WO2017080107A1 - 一种有序的图案化远程荧光晶体材料及其制备方法和用途 - Google Patents

一种有序的图案化远程荧光晶体材料及其制备方法和用途 Download PDF

Info

Publication number
WO2017080107A1
WO2017080107A1 PCT/CN2016/070742 CN2016070742W WO2017080107A1 WO 2017080107 A1 WO2017080107 A1 WO 2017080107A1 CN 2016070742 W CN2016070742 W CN 2016070742W WO 2017080107 A1 WO2017080107 A1 WO 2017080107A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal material
fluorescent crystal
remote
remote fluorescent
laser
Prior art date
Application number
PCT/CN2016/070742
Other languages
English (en)
French (fr)
Inventor
李虞锋
王帅
云峰
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US15/502,204 priority Critical patent/US10381526B2/en
Publication of WO2017080107A1 publication Critical patent/WO2017080107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to a method for improving the luminous efficiency and performance of white, green, yellow and red LED devices designed by remote fluorescent structures, in particular to laser processing remote phosphor crystal materials to improve the light extraction efficiency of materials. method.
  • white light emitting diode Compared with traditional lighting devices such as incandescent lamp and fluorescent lamp, white light emitting diode (LED) has the advantages of low power consumption, high luminous efficiency, long service life, energy saving and environmental protection. Wide range of applications in areas such as daily lighting.
  • the technology for obtaining white LEDs mainly uses a blue LED chip to excite Ce:YAG (Y 3 Al 5 O 12 ) phosphor to emit yellow light, and the yellow light and the remaining blue light are mixed to obtain white light.
  • a phosphor size 0.1 ⁇ m to 100 ⁇ m
  • silicone or epoxy or spin on glass (SOG) is sprayed or spin coated to Blue LED chip surface.
  • the microparticle phosphor carrier material mixture is coated with the LED chip, nearly half of the light is scattered. Only a small portion of the light can exit the surface of the chip. Other scattered light is lost by the chip and packaging material. The light also scatters at the boundary between the YAG particles. Therefore, the above-mentioned light scattering problem also exists in a ceramic platelet in which the phosphor particles are directly formed by high temperature and high pressure.
  • Single crystal or polycrystalline Ce:YAG fluorescent crystal materials are very suitable as an alternative material for the above fluorescent materials.
  • the above disadvantages can be largely alleviated after the use of single crystal or polycrystalline Ce:YAG fluorescent crystal materials [Laser & Photonics Reviews, Vol. 8, No. 1, 158-164 (2014)]. Mainly they have fewer light scattering centers than traditional phosphors and fluorescent ceramic sheets, and single crystal fluorescent ceramics have less scattering of crystalline fluorescent ceramics.
  • Ce:YAG single crystal or polycrystalline transparent fluorescent crystal material has the advantages of high excitation emission efficiency, stable heat, high thermal conductivity and good mechanical strength compared with phosphor particles.
  • propagation of light in single crystal or polycrystalline Ce:YAG fluorescent crystal materials is limited by the total reflection angle.
  • Ce:YAG fluorescent crystals for white LEDs include: 1) roughening the surface non-uniformity of the bulk material itself.
  • the surface of the ceramic is directly roughened by wet etching.
  • the rough surface can change the angle of photon scattering in the ceramic and increase the probability of photons escaping from the Ce:YAG ceramic.
  • Alan Piquette et al. propose a method for wet etching of fluorescent ceramics (Osram Corporation, patent number US 20140001156 A1).
  • the fluorescent ceramic is wet-etched by boiling concentrated phosphoric acid + sulfuric acid solution, and the surface thereof is roughened to corrode the valley structure, thereby enhancing the overall output light intensity and the forward outgoing light intensity of the white LED.
  • the etching speed is very slow, the time is long, and the etching conditions are harsh, which increases the manufacturing cost and cannot be mass-produced.
  • Other materials such as SiO 2 , TiO 2 , SiNx, etc. are deposited and patterned on the YAG bulk material by physical or chemical means. The material is then fabricated into a micro-nanostructure to form a periodic layer of micro-nanostructured material on the surface of the Ce:YAG fluorescent ceramic to aid in enhanced light extraction.
  • micro-nano structures of polystyrene spheres, TiO 2 , SiNx and the like are introduced on the upper surface of Ce:YAG ceramic crystals to improve the light extraction efficiency of ceramics [Optics Express, Vol. 19, No. 25, 25593 (2011); Optics Letters, Vol. 38, No. 15, 2796 (2013); Nanotechnology, 24 (2013) 085302; Journal of Materials Chemistry C, 1 (2013) 1732; Journal of Materials Chemistry C, 2 (2014) 7513].
  • such methods need to be completed by adding a combination of nanosphere mask, vapor deposition metal, dry etching, etc., and the processing steps are complicated and costly.
  • the micro/nano structure attached to the surface of the fluorescent ceramic is affected by the external environment. (for example, high temperature, humidity, acid-alkaline environment, etc.), easy to break, fall off, poor stability, and limited service life.
  • An ordered patterned remote fluorescent crystal material comprising a body of remote fluorescent crystal material and an array of microstructures formed by laser ablation on the surface of the body of the remote fluorescent crystal material.
  • the micron structure array is a periodically arranged hole having a diameter of 5 ⁇ m to 30 ⁇ m, a hole depth of 1 ⁇ m to 5 ⁇ m, and a spacing of adjacent holes of 5 ⁇ m to 50 ⁇ m.
  • the remote fluorescent crystal material body is selected from the group consisting of Lu 3 Al 5 O 12 :Ce, Tb 3 Al 5 O 12 :Ce, Y 3 Al 5 O 12 :Ce, (LuY) 3 Al 5 O 12 :Ce, Y 3 ( Al, Ga) 5 O 12: Ce or Y 3 (Al, Si) 5 (O, N) 12 : Ce fluorescent crystal material.
  • the method for preparing the above ordered patterned remote fluorescent crystal material comprises the following steps:
  • the shape, size and spacing of the individual structures in the array of microstructures are controlled comprehensively by pulsed laser power, pulse repetition frequency, spacing of the laser focal plane from the surface of the material, and the speed of movement of the stage.
  • the short pulse laser has a pulse width of 50 fs to 100 ns, a wavelength of 355 nm to 800 nm, a repetition frequency of 10 Hz to 170 kHz, a power of 0.001 W to 0.5 W, and a laser energy density threshold of 30 J/cm 2 to 50 J/cm 2 .
  • the moving speed of the stage is 1 mm/s to 100 mm/s.
  • the preparation method further comprises the following steps: after the step 2), the remote fluorescent crystal material surface-formed to form a micro-structure array is placed in a mixed acid solution of concentrated sulfuric acid and hydrogen peroxide or immersed in concentrated sulfuric acid to remove the laser burn.
  • the residue ratio of concentrated sulfuric acid to hydrogen peroxide is 3:1 to 7:1.
  • the remote fluorescent crystal material to be processed is selected from a Y 3 Al 5 O 12 :Ce fluorescent crystal material having a thickness of 0.1 mm to 5 mm; for the material, the pulse width of the short pulse laser is 1 ns to 100 ns, The wavelength is 300 nm to 400 nm, the repetition frequency is 1 kHz to 30 kHz, the power is 0.01 W to 0.3 W, the laser spot focusing diameter is 20 ⁇ m, and the moving speed of the stage is 1 mm/s to 100 mm/s; or, the second case:
  • the short pulse laser has a pulse width of 20 fs to 200 fs, a wavelength of 355 nm to 800 nm, a repetition frequency of 10 Hz to 100 kHz, a power of 0.01 W to 0.5 W, a laser spot focusing diameter of 20 ⁇ m, and a moving speed of the stage. 1mm/s to 100mm/s.
  • the absorption peak of the Y 3 Al 5 O 12 :Ce fluorescent crystal material is between 420 and 460 nm, and the emission peak is between 510 and 570 nm; and the Ce 3+ of the Y 3 Al 5 O 12 :Ce fluorescent crystal material
  • the doping concentration is 0.01 to 1 at% (atomic fraction).
  • the LED light emitting device adopts a blue LED chip or an ultraviolet LED chip, and the peak wavelength of the emitted light is between 440 nm and 460 nm or between 300 nm and 380 nm.
  • the LED After introducing a patterned structure on the surface of the crystal, the LED is realized to have higher photoelectric conversion efficiency and luminous efficiency of the LED under the same input current. And after the introduction of the patterned structure, more photons are emitted from the surface of the fluorescent crystal material, and the front/side light output ratio of the LED is increased.
  • the microstructural array on the surface of the fluorescent crystal material in the present invention has a high processing speed and high production efficiency. Taking a micron hole with a pitch of 10 ⁇ m as an example, a large-scale micropore array covering 700 LED chip areas (250 ⁇ 572 ⁇ m) can be fabricated in one hour.
  • the invention overcomes the problems of high cost and low efficiency in the conventional processing method.
  • the method has low temperature, low pollution, simple process steps and easy implementation, and thus has broad practical application prospects in the field of LED.
  • the size and spacing of the microstructural array prepared on the surface of the fluorescent crystal material of the present invention can be controlled, and an ordered large-scale microporous array can be prepared.
  • the patterned structure array prepared by the invention inherits the characteristics of the crystal material, has stable physical and chemical properties, is anti-oxidation, anti-radiation, high mechanical strength and good stability.
  • SEM scanning electron microscope
  • Figure 2 is a graph showing the variation of micropore size (diameter and depth) with 355 nm short pulse laser power (a) and spot focal plane upshift distance (b).
  • 3 is a schematic diagram of a Ce:YAG fluorescent crystal material used for a white LED package structure; in the figure: 1 is an LED package base, 2 is a blue LED chip, 3 is an electrode lead, and 4 is a filler (silica gel or epoxy resin, etc.) , or air), 5 is a Ce:YAG fluorescent crystal material, and 6 is a micro-hole array of laser-processed Ce:YAG fluorescent crystal material surface.
  • Figure 4 shows the total electroluminescence spectrum in the 4 ⁇ solid angle of the surface of the Ce:YAG fluorescent crystal material and the smooth surface Ce:YAG fluorescent crystal material-covered white LED measured by the integrating sphere under the excitation of a 250 mA blue LED chip.
  • (EL) comparison chart in which the peak wavelength of the blue LED is 445 nm.
  • Figure 5 is a micro-structured array of Ce:YAG fluorescent crystal material and smooth surface Ce:YAG fluorescent crystal material covered white LED when the spectrum detector is at 0 degree (perpendicular to the YAG surface) excited by a 250 mA blue LED chip. Photoluminescence spectrum comparison chart.
  • Figure 6 is a photo-detector with a micro-structured array of Ce:YAG fluorescent crystal material and a smooth surface Ce:YAG fluorescent crystal material-covered white LED at an angle of 80 degrees from the normal with a 250 mA blue LED chip. Luminescence spectrum comparison chart.
  • Figure 7 is a comparison of the absolute value of the photoelectric conversion efficiency of a Ce: YAG fluorescent crystal material having a micron structure on the surface and a Ce: YAG fluorescent crystal material covering white LED.
  • the invention provides a simple and efficient method for surface patterning single crystal and polycrystalline transparent fluorescent crystal materials, thereby reducing total reflection of light in fluorescent crystal materials and improving light extraction efficiency of LED chips and fluorescent crystal materials. .
  • the patterned single crystal or polycrystalline fluorescent crystal material proposed by the invention can replace the traditional phosphor, and obtain high photoelectric conversion efficiency (lm/W) under the excitation of the LED chip.
  • the packaging technology is simplified, the device is less affected by heat, the stability is improved, the life is long, and the structure is simple and excellent. Especially suitable for high power white LED devices.
  • the fluorescent crystal material may be Lu 3 Al 5 O 12 :Ce, Tb 3 Al 5 O 12 :Ce, Y 3 Al 5 O 12 :Ce, (LuY) 3 Al 5 O 12 :Ce, Y 3 (Al,Ga) 5 O 12: Ce or Y 3 (Al, Si) 5 (O, N) 12 : Ce.
  • the light-transmissive single crystal, polycrystalline YAG fluorescent crystal material involved includes, but is not limited to, a yellow-emitting Ce:YAG (Ce 3+ doped Y 3 Al 5 O 12 ) transparent fluorescent material. Further, the light-emitting wavelength can be controlled by doping or co-doping Tb, Pr, Eu, Nd, Tm, and Dy rare earth luminescent ions in the YAG material. Doped substrates include, but are not limited to, Y 2 O 3 , LuAG, Lu 2 O 3 , Sc 2 O 3 , MgAl 2 O 4 , CaF 2 , ZnS. One or more bands of light are emitted under the excitation of the LED chip.
  • a transparent YAG material is excited by a blue LED chip or an ultraviolet LED chip, and white light is formed by the combination of the blue LED chip or the ultraviolet LED chip and the yellow light emitted by the excited YAG material. Therefore, a simple method for enhancing the light extraction efficiency of Ce:YAG fluorescent crystal materials for white LEDs is proposed.
  • the short-pulse laser is used to directly form the micro-structure array on the surface of the Ce:YAG fluorescent crystal material, which is enhanced by the fabricated micro-structure array. Light extraction efficiency of Ce:YAG fluorescent crystal materials for white LEDs.
  • the short pulse laser here includes an energy density to a certain extent (for example, the laser energy density threshold used in the present invention is 30 to 50 J/cm 2 , and different wavelengths may have different energy density thresholds), and the pulse width is in femtoseconds (1-100 fs) to Nanosecond (1-100 ns) level, laser with wavelengths from 355 nm to 800 nm (eg, 355 nm, or other UV lasers with wavelengths less than 400 nm, or other long wavelength lasers).
  • the laser energy density threshold used in the present invention is 30 to 50 J/cm 2 , and different wavelengths may have different energy density thresholds
  • the pulse width is in femtoseconds (1-100 fs) to Nanosecond (1-100 ns) level, laser with wavelengths from 355 nm to 800 nm (eg, 355 nm, or other UV lasers with wavelengths less than 400 nm, or other long wavelength lasers).
  • Step 1 The Ce:YAG fluorescent crystal material (single crystal) with a thickness of 0.3 mm to be processed is placed on a stage that can move freely in a two-dimensional horizontal direction, and the short pulse laser is focused on one side surface of the fluorescent crystal material through the objective lens. .
  • the Ce:YAG fluorescent crystal material is double-sided polished, the absorption peak of the Ce:YAG fluorescent crystal material is 450 nm, and the emission peak is 550 nm; the Ce doping concentration of the Ce:YAG fluorescent crystal material is 0.03 at%; the short pulse laser has a pulse width of 40 ns, a wavelength of 355 nm, a repetition frequency of 1 kHz, and a stage moving speed of 10 mm/s.
  • the short-pulse laser power was 0.15 W, and the laser spot was focused on the surface of the material (spot diameter 20 ⁇ m).
  • Step 2 Due to the special processing characteristics of the laser, a photo-ablative region is generated on the Ce:YAG fluorescent crystal material centering on the laser focusing point, and the pulse peak energy is generated to be particularly high, so that the temperature at the focus rises rapidly.
  • the boiling point of the YAG material is reached in a very short time.
  • the material at the focus is vaporized to form steam.
  • the gasification material is carried away by the gas ejected by the nozzle at high speed and high pressure to form a surface pore structure.
  • the substrate is driven by the computer software to drive the material to move, and an array of micro-structures is fabricated on the surface of one side of the Ce:YAG fluorescent crystal material, see FIG.
  • micron structure arrays of different diameters and different depths can be obtained.
  • Fig. 2 it can be seen from Fig. 2 that as the laser power gradually Increasing, the diameter of a single micron structure increases from 6 ⁇ m to 17 ⁇ m, and the depth increases from 1.5 ⁇ m to 5 ⁇ m; as the focal plane of the spot increases with the material spacing, the diameter of the single micron structure increases from 18 ⁇ m to 26 ⁇ m.
  • the depth will be reduced from 5 ⁇ m to 1.5 ⁇ m; with the adjustment of the repetition frequency of the laser and the moving speed of the stage, the period and spacing of the microstructure distribution can be changed; adjusting the scanning trajectory of the laser can obtain a micro-structure array with different pattern distribution. .
  • Step 3 The above processed Ce:YAG fluorescent crystal material is placed in a solution of concentrated sulfuric acid (mass fraction: 98%) at 80 ° C and mixed acid (mass fraction: 30%) in a mixed acid (3:1 by volume) solution. After soaking for half an hour, the surface morphology of Ce:YAG fluorescent crystal material changed little before and after washing with concentrated sulfuric acid and hydrogen peroxide, and the pore depth increased slightly. The main purpose is to remove the laser ablation residue from the surface. (The concentrated sulfuric acid and hydrogen peroxide cleaning are not necessary here. The short pulse laser impact surface can already form a micron structure, the acid solution only removes the ablation residue to make the holes smoother.) Then the deionized water is used to wash away the residual acid. Nitrogen gas was blown dry to obtain a patterned Ce:YAG fluorescent crystal material. The use of concentrated sulfuric acid alone requires a longer cleaning time, and heating cleaning can speed up the cleaning compared to normal temperature cleaning.
  • the process of fabricating a white LED using a patterned Ce:YAG fluorescent crystal material obtained by laser processing includes the following steps:
  • Step 1 Mount the blue LED chip 2 (the peak wavelength of the emitted light between 440 ⁇ 460nm) in the center of the LED package base 1, and connect the electrode lead 3;
  • Step 2 Adhering the patterned Ce:YAG fluorescent crystal material with the micron structure array above the LED package base 1 with the micron structure array facing up (ie, the micro structure is facing away from the LED chip), and obtaining the remote Fluorescent conversion structure white LED, the structure shown in Figure 3.
  • the method proposed by the present invention can significantly enhance the light extraction efficiency of the white LED (Fig. 3) and increase the proportion of the fluorescent material converting blue photons into yellow photons.
  • the micro-structure array patterned Ce:YAG fluorescent crystal material mainly enhances the intensity of the light emitted from the front side (perpendicular to the YAG surface) and is enhanced in the direction of the side (at a larger angle to the normal). The ratio is weak.
  • the patterned fluorescent crystal material changes the directivity of the light exiting, resulting in an increase in the front/side light output ratio of the LED.
  • the absolute conversion efficiency of the Ce:YAG fluorescent crystal material-covered white LED using the micro-structure array is about 15% higher than that of the smooth surface Ce:YAG fluorescent crystal material-covered white LED.
  • Table 1 compares the optical characteristics of a smooth-surface fluorescent crystal material and a patterned fluorescent crystal material excited by a blue chip driven by a current of 350 mA measured in an integrating sphere.
  • the total luminous flux of the patterned fluorescent crystal material prepared by the present invention is increased, and the blue-yellow conversion efficiency is greatly improved.
  • Step 1 Place a Ce:YAG fluorescent crystal material (single crystal) with a thickness of 0.3 mm to be processed on a stage that can move freely in a two-dimensional horizontal direction.
  • the short pulse laser is focused by an objective lens on one side of the fluorescent crystal material. surface.
  • the Ce:YAG fluorescent crystal material is double-sided polished, the absorption peak of the Ce:YAG fluorescent crystal material is 450 nm, and the emission peak is 550 nm; the Ce doping concentration of the Ce:YAG fluorescent crystal material is 0.03 at%; the short pulse laser has a pulse width of 50 fs, a wavelength of 800 nm, a repetition frequency of 1 kHz, and a stage moving speed of 10 mm/s.
  • the short-pulse laser power was 0.05 W, and the laser spot was focused on the surface of the material (spot diameter 20 ⁇ m).
  • Step 2 Due to the special processing characteristics of the laser, a photo-ablative region is generated on the Ce:YAG fluorescent crystal material centering on the laser focusing point, and the pulse peak energy is generated to be particularly high, so that the temperature at the focus rises rapidly.
  • the boiling point of the YAG material is reached in a very short time.
  • the material at the focus is vaporized to form steam.
  • the gasification material is carried away by the gas ejected by the nozzle at high speed and high pressure to form a surface pore structure.
  • the resulting array has a single micron structure having a diameter of 5 ⁇ m and a depth of 2 ⁇ m, and the surface of the hole is rough and not smooth.
  • micro-structures fabricated by the laser micromachining of the present invention may be periodically arranged, including but not limited to micro-pits, micro-grooves, micro-lenses, micro-holes; micro-structures may also be non-periodic Arrange the arrangement.
  • the micro-structure of the fluorescent crystal material When the micro-structure of the fluorescent crystal material is processed on one side surface, it can face the LED chip or face the LED chip in the LED package structure, and the difference in effect is that when the micro-structured side faces the LED chip, the emission from the chip can be weakened.
  • the proportion of the excitation light reflected back by the fluorescent crystal material can enhance the light extraction efficiency of the fluorescent crystal material; when the micro-structured side faces away from the LED chip, the light extraction efficiency of the fluorescent crystal material can only be enhanced.
  • the micro-structure facing one side of the LED chip can effectively reduce the proportion of the excitation light reflected back by the fluorescent crystal material, so that the double-sided micro structure can greatly enhance the fluorescent crystal.
  • the light extraction efficiency of the material When the micro-structure of the fluorescent crystal material is processed on one side surface, it can face the LED chip or face the LED chip in the LED package structure, and the difference in effect is that when the micro-structured side faces the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明提供一种有序的图案化远程荧光晶体材料及其制备方法和用途:利用短脉冲激光直接在荧光晶体材料表面制作微米结构阵列,通过制作的微米结构阵列来增强基于该荧光晶体材料的LED器件的光提取效率。本发明克服了荧光晶体材料质地坚硬、耐干湿法刻蚀的不足,具有步骤简便、加工速度快、制作效率高,而且低温、低污染的特点,制作的微米结构稳定性良好,在白光LED领域具有很高的推广应用价值。

Description

一种有序的图案化远程荧光晶体材料及其制备方法和用途 技术领域
本发明涉及提高采用远程荧光结构设计的白光、绿光、黄光、红光LED器件的发光效率和性能的方法,具体涉及激光加工远程荧光(remote phosphor)晶体材料来提高材料的光提取效率的方法。
背景技术
跟白炽灯(incandescent lamp)、节能灯(fluorescent lamp)这一类传统照明器件相比,白光LED(Light emitting diode)具有耗电量小、发光效率高、使用寿命长、节能环保等优点,在日常照明等领域有广泛的应用。目前,获取白光LED的技术主要是利用蓝光LED芯片激发Ce:YAG(Y3Al5O12)荧光粉使其发出黄光,黄光和剩余的蓝光混合得到白光。传统的荧光粉封装的结构中,荧光粉(尺寸大小0.1微米~100微米)混合硅胶(silicone)或者透光树胶(epoxy)或者旋涂式玻璃(spin on glass,SOG)被喷涂或者旋涂到蓝光LED芯片表面。有以下不利因素:(1)荧光粉紧贴芯片,荧光粉产生的热量通过LED芯片传递。提高了芯片自身的温度,从而缩短白光LED的使用寿命;(2)由于喷涂和旋涂工艺本身的不确定因素的限制,即使同样的LED芯片也会由于不同区域荧光粉的厚度、浓度的差异,导致了最后得到的白光LED之间的色温、发光特性等存在差异,影响了产品良品率;(3)YAG颗粒和载体材料(例如silicone或者epoxy,或者SOG)的分界面都会发生散射。决定散射强度大小的是这些分界面(亦即散射中心)两面材料的折射率的差别。因此微米颗粒荧光粉载体材料混合体涂覆LED芯片后,近一半的光会被散射。只有小部分的光可以从芯片表面出射。其他的散射光被芯片、封装材料重新吸收损失掉了。光线在YAG颗粒之间的边界也会发生散射,因此采用荧光粉颗粒直接通过高温高压制作的陶瓷片(ceramic platelet)也存在上述的光散射问题。
单晶或者多晶Ce:YAG荧光晶体材料非常适合作为上述荧光材料的替代材料。上述不利因素问题在使用单晶或者多晶Ce:YAG荧光晶体材料后都能得到很大程度上的缓解[Laser&Photonics Reviews,Vol.8,No.1,158-164(2014)]。主要是它们比传统荧光粉和荧光陶瓷片有更少的光线散射中心,其中单晶荧光陶瓷较多晶荧光陶瓷散射更小。除此之外Ce:YAG单晶或者多晶透明荧光晶体材料相比荧光粉颗粒具有激发发射效率高、受热稳定、热导率高、机械强度好等优点。然而光在单晶或者多晶Ce:YAG荧光晶体材料中传播受到全反射角的限制。由于Ce:YAG荧光晶体的折射率(~1.82)与空气的折射率相差很大,入射角大于33.1°的光线在YAG和空气界面处发生全反射而无法出射晶体表面,导致了光损失,并且增加了YAG材料发热量。最后影响了白光LED的发光效率。因此 需要一种简单有效的方法来改变单晶、多晶荧光晶体材料的光提取特性。
目前,主要的改进白光LED用Ce:YAG荧光晶体的出光效率的方法包括:1)针对体材料本身的表面非均匀性地粗化。采用湿法刻蚀的方法直接对陶瓷表面进行粗化,粗糙表面可以改变光子在陶瓷内散射的角度,增大光子从Ce:YAG陶瓷中逃逸出去的概率。Alan Piquette等人提出一种湿法腐蚀荧光陶瓷的方法(Osram公司,专利号US 20140001156A1)。利用煮沸的浓磷酸+硫酸溶液湿法刻蚀荧光陶瓷,粗化其表面,腐蚀出谷状结构,进而增强白光LED整体的输出光强和正向出射光强。但是由于Ce:YAG晶体耐酸碱腐蚀,该方法刻蚀速度非常缓慢,耗时长且刻蚀条件苛刻,提高了制造成本,无法进行大批量生产。2)在YAG体材料上面通过物理或者化学的方法沉积其他材料(例如SiO2,TiO2,SiNx等)并图案化。然后将该材料制作成微纳米结构,从而在Ce:YAG荧光陶瓷的表面形成一层周期性的微纳米结构材料,辅助增强出光。例如在Ce:YAG陶瓷晶体的上表面引入聚苯乙烯球、TiO2、SiNx等材料的微纳米结构来提高陶瓷的出光效率[Optics Express,Vol.19,No.25,25593(2011);Optics Letters,Vol.38,No.15,2796(2013);Nanotechnology,24(2013)085302;Journal of Materials Chemistry C,1(2013)1732;Journal of Materials Chemistry C,2(2014)7513]。但是此类方法需要借助添加纳米球掩膜、蒸镀金属、干法刻蚀等多种手段结合来完成,加工步骤复杂且成本较高;其次,附着在荧光陶瓷表面的微纳米结构受外部环境(例如,高温,湿度,酸碱性环境等)的影响,易破裂、脱落,稳定性差,使用寿命有限。
发明内容
本发明的目的在于提供一种有序的图案化远程荧光晶体材料及其制备方法和用途。
为达到上述目的,本发明采用了以下技术方案:
一种有序的图案化远程荧光晶体材料,包括远程荧光晶体材料本体以及通过激光烧蚀形成于所述远程荧光晶体材料本体表面的微米结构阵列。
所述微米结构阵列为周期性排列的孔洞,孔洞的直径为5μm~30μm,孔洞的深度为1μm~5μm,相邻孔洞的间距为5μm~50μm。
所述远程荧光晶体材料本体选自Lu3Al5O12:Ce、Tb3Al5O12:Ce、Y3Al5O12:Ce、(LuY)3Al5O12:Ce、Y3(Al,Ga)5O12:Ce或Y3(Al,Si)5(O,N)12:Ce荧光晶体材料。
上述有序的图案化远程荧光晶体材料的制备方法,包括以下步骤:
1)将待加工的远程荧光晶体材料置于可以二维水平方向自由移动的载物台上,然后将短脉冲激光聚焦在所述待加工的远程荧光晶体材料的表面或表面上方;
2)控制所述载物台带动所述待加工的远程荧光晶体材料移动,使短脉冲激光逐点扫描该远程荧光晶体材料的表面,得到表面加工形成微米结构阵列的远程荧光晶体材料。
所述微米结构阵列中单个结构的形状、尺寸和间距通过脉冲激光功率、脉冲重复频率、激光焦平面与材料表面的间距以及载物台的移动速度来综合控制。
所述短脉冲激光的脉冲宽度为50fs~100ns,波长为355nm~800nm,重复频率为10Hz~170kHz,功率为0.001W~0.5W,激光能量密度阈值为30J/cm2~50J/cm2,所述载物台的移动速度为1mm/s~100mm/s。
所述制备方法还包括以下步骤:经过步骤2)后,将表面加工形成微米结构阵列的远程荧光晶体材料放入浓硫酸与双氧水的混合酸溶液中或者放入浓硫酸中浸泡,以去除激光烧蚀残渣,浓硫酸与双氧水的体积比为3:1~7:1。
所述待加工的远程荧光晶体材料选自厚度为0.1mm~5mm的Y3Al5O12:Ce荧光晶体材料;对于该材料,情况一:所述短脉冲激光的脉冲宽度为1ns~100ns,波长为300nm~400nm,重复频率为1kHz~30kHz,功率为0.01W~0.3W,激光光斑聚焦直径为20μm,所述载物台的移动速度为1mm/s~100mm/s;或者,情况二:所述短脉冲激光的脉冲宽度为20fs~200fs,波长为355nm~800nm,重复频率为10Hz~100kHz,功率为0.01W~0.5W,激光光斑聚焦直径为20μm,所述载物台的移动速度为1mm/s~100mm/s。
所述Y3Al5O12:Ce荧光晶体材料的吸收峰在420~460nm之间,发射峰在510~570nm之间;所述Y3Al5O12:Ce荧光晶体材料中Ce3+的掺杂浓度为0.01~1at%(原子分数)。
上述有序的图案化远程荧光晶体材料在增强LED发光器件光提取效率中的用途。
所述LED发光器件采用蓝光LED芯片或紫外LED芯片,发射光峰值波长在440nm~460nm或300nm~380nm之间。
本发明由于采取以上技术方案,具有以下优点:
1.在晶体表面引入图案化结构后,使LED实现了在同样输入电流下,具有更高的光电转换效率和LED的发光效率。且引入图案化结构后,更多的光子从荧光晶体材料表面出射,LED的正面/侧面出光比增加。
2.本发明中荧光晶体材料表面的微米结构阵列加工速度快、制作效率高。以间距为10μm的微米孔为例,能够在一小时之内制作出可覆盖700个LED芯片面积(250×572μm)的大规模微米孔阵列。本发明克服了传统加工方法中成本高、效率低的问题,该方法低温、低污染,而且工艺步骤简便、易于实施,因此在LED领域具有广阔的实际应用前景。
3.本发明制备于荧光晶体材料表面的微米结构阵列的尺寸和间距均可控,可以制备出有序的大规模微孔阵列。
4.本发明所制备的图案化结构阵列继承了晶体材料的特性,物理和化学特性稳定,抗氧化,抗辐射,机械强度高,稳定性良好。
附图说明
图1是实施例中经激光加工具有微米孔阵列的Ce:YAG荧光晶体材料的扫描电子显微镜(SEM)图,孔间的间距为10μm,每个微米孔的直径为7.5μm,孔深3μm;其中,(a)为300倍放大倍率下SEM图,(b)为1200倍放大倍率下SEM图,(c)为7000倍放大倍率下SEM图。
图2是微米孔尺寸(直径和深度)分别随355nm短脉冲激光功率(a)、光斑焦平面上移距离(b)的变化规律图。
图3是Ce:YAG荧光晶体材料用于白光LED封装结构的示意图;图中:1为LED封装基座,2为蓝光LED芯片,3为电极引线,4为填充物(硅胶或环氧树脂等,或者空气),5为Ce:YAG荧光晶体材料,6为Ce:YAG荧光晶体材料表面由激光加工的微米孔阵列。
图4是在250mA蓝光LED芯片激发下,通过积分球测量的表面具有微米结构阵列Ce:YAG荧光晶体材料与平滑表面Ce:YAG荧光晶体材料覆盖型白光LED的4π立体角内全部电致发光谱(EL)对比图,其中蓝光LED的峰值波长为445nm。
图5是在250mA蓝光LED芯片激发下,光谱探测器位于0度(垂直于YAG表面)时,表面具有微米结构阵列Ce:YAG荧光晶体材料与平滑表面Ce:YAG荧光晶体材料覆盖型白光LED电致发光光谱对比图。
图6是在250mA蓝光LED芯片激发下,光谱探测器在与法线成80度角度时表面具有微米结构阵列Ce:YAG荧光晶体材料与平滑表面Ce:YAG荧光晶体材料覆盖型白光LED的电致发光光谱对比图。
图7是表面具有微米结构阵列Ce:YAG荧光晶体材料与平滑表面Ce:YAG荧光晶体材料覆盖型白光LED光电转换效率绝对值的比较。
具体实施方式
下面结合附图和实施例对本发明作详细说明。
本发明提供一种简单高效的对单晶、多晶透光荧光晶体材料进行表面图案化的方法,来减小光线在荧光晶体材料中的全反射,提高LED芯片以及荧光晶体材料的光提取效率。从而增强LED发光效率(lm/W)。本发明提出的图案化单晶或多晶荧光晶体材料可代替传统荧光粉,在LED芯片激发下,获得较高的光电转换效率(lm/W)。光学均匀性好,亮度高。简化了封装技术,器件受热影响小,稳定性提高,寿命长,其结构简单性能优异。尤其适合大功率白光LED器件。
荧光晶体材料可以为Lu3Al5O12:Ce、Tb3Al5O12:Ce、Y3Al5O12:Ce、(LuY)3Al5O12:Ce、Y3(Al,Ga)5O12:Ce或Y3(Al,Si)5(O,N)12:Ce。
这种方法同样适合其他荧光材料。涉及的透光单晶、多晶YAG荧光晶体材料,包括但不限于发黄光的Ce:YAG(Ce3+掺杂Y3Al5O12)透明荧光材料。进一步还可以通过在YAG 材料中掺杂或者共掺杂Tb、Pr、Eu、Nd、Tm、Dy稀土发光离子,实现发光波长调控。掺杂基材包括但是不限于Y2O3、LuAG、Lu2O3、Sc2O3、MgAl2O4、CaF2、ZnS。在LED芯片激发下,发出一种或者多波段的光。
下面以Y3Al5O12:Ce为例,采用蓝光LED芯片或紫外LED芯片激发透明YAG材料,由蓝光LED芯片或紫外LED芯片发光和受激发的YAG材料所发的黄光混合形成白光。由此,提出一种简便的增强白光LED用Ce:YAG荧光晶体材料光提取效率的方法:利用短脉冲激光直接在Ce:YAG荧光晶体材料表面制作微米结构阵列,通过制作的微米结构阵列来增强白光LED用Ce:YAG荧光晶体材料光提取效率。这里的短脉冲激光包括能量密度达到一定程度(例如,本发明采用的激光能量密度阈值为30~50J/cm2,不同波长可能能量密度阈值不同),脉冲宽度在飞秒(1-100fs)至纳秒(1-100ns)级别,波长在355nm至800nm波长的激光(例如,355nm,或其他波长小于400nm的UV激光,或者其他长波长激光)。
实施例1
该方法的具体实施步骤如下:
步骤1:将待加工的厚度0.3mm的Ce:YAG荧光晶体材料(单晶)置于可以二维水平方向自由移动的载物台上,短脉冲激光经物镜聚焦在荧光晶体材料的一侧表面。
所述步骤1中,所述Ce:YAG荧光晶体材料为双面抛光,Ce:YAG荧光晶体材料的吸收峰在450nm,发射峰在550nm;所述Ce:YAG荧光晶体材料的Ce掺杂浓度为0.03at%;所述短脉冲激光的脉冲宽度为40ns、波长为355nm,重复频率为1kHz,载物台移动速度为10mm/s。短脉冲激光功率为0.15W、激光光斑聚焦在材料表面(光斑直径20μm)。
步骤2:由于激光特殊的加工特性,在Ce:YAG荧光晶体材料上以激光汇聚焦点为中心产生一个光烧蚀区,产生脉冲峰值能量特别高,使焦点处温度迅速上升。在非常短的时间内达到YAG材料沸点。将焦点处材料气化形成蒸汽。同时气化材料被喷嘴高速高压喷出的气体带走,形成表面孔洞结构。通过计算机软件控制载物台带动材料移动,在Ce:YAG荧光晶体材料一侧表面制作出微米结构阵列,参见图1。
通过调控激光的输出功率以及激光焦平面到Ce:YAG荧光晶体材料上表面的距离,可得到不同直径、不同深度的微米结构阵列,参见图2,由图2可以看出,随着激光功率逐渐增大,单个微米结构的直径从6μm增大到17μm,深度从1.5μm增大到5μm;随着光斑焦平面与材料间距逐渐增大,单个微米结构的直径会从18μm增大到26μm,而深度则会从5μm减小到1.5μm;配合调整激光的重复频率和载物台的移动速度,可以改变微米结构分布的周期和间距;调整激光的扫描轨迹,可以获得不同图案分布的微米结构阵列。
步骤3:把以上经过加工的Ce:YAG荧光晶体材料放入80摄氏度的浓硫酸(质量分数:98%)与双氧水(质量分数:30%)的混合酸(体积比为3:1)溶液中浸泡半小时,浓硫酸与双氧水清洗前后Ce:YAG荧光晶体材料表面形貌改变不大,孔洞深度略有增大。主要目的是清除表面的激光烧蚀残渣。(这里浓硫酸与双氧水清洗并不是必须的,短脉冲激光冲击表面已经可以形成微米结构,酸液只是将烧蚀残渣去除,使孔洞更平滑)然后用去离子水清洗掉残留的酸,最后用氮气吹干,得到图案化Ce:YAG荧光晶体材料。单独使用浓硫酸需要更长的清洗时间,加热清洗相比常温清洗可以加快清洗速度。
利用激光加工得到的图案化Ce:YAG荧光晶体材料制作白光LED的过程,包括以下步骤:
步骤1:将蓝光LED芯片2(发射光峰值波长在440~460nm之间)安装于LED封装基座1中央,并接好电极引线3;
步骤2:把以上带有微米结构阵列的图案化Ce:YAG荧光晶体材料粘附于LED封装基座1上方,有微米结构阵列的一面朝上(即微米结构背向LED芯片),得到远程荧光转换结构白光LED,结构如图3所示。参见图4,可以看出本发明所提出的方法可以显著增强白光LED(图3)的光提取效率,提高荧光材料将蓝光光子转换为黄光光子的比例。参见图5和图6,可以看出微米结构阵列图案化Ce:YAG荧光晶体材料主要增强了正面(垂直于YAG表面)光线出射的强度,而在侧面(与法线成较大角度)方向增强比例较弱。图案化荧光晶体材料改变了光出射的方向性,使得LED正面/侧面出光比增强。参见图7,使用具有微米结构阵列的Ce:YAG荧光晶体材料覆盖型白光LED的电转换效率绝对值较平滑表面Ce:YAG荧光晶体材料覆盖型白光LED提高了15%左右。
表1是积分球内测得的350mA电流驱动下,蓝光芯片激发平滑表面荧光晶体材料和图案化荧光晶体材料的光学特性对比。总的来说本发明制备的图案化荧光晶体材料的总光通量增加,蓝光-黄光转化效率大幅提高。
表1
Figure PCTCN2016070742-appb-000001
实施例2
步骤1:将待加工的厚度为0.3mm的Ce:YAG荧光晶体材料(单晶)置于可以二维水平方向自由移动的载物台上,短脉冲激光经物镜聚焦在荧光晶体材料的一侧表面。
所述步骤1中,所述Ce:YAG荧光晶体材料为双面抛光,Ce:YAG荧光晶体材料的吸收峰在450nm,发射峰在550nm;所述Ce:YAG荧光晶体材料的Ce掺杂浓度为0.03at%;所述短脉冲激光的脉冲宽度为50fs、波长为800nm,重复频率为1kHz,载物台移动速度为10mm/s。短脉冲激光功率为0.05W、激光光斑聚焦在材料表面(光斑直径20μm)。
步骤2:由于激光特殊的加工特性,在Ce:YAG荧光晶体材料上以激光汇聚焦点为中心产生一个光烧蚀区,产生脉冲峰值能量特别高,使焦点处温度迅速上升。在非常短的时间内达到YAG材料沸点。将焦点处材料气化形成蒸汽。同时气化材料被喷嘴高速高压喷出的气体带走,形成表面孔洞结构。得到的阵列单个微米结构的直径为5μm,深度为2μm,孔洞表面比较粗糙,不平滑。
尽管提出了上述实施例,但是,本发明激光微加工制作的微米结构可以是周期性排列方式,包括但不限于微米凹坑、微米槽、微米透镜,微米孔洞;微米结构也可以按非周期性排列方式排列。
荧光晶体材料单侧表面加工微米结构时,其在LED封装结构中可以朝向LED芯片或背向LED芯片,效果上的区别在于:当有微米结构的一面朝向LED芯片时,既可以减弱从芯片出射的激发光被荧光晶体材料反射回去的比例,又可以增强荧光晶体材料的光提取效率;当有微米结构的一面背向LED芯片时,只能增强荧光晶体材料的光提取效率。同时,在荧光晶体材料两侧表面均制作微米结构会更好,朝向LED芯片一面的微米结构可以有效减弱激发光被荧光晶体材料反射回去的比例,使双面的微米结构可以极大增强荧光晶体材料的光提取效率。

Claims (10)

  1. 一种有序的图案化远程荧光晶体材料,其特征在于:包括远程荧光晶体材料本体以及通过激光烧蚀形成于所述远程荧光晶体材料本体表面的微米结构阵列。
  2. 根据权利要求1所述一种有序的图案化远程荧光晶体材料,其特征在于:所述微米结构阵列为周期性排列的孔洞,孔洞的直径为5μm~30μm,孔洞的深度为1μm~5μm,相邻孔洞的间距为5μm~50μm。
  3. 根据权利要求1所述一种有序的图案化远程荧光晶体材料,其特征在于:所述远程荧光晶体材料本体选自Lu3Al5O12:Ce、Tb3Al5O12:Ce、Y3Al5O12:Ce、(LuY)3Al5O12:Ce、Y3(Al,Ga)5O12:Ce或Y3(Al,Si)5(O,N)12:Ce荧光晶体材料。
  4. 一种制备如权利要求1所述有序的图案化远程荧光晶体材料的方法,其特征在于:包括以下步骤:
    1)将待加工的远程荧光晶体材料置于可以二维水平方向自由移动的载物台上,然后将短脉冲激光聚焦在所述待加工的远程荧光晶体材料的表面或表面上方;
    2)控制所述载物台带动所述待加工的远程荧光晶体材料移动,使短脉冲激光逐点扫描该远程荧光晶体材料的表面,得到表面加工形成微米结构阵列的远程荧光晶体材料。
  5. 根据权利要求4所述一种制备有序的图案化远程荧光晶体材料的方法,其特征在于:所述短脉冲激光的脉冲宽度为20fs~100ns,波长为355nm~800nm,重复频率为10Hz~170kHz,功率为0.001W~0.5W,激光能量密度阈值为30J/cm2~50J/cm2,所述载物台的移动速度为1mm/s~100mm/s。
  6. 根据权利要求4所述一种制备有序的图案化远程荧光晶体材料的方法,其特征在于:所述制备方法还包括以下步骤:经过步骤2)后,将表面加工形成微米结构阵列的远程荧光晶体材料放入浓硫酸与双氧水的混合酸溶液中或者放入浓硫酸中浸泡,以去除激光烧蚀残渣,浓硫酸与双氧水的体积比为3:1~7:1。
  7. 根据权利要求4所述一种制备有序的图案化远程荧光晶体材料的方法,其特征在于:所述待加工的远程荧光晶体材料选自厚度为0.1mm~5mm的Y3Al5O12:Ce荧光晶体材料;所述短脉冲激光的脉冲宽度为1ns~100ns,波长为300nm~400nm,重复频率为1kHz~30kHz,功率为0.01W~0.3W,激光光斑聚焦直径为20μm,所述载物台的移动速度为1mm/s~100mm/s;或者,所述短脉冲激光的脉冲宽度为20fs~200fs,波长为355nm~800nm,重复频率为10Hz~100kHz,功率为0.01W~0.5W,激光光斑聚焦直径为20μm,所述载物台的移动速度为1mm/s~100mm/s。
  8. 根据权利要求7所述一种制备有序的图案化远程荧光晶体材料的方法,其特征在于:所述Y3Al5O12:Ce荧光晶体材料的吸收峰在420~460nm之间,发射峰在510~570nm之间;所述Y3Al5O12:Ce荧光晶体材料中Ce3+的掺杂浓度为0.01~1at%。
  9. 一种如权利要求1所述有序的图案化远程荧光晶体材料在增强LED发光器件光提取效率中的用途。
  10. 根据权利要求9所述一种有序的图案化远程荧光晶体材料在增强LED发光器件光提取效率中的用途,其特征在于:所述LED发光器件采用蓝光LED芯片或紫外LED芯片,发射光峰值波长在440nm~460nm或300nm~380nm之间。
PCT/CN2016/070742 2015-11-12 2016-01-13 一种有序的图案化远程荧光晶体材料及其制备方法和用途 WO2017080107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/502,204 US10381526B2 (en) 2015-11-12 2016-01-13 Orderly patterned remote phosphor crystal material and method for preparation the material and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510771309.5 2015-11-12
CN201510771309.5A CN105400514B (zh) 2015-11-12 2015-11-12 一种有序的图案化远程荧光晶体材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2017080107A1 true WO2017080107A1 (zh) 2017-05-18

Family

ID=55466285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070742 WO2017080107A1 (zh) 2015-11-12 2016-01-13 一种有序的图案化远程荧光晶体材料及其制备方法和用途

Country Status (3)

Country Link
US (1) US10381526B2 (zh)
CN (1) CN105400514B (zh)
WO (1) WO2017080107A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540369B (zh) * 2017-02-28 2020-05-15 江苏罗化新材料有限公司 发光陶瓷、led封装结构及发光陶瓷的制备方法
KR20200027950A (ko) * 2017-07-11 2020-03-13 엔지케이 인슐레이터 엘티디 투명 밀봉 부재
CN108530070A (zh) * 2018-04-16 2018-09-14 中国科学院上海硅酸盐研究所 一种表面光陷阱结构增强发光的荧光陶瓷及其制备方法
CN111285684A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 一种白光激光照明用具有表面人工微结构的荧光陶瓷及其制备方法
CN109860377A (zh) * 2018-12-12 2019-06-07 华中科技大学鄂州工业技术研究院 采用紫外激发的白光led及其制备方法
CN110161010B (zh) * 2019-07-01 2021-10-08 河海大学常州校区 一种反射式可控温激光激发远程荧光材料测试装置
CN113024251A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 具有平凹形结构薄膜的高显色性激光照明用荧光陶瓷及其制备方法
CN111302297A (zh) * 2020-02-17 2020-06-19 福建晶安光电有限公司 图形化镥铝石榴石晶片结构及其制备方法、包括该结构的发光装置封装件和投影仪
US20230104659A1 (en) * 2021-10-04 2023-04-06 Osram Opto Semiconductors Gmbh Blue photon coupling improvement in layer-structured ceramic converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024395A1 (en) * 2000-09-20 2002-03-28 Electro Scientific Industries, Inc. Laser processing of alumina or metals on or embedded therein
CN103864070A (zh) * 2014-03-19 2014-06-18 中山大学 一种超细荧光纳米金刚石的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859000B2 (en) * 2008-04-10 2010-12-28 Cree, Inc. LEDs using single crystalline phosphor and methods of fabricating same
US9287175B2 (en) * 2010-11-05 2016-03-15 Win Semiconductors Corp. Fabrication method for dicing of semiconductor wafers using laser cutting techniques
US8945415B2 (en) * 2012-06-29 2015-02-03 Osram Sylvania Inc. Method for etching a ceramic phosphor converter
CN103715305A (zh) * 2013-12-31 2014-04-09 秦广飞 一种激光刻蚀制绒工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024395A1 (en) * 2000-09-20 2002-03-28 Electro Scientific Industries, Inc. Laser processing of alumina or metals on or embedded therein
CN103864070A (zh) * 2014-03-19 2014-06-18 中山大学 一种超细荧光纳米金刚石的制备方法

Also Published As

Publication number Publication date
CN105400514A (zh) 2016-03-16
CN105400514B (zh) 2018-01-19
US20180240943A1 (en) 2018-08-23
US10381526B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2017080107A1 (zh) 一种有序的图案化远程荧光晶体材料及其制备方法和用途
Liang et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays
Wang et al. Laser patterning of Y 3 Al 5 O 12: Ce 3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs
Chen et al. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes
CN101325237A (zh) 一种发光二极管芯片及其制造方法
CN103219442A (zh) 局域表面等离子体增强型垂直结构led结构及制造方法
Peng et al. Light efficiency enhancement of deep ultraviolet light-emitting diodes packaged by nanostructured silica glass
CN101694868B (zh) 有机发光器件及其光抽取结构的制作方法
JP2016081040A (ja) 光反射材料、ならびに光反射材料を用いた発光装置
CN105449056A (zh) 一种高光效可匀斑蓝宝石衬底led芯片及其制备方法
CN101515622A (zh) 表面粗化的发光二极管芯片及其制造方法
CN102969423A (zh) 银耦合增强GaN基发光二极管的器件结构及制备方法
KR101535852B1 (ko) 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
KR101262673B1 (ko) Oled 조명용 고효율 광 추출 유리 기판의 제조 방법
CN109192836B (zh) 一种渐变折射率纳米结构结合纳米透镜的led结构的制备方法
KR20160092635A (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
US11038090B2 (en) Method of producing an optoelectronic component
WO2016082486A1 (zh) 提高光萃取效率的结构及其方法
KR101221075B1 (ko) 나노 임프린트를 이용한 질화갈륨계 발광 다이오드 제조방법과 이를 통해 제조된 발광 다이오드 소자
KR20110011468A (ko) 발광다이오드 표면의 굴곡구조 형성 방법
JP2012043617A (ja) 面状照明装置
Wang et al. Enhancement in light extraction of white leds using micro-cone patterned phosphor-in-glass
EP3356725B1 (en) Light source with diffractive outcoupling
KR20170041736A (ko) 유기 발광 장치 및 유기 발광 장치의 제조 방법
WO2014129345A1 (ja) ガラス基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15502204

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863298

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.11.19)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 26.11.19