WO2017078159A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017078159A1
WO2017078159A1 PCT/JP2016/082860 JP2016082860W WO2017078159A1 WO 2017078159 A1 WO2017078159 A1 WO 2017078159A1 JP 2016082860 W JP2016082860 W JP 2016082860W WO 2017078159 A1 WO2017078159 A1 WO 2017078159A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user terminal
ack
transmission
subframe
Prior art date
Application number
PCT/JP2016/082860
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to IL258912A priority Critical patent/IL258912B2/en
Priority to CN201680064533.3A priority patent/CN108353316B/zh
Priority to EP16862218.1A priority patent/EP3358877A4/en
Priority to US15/773,287 priority patent/US11108504B2/en
Publication of WO2017078159A1 publication Critical patent/WO2017078159A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel.13, etc.
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • LTE-A employs carrier aggregation (CA) that performs communication using a plurality of carriers simultaneously with a predetermined bandwidth (maximum 20 MHz) as a basic unit.
  • CA carrier aggregation
  • a carrier that is a basic unit in carrier aggregation is referred to as a component carrier (CC), for example, LTE Rel. This corresponds to 8 system bands.
  • PCell Primary Cell
  • SCell Secondary Cell
  • the UE can connect to PCell first and add SCell as needed.
  • the PCell is a cell similar to a single cell (stand-alone cell) that supports RLM (Radio Link Monitoring), SPS (Semi-Persistent Scheduling), and the like.
  • the SCell is a cell set for the UE in addition to the PCell.
  • the SCell is a cell that can be communicated (scheduled) for the first time after being activated because it is in an inactive state immediately after being added to the user terminal.
  • the license band for example, 800 MHz, 2 GHz, 1.7 GHz band and the like are used.
  • the unlicensed band for example, the same 2.4 GHz, 5 GHz band as Wi-Fi (registered trademark) is used.
  • LTE Rel. 13 considers carrier aggregation (LAA: License-Assisted Access) between licensed and unlicensed bands, but will also consider dual connectivity (DC) and unlicensed band stand-alone in the future. May be eligible.
  • LAA License-Assisted Access
  • DC dual connectivity
  • HARQ Hybrid Automatic Repeat reQuest
  • a user terminal or radio base station feeds back a delivery confirmation signal (also referred to as HARQ-ACK, ACK / NACK, A / N) related to the data at a predetermined timing according to the data reception result.
  • the radio base station or user terminal controls data retransmission based on the fed back HARQ-ACK.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the bit size (also referred to as codebook size or bit string size) of ACK / NACK fed back by the user terminal is semi-statically preliminarily transmitted from the radio base station by higher layer signaling. It is determined based on information such as CC to be notified. Therefore, when CA is applied, the user terminal performs ACK / NACK feedback with a codebook size fixedly determined based on the set number of CCs and the like.
  • the codebook size cannot be changed in the user terminal.
  • the ACK / NACK size to be transmitted may become larger than necessary even when the number of CCs that are actually scheduled is small.
  • the codebook size of the HARQ-ACK may be fed back based on the DL signal (the number of CCs that received the DL signal) received by the user terminal.
  • the code base size may be recognized differently between the radio base station and the user terminal. In such a case, the radio base station cannot appropriately receive (for example, decoding processing) ACK / NACK fed back from the user terminal, and communication quality may be deteriorated.
  • the present invention has been made in view of such a point, and even when a plurality of component carriers are set in a wireless communication system, a user terminal and a wireless base station that can appropriately perform HARQ-ACK feedback
  • One of the objects is to provide a wireless communication method.
  • a user terminal includes a transmission unit that transmits HARQ-ACK for DL signals transmitted from a plurality of cells including a cell that uses TDD, and DL transmission within a range of one or more predetermined subframes. Based on the first information and the second information, a receiving unit that receives first information indicating the total number of cells to be scheduled and second information indicating the accumulated value as downlink control information, and A control unit that controls to transmit HARQ-ACK in a predetermined UL subframe, wherein the first information is set to the same value in each subframe, and the control unit is configured to The first information is updated.
  • HARQ-ACK feedback can be appropriately performed even when a plurality of component carriers are set in the wireless communication system.
  • 2A and 2B are diagrams illustrating a bundling window defined by TDD.
  • 3A and 3B are diagrams illustrating an example of scheduling CC recognition between a user terminal and a radio base station.
  • 4A and 4B are diagrams illustrating an example of a method for setting the counter DAI and the total DAI in the FDD.
  • 5A and 5B are diagrams illustrating an example of a setting method of the counter DAI and the total DAI in the bundling window defined by TDD.
  • 6A and 6B are diagrams illustrating an example of a setting method of the counter DAI and the total DAI in the first mode.
  • FIG. 8A to 8C are diagrams illustrating an example of a setting method of the counter DAI and the total DAI in the second mode.
  • FIG. 9A and FIG. 9B are diagrams illustrating an example of using a modulo operation for the total DAI.
  • 10A and 10B are diagrams illustrating examples of information included in the bit information of the total DAI in the third mode. It is a figure which shows the other example of the information included in the bit information of total DAI in a 3rd aspect. It is a schematic block diagram of the radio
  • FIG. 1 is an explanatory diagram of carrier aggregation (CA).
  • CA carrier aggregation
  • LTE Rel LTE Rel.
  • CC component carriers
  • CC # 1-CC # 5 a basic unit
  • the number of CCs that can be set per UE is limited to a maximum of five.
  • LTE Rel. In 13 CAs it is considered that six or more CCs are bundled to further expand the bandwidth. That is, LTE Rel. In 13 CAs, it is considered to expand the number of CCs (cells) that can be set per UE to 6 or more (CA enhancement). For example, as shown in FIG. 1, when 32 CCs (CC # 1-CC # 32) are bundled, a maximum band of 640 MHz can be secured.
  • CA for example, LAA
  • LAA LAA
  • uplink control information (UCI: Uplink Control Information) is transmitted from the UE to a device on the network side (for example, a radio base station (eNB: eNode B)). Feedback using PUCCH (Physical Uplink Control Channel).
  • the UE may transmit UCI on an uplink shared channel (PUSCH: Physical Uplink Shared Channel) at a timing when uplink data transmission is scheduled. Based on the received UCI, the radio base station performs data retransmission control and scheduling control on the UE.
  • PUSCH Physical Uplink Shared Channel
  • retransmission control is supported in radio communication between a user terminal and a radio base station using a plurality of CCs (cells, carriers).
  • the user terminal sends an acknowledgment signal (HARQ-ACK: Hybrid Automatic Repeat Request Acknowledgment, ACK / NACK: ACKnowledgement / Negative ACKnowledgement, A / N) to the radio base station in response to the DL transmission transmitted from the radio base station.
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledgment
  • ACK / NACK ACKnowledgement / Negative ACKnowledgement, A / N
  • ACK / NACK is composed of a bit string of a predetermined length composed of bits indicating ACK and NACK.
  • a plurality of PUCCH formats are defined for the user terminal to transmit A / N to the radio base station using the uplink control channel.
  • a user terminal in which PUCCH format 1a / 1b is set is a PUCCH resource corresponding to a CCE / ECCE (Control Channel Element / Enhanced CCE) index of a control channel (PDCCH / EPDCCH) for scheduling PDSCH, and A / N Send without encoding.
  • CCE / ECCE Control Channel Element / Enhanced CCE index of a control channel (PDCCH / EPDCCH) for scheduling PDSCH, and A / N Send without encoding.
  • a user terminal in which PUCCH format 3 is set uses an A / N using any one PUCCH resource specified by ARI (Ack / nack Resource Indicator) among the four resources set in higher layer signaling. Send.
  • the user terminal can read a TPC (Transmit Power Control) field (TPC command bit) included in the downlink control information of the SCell as an ARI.
  • TPC Transmit Power Control
  • PUCCH format 4 does not support code multiplexing (CDM) and can support allocation of 1 PRB or more (multiple PRBs).
  • CDM code multiplexing
  • DMRS demodulation reference signal
  • PUCCH format 5 supports code multiplexing (CDM), is allocated to 1 PRB, and is considered to have a configuration in which one demodulation reference signal (DMRS) is provided in each slot.
  • the radio base station can set the same ARI value between the PDCCH and the EPDCCH that schedule PDSCHs of different SCells, and transmit the same to the user terminal.
  • PUCCH format 3 an A / N codebook size of up to 10 bits is set when using FDD (Frequency Division Duplex), and up to 21 bits when using TDD (Time Division Duplex). Used for.
  • the codebook (ACK / NACK bit string) size of HARQ-ACK transmitted by PUCCH is determined semi-static (semi-static) based on information notified by higher layer signaling.
  • the entire A / N bit is based on the number of CCs configured by RRC signaling and TM (Transmission Mode) indicating whether MIMO (Multiple Input Multiple Output) is applicable in each CC.
  • the size is fixed.
  • the size of the entire A / N bit string transmitted by PUCCH is determined based on the number of DL subframes subject to A / N per UL subframe.
  • The detects at least one DL assignment in a bundling window, the A in all CCs set using the PUCCH of the UL subframe after a predetermined period (for example, (n + k) ms) / N is fed back.
  • UL DAI Downlink Assignment Indicator (Index)
  • Index Downlink Assignment Indicator
  • a bundling window is a group of DL subframes (including special subframes) that perform A / N feedback in a certain UL subframe, that is, DL subframes that correspond to UL subframes that perform A / N feedback. Refers to a group.
  • Each bundling window is defined by the UL / DL configuration of TDD (see FIG. 2A). Based on the bundling window, the user terminal that performs communication using TDD controls to transmit the A / N of the DL signal transmitted in a predetermined subframe in a predetermined UL subframe.
  • a bundling window corresponding to UL subframe # 2 is configured by DL subframes # 4, # 5, # 8, and special subframe # 6 (see FIG. 2B).
  • the bundling window for the UL subframe # 7 includes DL subframes # 9, # 0, # 3, and a special subframe # 1.
  • the user terminal When the user terminal detects at least one downlink control information (DL assignment) in SF # 4 to # 6 and # 8, in UL subframe # 2, the A / Ns of all CCs set are set to PUCCH. provide feedback. That is, the user terminal transmits an A / N bit string based on higher layer signaling regardless of the number of scheduling target CCs included in the scheduling information.
  • DL assignment downlink control information
  • the A / N bit size to be fed back by the user terminal is determined based on the information notified by higher layer signaling, the A / N bit corresponding to the number of CCs actually scheduled for the user terminal. It may be different from the size. Therefore, when the A / N feedback of the existing system is applied, the A / N codebook size corresponding to the CC actually scheduled (DL signal is transmitted) and the codebook size notified by higher layer signaling are different. However, the user terminal cannot change the codebook size.
  • FIG. 3A shows a case where 32 CCs are set in the user terminal and the number of CCs actually scheduled is 10.
  • the number of cells actually scheduled (10 CCs) is smaller than the total number of CCs (32 CCs), and more than half of the CCs are NACKs.
  • SINR Signal to Interference plus Noise power Ratio
  • the transmission power required for A / N transmission can be kept low by reducing the A / N codebook size fed back by the user terminal according to the scheduled CC. it can.
  • the A / N codebook size fed back by the user terminal can be dynamically changed according to the scheduled number of CCs.
  • the user terminal dynamically changes the number of A / N bits according to the number of scheduled CCs and the like. Can be considered.
  • the user terminal determines the number of A / N bits based on the number of detected downlink signals (for example, PDCCH / EPDCCH for scheduling PDSCH). Conceivable.
  • the radio base station performs scheduling (DL signal transmission) using 8CC for the user terminal, but the user terminal shows a case where PDCCH / EPDCCH (scheduling information) for 5 CC is detected. Yes.
  • the user terminal has made a detection error with respect to a DL signal for 3 CC (for example, PDCCH / EPDCCH).
  • the user terminal when determining the A / N codebook size based on the DL signal (number of CCs) detected by the user terminal in FIG. 3B, the user terminal transmits the detected A / N bit string for 5 CC to the radio base station. For this reason, the radio base station cannot correctly decode, and the entire A / N bit string is affected, and the feedback quality using A / N is significantly deteriorated.
  • the user terminal determines that the number of CCs is less than the number of CCs that the radio base station has transmitted the DL signal. Further, when a user terminal erroneously detects a DL signal transmitted from a radio base station, the user terminal determines that the number of CCs allocated is greater than the number of CCs to which the radio base station transmits the DL signal.
  • the method of determining the codebook size of A / N transmitted by the user terminal based on the number of detected PDCCH / EPDCCH can be easily applied. However, if a detection error or a false detection occurs, the radio base station and the user terminal The codebook size is not recognized correctly. In such a case, as described above, feedback quality based on A / N may deteriorate, and communication quality may deteriorate.
  • a CC scheduled in a certain subframe can be notified to the user terminal using a DL assignment index (DAI: Downlink Assignment Indicator (Index)) included in the downlink control information (DL assignment) of each CC.
  • DAI Downlink Assignment Indicator
  • DL assignment Downlink Control information
  • the DAI is a value assigned to each scheduled cell, and is used to indicate a scheduling CC (a cumulative value of CC).
  • the radio base station sets the DAI corresponding to the CC in the downlink control information of the scheduled CC and transmits it.
  • the DAI included in the downlink control information of each cell can be set in ascending order based on, for example, the CC index (cell index). In this case, the DAI of the CC having the largest CC index among the scheduled CCs is the maximum (the number of scheduled cells).
  • the bit field of DAI included in the downlink control information is 2 bits, bits are allocated in the order of the CC index (cell index) of the scheduled CC (cell). In this case, different bit values are associated with at least CCs having adjacent CC indexes among the scheduled CCs.
  • the user terminal When the user terminal receives DL signals from a plurality of CCs, the user terminal corresponds to the DAI that could not be detected when the DAI values (cumulative value and count value) included in the downlink control information of each CC are not continuous. It can be determined that the CC is misdetected. In this way, by using DAI, the recognition of the ACK / NACK codebook size between the user terminal and the radio base station is matched, and retransmission control is appropriately performed on the radio base station side for the CC that the user terminal has missed. It can be carried out.
  • the radio base station preferably notifies the user terminal of the downlink control information of each CC including information used for counting the scheduling CC and information indicating the number of scheduling CCs.
  • information used for counting the scheduling CC is called a counter DAI (counter DAI)
  • information indicating the number of scheduling CCs is called a total DAI (total DAI).
  • the radio base station transmits the downlink control information of the CC to be scheduled including the counter DAI and the total DAI.
  • the counter DAI indicates the cumulative value of the scheduled CC, and the counter DAI value numbered in the CC index order can be included in the downlink control information of each CC.
  • the total DAI indicates the total number of CCs scheduled in a certain subframe.
  • FIG. 4 shows scheduling of only a part of CCs (CC # 0, # 1, # 3, # 5, # 6) in a certain subframe for user terminals in which 8 CCs (CC # 0 to # 7) are set.
  • 2 shows an example of a counter DAI and a total DAI transmitted in the case of being performed.
  • the counter DAI and the total DAI can be set based on the number of code words (CW) instead of the number of CCs.
  • FIG. 4B shows a case where the counter DAI and the total DAI are set based on the number of CWs.
  • CC # 0 and # 6 are 1 CW transmission
  • CC # 1, # 3, and # 5 are 2 CW transmission. It shows a case.
  • the user terminal detects a CC (here, CC # 6) in which the counter DAI is maximized. Even in such a case, it is possible to grasp the detection error.
  • FIG. 5A shows an example in which a counter DAI and a total DAI are set for each subframe in a bundling window composed of four subframes (SF # n1 to # n4).
  • 5CC (CC # 0 to # 4) is set in the user terminal, 4CC (CC # 0, # 1, # 2, # 4) is scheduled in SF # n1, and 1CC (CC This shows a case in which # 3) is scheduled, 3CC (CC # 0, # 2, # 4) is scheduled in SF # n3, and 2CC (CC # 2, # 4) is scheduled in SF # n4.
  • the SFs # n1 to # n4 of the bundling window are determined by the UL / DL configuration or the like. For example, in the bundling window corresponding to the UL subframe # 2 of the UL / DL configuration 2, SFs # n1 to # n4 are , Corresponding to SF # 4 to # 6 and # 8, respectively.
  • the user terminal if the user terminal misses detection of all DL assignments (DL assignments) of CCs scheduled in a certain subframe, the user terminal cannot grasp the number of HARQ-ACK bits in the subframe. For example, if the user terminal cannot detect downlink control information transmitted from CC # 3 in SF # n2, the user terminal may determine that there is no DL allocation in SF # n2 and perform HARQ-ACK transmission. . In this case, since the recognition of the codebook size (ACK / NACK bit size) does not match between the user terminal and the radio base station, the radio base station correctly uses the HARQ-ACK bit string (HARQ-ACK codebook) fed back by the user terminal. There is a possibility that it cannot be received.
  • HARQ-ACK codebook HARQ-ACK codebook
  • the present inventors have found that the counter DAI and the total DAI are used not in units of subframes but in units of bundling windows. Specifically, the user terminal is notified of the cumulative value of CC (or CW) scheduled in the bundling window using the counter DAI, and the CC (or CW scheduled in the bundling window using total DAI). ) The number is notified.
  • FIG. 5B shows an example in which the counter DAI and the total DAI are set for each bundling window.
  • the number of CCs, the number of subframes, and the scheduling situation are the same as in FIG. 5A.
  • different counters DAI here, 1 to 10
  • the total DAI common to the downlink control information for each CC here. Then, 10.
  • a DL misassignment of all CCs for example, CC # 3
  • a certain subframe for example, SF # n2
  • it is possible to grasp the detection mistake and perform HARQ-ACK. Transmission can be performed.
  • the present inventors may determine in advance the total DAI included in the downlink control signal of each CC by the radio base station depending on the bundling window configuration (number of DL subframes to be set, etc.) and the communication environment. We focused on the points that would be difficult. That is, when determining the total DAI (scheduling CC number) that is common to each subframe, the radio base station schedules each subframe constituting the bundling window in advance (at the time of transmission of SF # n1 at the latest). Need arises. For example, in the case shown in FIG.
  • the CC scheduling (for example, the number of CCs to be scheduled, etc.) in SF # 1 to SF # 4 is performed in advance. Need to be determined.
  • the radio base station When the radio base station can schedule future subframes (for example, all subframes constituting a bundling window) in advance, the radio base station determines the total DAI according to the CC to be scheduled to the user terminal. You can be notified. On the other hand, depending on the communication environment and the subframes constituting the bundling window (applicable UL / DL configuration), it may be difficult for the radio base station to schedule future subframes in advance.
  • the present inventors have conceived a configuration in which the HARQ-ACK codebook size is specified instead of specifying the number of CCs (or CWs) to be actually scheduled using the total DAI. That is, the user terminal has conceived that the value indicated by the total DAI is determined not to be the number of scheduled CCs (or CWs) but the codebook size and to control HARQ-ACK transmission.
  • the radio base station can set a number larger than the number of CCs (or CWs) to be actually scheduled as the codebook size and notify the user terminal using the downlink control information.
  • the HARQ-ACK codebook size can be shared between user terminals even when the radio base station cannot schedule all subframes constituting the bundling window in advance.
  • CC # 0- # 4 the number of CCs that can be set in the user terminal is not limited to this.
  • a case where four SFs are set as a bundling window (for example, a bundling window corresponding to UL subframe 2 of UL / DL configuration 2) will be described as an example, but the present embodiment is not limited to this. Absent.
  • the number of SFs included in the bundling window is not limited to four and can be changed according to the UL / DL configuration.
  • the number and arrangement of cells to be scheduled, the index of the cell to be scheduled, and the signal to be transmitted are not limited to the following examples.
  • the first information indicating the codebook size is included in the total DAI
  • the second information indicating the cumulative value (count value) of CCs scheduled in the subframes constituting the bundling window is counted.
  • the first information and / or the second information may be included in another bit field of the downlink control information.
  • a transmission mode for example, TM1, TM2, etc.
  • TM1, TM2, etc. a transmission mode in which only 1CW DL data (PDSCH) can be scheduled and 2CW DL data (PDSCH) are scheduled.
  • transmission modes to obtain eg TM3, TM4, TM9, TM10, etc.
  • the overhead of HARQ-ACK feedback can be suppressed by setting ACK / NACK to 1 bit regardless of the transmission mode of each CC (in the case of 2CW, taking an exclusive OR).
  • ACK / NACK is 2 bits (in the case of 1CW, the second bit is set to NACK), so that fine HARQ control can be realized in the case of 2CW. it can.
  • One of these two controls may be set by higher layer signaling or the like. In the embodiment described below, each effect is not lost even if ACK / NACK of each CC is replaced with 2 bits.
  • FIG. 6 shows an example of counter DAI and total DAI included in each downlink control information of CC scheduled in the bundling window.
  • FIG. 6A shows a case where the radio base station includes a value corresponding to the number of CCs (or CWs) actually scheduled in the downlink control information of CCs scheduled in each subframe (SF). For example, when all the SFs constituting the bundling window can be scheduled in advance, the radio base station sets a value corresponding to the number of CCs (CW) to be scheduled to the total DAI as a codebook size and notifies the user terminal .
  • CW subframe
  • the user terminal determines the HARQ-ACK codebook size in the bundling window based on the total DAI. Further, the user terminal determines A / N of each position (bit string position) in the HARQ-ACK codebook of the bundling window based on the counter DAI. In FIG. 6A, the user terminal determines that the codebook size is 10 bits based on the total DAI.
  • the user terminal determines the A / N of each bit string of the 10-bit codebook based on the detection result of the CC DL signal (eg, PDSCH) scheduled in each SF.
  • the bit string of the code book can have a configuration corresponding to the counter DAI (for example, in order of the value of the counter DAI).
  • the counter DAI can be set by numbering from the smallest number of the CC index (cell index) in the order of scheduled SF (see FIG. 6).
  • FIG. 6B shows a case where the radio base station includes a value larger than the number of CCs (or CWs) actually scheduled in the downlink control information of CCs scheduled in each SF.
  • the radio base station sets a predetermined value (20 in this case) as the codebook size to the total DAI and notifies the user terminal.
  • the predetermined value may be a predetermined value, or may be determined in consideration of a scheduling situation in the radio base station (for example, a scheduling situation up to an intermediate SF).
  • the user terminal determines that the codebook size is 20 bits based on the total DAI. Also, the user terminal determines the A / N of each bit string of the code book having a size of 20 bits based on the detection result of the CC DL signal (for example, PDSCH) that is SF in each subframe.
  • the bit string of the code book can have a configuration corresponding to the counter DAI (for example, in order of the value of the counter DAI).
  • the counter DAI can be set by numbering from the smallest CC index (cell index) in the order of scheduled SF.
  • the codebook size is set larger than the scheduled number of CCs (or the number of CWs).
  • the user terminal assigns ACK or NACK to the first 10 bits of the codebook (for example, counter DAI is 1 to 10) according to the detection result of the DL signal, and assigns NACK to the remaining 10 bits. be able to.
  • the radio base station When the radio base station performs scheduling and DAI control as shown in FIG. 6B, it is known that the last 10 bits of the codebook fed back by the user terminal is NACK. Can be improved. However, since the known bits are fixed in the last 10 bits, for example, assuming that trellis decoding is applied to convolutional coding, the error correction decoding performance is better when the known bits are distributed in the codebook. The improvement effect can be enhanced.
  • the radio base station sets the value of the total DAI to a sufficiently large value as shown in FIG. 7, for example, the continuous value corresponding to the scheduled CC is not set in the counter DAI, but a discontinuous value is set. May be allowed to be set.
  • FIG. 7 shows a case where the value of the counter DAI included in the DL assignment received by the user terminal is increased to 1, 2, 3, 4, 8, 9, 10, 13, 15, 17. . If the user terminal does not determine whether the radio base station has intentionally assigned a non-consecutive DAI value or the user terminal itself has not detected a DL assignment, the user terminal has 20 bits.
  • ACK / NACK based on the PDSCH decoding result is arranged at a position based on the detected counter DAI value.
  • the base station allows the value of the counter DAI to be discontinuously increased within the bundling window, thereby distributing known NACK bits in the codebook. Since they can be arranged, the error correction performance improvement effect can be enhanced as described above.
  • the user terminal determines the HARQ-ACK codebook size based on the total DAI (here, 20 bits). Further, the user terminal determines the position of the bit string of the code book corresponding to the counter DAI based on the counter DAI, and determines A / N based on the combined result of the PDSCH of the CC including the counter DAI. When the user terminal has not received the corresponding counter DAI in the code book, the bit string corresponding to the counter DAI is NACK.
  • the user terminal can select a predetermined PUCCH format to be applied to A / N feedback based on the total DAI (codebook size).
  • the HARQ-ACK codebook size can be set small.
  • the radio base station cannot schedule all the SFs constituting the bundling window in advance, a sufficiently large value can be set as the total DAI (codebook size). As a result, it is possible to suppress that the scheduling operation for other SFs (particularly, the latter half subframe) constituting the bundling window is limited (affected) by the total DAI.
  • FIG. 6 shows a case where the total DAI included in the downlink control information (DL assignment) is commonly set in the same bundling window.
  • the traffic to the user terminal is small in the first SF (SF # n1) of the bundling window
  • the radio base station wants to schedule large data from the SF on the way to the user terminal may occur.
  • the total DAI initially determined by the radio base station is not sufficient, scheduling in the second half SF may be limited.
  • the codebook size may always become unnecessarily large.
  • the user terminal can determine the HARQ-ACK codebook size based on the total DAI set in the last subframe with the scheduling CC in the bundling window.
  • the user terminal determines that the total DAI of the SF scheduled last (received the DL signal) is valid. Further, when receiving a different ARI between SFs in the bundling window, the user terminal can determine that the ARI of the last scheduled SF is valid as with the total DAI.
  • FIG. 8 shows an example in which a different total DAI is set for each SF of the bundling window.
  • FIG. 8A shows a case where the radio base station initially sets total DAI to 8 bits and performs scheduling up to SF # n1 and SF # n2.
  • the radio base station uses the same total DAI (here, the downlink control information for CCs # 0 to # 2 and # 4 scheduled for SF # n1 and the downlink control information for CC # 3 scheduled for SF # n1). Then, it transmits including 8).
  • the user terminal assumes that the codebook size at this point is 8 bits.
  • FIG. 8B shows a case where the radio base station determines that more data is to be allocated to the user terminal and increases the scheduling CC in SF # n3 (here, 5 CC is scheduled).
  • the radio base station since the total DAI (codebook size) set first is exceeded, the radio base station sets the total DAI by increasing from 8 bits. For example, the radio base station transmits the downlink control information of each CC including the increased total DAI (here, 10) based on CC # 0 to # 4 scheduled in SF # n3.
  • the user terminal assumes that the codebook size in SF # n3 has been increased to 10 bits.
  • FIG. 8C shows a case where the radio base station determines that more data is to be allocated to the user terminal and sets a scheduling CC in SF # n4 (in this case, 4CC is scheduled).
  • the radio base station since the total DAI (here, 10) reset by SF # n3 is exceeded, the radio base station increases the total DAI from 10 bits and resets it.
  • the radio base station transmits the downlink control information of each CC including the increased total DAI (here, 14) based on CC # 1 to # 4 scheduled by SF # n4.
  • the user terminal assumes that the codebook size in SF # n4 has been increased to 14 bits.
  • the scheduling operation in the second half SF can be performed flexibly. Furthermore, it is possible to avoid always setting a large total DAI in order to avoid scheduling limitations.
  • the user terminal may control to change the PUCCH format and / or the PUCCH resource in accordance with the change of the codebook size (total DAI).
  • the user terminal can determine the PUCCH format to be used based on the codebook size (total DAI) in the last SF to be scheduled (SF # 4 in FIG. 8C). Further, the user terminal can determine the PUCCH resource to be used based on downlink control information (for example, ARI) received in the last SF to be scheduled (SF # 4 in FIG. 8C). Thereby, even when different total DAI is set for each SF of the bundling window, the user terminal can appropriately select the PUCCH format and / or the PUCCH resource to be applied to the A / N feedback.
  • codebook size total DAI
  • ARI downlink control information
  • UL DAI indicating the number of SFs scheduled in the bundling window is defined by 2 bits in the UL grant.
  • the user terminal is notified of the total number of SFs scheduled using a modulo operation using a predetermined value (for example, 4). Therefore, it is conceivable that the total DAI (codebook size) shown in the first aspect and the second aspect is similarly defined by 2 bits and a modulo operation is applied.
  • FIG. 9A shows a table in which bit values are associated with 0 to 11 using a modulo operation.
  • 0, 4, and 8 are represented by the same bit value “00”
  • 1, 5, and 9 are represented by the same bit value “01”
  • 2, 6, and 10 are represented by the same bit value “10”.
  • 3, 7, and 11 are represented by the same bit value “11”.
  • FIG. 9A when a radio base station notifies a user terminal of a predetermined total DAI using a bit value using a modulo operation, the user terminal may not be able to properly determine the total DAI.
  • the total DAI and the counter DAI are set in association with each other so that the user terminal can appropriately grasp the total DAI.
  • the total DAI is 1 or 2
  • the total DAI is 2
  • the total DAI is 3
  • the total DAI is 6
  • the counter DAI is 7 to 10
  • the total DAI is 10
  • the counter DAI is 11 to 14.
  • the total DAI may be associated with 14.
  • the user terminal can determine the codebook size indicated by the total DAI based on the counter DAI.
  • the accumulated value can be correctly determined if the user terminal does not mistakenly detect the 4CC DL signals having consecutive count values.
  • the radio base station may not be able to perform scheduling flexibly.
  • the total DAI is defined without applying bit information obtained by performing a modulo operation on the total DAI.
  • bit information obtained by modulo calculation may be applied to the counter DAI.
  • the total DAI bit value is controlled to increase in a different manner from the counter DAI bit value.
  • bit information of total DAI can be set in association with a predetermined bit value.
  • different code points may be specified to be increased by the same bit size as shown in FIG. 10A, or a predetermined bit value may be added to each bit information as shown in FIG. 10B. May be defined.
  • FIG. 10 shows a case where two bits are specified, but three or more bits may be used.
  • the table (see FIG. 10) defining the codebook size may be defined (or set) in advance for the user terminal, or may be set semi-statically using higher layer signaling or the like. Good.
  • the user terminal determines that the codebook size is 64 bits. Further, as described above, the user terminal can determine the value (A / N) of each HARQ-ACK bit in the codebook based on the reception result of the counter DAI and the DL signal. Also, the user terminal can determine the PUCCH format to apply based on the codebook size specified by the total DAI.
  • the codebook size notified by the total DAI may be defined in association with the number of PRBs used in a predetermined PUCCH format (for example, PUCCH format 4). For example, as shown in FIG. 11, the codebook size may be defined for each PRB (1 PRB to 4 PRB in this case) used as the PUCCH resource for the total DAI bit information.
  • the user terminal can determine the codebook size based on the total DAI included in the downlink control information and the number of PRBs used in a predetermined PUCCH format.
  • the codebook size is the HARQ-ACK codebook size, but the present embodiment is not limited to this.
  • the above embodiment can also be applied to the codebook size (UCI codebook size) of the uplink control information (UCI).
  • the uplink control information can include HARQ-ACK, a scheduling request (SR), and periodic channel state information (P-CSI).
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • the radio communication system 1 shown in FIG. 12 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 13 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit (transmission unit) 103 performs DL transmission from a CC to which TDD is applied, and also includes first information indicating a codebook size and a second counter value indicating a cumulative value of DL allocated CCs in a bundling window. Can be transmitted as downlink control information. Further, the transmission / reception unit (reception unit) 103 receives HARQ-ACK that is fed back based on a bundling window defined by the TDD by the user terminal for DL transmission.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 14 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 14, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304. .
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls scheduling (for example, resource allocation) of downlink data signals transmitted on PDSCH and downlink control signals transmitted on PDCCH and / or EPDCCH. It also controls scheduling of system information, synchronization signals, paging information, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), and the like. Further, scheduling of uplink reference signals, uplink data signals transmitted on PUSCH, uplink control signals transmitted on PUCCH and / or PUSCH, and the like is controlled.
  • the control unit 301 controls retransmission / downlink data transmission of downlink data based on a delivery confirmation signal (HARQ-ACK) fed back from the user terminal. Also, the control unit 301 controls HARQ-ACK reception processing in which a user terminal feeds back DL transmission based on a bundling window. Note that the reception processing may be performed by the reception signal processing unit 304 based on an instruction from the control unit 301.
  • the control unit 301 can be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • transmission signal generation section 302 generates a downlink data signal (PDSCH) including user data and outputs it to mapping section 303.
  • the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including DCI (UL grant) and outputs the downlink control signal (PDCCH / EPDCCH) to the mapping unit 303.
  • the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (HARQ-ACK, PUSCH, etc.) transmitted from the user terminal 20.
  • the processing result is output to the control unit 301.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 15 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit (reception unit) 203 receives DL signals transmitted from a plurality of CCs including a component carrier (CC) using TDD. Also, the transmission / reception unit (reception unit) 203 receives first information indicating the codebook size included in the downlink control information of the CC on which DL transmission is performed, and a counter value indicating the accumulated value of the DL allocated CCs in the bundling window. Second information to be received is received.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 16 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a determination unit 405. I have.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404.
  • the control unit 401 includes first information (for example, total DAI) indicating a codebook size included in downlink control information of a CC on which DL transmission is performed, and a counter value indicating a cumulative value of DL allocated CCs in a bundling window.
  • the transmission of HARQ-ACK is controlled based on the second information (for example, counter DAI).
  • the counter values are numbered based on the subframe order in which DL transmission is performed and the order of CC numbers with respect to the CC in which DL transmission of the bundling window is performed.
  • control unit 401 can determine the HARQ-ACK to be set at each bit position of the code book whose size is determined based on the total DAI, based on the counter DAI. In addition, the control unit 401 can determine that the HARQ-ACK corresponding to the CC that did not detect the counter DAI among the scheduled CCs is NACK in the codebook that sets the HARQ-ACK of each CC. .
  • the control unit 401 can determine the PUCCH format to be applied based on the total DAI. Also, the control unit 401 transmits HARQ-ACK based on the total DAI and / or ARI (Ack / nack Resource Indicator) included in the CC downlink control information of the last subframe that received the DL signal in the bundling window. Can be controlled.
  • the total DAI can be information that explicitly indicates one bit value.
  • the control unit 401 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (for example, downlink control signal transmitted from the radio base station, downlink data signal transmitted by PDSCH, etc.). I do.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401 and the determination unit 405.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are described based on common recognition in the technical field according to the present invention. it can. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the determination unit 405 performs retransmission control determination (ACK / NACK) based on the decoding result of the received signal processing unit 404 and outputs the determination result to the control unit 401.
  • ACK / NACK retransmission control determination
  • ACK / NACK retransmission control determination
  • the determination part 405 can be comprised from the determination circuit or determination apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above physically include a central processing unit (processor) 1001, a main storage device (memory) 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, You may comprise as a computer apparatus containing the bus
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • Each function in the radio base station 10 and the user terminal 20 is performed by causing the central processing unit 1001 to perform computation by reading predetermined software (program) on hardware such as the central processing unit 1001 and the main storage device 1002. This is realized by controlling communication by the device 1004 and reading and / or writing of data in the main storage device 1002 and the auxiliary storage device 1003.
  • the central processing unit 1001 controls the entire computer by operating an operating system, for example.
  • the central processing unit 1001 may be configured by a processor (CPU: Central Processing Unit) including a control device, an arithmetic device, a register, an interface with peripheral devices, and the like.
  • CPU Central Processing Unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the central processing unit 1001.
  • the central processing unit 1001 reads programs, software modules, and data from the auxiliary storage device 1003 and / or the communication device 1004 to the main storage device 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the main storage device 1002 and operating on the central processing unit 1001, and may be realized similarly for other functional blocks.
  • the main storage device (memory) 1002 is a computer-readable recording medium, and may be composed of at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of a flexible disk, a magneto-optical disk, a CD-ROM (Compact Disc ROM), a hard disk drive, and the like.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the central processing unit 1001 and the main storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. .
  • the radio base station 10 and the user terminal 20 may be configured to include hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Thus, a part or all of each functional block may be realized.
  • ASIC Application Specific Integrated Circuit
  • PLD Process-Demand Generation
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block)), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extended based on these It may be applied to the next generation system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • communication system 5G (5th generation mobile communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムに複数のコンポーネントキャリアが設定される場合であっても、HARQ-ACKのフィードバックを適切に行うこと。TDDを利用するコンポーネントキャリア(CC:Component Carrier)を含む複数のCCから送信されるDL信号を受信する受信部と、TDDで規定されるバンドリングウィンドウに基づいて前記複数のCCから送信されるDL信号に対するHARQ-ACKを所定のULサブフレームで送信するように制御する制御部と、を有し、前記受信部は、DL送信が行われるCCの下り制御情報に含まれるコードブックサイズを示す第1の情報と、前記バンドリングウィンドウにおけるDL割当てCCのカウンタ値を示す第2の情報とを受信し、前記制御部は、前記第1の情報及び第2の情報に基づいてHARQ-ACKの送信を制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、LTE Rel.13などともいう)も検討されている。
 LTE-Aでは、所定の帯域幅(最大20MHz)を基本単位として、複数のキャリアを同時に用いて通信を行うキャリアアグリゲーション(CA:Carrier Aggregation)が採用されている。キャリアアグリゲーションにおいて基本単位となるキャリアは、コンポーネントキャリア(CC:Component Carrier)と呼ばれ、例えば、LTE Rel.8のシステム帯域に相当する。
 CAが行われる際には、ユーザ端末(UE:User Equipment)に対して、接続性を担保する信頼性の高いセルであるプライマリセル(PCell:Primary Cell)及び付随的なセルであるセカンダリセル(SCell:Secondary Cell)が設定される。
 UEは、最初にPCellに接続し、必要に応じてSCellを追加することができる。PCellは、RLM(Radio Link Monitoring)及びSPS(Semi-Persistent Scheduling)などをサポートする単独のセル(スタンドアローンセル)と同様のセルである。SCellは、PCellに追加してUEに対して設定されるセルである。
 SCellの追加及び削除は、RRC(Radio Resource Control)シグナリングによって行われる。SCellは、ユーザ端末に追加された直後は、非アクティブ(deactive)状態であるため、アクティブ化することで初めて通信(スケジューリング)可能となるセルである。
 また、LTE Rel.8-12では、事業者に免許された周波数帯(ライセンスバンド)において排他的な運用がなされることを想定して仕様化が行われた。ライセンスバンドとしては、例えば、800MHz、2GHz、1.7GHz帯などが使用される。一方、LTE Rel.13以降では、免許不要の周波数帯(アンライセンスバンド)における運用もターゲットとして検討されている。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)と同じ2.4GHz、5GHz帯などが使用される。
 LTE Rel.13では、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(LAA:License-Assisted Access)を検討対象としているが、将来的にデュアルコネクティビティ(DC:Dual Connectivity)やアンライセンスバンドのスタンドアローンも検討対象となる可能性がある。
 また、LTE Rel.8-12では、再送制御にHARQ(Hybrid Automatic Repeat reQuest)が利用されている。HARQでは、ユーザ端末(又は無線基地局)は、データの受信結果に応じて当該データに関する送達確認信号(HARQ-ACK、ACK/NACK、A/Nとも呼ぶ)を所定タイミングでフィードバックする。無線基地局(又はユーザ端末)は、フィードバックされたHARQ-ACKに基づいて、データの再送を制御する。
 LTE Rel.12以前の既存のLTEシステムにおいて、ユーザ端末がフィードバックするACK/NACKのビットサイズ(コードブックサイズ、ビット列サイズとも呼ぶ)は、無線基地局から上位レイヤシグナリングであらかじめ準静的(semi-static)に通知されるCC等の情報に基づいて決定される。したがって、CAを適用する場合、ユーザ端末は設定されるCC数等に基づいて固定的に決定されるコードブックサイズでACK/NACKフィードバックを行う。
 このため、ユーザ端末に設定されるCC数と、あるサブフレームでDLデータのスケジューリングが行われるCC数が異なる場合であっても、ユーザ端末においてコードブックサイズを変更できない。その結果、実際にスケジューリングされるCC数が少ない場合であっても、送信するACK/NACKサイズが必要以上に大きくなる場合が生じる。
 また、Rel.12以前では、CA時に設定可能なCC数が最大5個であったが、Rel.13以降では設定可能なCC数の拡張が想定されている。かかる場合に、既存のLTEシステムと同様にACK/NACKのビットサイズを決定すると、設定されるCC数と、スケジューリングされるCC数とが大きく異なる場合が生じる。これにより、UL送信のオーバーヘッドが増加するおそれがある。
 一方で、ユーザ端末が受信したDL信号(DL信号を受信したCC数)等に基づいて、フィードバックするHARQ-ACKのコードブックサイズを動的に制御することが考えられる。しかし、ユーザ端末がDL信号を検出ミス又は誤検出した場合、無線基地局と、ユーザ端末でコードブックサイズの認識が異なる場合が生じる。かかる場合、無線基地局は、ユーザ端末からフィードバックされたACK/NACKを適切に受信(例えば、復号処理)できず、通信品質が低下するおそれがある。
 本発明はかかる点に鑑みてなされたものであり、無線通信システムに複数のコンポーネントキャリアが設定される場合であっても、HARQ-ACKのフィードバックを適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、TDDを利用するセルを含む複数のセルから送信されるDL信号に対するHARQ-ACKを送信する送信部と、1以上の所定のサブフレームの範囲においてDL送信のスケジューリング対象となるセルのトータル数を示す第1の情報と累積値を示す第2の情報を下り制御情報で受信する受信部と、前記第1の情報と前記第2の情報に基づいて前記HARQ-ACKを所定のULサブフレームで送信するように制御する制御部と、を有し、前記第1の情報は各サブフレームで同じ値に設定され、前記制御部は、サブフレーム毎に前記第1の情報を更新することを特徴とする。
 本発明の一態様によれば、無線通信システムに複数のコンポーネントキャリアが設定される場合であっても、HARQ-ACKのフィードバックを適切に行うことができる。
キャリアアグリゲーションの説明図である。 図2A及び図2Bは、TDDで規定されるバンドリングウィンドウを説明する図である。 図3A及び図3Bは、ユーザ端末と無線基地局間のスケジューリングCCの認識の一例を示す図である。 図4A及び図4Bは、FDDにおけるカウンタDAIとトータルDAIの設定方法の一例を示す図である。 図5A及び図5Bは、TDDで規定されるバンドリングウィンドウにおけるカウンタDAIとトータルDAIの設定方法の一例を示す図である。 図6A及び図6Bは、第1の態様におけるカウンタDAIとトータルDAIの設定方法の一例を示す図である。 第1の態様におけるカウンタDAIとトータルDAIの設定方法の他の例を示す図である。 図8A-図8Cは、第2の態様におけるカウンタDAIとトータルDAIの設定方法の一例を示す図である。 図9A及び図9Bは、トータルDAIにmodulo演算を利用する場合の一例を示す図である。 図10A及び図10Bは、第3の態様におけるトータルDAIのビット情報に含める情報の一例を示す図である。 第3の態様におけるトータルDAIのビット情報に含める情報の他の例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、キャリアアグリゲーション(CA)の説明図である。図1に示すように、LTE Rel.12までのCAでは、所定の帯域幅(例えば、LTE Rel.8の帯域幅)を基本単位とするコンポーネントキャリア(CC)が最大5個(CC#1-CC#5)束ねられる。すなわち、LTE Rel.12までのCAでは、UEあたりに設定可能なCC数は、最大5個に制限される。
 一方、LTE Rel.13のCAでは、6個以上のCCを束ねて、更なる帯域拡張を図ることが検討されている。すなわち、LTE Rel.13のCAでは、UEあたりに設定可能なCC(セル)数を6個以上に拡張すること(CA enhancement)が検討されている。例えば、図1に示すように、32個のCC(CC#1-CC#32)を束ねる場合、最大640MHzの帯域を確保可能となる。
 このように、UEあたりに設定可能なCC数を拡張することにより、より柔軟かつ高速な無線通信を実現することが期待されている。また、このようなCC数の拡張は、ライセンスバンドとアンライセンスバンドとの間のCA(例えば、LAA)による広帯域化に効果的である。例えば、ライセンスバンドの5個のCC(=100MHz)とアンライセンスバンドの15個のCC(=300MHz)とを束ねる場合、400MHzの帯域を確保可能となる。
 既存システム(LTE Rel.8-12)では、UEからネットワーク側の装置(例えば、無線基地局(eNB:eNode B))に対して、上り制御情報(UCI:Uplink Control Information)を上り制御チャネル(PUCCH:Physical Uplink Control Channel)でフィードバックする。UEは、上りデータ送信がスケジューリングされるタイミングでは、UCIを上り共有チャネル(PUSCH:Physical Uplink Shared Channel)で送信してもよい。無線基地局は、受信したUCIに基づいて、UEに対するデータの再送制御や、スケジューリングの制御を実施する。
 このように、LTEシステムでは、複数のCC(セル、キャリア)を用いたユーザ端末と無線基地局の無線通信において再送制御がサポートされている。ユーザ端末は、無線基地局から送信されるDL送信に対して送達確認信号(HARQ-ACK:Hybrid Automatic Repeat Request Acknowledgement、ACK/NACK:ACKnowledgement/Negative ACKnowledgement、A/Nとも呼ぶ)を無線基地局へフィードバックする。ACK/NACKは、ACKとNACKを示すビットで構成される所定の長さのビット列で構成される。
 HARQ-ACKをフィードバックする方法としては、上り制御チャネル(PUCCH)を用いたフィードバック(UCI on PUCCH)と、上り共有チャネル(PUSCH)を用いたフィードバック(UCI on PUSCH)と、が規定されている。例えば、ユーザ端末は、PUCCH-PUSCH同時送信が設定されておらず、A/N送信タイミングでULデータの送信が指示されている場合、PUSCHを用いてA/Nを送信する。一方、ユーザ端末は、上りユーザデータが存在しない場合、PUCCHを用いてA/Nを送信する。
 また、LTEシステムでは、ユーザ端末がA/Nを上り制御チャネルで無線基地局に送信するために複数のPUCCHフォーマット(PUCCH format)が規定されている。例えば、PUCCH format 1a/1bが設定されたユーザ端末は、PDSCHをスケジューリングする制御チャネル(PDCCH/EPDCCH)のCCE/ECCE(Control Channel Element/Enhanced CCE)インデックスに対応するPUCCHリソースで、A/Nについて符号化せずに送信する。
 また、PUCCH format 3が設定されたユーザ端末は、上位レイヤシグナリングで設定された4つのリソースのうち、ARI(Ack/nack Resource Indicator)が指定するいずれか1つのPUCCHリソースを利用してA/Nを送信する。この場合、ユーザ端末は、SCellの下り制御情報に含まれるTPC(Transmit Power Control)フィールド(TPCコマンドビット)をARIとして読み替えることができる。
 また、新規PUCCHフォーマットとして、PUCCHフォーマット3より容量が大きいPUCCHフォーマット4、PUCCHフォーマット5の導入が検討されている。PUCCHフォーマット4は、符号多重(CDM)をサポートせず、1PRB以上(複数PRB)の割当てをサポートすることができる。また、復調用参照信号(DMRS)を各スロットに一つ設けた構成とすることが検討されている。つまり、PUCCHフォーマット4はPUSCH-likeな構成とすることができる。また、PUCCHフォーマット5は、符号多重(CDM)をサポートし、1PRBに対して割当てると共に、復調用参照信号(DMRS)を各スロットに一つ設けた構成とすることが検討されている。
 無線基地局は、異なるSCellのPDSCHをスケジューリングするPDCCH、EPDCCH間でARIの値を同一に設定してユーザ端末に送信することができる。PUCCH format 3においては、FDD(Frequency Division Duplex)を用いる場合には最大10ビット、TDD(Time Division Duplex)を用いる場合には最大21ビットのA/Nコードブックサイズが設定され、A/Nのために用いられる。
 既存のLTEシステムでは、PUCCHで送信するHARQ-ACKのコードブック(ACK/NACKビット列)サイズは、上位レイヤシグナリングで通知される情報に基づきsemi-static(準静的)に決定される。
 FDDを用いる場合には、RRCシグナリングで設定(Configure)されるCC数と、各CCにおいてMIMO(Multiple Input Multiple Output)の適用可否を示すTM(Transmission Mode)に基づいて、全体のA/Nビットサイズが確定される。ユーザ端末は、あるDLサブフレームで少なくとも1つのSCellでDL割当て(DL assignment)を検出した場合に、所定期間(例えば、4ms)後のULサブフレームで設定された全てのCCにおけるA/Nをフィードバックする。
 TDDを用いる場合には、上述したFDDを用いる場合に加え、1ULサブフレームあたりのA/Nの対象となるDLサブフレーム数に基づいて、PUCCHで送信するA/Nビット列全体のサイズが確定される。TDDを適用するユーザ端末は、バンドリングウィンドウで少なくとも1つのDL割当てを検出した場合、所定期間(例えば、(n+k)ms)後のULサブフレームのPUCCHを用いて設定された全てのCCにおけるA/Nをフィードバックする。また、バンドリングウィンドウに含まれるサブフレームのうち、DLアサイメントが送信される(DLデータがスケジューリングされる)サブフレーム総数を示すUL DAI(Downlink Assignment Indicator(Index))がULグラントでユーザ端末に通知される。
 バンドリングウィンドウ(Bundling window)とは、あるULサブフレームでA/Nフィードバックを行うDLサブフレーム(特別サブフレームを含む)のグループ、つまりA/Nフィードバックを行うULサブフレームに対応するDLサブフレームのグループを指す。バンドリングウィンドウは、TDDのUL/DL構成によりそれぞれ規定されている(図2A参照)。TDDを利用して通信を行うユーザ端末は、バンドリングウィンドウに基づいて、所定のサブフレームで送信されるDL信号のA/Nを所定のULサブフレームで送信するように制御する。
 例えば、UL/DL構成2を適用する場合、ULサブフレーム#2に対応するバンドリングウィンドウは、DLサブフレーム#4、#5、#8、特別サブフレーム#6で構成される(図2B参照)。また、ULサブフレーム#7に対するバンドリングウィンドウは、DLサブフレーム#9、#0、#3、特別サブフレーム#1で構成される。
 ユーザ端末は、SF#4-#6、#8で少なくとも1つの下り制御情報(DLアサイメント)を検出した場合に、ULサブフレーム#2において、設定された全CCのA/NをPUCCHでフィードバックする。つまり、ユーザ端末は、スケジューリング情報に含まれているスケジューリング対象のCC数等に関係なく上位レイヤシグナリングに基づいてA/Nビット列を送信する。
 このように、上位レイヤシグナリングで通知された情報に基づいてユーザ端末がフィードバックするA/Nのビットサイズが決定される場合、当該ユーザ端末に実際にスケジューリングされたCC数に対応するA/Nビットサイズと異なる場合が生じる。そのため、既存システムのA/Nフィードバックを適用する場合、実際にスケジューリング(DL信号が送信)されるCCに対応するA/Nコードブックサイズと、上位レイヤシグナリングによって通知されるコードブックサイズが異なっていても、ユーザ端末はコードブックサイズを変更できない。
 一方で、上述したようにLTE Rel.13以降では、より柔軟かつ高速な無線通信を実現するために、ユーザ端末に設定可能なCC数の制限を緩和し、6個以上のCC(5個を超えるCC、たとえば最大32個のCC)を設定することが検討されている。設定されるCC数が拡張される場合、設定されるCC数と各サブフレームでスケジューリングされるCC数の差が大きくなることが想定される。設定されるCC数に対してDL信号がスケジューリングされるCC数が少ない場合に、従来のようにコードブックサイズをsemi-staticに決定すると、ユーザ端末から送信されるACK/NACKのほとんどがNACKであるような場合が生じる。
 例えば、図3Aでは、ユーザ端末に32CCが設定され、実際にスケジューリングされるCC数が10個となる場合を示している。この場合には、全体のCC数(32CC)に比べて、実際にスケジューリングされるセルの数(10CC)が少なく、半分以上のCCがNACKとなる。
 一般に、A/Nのコードブックサイズが小さいほど、ユーザ端末が送信する情報量は少なくなる。したがって、A/Nのコードブックサイズを小さくできれば、無線送信に際し要求される通信品質(SINR:Signal to Interference plus Noise power Ratio)を低く抑えることができる。例えば、最大5CCを用いるCAでも、ユーザ端末がフィードバックするA/NのコードブックサイズをスケジューリングされるCCに応じて小さくすることでA/Nの送信において要求されるSINRを低く抑えることができる。
 コードブックサイズに応じて送信電力を大きくする送信電力制御を行うことで、コードブックサイズによらず所要SINRを満たすよう制御することも可能となる。但し、この場合であっても、ユーザ端末がフィードバックするA/NのコードブックサイズをスケジューリングされるCCに応じて小さくすることで、A/Nの送信において要求される送信電力を低く抑えることができる。
 このため、ユーザ端末がフィードバックするA/Nのコードブックサイズを、スケジューリングされたCC数に応じてダイナミック(動的)に変更可能とすることが有効となる。ユーザ端末がフィードバックするA/Nのコードブックサイズを動的に変更可能とする場合、例えば、スケジューリングされたCC数等に応じて、ユーザ端末がA/Nのビット数を動的に変更することが考えられる。A/Nのビット数を動的に変更する方法としては、ユーザ端末が、下り信号(例えば、PDSCHをスケジューリングするPDCCH/EPDCCH)の検出数に基づき、A/Nのビット数を決定する方法が考えられる。
 ところで、CAを適用したA/Nにおいて用いられるPUCCHフォーマット(例えばformat3-5)においては、A/Nビット列に誤り訂正符号化(例えばブロック符号化)が適用されて送信される。このため、符号化を行うユーザ端末と、復号を行う無線基地局でコードブックサイズの認識が一致していなければ、無線基地局はユーザ端末からフィードバックされたACK/NACKを正しく復号することはできない。
 例えば、ユーザ端末が、本来スケジューリングされたCC数と異なるCC数を認識するような検出ミスや誤検出が発生すると、無線基地局とユーザ端末でコードブック(ビット列)サイズの認識が一致しない事態が生じる(図3B参照)。図3Bでは、無線基地局がユーザ端末に対して8CCを利用したスケジューリング(DL信号の送信)を行っているが、ユーザ端末では5CC分のPDCCH/EPDCCH(スケジューリング情報)を検出する場合を示している。つまり、ユーザ端末は、3CC分のDL信号(例えば、PDCCH/EPDCCH)について検出ミスしている。
 図3Bにおいてユーザ端末が検出したDL信号(CC数)に基づいてA/Nコードブックサイズを決定する場合、ユーザ端末は、検出した5CC分のA/Nビット列を無線基地局に送信する。そのため、無線基地局は正しく復号ができずA/Nビット列全体が影響を受けて、A/Nを用いたフィードバック品質が著しく劣化してしまう。
 このように、ユーザ端末は、無線基地局から所定CCで送信されたDL信号を検出ミスした場合、当該無線基地局がDL信号を送信したCC数よりも少ないCC数の割当てと判断する。また、ユーザ端末は、無線基地局から送信されたDL信号を誤検出した場合、当該無線基地局がDL信号を送信したCC数より多いCC数の割当てと判断する。
 PDCCH/EPDCCHの検出数に基づいてユーザ端末が送信するA/Nのコードブックサイズを決める方法は容易に適用することができるが、検出ミスや誤検出が発生すると、無線基地局とユーザ端末の間でコードブックサイズの認識がずれる。かかる場合、上述したようにA/Nに基づくフィードバック品質が劣化し、通信品質が劣化してしまうおそれがある。
 そのため、あるサブフレームでスケジューリングされたCCを、各CCの下り制御情報(DLアサイメント)に含まれるDL割当てインデックス(DAI:Downlink Assignment Indicator(Index))を利用してユーザ端末に通知することが考えられる。DAIは、スケジューリングされたセルに対してそれぞれ割当てられる値であり、スケジューリングCC(CCの累積値)を示すために利用される。
 例えば、無線基地局は、スケジューリングしたCCの下り制御情報に当該CCにそれぞれ対応したDAIを設定して送信する。各セルの下り制御情報に含めるDAIは、例えば、CCインデックス(セルインデックス)等に基づいて昇順に設定することができる。この場合、スケジューリングされたCCの中でCCインデックスが最も大きいCCのDAIが最大(スケジューリングされたセル数)となる。下り制御情報に含まれるDAIのビットフィールドが2ビットである場合、スケジューリングされるCC(セル)のCCインデックス(セルインデックス)順にビットを割当てる。この場合、スケジューリングされるCCの中で少なくともCCインデックスが隣接するCCに対して異なるビット値を対応づける。
 ユーザ端末は、複数のCCからDL信号を受信した場合、各CCの下り制御情報に含まれるDAIの値(累積値、カウント値)が連続していない場合に、検出できなかったDAIに対応するCCを検出ミスしたと判断することができる。このように、DAIを利用することにより、ユーザ端末と無線基地局間のACK/NACKコードブックサイズの認識を一致させると共に、ユーザ端末が検出ミスしたCCについて無線基地局側で再送制御を適切に行うことができる。
 但し、DAIを利用した場合であっても、スケジューリングされたCCの中で下り制御情報に含まれるDAIが最大となるCCを検出ミスした場合に、ユーザ端末が当該検出ミスを把握できない。このため、無線基地局は、スケジューリングしたCC数に関する情報を下り制御情報に含めてユーザ端末に通知することが有効となる。つまり、無線基地局は、各CCの下り制御情報にスケジューリングCCのカウントに利用する情報と、スケジューリングCCの数を示す情報を含めてユーザ端末に通知することが好ましい。なお、以下の説明では、スケジューリングCCのカウントに利用する情報をカウンタDAI(counter DAI)、スケジューリングCCの数を示す情報をトータルDAI(total DAI)と呼ぶ。
 例えば、FDDを適用する場合、無線基地局は、スケジューリングするCCの下り制御情報にカウンタDAIとトータルDAIを含めて送信する。カウンタDAIは、スケジューリングされたCCの累積値を示し、各CCの下り制御情報にCCインデックス順にナンバリングしたカウンタDAI値をそれぞれ含めることができる。トータルDAIは、あるサブフレームにおいてスケジューリングされたCCの総数を示す。
 図4は、8CC(CC#0~#7)が設定されたユーザ端末に対して、あるサブフレームで一部のCC(CC#0、#1、#3、#5、#6)のみスケジューリングされる場合に送信されるカウンタDAIとトータルDAIの一例を示している。無線基地局は、CC#0、#1、#3、#5、#6に対して、それぞれカウンタDAIを決定する(ここでは、カウンタDAI値=1~5)と共に、トータルDAIを決定する(ここでは、トータルDAI値=5)(図4A参照)。そして、無線基地局は、CC#0の下り制御情報にカウンタDAI(=1)とトータルDAI=5)を含める。同様に、各CCの下り制御情報にCCに対応するカウンタDAIと、各CC共通のトータルDAI(=5)を含める。
 なお、カウンタDAIとトータルDAIは、CC数でなくコードワード(CW)数に基づいて設定することもできる。図4Bでは、CW数に基づいてカウンタDAIとトータルDAIを設定する場合を示している。ここでは、スケジューリングされるCC#0、#1、#3、#5、#6の中で、CC#0、#6が1CW伝送であり、CC#1、#3、#5が2CW伝送である場合を示している。無線基地局は、CC#0、#1、#3、#5、#6に対して、それぞれカウンタDAIを決定する(ここでは、カウンタDAI値=1、3、5、7、8)と共に、トータルDAIを決定する(ここでは、トータルDAI値=8)。なお、以下の説明では、簡単のためCC数に基づいてカウンタDAIとトータルDAIを設定する場合を示すが、CW数に基づいてカウンタDAIとトータルDAIを設定する場合であっても同様であり、一般性を失わない。すなわち、CWが設定される場合にはCWに置き換えて適用することができる。
 このように、カウンタDAIとトータルDAIを各CCの下り制御情報に含めてユーザ端末に通知することにより、当該ユーザ端末は、カウンタDAIが最大となるCC(ここでは、CC#6)を検出ミスした場合であっても当該検出ミスを把握することができる。
 一方で、TDDを適用する場合においても、カウンタDAIとトータルDAIをユーザ端末に通知してHARQ-ACK送信を制御することが考えられる。但し、この場合、カウンタDAIとトータルDAIをどのように設定して利用するかが問題となる。
 例えば、FDDの場合と同様に、各サブフレームでそれぞれスケジューリングされるCC数(又はCW数)に基づいて、サブフレーム毎にカウンタDAIとトータルDAIを設定することが考えられる。図5Aは、4つのサブフレーム(SF#n1~#n4)で構成されるバンドリングウィンドウにおいて、サブフレーム毎にカウンタDAIとトータルDAIを設定する場合の一例を示している。
 図5Aでは、ユーザ端末に5CC(CC#0~#4)が設定され、SF#n1で4CC(CC#0、#1、#2、#4)がスケジューリングされ、SF#n2で1CC(CC#3)がスケジューリングされ、SF#n3で3CC(CC#0、#2、#4)がスケジューリングされ、SF#n4で2CC(CC#2、#4)がスケジューリングされる場合を示している。なお、バンドリングウィンドウのSF#n1~#n4はUL/DL構成等により決定され、例えば、UL/DL構成2のULサブフレーム#2に対応するバンドリングウィンドウでは、SF#n1~#n4は、それぞれSF#4~#6、#8に対応する。
 図5Aに示す場合、ユーザ端末があるサブフレームにおいてスケジューリングされたCC全てのDL割当て(DL assignment)を検出ミスすると、ユーザ端末は当該サブフレームにおけるHARQ-ACKビット数を把握することが出来なくなる。例えば、ユーザ端末がSF#n2においてCC#3から送信される下り制御情報を検出できなかった場合、ユーザ端末はSF#n2でDL割当てがないと判断してHARQ-ACK送信を行うおそれがある。この場合、ユーザ端末と無線基地局間でコードブックサイズ(ACK/NACKビットサイズ)の認識が一致しないため、無線基地局はユーザ端末がフィードバックしたHARQ-ACKビット列(HARQ-ACKコードブック)を正しく受信できないおそれがある。
 そこで、本発明者等は、サブフレーム単位でなくバンドリングウィンドウ単位でカウンタDAIとトータルDAIを利用することを見出した。具体的には、カウンタDAIを用いてバンドリングウィンドウ内でスケジューリングされたCC(又はCW)の累積値をユーザ端末に通知し、トータルDAIを用いてバンドリングウィンドウ内でスケジューリングされたCC(又はCW)数を通知する構成とする。
 図5Bは、バンドリングウィンドウ単位でカウンタDAIとトータルDAIを設定する場合の一例を示している。CC数、サブフレーム数、スケジューリング状況は図5Aと同じ場合を示している。図5Bでは、SF#n1~#n4にスケジューリングされるCCの下り制御情報にそれぞれ異なるカウンタDAI(ここでは、1~10)を設定すると共に、各CCの下り制御情報に共通のトータルDAI(ここでは、10)を設定する。これにより、ユーザ端末があるサブフレーム(例えば、SF#n2)において全てのCC(例えば、CC#3)のDL割当てを検出ミスした場合であっても、当該検出ミスを把握してHARQ-ACK送信を行うことが可能となる。
 また、本発明者等は、バンドリングウィンドウの構成(設定されるDLサブフレーム数等)や通信環境によっては、無線基地局が各CCの下り制御信号に含めるトータルDAIを事前に決定することが困難となる点に着目した。つまり、無線基地局は、各サブフレームで共通となるトータルDAI(スケジューリングCC数)を決定する場合、事前(遅くともSF#n1の送信時点)においてバンドリングウィンドウを構成する各サブフレームのスケジューリングを行う必要が生じる。例えば、図5Bに示す場合、SF#1でスケジューリングされたCCの下り制御情報にトータルDAIを含めるために、SF#1~SF#4におけるCCのスケジューリング(例えば、スケジューリングするCC数等)を事前に決定する必要が生じる。
 無線基地局が、事前に将来のサブフレーム(例えば、バンドリングウィンドウを構成する全てのサブフレーム)のスケジューリングが可能である場合には、スケジューリングするCCに応じてトータルDAIを決定してユーザ端末に通知することができる。一方で、通信環境やバンドリングウィンドウを構成するサブフレーム(適用するUL/DL構成)によっては、無線基地局が事前に将来のサブフレームのスケジューリングを行うことが困難となる場合も考えられる。
 そこで、本発明者等は、トータルDAIを用いて実際にスケジューリングするCC(又はCW)数を指定するのでなく、HARQ-ACKコードブックサイズを指定する構成とすることを着想した。つまり、ユーザ端末は、トータルDAIで指示された値がスケジューリングされたCC(又はCW)数でなく、コードブックサイズであると判断してHARQ-ACK送信を制御することを着想した。
 これにより、無線基地局は、実際にスケジューリングするCC(又はCW)数より多い数をコードブックサイズとして設定し、下り制御情報を用いてユーザ端末に通知することができる。その結果、無線基地局が事前にバンドリングウィンドウを構成する全てのサブフレームのスケジューリングを行えない場合であっても、HARQ-ACKコードブックサイズをユーザ端末間との間で共有することができる。
 以下、本発明に係る実施形態について説明する。以下の説明では、ユーザ端末に設定されるCC数が5個(CC#0-#4)の場合を示すが、ユーザ端末に設定可能なCC数はこれに限られない。また、バンドリングウィンドウとして、4個のSFが設定される場合(例えば、UL/DL構成2のULサブフレーム2に対応するバンドリングウィンドウ)を例に挙げるが本実施の形態はこれに限られない。バンドリングウィンドウに含まれるSF数は4個に限られずUL/DL構成に応じて変更することができる。
 また、以下に示す実施の形態では、スケジューリングを行うセルの数や配置、スケジューリングされるセルのインデックス、送信される信号についても以下の例に限られない。また、以下の説明では、コードブックサイズを示す第1の情報をトータルDAIに含め、バンドリングウィンドウを構成するサブフレームでスケジューリングされるCCの累積値(カウント値)を示す第2の情報をカウンタDAIに含める場合を示すが、これに限られない。第1の情報及び/又は第2の情報は、下り制御情報の他のビットフィールドに含める構成としてもよい。
 さらに、以下に示す実施の形態では、DLデータ(PDSCH)のスケジューリングを行う各セル・各サブフレームに関し、1ビットのACK/NACKフィードバックが必要となるものとして記載するが、これは1ビットに限られない。LTEにおいてCC毎に設定される送信モード(Transmission mode)には、1CWのDLデータ(PDSCH)しかスケジューリングされ得ない送信モード(例えばTM1、TM2など)と、2CWのDLデータ(PDSCH)がスケジューリングされ得る送信モード(例えばTM3、TM4、TM9、TM10など)がある。前述のように、各CCの送信モードに関らずACK/NACKは1ビットとする(2CWの場合は排他的論理和を取る)ことにより、HARQ-ACKフィードバックのオーバーヘッドを抑えることができる。あるいは、各CCの送信モードに関らずACK/NACKは2ビットとする(1CWの場合は2ビット目はNACKにセットする)ことにより、2CWの場合にきめ細やかなHARQ制御を実現することができる。これら2つの制御のうち、上位レイヤシグナリング等により、いずれか一方が設定されてもよい。以下に示す実施の形態では、各CCのACK/NACKを2ビットとして置き換えても、各々の効果は失われない。
(第1の態様)
 第1の態様では、トータルDAIを用いてコードブックサイズに関する情報をユーザ端末に通知する場合について説明する。
 図6にバンドリングウィンドウでスケジューリングされるCCの各下り制御情報に含めるカウンタDAIとトータルDAIの一例を示す。図6Aは、無線基地局が、実際にスケジューリングするCC(又はCW)数に相当する値を各サブフレーム(SF)でスケジューリングされるCCの下り制御情報に含める場合を示している。例えば、無線基地局は、事前にバンドリングウィンドウを構成する全てのSFをスケジューリングできる場合、スケジューリングするCC(CW)数に相当する値をコードブックサイズとしてトータルDAIに設定してユーザ端末に通知する。
 ユーザ端末は、トータルDAIに基づいてバンドリングウィンドウにおけるHARQ-ACKコードブックサイズを決定する。また、ユーザ端末は、カウンタDAIに基づいて、バンドリングウィンドウのHARQ-ACKコードブックにおける各位置(ビット列の位置)のA/Nを決定する。図6Aでは、ユーザ端末は、トータルDAIに基づいてコードブックサイズが10ビットであると判断する。
 また、ユーザ端末は、サイズが10ビットのコードブックの各ビット列のA/Nを、各SFでスケジューリングされたCCのDL信号(例えば、PDSCH)の検出結果に基づいて決定する。なお、コードブックのビット列は、カウンタDAIに対応した構成(例えば、カウンタDAIの値順)とすることができる。例えば、カウンタDAIを、スケジューリングされたSF順にCCインデックス(セルインデックス)の若い番号からナンバリングして設定することができる(図6参照)。
 図6Bは、無線基地局が、実際にスケジューリングするCC(又はCW)数より多い値を各SFでスケジューリングされるCCの下り制御情報に含める場合を示している。例えば、無線基地局は、事前にバンドリングウィンドウを構成する全てのSFをスケジューリングできない場合には、所定値(ここでは、20)をコードブックサイズとしてトータルDAIに設定してユーザ端末に通知する。所定値はあらかじめ決められた値であってもよいし、無線基地局におけるスケジューリング状況(例えば、途中のSFまでのスケジューリング状況等)を考慮して決定してもよい。
 図6Bでは、ユーザ端末は、トータルDAIに基づいてコードブックサイズが20ビットであると判断する。また、ユーザ端末は、サイズが20ビットのコードブックの各ビット列のA/Nを、各サブフレームでSFされたCCのDL信号(例えば、PDSCH)の検出結果に基づいて決定する。なお、コードブックのビット列は、カウンタDAIに対応した構成(例えば、カウンタDAIの値順)とすることができる。例えば、カウンタDAIを、スケジューリングされたSF順にCCインデックス(セルインデックス)の若い番号からナンバリングして設定することができる。
 図6Bでは、スケジューリングされたCC数(又はCW数)よりコードブックサイズが大きく設定されている。この場合、ユーザ端末は、コードブックの最初の10ビット(例えば、カウンタDAIが1~10)に対して、DL信号の検出結果に応じてACK又はNACKを割当て、残りの10ビットにNACKを割当てることができる。
 無線基地局は、図6BのようにスケジューリングとDAI制御を行った場合、ユーザ端末がフィードバックするコードブックの後半10ビットがNACKであることが既知であるため、これを事前情報として誤り訂正復号性能を改善することができる。しかし既知ビットが後半10ビットに固まっているため、例えば畳み込み符号化に対するトレリス復号を適用した場合などを想定すると、既知ビットはコードブック内に分散して配置されていた方が、誤り訂正復号性能改善効果を高めることができる。
 そこで無線基地局が、例えば図7のように、トータルDAIの値を十分大きな値に設定した場合には、カウンタDAIにスケジューリングしたCCに応じた連続値を設定するのではなく、非連続な値を設定することを許容してもよい。図7では、ユーザ端末が受信したDLアサイメントに含まれるカウンタDAIの値が1、2、3、4、8、9、10、13、15、17、と増加している場合を示している。ユーザ端末が、非連続なDAIの値について、無線基地局が意図的に割り振ったものか、ユーザ端末自身がDLアサイメントを検出できなかったためかを判別しないものとすると、ユーザ端末は、20ビットのHARQ-ACKコードブックにおいて、検出したカウンタDAIの値に基づく位置にPDSCH復号結果に基づくACK/NACKを配置する。このことを利用し、例えば図7のように、基地局がカウンタDAIの値をバンドリングウィンドウ内で非連続に増加させることを許容することで、コードブック内に既知のNACKビットを分散して配置させることができるため、前述のように誤り訂正性能改善効果を高めることができる。
 ユーザ端末は、トータルDAIに基づいてHARQ-ACKコードブックサイズを決定する(ここでは、20ビット)。また、ユーザ端末は、カウンタDAIに基づいて当該カウンタDAIに対応するコードブックのビット列の位置を決定すると共に、当該カウンタDAIが含まれるCCのPDSCHの複合結果に基づいてA/Nを決定する。ユーザ端末は、コードブックにおいて、対応するカウンタDAIを受信していない場合、当該カウンタDAIに対応するビット列はNACKとする。
 また、ユーザ端末に対して複数のPUCCHフォーマットが設定されている場合、ユーザ端末はトータルDAI(コードブックサイズ)に基づいてA/Nフィードバックに適用する所定のPUCCHフォーマットを選択することができる。
 このように、トータルDAIを用いてHARQ-ACKコードブックサイズをユーザ端末に通知することにより、無線基地局のスケジューリング状況等に応じてHARQ-ACKコードブックサイズを柔軟に設定することが可能となる。例えば、無線基地局が事前にバンドリングウィンドウを構成する全てのSFをスケジューリングできる場合には、スケジューリングCC(CW)数に相当する値をトータルDAI(コードブックサイズ)として設定することができる。これにより、HARQ-ACKコードブックサイズを小さく設定することができる。
 一方で、無線基地局が事前にバンドリングウィンドウを構成する全てのSFをスケジューリングできない場合には、十分に大きい値をトータルDAI(コードブックサイズ)として設定することができる。これにより、バンドリングウィンドウを構成する他のSF(特に、後半のサブフレーム)に対するスケジューリング動作がトータルDAIによって制限される(影響を受ける)ことを抑制することができる。
(第2の態様)
 第2の態様では、バンドリングウィンドウのSF毎に異なるトータルDAIを設定することを許容する場合について説明する。
 上記図6では、同一のバンドリングウィンドウにおいて、下り制御情報(DLアサイメント)に含まれるトータルDAIを共通に設定する場合を示した。しかし、無線基地局がバンドリングウィンドウの最初のSF(SF#n1)ではユーザ端末に対するトラフィックが小さかったが、途中のSFからユーザ端末に大きなデータをスケジューリングしたい状況が生じる可能性がある。かかる場合、無線基地局が最初に決定するトータルDAIが十分でない場合、後半SFにおけるスケジューリングが制限されるおそれがある。一方で、スケジューリングの制限を避けるために、常に大きなトータルDAIを設定する場合、コードブックサイズが常に不必要に大きくなるおそれもある。
 そこで、バンドリングウィンドウにおいて無線基地局のスケジューリング動作の大幅な変更にも対応できるように、バンドリングウィンドウのSF毎に異なるトータルDAIを設定することを許容する。この場合、ユーザ端末は、バンドリングウィンドウにおいてスケジューリングCCがある最後のサブフレームに設定されるトータルDAIに基づいてHARQ-ACKコードブックサイズを判断することができる。
 つまり、ユーザ端末は、バンドリングウィンドウの各SF間で異なるトータルDAIを受信した場合、最後にスケジューリングされた(DL信号を受信した)SFのトータルDAIが有効であると判断する。また、ユーザ端末は、バンドリングウィンドウにおいてSF間で異なるARIを受信した場合、トータルDAIと同様に最後にスケジューリングされたSFのARIが有効であると判断することができる。
 図8に、バンドリングウィンドウのSF毎に異なるトータルDAIを設定する場合の一例を示す。図8Aでは、無線基地局が、最初にトータルDAIを8ビットに設定してSF#n1とSF#n2までのスケジューリングを行う場合を示している。この場合、無線基地局は、SF#n1でスケジューリングされるCC#0~#2、#4の下り制御情報と、SF#n1でスケジューリングされるCC#3の下り制御情報に同じトータルDAI(ここでは、8)を含めて送信する。ユーザ端末は、この時点におけるコードブックサイズが8ビットであると想定する。
 図8Bでは、無線基地局が、より多くのデータを当該ユーザ端末に割当てたいと判断し、SF#n3におけるスケジューリングCCを増加する場合(ここでは、5CCをスケジューリングする場合)を示している。この場合、最初に設定したトータルDAI(コードブックサイズ)を超えるため、無線基地局はトータルDAIを8ビットから増加して設定する。例えば、無線基地局は、SF#n3でスケジューリングするCC#0~#4に基づいて、各CCの下り制御情報に増加したトータルDAI(ここでは、10)を含めて送信する。ユーザ端末は、SF#n3におけるコードブックサイズが10ビットに増加されたと想定する。
 図8Cでは、無線基地局が、さらに多くのデータをユーザ端末に割当てたいと判断し、SF#n4におけるスケジューリングCCを設定する場合(ここでは、4CCをスケジューリングする場合)を示している。この場合、SF#n3で再設定したトータルDAI(ここでは、10)を超えるため、無線基地局はトータルDAIを10ビットから増加して再設定する。例えば、無線基地局は、SF#n4でスケジューリングするCC#1~#4に基づいて各CCの下り制御情報に増加したトータルDAI(ここでは、14)を含めて送信する。ユーザ端末は、SF#n4におけるコードブックサイズが14ビットに増加されたと想定する。
 このように、バンドリングウィンドウの途中のSFからトータルDAI(コードブックサイズ)を変化(更新)することを許容することにより、無線基地局が最初に決定するトータルDAIが十分でない場合であっても、後半SFにおけるスケジューリング動作を柔軟に行うことができる。さらに、スケジューリングの制限を避けるために、常に大きなトータルDAIを設定することを回避することができる。
 また、ユーザ端末がA/Nフィードバックに利用するPUCCHフォーマットやPUCCHリソースは、コードブックサイズによって変更することが好ましい。したがって、ユーザ端末は、コードブックサイズ(トータルDAI)の変更に応じて、PUCCHフォーマット及び/又はPUCCHリソースも変更するように制御してもよい。
 具体的には、ユーザ端末は、スケジューリングされる最後のSF(図8CのSF#4)におけるコードブックサイズ(トータルDAI)に基づいて、利用するPUCCHフォーマットを決定することができる。また、ユーザ端末は、スケジューリングされる最後のSF(図8CのSF#4)で受信する下り制御情報(例えば、ARI)に基づいて、利用するPUCCHリソースを決定することができる。これにより、バンドリングウィンドウのSF毎に異なるトータルDAIを設定する場合であっても、ユーザ端末は、A/Nフィードバックに適用するPUCCHフォーマット及び/又はPUCCHリソースを適切に選択することができる。
(第3の態様)
 第3の態様では、トータルDAI用のビットフィールドのビット値(ビット情報)とカウンタDAI用のビットフィールドのビット値が示す内容の設定方法の一例について説明する。
 既存のLTEシステム(Rel.12以前)のTDDでは、バンドリングウィンドウにおいてスケジューリングされたSF数を示すUL DAIがULグラントに2ビットで規定される。具体的には、所定値(例えば、4)を用いたmodulo演算を利用してスケジューリングされたSF数の総数をユーザ端末に通知する。そのため、上記第1の態様及び第2の態様で示したトータルDAI(コードブックサイズ)についても同様に2ビットで規定すると共にmodulo演算を適用することが考えられる。
 図9Aは、modulo演算を利用して0~11にビット値を対応づけたテーブルを示している。この場合、0、4、8が同じビット値“00”で表され、1、5、9が同じビット値“01”で表され、2、6、10が同じビット値“10”で表され、3、7、11が同じビット値“11”で表される。
 図9Aに示すように、無線基地局が、所定のトータルDAIをmodulo演算を利用したビット値を用いてユーザ端末に通知する場合、ユーザ端末がトータルDAIを適切に判断できないおそれがある。例えば、所定のコードブックサイズ(2、6、10、14・・・)を所定ビット値(トータルDAI=2)で表す場合を想定する(図9B参照)。なお、図9Bでは、カウンタDAIにもmodulo演算を利用する場合を示している。かかる場合、ユーザ端末は下り制御情報に含まれるトータルDAI=2を検出したとしても、当該トータルDAI(コードブックサイズ)が2、6、10、14・・・のいずれかを指しているか判断することができない。
 そこで、ユーザ端末がトータルDAIを適切に把握できるように、トータルDAIとカウンタDAI(スケジューリングするCC(CW)数)を関連づけて設定することが考えられる。例えば、カウンタDAIが1又は2の場合はトータルDAIが2、カウンタDAIが3~6の場合はトータルDAIが6、カウンタDAIが7~10の場合はトータルDAIが10、カウンタDAIが11~14の場合はトータルDAIが14・・・と関連づけることが考えられる。この場合、ユーザ端末は、カウンタDAIに基づいてトータルDAIが示すコードブックサイズを判断することができる。なお、カウンタDAIについては、カウント値が連続する4CCのDL信号をユーザ端末が同時に検出ミスしなければ累積値を正しく判断することができる。
 一方で、トータルDAIとカウンタDAI(スケジューリングするCC(CW)数)を関連づけて設定する場合、無線基地局は、スケジューリングを柔軟に行うことが出来なくなるおそれがある。例えば、無線基地局がトータルDAI(コードブックサイズ)を10ビット(トータルDAI=2)に設定する場合、バンドリングウィンドウにおけるスケジューリングCCの総数を7~10(カウンタDAI=7~10)に設定する必要がある。
 そのため、無線基地局におけるスケジューリングの柔軟性を確保する観点からは、トータルDAIに対してmodulo演算したビット情報は適用せずにトータルDAIを規定する構成とすることが好ましい。なお、カウンタDAIに対してはmodulo演算したビット情報を適用してもよい。この場合、トータルDAIのビット値は、カウンタDAIのビット値と異なる方法で増加するように制御することとなる。
 例えば、図10に示すように、トータルDAIのビット情報を所定のビット値と関連付けて設定することができる。この場合、図10Aに示すように異なる符号点(code point)を同じビットサイズだけ増加するように規定してもよいし、図10Bに示すように各ビット情報にビット値が増加するように所定のビット値を規定してもよい。なお、図10では、2ビットで規定する場合を示しているが、3ビット以上を利用してもよい。
 また、コードブックサイズを規定したテーブル(図10参照)は、ユーザ端末に対して事前に定義(又は設定)してもよいし、上位レイヤシグナリング等を利用して準静的に設定してもよい。
 ユーザ端末は、受信した下り制御情報に含まれるトータルDAIが64ビットを示す場合、コードブックサイズを64ビットと判断する。また、上述したように、ユーザ端末は、コードブックにおける各HARQ-ACKビットの値(A/N)を、カウンタDAIとDL信号の受信結果に基づいて決定することができる。また、ユーザ端末は、トータルDAIで指定されたコードブックサイズに基づいて適用するPUCCHフォーマットを決定することができる。
<変形例>
 トータルDAIにより通知されるコードブックサイズは、所定のPUCCHフォーマット(例えば、PUCCHフォーマット4)で利用するPRB数と関連付けて規定してもよい。例えば、図11に示すように、トータルDAIのビット情報に対して、PUCCHリソースとして利用するPRB毎(ここでは、1PRB~4PRB)にコードブックサイズをそれぞれ規定してもよい。ユーザ端末は、下り制御情報に含まれるトータルDAIと、所定のPUCCHフォーマットで利用するPRB数に基づいてコードブックサイズを決定することができる。
 また、上述した説明では、コードブックサイズをHARQ-ACKコードブックサイズとする場合を想定したが、本実施の形態はこれに限られない。上り制御情報(UCI)のコードブックサイズ(UCIコードブックサイズ)についても上記実施の形態を適用することができる。なお、上り制御情報としては、HARQ-ACKと、スケジューリングリクエスト(SR:Scheduling Request)と、周期的チャネル状態情報(P-CSI)を含めることができる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図12に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 送受信部(送信部)103は、TDDを適用するCCからDL送信を行うと共に、コードブックサイズを示す第1の情報と、バンドリングウィンドウにおけるDL割当てCCの累積値を示すカウンタ値を示す第2の情報を下り制御情報で送信することができる。また、送受信部(受信部)103は、DL送信に対してユーザ端末がTDDで規定されるバンドリングウィンドウに基づいてフィードバックするHARQ-ACKを受信する。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図14は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図14では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)等のスケジューリングの制御も行う。また、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリングを制御する。
 制御部301は、ユーザ端末からフィードバックされる送達確認信号(HARQ-ACK)に基づいて、下りデータの再送/新規データ送信を制御する。また、制御部301は、DL送信に対してユーザ端末がバンドリングウィンドウに基づいてフィードバックするHARQ-ACKの受信処理を制御する。なお、受信処理は、制御部301からの指示に基づいて受信信号処理部304で行ってもよい。なお、制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、ユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、DCI(ULグラント)を含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、CRS、CSI-RSなどの下り参照信号を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(HARQ-ACK、PUSCH等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図15は、本発明の一実施形態に係るに係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部(受信部)203は、TDDを利用するコンポーネントキャリア(CC:Component Carrier)を含む複数のCCから送信されるDL信号を受信する。また、送受信部(受信部)203は、DL送信が行われるCCの下り制御情報に含まれるコードブックサイズを示す第1の情報と、バンドリングウィンドウにおけるDL割当てCCの累積値を示すカウンタ値を示す第2の情報とを受信する。なお、送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図16は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図16においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図16に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、判定部405と、を備えている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。具体的には、制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。
 制御部401は、DL送信が行われるCCの下り制御情報に含まれるコードブックサイズを示す第1の情報(例えば、トータルDAI)と、バンドリングウィンドウにおけるDL割当てCCの累積値を示すカウンタ値を示す第2の情報(例えば、カウンタDAI)とに基づいてHARQ-ACKの送信を制御する。なお、カウンタ値は、前記バンドリングウィンドウのDL送信が行われるCCに対して、DL送信が行われるサブフレーム順序とCC番号順に基づいてナンバリングされる。
 また、制御部401は、トータルDAIに基づいてサイズが決定されるコードブックの各ビット位置に設定するHARQ-ACKを、カウンタDAIに基づいて決定することができる。また、制御部401は、各CCのHARQ-ACKをそれぞれ設定するコードブックにおいて、スケジューリングされたCCの中でカウンタDAIを検出しなかったCCに対応するHARQ-ACKをNACKと判断することができる。
 複数のPUCCHフォーマットが設定されている場合、制御部401は、トータルDAIに基づいて適用するPUCCHフォーマットを決定することができる。また、制御部401は、バンドリングウィンドウにおいてDL信号を受信した最後のサブフレームのCCの下り制御情報に含まれるトータルDAI及び/又はARI(Ack/nack Resource Indicator)に基づいてHARQ-ACKの送信を制御することができる。なお、トータルDAIは、一つのビット値を明示的に示す情報とすることができる。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(例えば、無線基地局から送信された下り制御信号、PDSCHで送信された下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、判定部405に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 判定部405は、受信信号処理部404の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に、判定結果を制御部401に出力する。複数CC(例えば、6個以上のCC)から下り信号(PDSCH)が送信される場合には、各CCについてそれぞれ再送制御判定(ACK/NACK)を行い制御部401に出力する。判定部405は、本発明に係る技術分野での共通認識に基づいて説明される判定回路又は判定装置から構成することができる。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、中央処理装置(プロセッサ)1001、主記憶装置(メモリ)1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
 無線基地局10及びユーザ端末20における各機能は、中央処理装置1001、主記憶装置1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、中央処理装置1001が演算を行い、通信装置1004による通信や、主記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 中央処理装置1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。中央処理装置1001は、制御装置、演算装置、レジスタ、周辺装置とのインターフェースなどを含むプロセッサ(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、中央処理装置1001で実現されてもよい。
 また、中央処理装置1001は、プログラム、ソフトウェアモジュールやデータを、補助記憶装置1003及び/又は通信装置1004から主記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、主記憶装置1002に格納され、中央処理装置1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 主記憶装置(メモリ)1002は、コンピュータ読み取り可能な記録媒体であり、例えばROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、光磁気ディスク、CD-ROM(Compact Disc ROM)、ハードディスクドライブなどの少なくとも1つで構成されてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、中央処理装置1001や主記憶装置1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。なお、無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 また、無線基地局10及びユーザ端末20は、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年11月5日出願の特願2015-217914に基づく。この内容は、全てここに含めておく。
 

Claims (10)

  1.  TDDを利用するセルを含む複数のセルから送信されるDL信号に対するHARQ-ACKを送信する送信部と、
     1以上の所定のサブフレームの範囲においてDL送信のスケジューリング対象となるセルのトータル数を示す第1の情報と累積値を示す第2の情報を下り制御情報で受信する受信部と、
     前記第1の情報と前記第2の情報に基づいて前記HARQ-ACKを所定のULサブフレームで送信するように制御する制御部と、を有し、
     前記第1の情報は各サブフレームで同じ値に設定され、前記制御部は、サブフレーム毎に前記第1の情報を更新することを特徴とするユーザ端末。
  2.  前記制御部は、前記所定のサブフレームの範囲においてDL信号を受信した最後のサブフレームの下り制御情報に含まれる第1の情報に基づいて前記HARQ-ACKのコードブックサイズを決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記第2の情報は、前記所定のサブフレームの範囲においてDL送信のスケジューリング対象となるセルに対して、セルインデックスの順序とDL送信が行われるサブフレーム順序に基づいてナンバリングされることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記所定のサブフレームの範囲においてDL信号を受信した最後のサブフレームの所定セルの下り制御情報に含まれるTPCフィールドに基づいて前記HARQ-ACKを割当てるリソースを決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、前記第1の情報に基づいてサイズが決定されるコードブックの各ビット位置に設定するHARQ-ACKを、前記第2の情報に基づいて決定することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、各セルのHARQ-ACKをそれぞれ設定するコードブックにおいて、スケジューリングされたセルの中で前記第2の情報を検出しなかったセルに対応するHARQ-ACKをNACKと判断することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  7.  前記制御部は、前記第1の情報に基づいて適用するPUCCHフォーマットを決定することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記第1の情報がトータルDAIを定義するビットフィールドに設定され、前記第2の情報がカウンタDAIを定義するビットフィールドに設定されることを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  TDDを利用するセルを含む複数のセルを利用可能なユーザ端末と通信を行う無線基地局であって、
     1以上の所定のサブフレームの範囲においてDL送信のスケジューリング対象となるセルのトータル数を示す第1の情報と累積値を示す第2の情報を下り制御情報で送信する送信部と、
     前記ユーザ端末が前記第1の情報と前記第2の情報に基づいて送信するHARQ-ACKを受信する受信部と、を有し、
     前記送信部は、前記第1の情報をサブフレーム毎に設定すると共に、同一サブフレームで同じ値に設定して前記ユーザ端末に送信することを特徴とする無線基地局。
  10.  無線基地局と通信するユーザ端末の無線通信方法であって、
     TDDを利用するセルを含む複数のセルから送信されるDL信号に対するHARQ-ACKを送信する工程と、
     1以上の所定のサブフレームの範囲においてDL送信のスケジューリング対象となるセルのトータル数を示す第1の情報と累積値を示す第2の情報を下り制御情報で受信する工程と、
     前記第1の情報と前記第2の情報に基づいて前記HARQ-ACKを所定のULサブフレームで送信するように制御する工程と、を有し、
     前記第1の情報は各サブフレームで同じ値に設定され、サブフレーム毎に前記第1の情報を更新することを特徴とする無線通信方法。
PCT/JP2016/082860 2015-11-05 2016-11-04 ユーザ端末、無線基地局及び無線通信方法 WO2017078159A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IL258912A IL258912B2 (en) 2015-11-05 2016-11-04 User terminal, radio base station and radio communication method
CN201680064533.3A CN108353316B (zh) 2015-11-05 2016-11-04 用户终端、无线基站以及无线通信方法
EP16862218.1A EP3358877A4 (en) 2015-11-05 2016-11-04 User terminal, wireless base station, and wireless communication method
US15/773,287 US11108504B2 (en) 2015-11-05 2016-11-04 Terminal, radio base station, and radio communication method for communicating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217914A JP6092347B1 (ja) 2015-11-05 2015-11-05 ユーザ端末、無線基地局及び無線通信方法
JP2015-217914 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078159A1 true WO2017078159A1 (ja) 2017-05-11

Family

ID=58261918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082860 WO2017078159A1 (ja) 2015-11-05 2016-11-04 ユーザ端末、無線基地局及び無線通信方法

Country Status (6)

Country Link
US (1) US11108504B2 (ja)
EP (1) EP3358877A4 (ja)
JP (1) JP6092347B1 (ja)
CN (1) CN108353316B (ja)
IL (1) IL258912B2 (ja)
WO (1) WO2017078159A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160457A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Harq codebook structure
CN111742590A (zh) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 基站以及无线通信方法
CN112399617A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种信息传输方法、终端及网络侧设备
RU2789444C1 (ru) * 2022-04-20 2023-02-03 Нтт Докомо, Инк. Терминал, способ радиосвязи, базовая станция и система
JP2023511292A (ja) * 2020-02-11 2023-03-17 中興通訊股▲ふん▼有限公司 情報生成方法、機器および記憶媒体

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146762A1 (en) * 2016-02-26 2017-08-31 Intel IP Corporation Physical uplink control channel procedures
GB2552947A (en) * 2016-08-09 2018-02-21 Nec Corp Communication System
US10873437B2 (en) * 2016-08-11 2020-12-22 Sharp Kabushiki Kaisha Systems and methods for frequency-division duplex transmission time interval operation
CN110073622B (zh) * 2016-12-28 2022-11-18 摩托罗拉移动有限责任公司 用于数据块组的反馈信息
KR102321226B1 (ko) 2017-06-02 2021-11-03 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 피드백 시그널링에 대한 크기 지시
EP3641201B1 (en) * 2017-06-16 2023-08-23 LG Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
CN109391422B (zh) * 2017-08-11 2020-11-17 华为技术有限公司 一种反馈码本确定的方法及终端设备、网络设备
US11678332B2 (en) * 2017-08-22 2023-06-13 Qualcomm Incorporated Control and data multiplexing in uplink wireless transmissions
WO2019043800A1 (ja) * 2017-08-29 2019-03-07 株式会社Nttドコモ ユーザ端末及び無線通信方法
BR112020007041A2 (pt) * 2017-10-10 2020-10-13 Telefonaktiebolaget Lm Ericsson (Publ) modo de fallback de canal de controle de enlace ascendente físico
US11757498B2 (en) 2017-11-17 2023-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement signaling for radio access networks
CN110166179B (zh) * 2018-02-12 2022-07-29 华为技术有限公司 指示方法,网络设备及用户设备
CA3092137A1 (en) * 2018-02-26 2019-08-29 Ntt Docomo, Inc. User terminal and radio communication method
CN112929981B (zh) 2018-06-28 2022-12-06 Oppo广东移动通信有限公司 传输反馈信息的方法和计算机可读存储介质
JP7152489B2 (ja) * 2018-07-30 2022-10-12 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US11963228B2 (en) * 2018-09-21 2024-04-16 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signals in wireless communication system
CN112740590B (zh) * 2018-09-21 2023-06-06 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和装置
JP7282165B2 (ja) 2018-09-27 2023-05-26 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Urllc daiおよびlti
KR20210113023A (ko) * 2019-01-11 2021-09-15 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 피드백 정보를 전송하는 방법, 단말기 디바이스 및 네트워크 디바이스
EP3952164B1 (en) * 2019-03-26 2023-07-05 Panasonic Intellectual Property Corporation of America Base station, terminal and communication method
CN112583532B (zh) * 2019-09-27 2022-04-22 华为技术有限公司 一种harq信息传输方法及设备
WO2021192063A1 (ja) * 2020-03-24 2021-09-30 株式会社Nttドコモ 端末
CN115211207A (zh) * 2020-04-10 2022-10-18 Oppo广东移动通信有限公司 Dai配置方法、指示方法、发送方法、装置及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531905A (ja) * 2010-04-05 2013-08-08 クゥアルコム・インコーポレイテッド 複数のキャリアについての制御情報のフィードバック
JP2014519252A (ja) * 2011-05-12 2014-08-07 エルジー エレクトロニクス インコーポレイティド 制御情報を送信する方法及びそのための装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044115A2 (ko) * 2010-09-30 2012-04-05 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US8842609B2 (en) * 2010-10-21 2014-09-23 Lg Electronics Inc. Method and apparatus for transmitting ACK/NACK information in multicarrier-supporting wireless communication system
CN103095433B (zh) * 2011-11-04 2018-06-15 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
JP6454786B2 (ja) * 2015-01-20 2019-01-16 エルジー エレクトロニクス インコーポレイティド 上りリンク制御情報を送信するための方法及びそのための装置
US9888465B2 (en) * 2015-04-06 2018-02-06 Samsung Electronics Co., Ltd. Codeword determination for acknowledgement information
KR102150444B1 (ko) * 2015-07-01 2020-09-01 엘지전자 주식회사 무선 통신 시스템에서 신호의 전송 방법 및 장치
CN108028737A (zh) * 2015-09-09 2018-05-11 Lg 电子株式会社 广播信号发送设备、广播信号接收设备、广播信号发送方法以及广播信号接收方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531905A (ja) * 2010-04-05 2013-08-08 クゥアルコム・インコーポレイテッド 複数のキャリアについての制御情報のフィードバック
JP2014519252A (ja) * 2011-05-12 2014-08-07 エルジー エレクトロニクス インコーポレイティド 制御情報を送信する方法及びそのための装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations of PUCCH codebook", 3GPP TSG-RAN WG1 MEETING #82BIS R1-155181, 26 September 2015 (2015-09-26), pages 1 - 6, XP051039593, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/Rl-155181.zip> [retrieved on 20170105] *
CMCC: "Discussion on HARQ-ACK feedback for eCA", 3GPP TSG-RAN WG1 MEETING #83 R1-156996, 6 November 2015 (2015-11-06), pages 1 - 5, XP051003306, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/Rl-156996.zip> [retrieved on 20170105] *
INSTITUTE FOR INFORMATION INDUSTRY (III: "HARQ- ACK codebook size determination for CA with up to 32 CCs", 3GPP TSG-RAN WG1 MEETING #82 R1-154667, 14 August 2015 (2015-08-14), pages 1 - 4, XP050993448, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/ WG1_RL1/TSGR1_82/Docs/R1-154667.zip> [retrieved on 20170105] *
NTT DOCOMO, INC.: "HARQ-ACK feedback for CA with up to 32 CCs", R1-154429, 15 August 2015 (2015-08-15), pages 1 - 5, XP050994301, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/ WG1 RL1/TSGR1 82/Docs/R1-154429.zip> [retrieved on 20170105] *
See also references of EP3358877A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742590A (zh) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 基站以及无线通信方法
CN111742590B (zh) * 2017-12-27 2024-05-17 株式会社Ntt都科摩 基站以及无线通信方法
WO2019160457A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Harq codebook structure
US11539465B2 (en) 2018-02-16 2022-12-27 Telefonaktiebolaget Lm Ericsson (Publ) HARQ codebook structure
CN112399617A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种信息传输方法、终端及网络侧设备
CN112399617B (zh) * 2019-08-16 2022-06-28 大唐移动通信设备有限公司 一种信息传输方法、终端及网络侧设备
JP2023511292A (ja) * 2020-02-11 2023-03-17 中興通訊股▲ふん▼有限公司 情報生成方法、機器および記憶媒体
JP7350184B2 (ja) 2020-02-11 2023-09-25 中興通訊股▲ふん▼有限公司 情報生成方法、機器および記憶媒体
RU2789444C1 (ru) * 2022-04-20 2023-02-03 Нтт Докомо, Инк. Терминал, способ радиосвязи, базовая станция и система

Also Published As

Publication number Publication date
CN108353316B (zh) 2022-04-12
EP3358877A4 (en) 2018-09-19
EP3358877A1 (en) 2018-08-08
IL258912B2 (en) 2023-03-01
US20180323907A1 (en) 2018-11-08
US11108504B2 (en) 2021-08-31
JP2017092615A (ja) 2017-05-25
JP6092347B1 (ja) 2017-03-08
IL258912A (en) 2018-07-31
IL258912B (en) 2022-11-01
CN108353316A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6703083B2 (ja) 端末及び無線通信方法
JP6092347B1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6081531B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6560364B2 (ja) ユーザ端末及び無線通信方法
WO2017110954A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017078147A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016121913A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017078128A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107710813B (zh) 用户终端、无线基站及无线通信方法
WO2017130991A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN111742526A (zh) 用户终端以及无线通信方法
JPWO2016159230A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6105672B2 (ja) ユーザ端末及び無線通信方法
JP6797802B2 (ja) 端末、基地局及び無線通信方法
WO2017026401A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP6894841B2 (ja) 端末、無線基地局及び無線通信方法
JPWO2017051716A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017164141A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN111316736A (zh) 用户终端以及无线通信方法
WO2017078032A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017164142A1 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 258912

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2016862218

Country of ref document: EP

Ref document number: 15773287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE