layer will change, resulting in a change in contact resistance between the two layers.
  • this sensor also has high sensitivity, this sensor is due to the fact that the upper and lower layers of graphene or carbon nanotubes cannot be packaged, which is easily damaged during use, and the sensor also has a height difference from the upper and lower layers and surface flatness.
  • the stability of the pressure sensing signal is very poor.
  • the present invention provides a graphene pressure sensor, which is characterized in that it is composed of at least an elastic substrate layer, a graphene pressure sensing layer and an encapsulation layer;
  • the elastic substrate layer comprises a sensing region, a bonding region and an electrode region
  • the graphene pressure sensing layer is attached to the sensing region, and the graphene pressure sensing layer is in direct contact with the electrode region to form a bonding region; the encapsulating layer covers the graphene pressure sensing layer and the graphene pressure sensing layer and the electrode region Docking area.
  • the electrode region is used for a flexible printed circuit (FPC) structure region composed of a polymer film and a metal electrode;
  • the sensing region is used for an organic polymer material composite structure region in which a graphene pressure sensing layer is placed;
  • FPC flexible printed circuit
  • the organic polymer material includes, but is not limited to, a binder, a rubber, a plastic or a resin.
  • the present invention also provides a method for preparing the above graphene pressure sensor, characterized in that the method comprises the following steps:
  • the present invention also provides the use of the above graphene pressure sensor for a smart terminal.
  • the graphene pressure sensor of the invention has high sensitivity, good stability, long service life, low production cost, simple process and controllable process.
  • Figure 1 is a front elevational view of a graphene pressure sensor.
  • FIG. 2 is a top plan view of a graphene pressure sensor.
  • Figure 3 shows the pressure sensitive signal of the sensor when the finger is lightly pressed.
  • Figure 4 shows the sensor pressure sensing signal when the finger is pressed again.
  • each part in the graphene pressure sensor is based on FIGS. 1 and 2, and it is apparent that the position of each component changes as the position of the apparatus of FIGS. 1-2 is changed;
  • the description in conjunction with the specific location of this specification does not impose any limitation on the invention.
  • the present invention provides a graphene pressure sensor, which is composed of at least an elastic substrate layer, a graphene pressure sensing layer, and an encapsulation layer;
  • the elastic substrate layer comprises a sensing region, a bonding region, and an electrode region
  • the graphene pressure sensing layer is attached to the sensing region, and the graphene pressure sensing layer is in direct contact with the electrode region to form a bonding region; the encapsulating layer covers the graphene pressure sensing layer and the graphene pressure sensing layer and the electrode region Docking area.
  • the elastic substrate layer comprises a sensing region, a bonding region, and an electrode region; wherein the electrode region is used for a flexible printed circuit structure region composed of a polymer film and a metal electrode; and the sensing region is used for placing a graphene pressure sensing layer
  • the organic polymer material composite structure region; the overlap region is a metal electrode region to be in contact with the graphene pressure sensing layer.
  • the organic polymer material includes, but is not limited to, a binder, a rubber, a plastic or a resin.
  • the electrodes are located on the same side of the graphene pressure sensor, which is not only easy to bind, but also makes the pressure sensitive region larger, which can also facilitate the protection of the graphene at the interface between the electrode and the elastic substrate layer.
  • the encapsulation layer covers the graphene pressure sensing layer and the overlap region of the graphene pressure sensing layer and the electrode region, which contributes to the stability and protection of the final product and ensures long-term use of the product.
  • the present invention provides a method of preparing the above graphene pressure sensor, characterized in that the method comprises the following steps:
  • the support layer may be double-sided tape, single-sided release paper, single-sided adhesive, polyester film, PET (polyethylene terephthalate), PI (polyimide) ), PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), metal, ceramics and flexible glass
  • PET polyethylene terephthalate
  • PI polyimide
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PBT polybutylene terephthalate
  • PMMA polymethyl methacrylate
  • the electrode adjacent to the sensing region may have a zigzag shape or a wave shape.
  • the sensing zone may be resistant to acid and alkali corrosion, biocompatible with human body, and chemically stable.
  • a variety of elastomeric silicone gels which may be selected from the group consisting of PDMS (polydimethylsiloxane), silica gel E620 (dimethyl-diphenylpolysiloxane), OCA gum (transparent optical gel), and the thickness thereof is 10-250 ⁇ m, preferably 50-200 ⁇ m, more preferably 100-175 ⁇ m.
  • the elastic silica gel is vacuum-removed and coated on the support layer, and the surface thereof is on the same plane as the electrode surface, and the bubbles are removed under vacuum again, and then heat-cured to form.
  • An elastic substrate layer wherein the heating is carried out in an oven at a heating temperature of 30-150 ° C and a curing time of 10-180 min.
  • the back surface of the electrode region is pasted with the sensing region and the support layer, and the roll-to-roll rolling is used to closely adhere the three, and the sensing region is in the same plane as the surface of the electrode region. on.
  • the copper foil in step (1), may also be pressed together with the sensing zone and the support layer and etched through the film to obtain the electrode of the desired pattern.
  • the graphene pressure-sensitive layer may be prepared by a method known in the art, such as chemical vapor deposition (CVD), or by coating, rolling, or graphene powder. Drawing or spraying to prepare a graphene film, or using a graphene oxide powder to form a graphene oxide film by coating, rolling, suction filtration, spraying, forming a graphene film by a reduction method, and forming a graphene film by a patterning process .
  • CVD chemical vapor deposition
  • the substrate for growing graphene includes, but is not limited to, copper, iron, nickel, copper nickel alloy, silicon oxide, silicon carbide, platinum sheets, mesh materials, and three-dimensional foam. Structural materials.
  • the graphene pressure sensing layer is prepared by a CVD method, wherein the network graphene has a thickness of 10 to 500 nm and a mesh of 10 ⁇ 10 - 500 ⁇ 500 ⁇ m.
  • the single graphene has a line width of 5-250 ⁇ m.
  • the square resistance of the prepared graphene pressure-sensitive layer is 0.2 to 200 K?/?.
  • the etching is carried out using a laser etching machine which is a laser etching machine conventionally used in the art and is commercially available.
  • the sensing pattern in order to ensure that the graphene of the sensing pattern is disconnected from the surrounding graphene pressure sensing layer, and a relatively larger pressure sensing region is obtained, the sensing pattern may be concentric multiple sets of square, circular, and elliptical shapes. And other patterns.
  • the distance between the line sensing pattern and the right edge is 0.01-10 mm, preferably 0.1-6 mm, and the width of the outermost pattern of the sensing pattern is 0.01-1 mm, preferably 0.2-5 mm.
  • the electrode in step (5), in order to prevent the electrode region away from the overlap region from being coated with the organic polymer material, the electrode may be protected using a masking tape, which is a pressure sensitive tape.
  • heating in order to cure the coated organic polymer, heating may be carried out in an oven at an oven temperature of 30 to 150 ° C and a curing time of 5 to 180 min.
  • the encapsulating layer may be various organic silica gels, which may be selected from the group consisting of PDMS, silica gel E620, and C6-515 liquid silica gel.
  • the encapsulating layer may have a thickness of 10 to 500 ⁇ m, preferably 50 to 300 ⁇ m. More preferably, it is 100-200 ⁇ m to protect the graphene pressure-sensitive layer from scratching.
  • an interface reinforcing strip is attached to the upper surface of the encapsulating layer above the lap joint, and the interfacial reinforcing strip may be selected from a pressure sensitive adhesive, UV light solid glue, thermosetting glue, instant adhesive, structural adhesive, sealant.
  • the electrode of the electrode region is a flexible printed circuit (FPC) electrode made of a copper foil and a PI film, wherein the thickness of the PI film is 10-500 ⁇ m, and the PI film and the copper foil are in accordance with the art.
  • FPC flexible printed circuit
  • a well-known hot pressing process is hot-pressed to form an electrode, and the surface of the copper foil may be vapor-deposited with an anti-oxidation layer having a thickness of 10 to 500 nm, and the anti-oxidation layer may be gold, nickel or a nickel-chromium alloy.
  • vapor deposition of gold, nickel or nickel-chromium alloy on the copper foil can prevent corrosion of ferric chloride remaining in the graphene net or corrosion of other acids and alkalis, thereby ensuring the stability of the sensor.
  • the electrode of the electrode region is an FPC electrode, which is a PET (polyethylene terephthalate) copper plating film, and a gold film and nickel having a thickness of 10-500 nm can be evaporated on the copper.
  • the static resistance of the graphene pressure sensor can change the static resistance of the graphene pressure sensor by changing the materials used for the elastic substrate layer and the encapsulation layer in the graphite pressure sensor and the structure and thickness of the graphene pressure sensing layer.
  • the static resistance is 0.2-200 K ⁇ , preferably 1.0-100 K ⁇ , more preferably 2-50 K ⁇ , and the inductive pressure ranges from 0.1 g to 100 kg, preferably from 1.0 g to 50 kg, more preferably from 20 g to 10 kg.
  • the present invention employs a copper foil which is not easily deformed so that subsequent direct testing, welding or bonding does not easily damage the graphene pressure sensitive region, which is advantageous for the stability of the sensor.
  • the miniaturized structure of the graphene pressure sensor of the present invention can be assembled at the frame of the smartphone or the back of the LCD, and can also obtain a pressure-sensing experience of another dimension.
  • the present invention also provides the use of the above pressure sensor for a smart terminal, and the graphene pressure sensor of the present invention can be used for a smart phone, a wearable electronic device or the like.
  • Copper foil 4 (thickness: 30 ⁇ m) composed of PI film 3 (thickness: 125 ⁇ m) and gold-plated gold (thickness: 200 nm)
  • the back surface of the formed FPC electrode ie, the side of the PI film
  • the components A and B of the organic silica gel E620 are uniformly mixed according to 1:1 and defoamed under vacuum. It was coated on the support layer double-sided tape and release paper 1, and then placed in an oven at 80 ° C for 40 minutes to heat and cure as the sensing zone 2 .
  • Graphene is grown by atmospheric pressure CVD method, the substrate is a 200 mesh copper mesh, the diameter of the copper wire is 45 ⁇ m, the mesh is 75 ⁇ 75 ⁇ m, the thickness of the prepared graphene is 80-100 nm, and the width of the network graphene is 70 ⁇ m, the pore diameter is 66.5 ⁇ 66.5 ⁇ m.
  • the graphene-rich copper mesh is placed in the FeCl 3 solution to completely etch the copper mesh, and the residual FeCl 3 solution in the graphene mesh is cleaned by washing with pure water several times, and then the graphene prepared above is transferred to the surface of the substrate. And forming an effective overlap between the graphene net and the electrode, wherein the substrate for transferring the graphene comprises an electrode region, a sensing region, a support layer, and is naturally dried in the air, and the graphene pressure sensing layer is blocked. 50K ⁇ / ⁇ ;
  • the concentric collar rectangular sensing pattern 7 is etched by a laser etching machine to increase the sensing area as much as possible.
  • the sensing pattern 7 is about 1 mm from the right edge, and the outermost square pattern width of the sensing pattern 7 is about 0.3 mm.
  • the double-sided adhesive 8 is adhered on the upper surface of the encapsulation layer above the contact interface of the copper foil 4 and the sensing region 2, and then the outer shape of the sensor is laser-cut to separate from the substrate according to the shape of the sensor, and the static of the graphene pressure sensor is obtained.
  • the resistance is 1.0K ⁇ .
  • the back surface of the FPC electrode ie, the side of the PI film
  • the PI film 3 ie, the side of the PI film
  • the copper foil 4 thickness: 25 ⁇ m
  • the main agent and curing agent of PDMS are mixed in a 10:1 uniform vacuum to remove the bubbles, and then coated on the support layer single-sided adhesive polyester tape 1 and allowed to stand for 60 minutes.
  • the surface is placed on the same plane as the copper foil 4, and then the air bubbles are removed again by vacuuming, and then heat-cured in an oven at 60 ° C for 70 minutes to serve as the sensing zone 2, and finally the silica gel remaining on the copper foil 4 is removed.
  • the graphene growth substrate is a 100 mesh copper mesh
  • the copper wire diameter is 100 ⁇ m
  • the mesh is 150 ⁇ 150 ⁇ m
  • the prepared graphene has a thickness of 150-180 nm
  • the mesh graphene has a single width of 120 ⁇ m
  • the aperture 130 ⁇ 130 ⁇ m is the first dimension of the graphene growth substrate.
  • the copper mesh is placed in the FeCl 3 solution to completely etch the copper wire, and the residual FeCl 3 solution in the graphene net is cleaned by washing with high-purity water multiple times, and then the graphene washed multiple times is transferred to the surface of the substrate.
  • the substrate of the transfer graphene network comprises an electrode region, a sensing region and a support layer, and then is naturally dried in the air, and the van der Waals force is used to adsorb the graphene on the surface of the sensing region 2, and the graphene and the electrode are effectively formed.
  • Lap the surface of the network of graphene as the graphene pressure sensing layer 5, the resulting graphene pressure sensing layer square resistance is 100 ⁇ / ⁇ ;
  • the concentric collar rectangular sensing pattern 7 is etched by a laser etching machine to increase the sensing area as much as possible.
  • the sensing pattern 7 is 0.6 mm from the right side edge, and the outermost square pattern width of the sensing pattern 7 is 0.2 mm.
  • the copper foil 4 was pasted from the left end of the 1/4-3/4 length region with a pressure-sensitive adhesive tape, and then uniformly mixed with PDMS, allowed to stand horizontally for 60 min, and naturally leveled to uniformly cover the surface of the graphene with a layer of PDMS. It is about 0.2 mm, and then heat-cured in an oven at 60 ° C for 120 minutes to serve as the encapsulating layer 6. Finally, the pressure-sensitive adhesive tape attached to the electrode is slowly torn off.
  • the surface of the encapsulation layer above the interface between the copper foil 4 and the sensing region 2 is coated with a polyimide resin 8 having a thickness of 0.2 mm, and then the outer shape of the sensor is laser-cut to separate the substrate according to the shape of the sensor.
  • the static resistance of the graphene pressure sensor is 50K ⁇ .
  • the back surface of the FPC electrode ie, the PI film side
  • the back surface of the FPC electrode ie, the PI film side
  • the 125 ⁇ m PET1 is pasted, the front cover is separated from the film, and the roll is rolled to make the three adhere closely. No gaps and bubbles are formed between the layers, so that the OCA adhesive surface and the copper foil electrode 4 are in the same plane, and the OCA adhesive is used as the OCA adhesive. Sensing area 2.
  • the graphene growth substrate is 80 mesh copper mesh
  • the copper wire diameter is 50 ⁇ m
  • the mesh is 200 ⁇ 200 ⁇ m
  • the prepared graphene is 55 nm thick
  • the mesh graphene has a single width of 74 ⁇ m
  • the aperture is 184 ⁇ 184 ⁇ m.
  • the substrate of the transfer graphene comprises an electrode region, a sensing region and a support layer. After heating and drying at 60 ° C for 60 minutes, it is adsorbed on the surface of the sensing region 2 by a van der Waals force.
  • the surface of the graphene as the graphene pressure sensing layer 5, the resulting graphene pressure sensor square resistance is 600 ⁇ / ⁇ ;
  • the pressing pattern design etches the concentric collar rectangular sensing pattern 7 by a laser etching machine to increase the sensing area, the sensing pattern 7 is 0.8 mm from the right edge, and the outermost square pattern width of the sensing pattern 7 is 0.35 mm.
  • a 0.2 mm thick phenolic resin 8 is coated on the upper surface of the encapsulation layer above the interface between the copper foil 4 and the sensing region 2, and then the outer shape of the sensor is laser-cut to separate from the substrate according to the designed sensor shape size, and the obtained graphene is obtained.
  • the static resistance of the pressure sensor is 0.5K ⁇ .
  • the graphene pressure sensor prepared by the first embodiment was assembled and tested with the whole machine of the mobile phone, placed on the substrate, and the elastic foam having the same thickness as the sensor was attached around the sensor, and a hard cover plate was added thereon. When an external force acts on the cover, the foam is compressed and the sensor also has a strain signal.
  • the test results are shown in Figures 3 and 4.

Abstract

一种石墨烯压力传感器及其制备方法,其至少由弹性衬底层、石墨烯压力感应层(5)和封装层(6)组成;其中所述弹性衬底层包含感应区(2)、搭接区、电极区;所述石墨烯压力感应层(5)附着在感应区(2)上,且石墨烯压力感应层(5)与电极区直接接触而形成搭接区;所述封装层(6)覆盖石墨烯压力感应层(5)及石墨烯压力感应层(5)与电极区的搭接区。上述石墨烯压力传感器灵敏度高、稳定性好、预期使用寿命长,且其制作成本低、工艺简易、过程可控。

Description

石墨烯压力传感器及其制备方法和用途 技术领域
本发明涉及石墨烯压力传感器及其制备方法和用途。
背景技术
现在的电容触屏仅仅是相对比较初级的输入,它们只是追踪在屏幕表面的手指或铁笔的位置移动形成的轨迹。使用触屏面板的一个缺陷是,通常它们并不能提供压力或施压大小的信息,而压力的大小也可以用来作为输入的另一个维度,它能够为与之关联的电子设备提供指令或控制信号。
目前灵敏度较高的薄膜压力传感器大多采用ZnO纳米线阵列或者聚偏氟乙烯(PVDF)作为感应敏感元件,但是灵敏度仍然不够高,对于应变低于0.4%的压力形变很难准确感应,这样在微电路设计时对信号的捕捉难度也就更大。
对于极其微弱的应变(<0.4%),ZnO或者PVDF压电式压力传感器感应跳变信号就不很明显,这样就不利于微电路设计时对给定压力信号的捕捉,也就难以进行数字算法信号处理;
另外,ZnO压感触感器对酸、碱溶液比较敏感,易发生化学反应,特别是对于经常与人体接触的电子产品,会严重影响传感器的稳定性。
专利CN104359597A公开了一种压力传感器,这种感应微型变的压力传感器是用两层柔性衬底和分别覆盖在内表面的碳纳米管或石墨烯膜,电极分别位于两层柔性基底内侧两端,两层基底错开组装,当受到挤压、拉伸等外界作用力时,上下两层石墨烯(或碳纳米管)层的接触面积将发生变化,从而导致两层间的接触电阻发生变化。虽然这种传感器也具有很高的灵敏度,但是这种传感器是由于上下层石墨烯或碳纳米管不能封装,使用中容易损坏,并且这种传感器还与上下层间隙的高度差以及表面平整性等因素有关,压力感应信号的稳定性很差。
因此,仍需开发灵敏度高、稳定性好、使用寿命长的压力传感器。
发明内容
为解决上述问题,本发明提供一种石墨烯压力传感器,其特征在于,其至少由弹性衬底层、石墨烯压力感应层和封装层组成;
其中所述弹性衬底层包含感应区、搭接区和电极区;
所述石墨烯压力感应层附着在感应区上,且石墨烯压力感应层与电极区直接接触而形成搭接区;所述封装层覆盖石墨烯压力感应层及石墨烯压力感应层与电极区的搭接区。
在本发明中,所述电极区用于高分子膜与金属电极组成的柔性印刷电路(FPC)结构区域;感应区用于放置石墨烯压力感应层的有机高分子材料复合结构区域;搭接区为将与石墨烯压力感应层接触的金属电极区域。
其中所述有机高分子材料包含但并不限于粘合剂、橡胶、塑料或树脂。
此外,本发明还提供一种制备上述石墨烯压力传感器的方法,其特征在于,所述方法包括以下步骤:
(1)在支撑层上制作弹性衬底层,使电极区表面与感应区表面在同一平面上;
(2)制备石墨烯压力感应层;
(3)将石墨烯压力感应层转移至感应区,并确保石墨烯压力感应层与电极区形成有效搭接;
(4)在石墨烯压力感应层上蚀刻感应图案;
(5)对石墨烯压力感应层及搭接区涂覆有机高分子材料,形成封装层;
(6)按照所需外形尺寸切割传感器产品。
本发明还提供上述石墨烯压力传感器用于智能终端的用途。
本发明的石墨烯压力传感器灵敏度高、稳定性好、预期使用寿命长,且其制作成本低、工艺简易、过程可控。
附图说明
图1为一种石墨烯压力传感器的正视图。
图2为一种石墨烯压力传感器的俯视图。
图3为手指轻按时传感器的压感信号。
图4为手指重按时传感器压感信号。
具体实施方式
在本发明中,关于石墨烯压力传感器中各部分的位置描述,是基于附图1和2而言,显然,随着附图1-2设备的位置变换,其中各部件的位置也变化;因此,本说明书结合具体位置的说明不对发明构成任何限制。
本发明提供一种石墨烯压力传感器,其特征在于,其至少由弹性衬底层、石墨烯压力感应层、封装层组成;
其中所述弹性衬底层包含感应区、搭接区、电极区;
所述石墨烯压力感应层附着在感应区上,且石墨烯压力感应层与电极区直接接触而形成搭接区;所述封装层覆盖石墨烯压力感应层及石墨烯压力感应层与电极区的搭接区。
在本发明中,所述弹性衬底层包含感应区、搭接区、电极区;其中电极区用于高分子膜与金属电极组成的柔性印刷电路结构区域;感应区用于放置石墨烯压力感应层的有机高分子材料复合结构区域;搭接区为将与石墨烯压力感应层接触的金属电极区域。
其中所述有机高分子材料包含但并不限于粘合剂、橡胶、塑料或树脂。
在本发明中,所述电极位于石墨烯压力传感器的同侧,不仅易于绑定,而且使得压感区域更大,这样还可以有利于保护电极与弹性衬底层的界面处的石墨烯。封装层覆盖石墨烯压力感应层及石墨烯压力感应层与电极区的搭接区,这样有助于最终产品的稳定和保护,确保产品的长期使用。
此外,本发明提供一种制备上述石墨烯压力传感器的方法,其特征在于,所述方法包括以下步骤:
(1)在支撑层上制作弹性衬底层,使电极区表面与感应区表面在同一平面上;
(2)制备石墨烯压力感应层;
(3)将石墨烯压力感应层转移至感应区,并确保石墨烯压力感应层与电极区形成有效搭接;
(4)在石墨烯压力感应层上蚀刻感应图案;
(5)对石墨烯压力感应层及搭接区涂覆有机高分子材料,形成封装层;
(6)按照所需外形尺寸切割传感器产品。
在步骤(1)中,所述支撑层可为双面胶、单面离型纸、单面胶、聚酯膜、PET(聚对苯二甲酸乙二醇酯)、PI(聚酰亚胺)、PE(聚乙烯)、PP(聚丙烯)、PVC(聚氯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PMMA(聚甲基丙烯酸甲酯)、金属、陶瓷以及柔性玻璃,其中,支撑层使得与电极侧面相接的弹性衬底层的制作更加容易,同时在制作过程可以避免电极与弹性衬底层界面处石墨烯的破裂,起到保护作用。
在步骤(1)中,为增加电极区与感应区的界面接触面积,与感应区相邻的电极处,其横截面可为锯齿形或波浪形等。
在步骤(1)中,所述感应区可为耐酸碱浸蚀、与人体生物兼容性良好、化学性质稳 定的各种弹性有机硅胶,其可选自PDMS(聚二甲基硅氧烷)、硅胶E620(二甲基-二苯基聚硅氧烷)、OCA胶(透明光学胶),其厚度为10-250μm,优选为50-200μm,更优选为100-175μm。
在一个优选实施方案中,在步骤(1)中,将弹性硅胶真空除气泡后涂覆在支撑层上,使其表面与电极表面在同一平面上,再次真空下除气泡,然后加热固化,形成弹性衬底层,其中所述加热在烘箱中进行,加热温度为30-150℃,固化时间为10-180min。
在另一优选实施方案中,在步骤(1)中,将电极区背面与感应区和支撑层粘贴,使用卷对卷滚压使三者紧密粘贴,并使感应区与电极区表面在同一平面上。
在另一优选实施方案中,在步骤(1)中,也可将铜箔与感应区和支撑层一起加压,通过菲林腐蚀,得到所需图案的电极。
在步骤(2)中,所述石墨烯压力感应层可通过本领域已知的方法制备,例如化学气相沉积法(CVD法),或也可通过将石墨烯粉体经涂覆、滚压、抽滤、喷涂制备石墨烯薄膜,或者使用氧化石墨烯粉体经涂覆、滚压、抽滤、喷涂形成氧化石墨烯薄膜,再通过还原法形成石墨烯薄膜,用图形化工艺形成石墨烯薄膜。
当使用化学气相沉积法制备石墨烯压力感应层时,所用生长石墨烯的基底包括但不限于铜、铁、镍、铜镍合金、氧化硅、碳化硅、铂金的片材、网材及三维泡沫结构材料。
在一个优选实施方案中,在步骤(2)中,所述石墨烯压力感应层使用CVD法制备,其中所述网状石墨烯的厚度为10-500nm,网孔为10×10-500×500μm,单根石墨烯线宽为5-250μm。
在步骤(2)中,所制备的石墨烯压力感应层的方阻为0.2-200KΩ/□。
在步骤(4)中,蚀刻采用激光蚀刻机进行,所述激光蚀刻机为本领域常规使用的激光蚀刻机,其可购得。
在步骤(4)中,为确保感应图案的石墨烯与周围石墨烯压力感应层断开,并获得相对更大的压力感应区域,所述感应图案可为同心多组方形、圆形、椭圆形等图案。
在步骤(4)中,所述线路感应图案与右侧边缘的距离为0.01-10mm,优选为0.1-6mm,感应图案最外侧图案的宽度为0.01-1mm,优选为0.2-5mm。
在一个优选实施方案中,在步骤(5)中,为防止远离搭接区的电极区不涂覆有机高分子材料,可使用遮蔽胶带对电极进行保护,所述胶带为压敏型胶带。
在步骤(5)中,为使涂覆的有机高分子固化,可在烘箱中进行加热,烘箱温度为30-150℃,固化时间为5-180min。
在步骤(5)中,所述封装层可为各种有机硅胶,其可选自PDMS、硅胶E620、C6-515液体硅胶,所述封装层厚度可为10~500μm,优选为50-300μm,更优选为100-200μm,以保护石墨烯压力感应层免于划伤。
在一个优选实施方案中,在步骤(5)中,为防止搭接区受到应力损伤,在搭接区上方的封装层上表面粘贴界面加强带,所述界面加强带可选自压敏胶、紫外光固胶、热固胶、瞬干胶、结构胶、密封胶。
在一个优选实施方案中,所述电极区的电极为柔性印刷电路(FPC)电极,其由铜箔和PI膜制成,其中PI膜的厚度为10-500μm,PI膜与铜箔按照本领域熟知的热压工艺热压加工而形成电极,所述铜箔表面可蒸镀厚度为10-500nm的抗氧化层,所述抗氧化层可为金、镍或者镍铬合金。
在本发明中,在铜箔上蒸镀金、镍或者镍铬合金可以防止残留在石墨烯网中的氯化铁的腐蚀或者其它酸和碱的腐蚀,进而可以确保传感器的稳定性。
在另一实施方案中,所述电极区的电极为FPC电极,其为PET(聚对苯二甲酸乙二醇酯)镀铜膜,且铜上可蒸镀厚度10-500nm的金膜、镍膜或者镍铬合金的抗氧化层。
在本发明中,本领域的技术人员可以改变石墨压力传感器中的弹性衬底层和封装层所用的材料以及石墨烯压力感应层的结构以及厚度等因素来改变所述石墨烯压力传感器的静态电阻,所述静态电阻为0.2-200KΩ,优选1.0-100KΩ,更优选2-50KΩ,可感应压力的范围为0.1g-100kg,优选为1.0g-50kg,更优选20g-10kg。
在本发明中,本发明采用不易变形的铜箔使后续直接测试、焊接或者绑定不会轻易损伤石墨烯压感区域,有利于传感器的稳定性。
本发明的石墨烯压力传感器的微型化结构可装配于智能手机的边框处或者LCD背面,且还能获得另一维度的压感体验。
本发明还提供上述压力传感器用于智能终端的用途,本发明的石墨烯压力传感器可用于智能手机、可穿戴电子设备等。
实施例
下面将结合附图对本发明作进一步说明,但不意图限制本发明。
实施例1
将由PI膜3(厚度为125μm)与蒸镀金(厚度为200nm)的铜箔4(厚度为30μm) 组成的FPC电极背面(即PI膜一侧)与支撑层双面胶和离型纸1紧密粘接;将有机硅胶E620的A、B组分按照1:1混合均匀并在真空下除泡后涂在支撑层双面胶和离型纸1上,然后放入烘箱中80℃、40min加热固化,作为感应区2。
采用常压CVD法生长石墨烯,其衬底为200目铜网,铜丝直径为45μm,网孔为75×75μm,所制备的石墨烯厚度为80~100nm,网状石墨烯单根宽度为70μm,孔径为66.5×66.5μm。
将生长有石墨烯的铜网平放于FeCl3溶液中将铜网腐蚀完全,用纯水清洗多次将石墨烯网中残留的FeCl3溶液清洗干净,然后上述制备的石墨烯转移到基底表面上,并使石墨烯网与电极形成有效搭接,其中所述转移石墨烯的基底包含电极区、感应区、支撑层,并放至空气中自然晾干,此实例石墨烯压力感应层方阻为50KΩ/□;
按压图案设计用激光蚀刻机刻蚀出同心套环长方形感应图案7,以尽可能增大感应区域,感应图案7距离右侧边缘约1mm,感应图案7最外侧方形图案宽度约0.3mm。
将铜箔4上从左端1/4-3/4长度区域用压敏胶带粘贴,然后混合加入有机硅胶E620,水平后再竖直静止,使石墨烯表面均匀覆盖一层有机硅胶E620,其厚度约为0.15mm,然后放烘箱中在80℃、40min加热固化,作为封装层6,最后将贴在电极上的压敏胶带撕掉。
在铜箔4与感应区2接触界面上方的封装层上表面粘贴双面胶8,然后按照设计传感器形状尺寸,用激光切割传感器的外部形状,使其与基板分离,所得石墨烯压力传感器的静态电阻为1.0KΩ。
实施例2
将由PI膜3(厚度为80μm)与蒸镀镍铬合金(厚度为150nm)的铜箔4(厚度为25μm)组成的FPC电极背面(即PI膜一侧)与支撑层单面PET胶带1紧密粘贴,使两层之间不产生间隙和气泡;将PDMS的主剂和固化剂按照10:1混合均匀真空下去除气泡后涂在支撑层单面胶聚酯胶带1上,静置60min自然流平,使其表面与铜箔4在同一平面,接着再次抽真空除气泡,然后放烘箱中60℃、70min加热固化,作为感应区2,最后将铜箔4上残留的硅胶去除。
采用常压CVD方法,石墨烯生长衬底为100目铜网,铜丝直径100μm,网孔150×150μm,所制备的石墨烯厚度150~180nm,网状石墨烯单根宽度为120μm,孔径130×130μm。
将生长石墨烯之后铜网平放于FeCl3溶液中将铜丝腐蚀完全,用高纯水多次清洗将石墨烯网中残留的FeCl3溶液清洗干净,然后将清洗多次的石墨烯转移到基底表面上,所述转移石墨烯网的基底包含电极区、感应区、支撑层,然后放至空气中自然晾干,依靠范德华力使石墨烯吸附在感应区2表面,并使石墨烯与电极形成有效搭接,基底表面的网状石墨烯作为石墨烯压力感应层5,所得石墨烯压力感应层方阻为100Ω/□;
按压图案设计用激光蚀刻机刻蚀出同心套环长方形感应图案7,以尽可能增大感应区域,感应图案7距离右侧边缘0.6mm,感应图案7最外侧方形图案宽度0.2mm。
将铜箔4上从左端1/4-3/4长度区域用压敏胶带粘贴,然后滴加混合均匀地PDMS,水平静置60min,自然流平,使石墨烯表面均匀覆盖一层PDMS,厚度约0.2mm,然后放烘箱中60℃、120min加热固化,作为封装层6,最后将贴在电极上的压敏胶带缓慢撕掉。
在铜箔4与感应区2接触界面上方的封装层上表面涂0.2mm厚度的聚酰亚胺树脂8,然后按照设计传感器形状尺寸,用激光切割传感器的外部形状,使其与基板分离,所得石墨烯压力传感器的静态电阻为50KΩ。
实施例3
将由PI膜3(厚度为50μm)与蒸镀镍(厚度为250nm)的铜箔4(厚度为20μm)组成的FPC电极的背面(即PI膜一侧)与厚度为175μm的OCA胶及厚度为125μm的PET1粘贴,正面覆离型膜,再用卷对卷滚压使三者紧密粘贴,各层之间不产生间隙和气泡,使OCA胶表面与铜箔电极4在同一平面,OCA胶作为感应区2。
采用常压CVD方法,石墨烯生长衬底为80目铜网,铜丝直径50μm,网孔200×200μm,所制备的石墨烯厚度55nm,网状石墨烯单根宽度为74μm,孔径184×184μm。
将生长石墨烯之后铜网平放于FeCl3溶液中将铜丝腐蚀完全,再用高纯水多次清洗将石墨烯网中残留的FeCl3溶液清洗干净,然后将清洗多次的石墨烯转移到基底表面,使石墨烯与电极形成有效搭接,所述转移石墨烯的基底包含电极区、感应区、支撑层,60℃、60min加热干燥后,依靠范德华力使其吸附在感应区2表面,基底表面的网状石墨烯作为石墨烯压力感应层5,所得石墨烯压力传感器方阻为600Ω/□;
按压图案设计用激光蚀刻机刻蚀出同心套环长方形感应图案7,以可能增大感应区域,感应图案7距离右侧边缘0.8mm,感应图案7最外侧方形图案宽度0.35mm。
将铜箔4上从左端1/4-3/4长度区域用轻粘胶带粘贴,然后滴加混合均匀地将C6-515 液体硅胶(二甲基-二苯基聚硅氧烷),水平静置40min,再竖直悬挂15min,使石墨烯表面均匀覆盖一层硅胶C6-515液体硅胶,厚度约0.1mm,然后放烘箱中70℃、40min加热固化,作为封装层6,最后将贴在电极上的压敏胶带缓慢撕掉。
在铜箔4与感应区2接触界面上方的封装层上表面涂0.2mm厚度的酚醛树脂8,然后按照设计的传感器形状尺寸,用激光切割传感器的外部形状,使其与基板分离,所得石墨烯压力传感器的静态电阻为0.5KΩ。
将由实施例1制备的石墨烯压力传感器模拟与手机的整机组装测试,放置于基板上,传感器周围贴附与传感器厚度相同的弹性泡棉,上面加一层硬质盖板。外力作用于盖板时,泡棉压缩,传感器也随之发生应变信号,测试结果如图3和图4所示。

Claims (10)

  1. 一种石墨烯压力传感器,其至少由弹性衬底层、石墨烯压力感应层、封装层组成;
    其中所述弹性衬底层包含感应区、搭接区、电极区;
    所述石墨烯压力感应层附着在感应区上,且石墨烯压力感应层与电极区直接接触而形成搭接区;所述封装层覆盖石墨烯压力感应层及石墨烯压力感应层与电极区的搭接区。
  2. 根据权利要求1所述的石墨烯压力传感器,其中所述石墨烯压力感应层为网状石墨烯。
  3. 根据权利要求1或2所述的石墨烯压力传感器,其中所述石墨烯压力感应层的方阻0.1-106Ω/□,其中所述石墨烯压力传感器的静态电阻为0.2-200KΩ、可感应压力的范围为0.1g-100kg。
  4. 根据权利要求1所述的石墨烯压力传感器,其中,所述电极区为由高分子膜与金属电极组成的柔性印刷电路,所述高分子膜为PI、PET、PE、PMMA膜;所述感应区为有机高分子材料,所述高分子材料为有机硅胶、橡胶或塑料。
  5. 根据权利要求1所述的石墨烯压力传感器,其中,所述封装层为有机硅油、硅橡胶、硅树脂,且所述封装层通过点胶、喷涂、涂布、丝网印刷及3D打印工艺形成。
  6. 一种制备权利要求1所述石墨烯压力传感器的方法,其包括以下步骤:
    (1)在支撑层上制作弹性衬底层,使电极区表面与感应区表面在同一平面上;
    (2)制备石墨烯压力感应层;
    (3)将石墨烯压力感应层转移至感应区,并确保石墨烯压力感应层与电极区形成有效搭接;
    (4)在石墨烯压力感应层上蚀刻感应图案;
    (5)对石墨烯压力感应层及搭接区涂覆有机高分子材料,形成封装层;
    (6)按照所需外形尺寸切割传感器产品。
  7. 根据权利要求6所述的方法,其中,在步骤(1)中,所述支撑层为双面胶、单面离型纸、单面胶、聚酯膜、PET、PI、PE、PP、PVC、PBT、PMMA、金属、陶瓷及柔性玻璃。
  8. 根据权利要求6所述的方法,其中,在步骤(2)中,所述石墨烯压力感应层使用石 墨烯粉体经涂覆、滚压、抽滤、喷涂形成石墨烯薄膜,或者使用氧化石墨烯粉体经涂覆、滚压、抽滤、喷涂形成氧化石墨烯薄膜,再经还原法形成石墨烯薄膜,然后用图形化工艺形成石墨烯压力感应层制备或者使用化学气相沉积法制备。
  9. 根据权利要求6所述的方法,其中,在步骤(2)中,所述石墨烯压力感应层使用化学沉积法制备,其中所用基底为铜、铁、镍、铜镍合金、氧化硅、碳化硅、铂金的片材、网材及三维泡沫结构材料。
  10. 权利要求1-5所述的石墨烯压力传感器用于智能手机、可穿戴电子设备的用途。
PCT/CN2016/076062 2015-11-13 2016-03-10 石墨烯压力传感器及其制备方法和用途 WO2017080128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510780886.0A CN105300574B (zh) 2015-11-13 2015-11-13 石墨烯压力传感器及其制备方法和用途
CN201510780886.0 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080128A1 true WO2017080128A1 (zh) 2017-05-18

Family

ID=55198091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076062 WO2017080128A1 (zh) 2015-11-13 2016-03-10 石墨烯压力传感器及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN105300574B (zh)
WO (1) WO2017080128A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107613599A (zh) * 2017-10-25 2018-01-19 大同宇林德石墨设备股份有限公司 一种含有不易错位导电性石墨烯薄膜的石墨电极
CN109425367A (zh) * 2017-09-04 2019-03-05 北京清正泰科技术有限公司 一种石墨烯传感器量程保护系统
CN112608574A (zh) * 2020-12-09 2021-04-06 苏州大学 一种石墨烯气凝胶及其制备方法和应用
CN112781757A (zh) * 2020-12-26 2021-05-11 重庆华知光环保科技有限责任公司 一种基于石墨烯的柔性电容式压力传感器及其制备方法
CN113816362A (zh) * 2021-09-23 2021-12-21 浙江大学 精密图案化三维多孔石墨烯的制备及其精准转印方法和应用
CN114235234A (zh) * 2021-12-20 2022-03-25 哈尔滨工业大学 用于柔性充气展开结构测量的柔性压力传感器制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300574B (zh) * 2015-11-13 2018-04-17 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN106370290B (zh) * 2016-08-23 2019-02-26 东华大学 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法
CN106448350A (zh) * 2016-09-29 2017-02-22 中国科学院重庆绿色智能技术研究院 一种基于石墨烯传感器的手语手套
CN106382998B (zh) * 2016-09-30 2017-06-30 中国科学院重庆绿色智能技术研究院 一种柔性石墨烯复合材料压力传感器及其制备方法
DE102016124410A1 (de) * 2016-12-14 2018-06-14 Trafag Ag Verfahren zum Herstellen eines Drucksensormesselements sowie damit erhältliches Drucksensormesselement
CN106925885B (zh) * 2017-02-17 2018-08-10 中国船舶重工集团公司第七二五研究所 一种激光制备不同石墨烯图案应变传感器的方法
CN107655398B (zh) * 2017-09-13 2020-06-19 中国科学院深圳先进技术研究院 一种高灵敏度可拉伸柔性应变传感器及其制备方法
CN108548619B (zh) * 2018-03-30 2020-02-14 华中科技大学 基于碎片化结构提升压阻式传感器灵敏度的方法
CN108996463A (zh) * 2018-07-25 2018-12-14 清华大学深圳研究生院 一种多孔石墨烯心音检测传感器及其制作方法
CN109708782B (zh) * 2018-12-14 2021-02-12 中国科学院深圳先进技术研究院 膝关节假体垫片三维力传感器及其接触应力测量方法
CN110132120B (zh) * 2019-04-15 2021-06-15 华南理工大学 一种可拉伸式压力及拉伸形变传感器
CN112336391A (zh) * 2019-08-09 2021-02-09 海宁先进半导体与智能技术研究院 脊髓神经根受力传感微系统
CN110788670B (zh) * 2019-09-25 2020-09-22 北京石墨烯技术研究院有限公司 基于石墨烯传感器的刀具磨损监测系统
CN111017863B (zh) * 2019-12-11 2023-09-29 昆明理工大学 一种硅基网状石墨烯mems传感器及其制备方法
CN113059808B (zh) * 2021-04-12 2022-07-26 华东理工大学 选择性功能化数字光处理3d打印模型的方法
CN114279619B (zh) * 2021-08-24 2022-11-11 南京大学 一种抗渗透高灵敏的石墨烯液压传感器及其加工工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378082A (zh) * 2012-04-12 2013-10-30 国际商业机器公司 石墨烯压力传感器
CN103941918A (zh) * 2014-04-21 2014-07-23 无锡格菲电子薄膜科技有限公司 一种石墨烯薄膜触控传感器及其制造方法
US20150090043A1 (en) * 2013-09-27 2015-04-02 Infineon Technologies Ag Mems
CN104793786A (zh) * 2015-03-26 2015-07-22 无锡格菲电子薄膜科技有限公司 石墨烯触摸屏传感器的制造方法
CN105092117A (zh) * 2015-08-19 2015-11-25 东南大学 一种压阻式压力传感器及其制备方法
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657812A4 (en) * 2010-12-24 2015-06-17 Graphene Square Inc TOUCH SENSOR USING GRAPHENE TO SIMULTANEOUSLY DETECT PRESSURE AND POSITION
CN102891251B (zh) * 2012-09-13 2015-01-07 北京大学 一种石墨烯霍尔元件的封装结构及封装方法
CN103345963B (zh) * 2013-06-28 2015-07-15 重庆墨希科技有限公司 一种石墨烯复合材料透明电极及其制备方法和应用
CN103389846B (zh) * 2013-07-17 2016-11-09 常州二维碳素科技股份有限公司 一种石墨烯触摸屏电极及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378082A (zh) * 2012-04-12 2013-10-30 国际商业机器公司 石墨烯压力传感器
US20150090043A1 (en) * 2013-09-27 2015-04-02 Infineon Technologies Ag Mems
CN103941918A (zh) * 2014-04-21 2014-07-23 无锡格菲电子薄膜科技有限公司 一种石墨烯薄膜触控传感器及其制造方法
CN104793786A (zh) * 2015-03-26 2015-07-22 无锡格菲电子薄膜科技有限公司 石墨烯触摸屏传感器的制造方法
CN105092117A (zh) * 2015-08-19 2015-11-25 东南大学 一种压阻式压力传感器及其制备方法
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425367A (zh) * 2017-09-04 2019-03-05 北京清正泰科技术有限公司 一种石墨烯传感器量程保护系统
CN109425367B (zh) * 2017-09-04 2022-09-27 深圳市宝佳业投资有限公司 一种石墨烯传感器量程保护系统
CN107613599A (zh) * 2017-10-25 2018-01-19 大同宇林德石墨设备股份有限公司 一种含有不易错位导电性石墨烯薄膜的石墨电极
CN112608574A (zh) * 2020-12-09 2021-04-06 苏州大学 一种石墨烯气凝胶及其制备方法和应用
CN112781757A (zh) * 2020-12-26 2021-05-11 重庆华知光环保科技有限责任公司 一种基于石墨烯的柔性电容式压力传感器及其制备方法
CN112781757B (zh) * 2020-12-26 2023-10-31 重庆华知光环保科技有限责任公司 一种基于石墨烯的柔性电容式压力传感器及其制备方法
CN113816362A (zh) * 2021-09-23 2021-12-21 浙江大学 精密图案化三维多孔石墨烯的制备及其精准转印方法和应用
CN113816362B (zh) * 2021-09-23 2024-02-06 浙江大学 精密图案化三维多孔石墨烯的制备及其精准转印方法和应用
CN114235234A (zh) * 2021-12-20 2022-03-25 哈尔滨工业大学 用于柔性充气展开结构测量的柔性压力传感器制备方法

Also Published As

Publication number Publication date
CN105300574B (zh) 2018-04-17
CN105300574A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2017080128A1 (zh) 石墨烯压力传感器及其制备方法和用途
CN103832013B (zh) 叠层结构体、制造叠层结构体的方法、电子设备
JP5144710B2 (ja) タッチスクリーンの製造装置及び製造方法
US10685203B2 (en) High-performance film-type touch sensor and method of fabricating the same
WO2016177286A1 (zh) 一种压膜装置及压膜方法
CN107003763A (zh) 薄膜触摸传感器及其制造方法
TW201817088A (zh) 導電性膜、捲繞體、連接結構體及連接結構體的製造方法
CN104880846A (zh) 柔性基板及其制作方法、显示装置
CN103389846A (zh) 一种石墨烯触摸屏电极及其制作方法
CN108986666A (zh) 显示装置
CN107430462B (zh) 用于制造薄膜触控传感器的方法及装置
TW201232134A (en) Touch panel and method for manufacturing electrode member
CN103838407B (zh) 单片玻璃触控板及其制作方法
JP6257088B2 (ja) 静電容量式3次元センサ及びその製造方法
TW201250336A (en) Method for making touch panel
CN103870086B (zh) 一种电容触摸屏的制造方法
KR102211774B1 (ko) 터치 스크린 패널의 제조 방법 및 이에 따라 제조된 터치 스크린 패널
TW201515989A (zh) 觸摸屏的製備方法
JP2000339437A (ja) 非接触型icカードの薄形アンテナ
TWI511015B (zh) 觸摸屏的製備方法
TWI502437B (zh) 觸摸屏的製備方法
JP2016115178A (ja) 可撓性積層体及びその製造方法、静電容量式3次元センサ
TW201715360A (zh) 可撓式觸控面板及其製造方法以及觸控顯示面板
TW201516775A (zh) 觸摸屏及其製備方法
KR102238788B1 (ko) 터치스크린 패널 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863318

Country of ref document: EP

Kind code of ref document: A1