WO2019043800A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019043800A1
WO2019043800A1 PCT/JP2017/031028 JP2017031028W WO2019043800A1 WO 2019043800 A1 WO2019043800 A1 WO 2019043800A1 JP 2017031028 W JP2017031028 W JP 2017031028W WO 2019043800 A1 WO2019043800 A1 WO 2019043800A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
signal
information
transmission
transmittable
Prior art date
Application number
PCT/JP2017/031028
Other languages
English (en)
French (fr)
Inventor
英之 諸我
和晃 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP17923338.2A priority Critical patent/EP3678343A4/en
Priority to CN201780094400.5A priority patent/CN111052693B/zh
Priority to RU2020111088A priority patent/RU2741520C1/ru
Priority to US16/643,374 priority patent/US11528709B2/en
Priority to JP2019538799A priority patent/JP7145861B2/ja
Priority to PCT/JP2017/031028 priority patent/WO2019043800A1/ja
Priority to BR112020003961-6A priority patent/BR112020003961A2/pt
Priority to KR1020207007459A priority patent/KR102557246B1/ko
Publication of WO2019043800A1 publication Critical patent/WO2019043800A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions

Definitions

  • the present invention relates to a user terminal and a wireless communication method.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 the successor system of LTE is also considered for the purpose of the further broadbandization and speeding-up from LTE.
  • successor systems of LTE for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is something called.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a physical control channel for example, PDCCH: Physical Downlink Control Channel
  • a physical data channel for example, PDSCH: Physical
  • the area of Downlink Shared Channel is defined (Non-Patent Documents 2 and 3).
  • a single carrier transmission method with a small PAPR may be adopted as a downlink communication method.
  • the single carrier transmission scheme since signals are mapped in the time domain, it is not necessary to define a physical control channel and a physical data channel for each symbol of OFDM, and can be set flexibly. Further, in the single carrier transmission scheme, it is possible to flexibly set an uplink physical control channel (for example, PUCCH: Physical Uplink Control Channel) in which the user terminal feeds back the decoding result of the data signal included in the downlink signal.
  • PUCCH Physical Uplink Control Channel
  • 3GPP TS 36.300 v14.3.0 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 14),” June 2017 3GPP TS 36.211 v14.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 14),” March 2017 3GPP TS 36.213 v14.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 14),” March 2017
  • An object of one aspect of the present invention is to provide a user terminal and a wireless communication method capable of flexibly setting an uplink physical control channel.
  • a user terminal is a receiver that receives a downlink signal including a downlink control signal and a downlink data signal from a wireless base station, and the downlink data signal using the downlink control signal.
  • the response signal indicating the decoding result of the downlink data signal is mapped to a transmission / reception region specified by the demodulation / decoding unit for demodulation and decoding and index information included in the downlink control signal among a plurality of transmittable regions
  • a transmitter configured to transmit an uplink control signal including the response signal.
  • uplink physical control channels can be flexibly set.
  • the wireless communication system includes at least the wireless base station 10 shown in FIG. 1 and the user terminal 20 shown in FIG. 2 (for example, also called UE (User Equipment)).
  • the user terminal 20 is connected to the radio base station 10.
  • the radio base station 10 transmits downlink control information (for example, DCI: Downlink Control Information) to the user terminal 20 using the downlink (DL: Downlink) physical control channel (for example, PDCCH: Physical Downlink Control Channel).
  • DL Downlink
  • PDCCH Physical Downlink Control Channel
  • DL reference signal Demodulation Reference
  • PDSCH Physical Downlink Shared Channel
  • the user terminal 20 can transmit to the radio base station 10 a physical control channel (for example, PUCCH: Physical Uplink Control Channel) of UL (Uplink) or a physical data channel for UL (for example, uplink shared channel: PUSCH : Send UL control signal including uplink control information (for example, UCI: Uplink Control Information) using Physical Uplink Shared Channel, and UL physical data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel) Transmit the UL data signal and the DMRS using a physical control channel (for example, PUCCH: Physical Uplink Control Channel) of UL (Uplink) or a physical data channel for UL (for example, uplink shared channel: PUSCH : Send UL control signal including uplink control information (for example, UCI: Uplink Control Information) using Physical Uplink Shared Channel, and UL physical data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel) Transmit the UL data signal and the DMRS using
  • the DL channel and UL channel transmitted and received by the radio base station 10 and the user terminal 20 are not limited to the above PDCCH, PDSCH, PUCCH, PUSCH, etc.
  • PBCH Physical Broadcast Channel
  • RACH Random Access It may be another channel such as Channel).
  • a single carrier is used in a high frequency band (for example, 70 GHz band) for communication between the radio base station 10 and the user terminal 20
  • the present invention may be, for example, DFT-S-OFDM (Discrete Fourier Transform) or Spread-OFDM (Orthogonal Frequency Division Multiplexing)) as a single carrier scheme.
  • communication between the wireless base station 10 and the user terminal 20 may be a multicarrier scheme.
  • the present invention is not particularly limited to the frequency band, and may be, for example, a frequency band of about several tens of GHz.
  • FIG. 1 is a block diagram showing an example of the entire configuration of the radio base station 10 according to the present embodiment.
  • the radio base station 10 shown in FIG. 1 includes a scheduler 101, a transmission signal generation unit 102, an encoding / modulation unit 103, a mapping unit 104, a transmission unit 105, an antenna 106, a reception unit 107, and a control unit.
  • a configuration including 108, a channel estimation unit 109, and a demodulation / decoding unit 110 is employed.
  • the scheduler 101 performs scheduling (for example, resource allocation) of DL signals (DL data signal, DL control signal, DMRS, etc.).
  • the scheduler 101 also performs scheduling (for example, resource allocation) of UL signals (UL data signal, UL control signal, DMRS, etc.).
  • the scheduler 101 When communication between the radio base station 10 and the user terminal 20 is performed using a single carrier, the scheduler 101 performs scheduling to assign each signal to radio resources in the time domain (time direction) of the single carrier.
  • the scheduler 101 sets the transmission area of the DL physical control channel and the transmission area of the DL physical data channel. Then, the scheduler 101 performs scheduling of the DL signal in each transmission area.
  • the scheduler 101 sets at least a reception area of the UL physical control channel (a transmission area of the UL physical control channel in the user terminal 20).
  • the scheduler 101 may set the reception area of the UL physical data channel. In this case, the scheduler 101 schedules UL signals in each of the set reception areas.
  • the scheduler 101 outputs scheduling information including resource allocation information to the transmission signal generation unit 102 and the mapping unit 104.
  • the scheduler 101 performs retransmission control of the DL data signal based on the signal indicating the decoding result of the DL data signal input from the demodulation / decoding unit 110 described later. For example, when there is an error in the decoding result of the DL data signal, the scheduler 101 instructs the transmission signal generation unit 102 to retransmit the DL data signal having the error. Alternatively, when there is no error in the decoding result of the DL data signal, the scheduler 101 instructs the transmission signal generation unit 102 to transmit the next DL data signal.
  • the scheduler 101 may perform, for example, MCS (Modulation and Coding Scheme) (coding rate, modulation scheme, etc.) of the DL data signal and the UL data signal based on the channel quality between the radio base station 10 and the user terminal 20.
  • MCS Modulation and Coding Scheme
  • MCS is not limited when the wireless base station 10 sets, and the user terminal 20 may set it.
  • the radio base station 10 may receive MCS information from the user terminal 20 (not shown).
  • the transmission signal generation unit 102 generates a DL signal including a DL data signal and a DL control signal.
  • the DL control signal includes downlink control information (DCI: Downlink Control Information) including scheduling information (for example, resource allocation information of DL data signal) output from the scheduler 101 or MCS information.
  • DCI Downlink Control Information
  • scheduling information for example, resource allocation information of DL data signal
  • the transmission signal generation unit 102 Based on an instruction from the scheduler 101, the transmission signal generation unit 102 generates a DL signal for performing retransmission of the DL data signal or transmission of the next DL data signal.
  • the transmission signal generation unit 102 outputs the generated transmission signal to the coding / modulation unit 103.
  • the encoding / modulation unit 103 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 102 based on, for example, the MCS information input from the scheduler 101. Encoding / modulation section 103 outputs the modulated transmission signal to mapping section 104.
  • the mapping unit 104 maps the transmission signal input from the encoding / modulation unit 103 to a predetermined radio resource based on scheduling information (for example, DL resource allocation) input from the scheduler 101. Also, the mapping unit 104 maps a reference signal (for example, DMRS) to a predetermined radio resource based on the scheduling information. Mapping section 104 outputs the DL signal mapped to the radio resource to transmitting section 105.
  • scheduling information for example, DL resource allocation
  • DMRS reference signal
  • the transmission unit 105 performs transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104, and transmits a radio frequency signal (DL signal) from the antenna 106.
  • transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104
  • DL signal radio frequency signal
  • the reception unit 107 performs reception processing such as amplification and down conversion on the radio frequency signal (UL signal) received by the antenna 106, and outputs the UL signal to the control unit 108.
  • the control unit 108 separates (demaps) the UL control signal, the UL data signal, and the DMRS from the UL signal input from the receiving unit 107 based on the scheduling information (UL resource allocation) input from the scheduler 101. Then, control section 108 outputs the UL control signal and the UL data signal to demodulation / decoding section 110, and outputs DMRS to channel estimation section 109.
  • Channel estimation section 109 performs channel estimation using the DMRS of the UL signal, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 110.
  • the Demodulation / decoding section 110 performs demodulation and decoding processing on the UL control signal input from control section 108.
  • the UL control signal includes a response signal indicating the decoding result of the DL data signal decoded at the user terminal 20.
  • the signal indicating the decoding result of the DL data signal is NACK (Negative ACKnowledgement) (or negative acknowledgment)
  • a signal indicating the decoding result of the DL data signal is an ACK (ACKnowledgement) (or an acknowledgment).
  • the demodulation / decoding unit 110 outputs, to the scheduler 101, a response signal (for example, ACK or NACK) indicating the decoding result of the DL data.
  • a response signal for example, ACK or NACK
  • ACK or NACK will be described as ACK / NACK as appropriate.
  • Demodulation / decoding section 110 performs demodulation and decoding processing on the UL data signal input from control section 108 based on the channel estimation value input from channel estimation section 109.
  • the demodulation / decoding unit 110 transfers the UL data signal after demodulation to an application unit (not shown).
  • the application unit performs processing on a layer higher than the physical layer or the MAC layer.
  • FIG. 2 is a block diagram showing an example of the entire configuration of the user terminal 20 according to the present embodiment.
  • the user terminal 20 shown in FIG. 2 includes an antenna 201, a reception unit 202, a control unit 203, a channel estimation unit 204, a demodulation / decoding unit 205, a transmission signal generation unit 206, and an encoding / modulation unit 207. , The mapping unit 208, and the transmission unit 209.
  • the reception unit 202 performs reception processing such as amplification and down conversion on the radio frequency signal (DL signal) received by the antenna 201, and outputs the DL signal to the control unit 203.
  • the DL signal includes at least a DL data signal, a DL control signal, and a DMRS.
  • the control unit 203 separates (demaps) the DL control signal and the DMRS from the DL signal input from the receiving unit 202. Then, the control unit 203 outputs the DL control signal to the demodulation / decoding unit 205, and outputs the DMRS to the channel estimation unit 204.
  • control unit 203 separates (demaps) the DL data signal from the DL signal based on the scheduling information (for example, resource allocation information of DL) input from the demodulation / decoding unit 205, and demodulates the DL data signal. Output to the decoding unit 205.
  • scheduling information for example, resource allocation information of DL
  • Channel estimation section 204 performs channel estimation using the separated DMRS, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 205.
  • the demodulation / decoding unit 205 demodulates the DL control signal input from the control unit 203. Also, the demodulation / decoding unit 205 performs a decoding process (for example, a blind detection process) on the DL control signal after demodulation. Demodulation / decoding section 205 outputs scheduling information (resource allocation of DL / UL) for its own device obtained by decoding the DL control signal to control section 203 and mapping section 208, and generates MCS information for the UL data signal. Are output to the encoding / modulation unit 207.
  • a decoding process for example, a blind detection process
  • demodulation / decoding section 205 uses the channel estimation value input from channel estimation section 204 based on the MCS information for the DL data signal contained in the DL control signal input from control section 203, and uses control channel 203 from control section 203. Demodulation and decoding are performed on the input DL data signal. Also, the demodulation / decoding unit 205 transfers the decoded DL data signal to an application unit (not shown). The application unit performs processing on a layer higher than the physical layer or the MAC layer.
  • the demodulation / decoding unit 205 performs error detection on the decoded DL data signal, and determines whether there is an error in the decoded DL data signal.
  • Demodulation / decoding section 205 outputs the determination result to transmission signal generation section 206.
  • the transmission signal generation unit 206 generates a transmission signal (including a UL data signal or a UL control signal), and outputs the generated transmission signal to the encoding / modulation unit 207.
  • the transmission signal generation unit 206 acquires from the demodulation / decoding unit 205 the determination result that there is an error in the decoding result of the DL data signal, it generates NACK and the determination result that there is no error in the decoding result of the DL data signal Generates an ACK.
  • the encoding / modulation unit 207 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 206 based on, for example, the MCS information input from the demodulation / decoding unit 205. Coding / modulation section 207 outputs the modulated transmission signal to mapping section 208.
  • the mapping unit 208 maps the transmission signal input from the encoding / modulation unit 207 to a predetermined radio resource based on the scheduling information (UL resource allocation) input from the demodulation / decoding unit 205. Also, the mapping unit 208 maps a reference signal (for example, DMRS) to a predetermined radio resource based on the scheduling information.
  • a reference signal for example, DMRS
  • Mapping section 208 outputs the UL signal mapped to the radio resource to transmitting section 209.
  • the transmission unit 209 performs transmission processing such as up-conversion and amplification on the UL signal (including at least the UL control signal) input from the mapping unit 208, and transmits a radio frequency signal (UL signal) from the antenna 201. Do.
  • the physical control channel of DL will be described as PDCCH, the physical data channel of DL as PDSCH, and the physical control channel of UL as PUCCH.
  • transmission / reception of a signal included in a PDCCH will be described as transmission / reception of the PDCCH as appropriate.
  • transmission / reception of a signal included in PDSCH is described as transmission / reception of PDSCH as appropriate.
  • transmission / reception of a signal included in PUCCH is described as transmission / reception of PUCCH as appropriate.
  • FIG. 3 is a diagram showing an example of a transmission signal of the radio base station 10 and a transmission signal of the user terminal 20. As shown in FIG. The horizontal axis of FIG. 3 indicates a time axis. In addition, in FIG. 3, in order to distinguish two user terminals 20, it describes as user terminal # 0 and user terminal # 1, respectively.
  • An arrow A1 in the transmission signal shown in FIG. 3 indicates a transmission point at which the DL signal and the UL signal are transmitted by a single carrier.
  • the transmission point indicated by the arrow A1 may be referred to as a sample point.
  • the spacing of the sample points is, for example, "1 / system bandwidth".
  • the transmission point indicated by the arrow A1 may be called a subcarrier, a tone, a resource element, a resource group, a component, a symbol, a mini symbol, a slot, a mini slot or a sample. That is, the transmission point indicated by the arrow A1 is not limited to the name of the sample point. Also, the names are not limited to the names listed above.
  • the radio base station 10 transmits the PDCCH and PDSCH of each of the user terminal # 0 and the user terminal # 1.
  • processing such as FFT (Fast Fourier Transform) on a specific section (for example, a section of one OFDM symbol) as in the OFDM method, so the signal (channel) is one sample each in the time domain.
  • FFT Fast Fourier Transform
  • the signal (channel) is one sample each in the time domain.
  • the transmission signal of the radio base station 10 is flexibly configured, and the transmission signal of the user terminal 20 is also flexibly configured.
  • PUCCH is flexibly configured.
  • the PUCCH includes, for example, a response signal (for example, ACK / NACK) indicating the result of the user terminal 20 decoding a data signal included in the PDSCH.
  • the radio base station 10 Since PUCCH is flexibly configured, the radio base station 10 notifies each user terminal 20 of ACK / NACK transmission timing (PUCCH transmission area) using DCI included in PDCCH.
  • the radio base station 10 transmits an ACK / NACK transmission timing after N 0 samples (N 0 is an integer of 1 or more) to the user terminal # 0 using DCI included in the PDCCH. Notify that.
  • the user terminal # 0 receives the PDCCH including the DCI, and acquires an ACK / NACK transmission timing.
  • user terminal # 0 receives PDSCH, and demodulates and decodes the data signal included in PDSCH. Then, user terminal # 0 transmits PUCCH including ACK / NACK after N 0 samples from the timing when the reception of PDSCH is finished.
  • the radio base station 10 transmits an ACK / NACK transmission timing after N 1 samples (N 1 is an integer of 1 or more) to the user terminal # 1 using DCI included in the PDCCH. Inform that it is.
  • the user terminal # 1 receives the PDCCH including the DCI, and acquires an ACK / NACK transmission timing. Also, user terminal # 1 receives PDSCH, and demodulates and decodes a data signal included in PDSCH. Then, user terminal # 1 transmits a PUCCH including ACK / NACK after N 1 samples from the timing when the reception of PDSCH is finished.
  • the radio base station 10 notifies the number of samples to be an ACK / NACK transmission timing. In the case of notifying the number of samples, the number of information bits for notification increases.
  • the increase in the number of information bits for notifying ACK / NACK transmission timing is suppressed, and the uplink physical control channel (for example, PUCCH), which is an ACK / NACK transmission area, can be made flexible. Describe how it can be configured.
  • PUCCH physical control channel
  • FIG. 4 is a diagram showing an example of a transmission signal of the radio base station 10 and a transmission signal of the user terminal 20 according to the first configuration example of the present embodiment.
  • the horizontal axis of FIG. 4 indicates a time axis.
  • FIG. 4 in order to distinguish two user terminals 20, it describes as user terminal # 0 and user terminal # 1, respectively.
  • the arrow A1 in the transmission signal shown in FIG. 4 indicates a transmission point at which the DL signal and the UL signal are transmitted by a single carrier, as in FIG.
  • FIG. 4 shows transmission possible areas of a plurality of PUCCHs.
  • an arrangement pattern indicating the arrangement of transmittable areas (areas # 0 to # 4 in FIG. 4) of a plurality of PUCCHs in resources in the time domain (and frequency domain) will be referred to as transmittable area patterns.
  • the transmittable area indicates the position and length of the time area in which the PUCCH can be transmitted.
  • the transmittable area pattern is known in the radio base station 10 and the user terminal 20.
  • the transmittable area pattern is common to the plurality of user terminals 20. That is, in the first configuration example, the plurality of transmittable areas are arranged in accordance with a common arrangement pattern in the plurality of user terminals 20.
  • the transmittable area pattern may be determined according to the specification, or may be notified by upper layer signal and / or broadcast information (eg, MIB (Master Information Block) and / or SIB (System Information Block)). good.
  • the transmittable area pattern may be notified by the common PDCCH (Common PDCCH) in the user terminal 20.
  • Common PDCCH Common PDCCH
  • the scheduler 101 of the wireless base station 10 responds to the requirements of the wireless communication system (for example, the communication speed of the system, communication capacity, delay time, and the number of user terminals 20 connected to the wireless base station 10)
  • positioning and length of PDCCH of each user terminal # 0 and user terminal # 1 and PDSCH are set.
  • the scheduler 101 may select, for example, the PDCCH and PDSCH of each of the user terminal # 0 and the user terminal # 1 according to the amount of data addressed to the user terminal 20 (for example, the size of the DL control signal and / or the DL data signal). Set the placement and length of
  • the scheduler 101 schedules DL signals on the configured PDCCH and PDSCH.
  • Information (hereinafter, configuration information) indicating the length and arrangement of each of the PDCCH and PDSCH is notified from the radio base station 10 to the user terminal 20.
  • the scheduler 101 sets the PUCCH transmitted by the user terminal # 0 and the PUCCH transmission area transmitted by the user terminal # 1 based on the PUCCH transmittable area pattern.
  • the scheduler 101 specifies, among a plurality of transmittable regions included in the PUCCH transmittable region pattern, a transmittable region included in a region not transmitting a DL signal and a region not receiving another UL signal. Then, the scheduler 101 sets a transmittable area provided after the transmission signal addressed to each user terminal 20 among the specified transmittable areas as a PUCCH transmission area in the user terminal 20.
  • areas # 3 and # 4 are transmittable areas included in the area where the DL signal is not transmitted.
  • the area # 3 and the area # 4 are both provided after the transmission signal addressed to the user terminal 20 (user terminal # 0 and user terminal # 1).
  • the scheduler 101 sets the area # 3 as the PUCCH transmission area in the user terminal # 0, and sets the area # 4 as the PUCCH transmission area in the user terminal # 1.
  • the scheduler 101 may set the area # 4 as the PUCCH transmission area in the user terminal # 0, and set the area # 3 as the PUCCH transmission area in the user terminal # 1.
  • the scheduler 101 uses the DCI included in the PDCCH addressed to each user terminal 20 to notify information of an index indicating a PUCCH transmission area. For example, the scheduler 101 uses the DCI included in the PDCCH addressed to the user terminal # 0 to notify the information of the index indicating the area # 3 set as the PUCCH transmission area, and is included in the PDCCH addressed to the user terminal # 1. The information of the index indicating the area # 4 set as the PUCCH transmission area is notified using the DCI.
  • the user terminal 20 When the user terminal 20 receives the DL signal transmitted from the wireless base station 10, the user terminal 20 performs demodulation processing and decoding processing. At this time, the demodulation / decoding unit 205 of the user terminal 20 specifies the arrangement and length of the PDCCH of the DL signal based on the setting information, and performs demodulation processing and decoding processing of the DL control signal mapped to the specified PDCCH I do. Then, the demodulation / decoding unit 205 performs demodulation processing and decoding processing of the DL data signal mapped to the PDSCH using the DL control signal.
  • the demodulation / decoding unit 205 outputs the information of the index included in the DCI of the DL control signal to the mapping unit 208. Further, the demodulation / decoding unit 205 decodes the DL data signal, and determines whether the DL data signal has an error. Demodulation / decoding section 205 outputs the determination result to transmission signal generation section 206.
  • the transmission signal generation unit 206 generates a NACK when acquiring a determination result having an error in the DL data signal, and generates an ACK when acquiring a determination result having no error in the DL data signal.
  • the transmission signal generation unit 206 outputs the ACK / NACK to the coding / modulation unit 207.
  • the coding / modulation unit 207 performs coding processing and modulation processing on ACK / NACK.
  • Coding / modulation section 207 outputs ACK / NACK subjected to coding processing and modulation processing to mapping section 208.
  • Mapping section 208 sets the PUCCH transmission area based on the index information and the known transmittable area pattern acquired from demodulation / decoding section 205, and maps ACK / NACK in the set PUCCH transmission area. That is, mapping section 208 maps ACK / NACK to the transmission area designated by the information of the index from among the plurality of transmittable areas.
  • the transmittable area pattern is not limited to the example shown in FIG. Hereinafter, variations of the transmittable area pattern will be described.
  • FIG. 5 is a diagram showing a first example of the transmittable area pattern in the first configuration example of the present embodiment.
  • the horizontal axis of FIG. 5 is a time axis.
  • four transmittable area patterns of transmittable area pattern A to transmittable area pattern D are shown.
  • the transmittable area pattern A corresponds to the transmittable area pattern shown in FIG.
  • the length of the time domain of one transmittable area may be changed.
  • the transmittable area may be set continuously in the time domain.
  • the transmittable areas may overlap in the time domain.
  • area # 0 and area # 1 in transmittable area pattern D are not set as PUCCH transmission areas of different user terminals 20.
  • the transmittable area pattern shown in FIG. 5 is a pattern that defines a transmittable area in one frequency band. Next, a variation of the transmittable area pattern in the case of switching the band for transmitting the PUCCH among a plurality of frequency bands (performing frequency hopping) will be described.
  • FIG. 6 is a diagram showing a second example of the transmittable area pattern in the first configuration example of the present embodiment.
  • the horizontal axis in FIG. 6 is a time axis, and the vertical axis is a frequency axis.
  • FIG. 6 shows the transmittable area pattern A shown in FIG. 5 and the transmittable area pattern E not shown in FIG.
  • one transmittable area (for example, area # 1) is set in two frequency bands B1 and B2.
  • the partial regions of the two frequency bands B1 and B2 set as one transmittable region do not overlap in the time axis direction.
  • FIG. 6 shows an example in which one transmittable area is set in two frequency bands B1 and B2.
  • one transmittable area may be set in three or more frequency bands.
  • FIG. 7 is a diagram showing an example of a notification method of a PUCCH transmission area in the first configuration example of the present embodiment.
  • the horizontal axis of FIG. 7 is a time axis.
  • the received signal which the user terminal 20 receives is shown by FIG.
  • the user terminal 20 acquires information on the position of PDCCH (Common PDCCH) common to the user terminal 20, which is notified using MIB or SIB.
  • PDCCH Common PDCCH
  • the user terminal 20 receives the Common PDCCH based on the acquired information on the position of the Common PDCCH, and acquires information on PUCCH transmittable region patterns notified using the Common PDCCH.
  • the information of the PUCCH transmittable area pattern is, for example, information of an identifier associated with each of the plurality of transmittable area patterns shown in FIG.
  • the user terminal 20 acquires information of an index indicating a PUCCH transmission region, which is notified using PDCCH (UE-specific PDCCH) addressed to each user terminal 20.
  • PDCCH UE-specific PDCCH
  • the user terminal 20 specifies the transmittable area pattern to be applied by the radio base station 10 based on the information on the transmittable area pattern of the PUCCH. Then, the user terminal 20 identifies the PUCCH transmission area set for the user terminal 20 in the identified transmittable area pattern based on the information of the index indicating the PUCCH transmission area.
  • the radio base station 10 sets the PUCCH transmission area for the user terminal 20 based on the transmittable area pattern known in the radio base station 10 and the user terminal 20. Then, the radio base station 10 notifies the user terminal 20 of information of an index indicating a transmission area set for the user terminal 20. The user terminal 20 identifies the PUCCH transmission area based on the notified index information and the transmittable area pattern, and sends a PUCCH including a response signal indicating the decoding result of the DL data signal to the radio base station 10. Send.
  • an increase in the amount of information (the number of information bits) to be notified to the user terminal 20 can be suppressed, and the PUCCH transmission area can be flexibly set.
  • Second Configuration Example In the first configuration example described above, the example in which the transmittable area pattern is common to the plurality of user terminals 20 has been described. In the second configuration example, an example in which the transmittable area pattern is individually set for each user terminal 20 will be described.
  • FIG. 8 is a diagram showing an example of a transmission signal of the radio base station 10 and a transmission signal of the user terminal 20 according to the second configuration example of the present embodiment.
  • the horizontal axis of FIG. 8 indicates a time axis.
  • the arrow A1 in the transmission signal shown in FIG. 8 indicates a transmission point at which the DL signal and the UL signal are transmitted by a single carrier, as in FIG.
  • FIG. 8 shows PUCCH transmittable area patterns for user terminal # 0 and user terminal # 1, respectively.
  • the PUCCH transmittable area pattern for user terminal # 0 corresponds to the transmittable area pattern C shown in FIG. 5
  • the PUCCH transmittable area pattern for user terminal # 1 corresponds to the transmittable area shown in FIG. This corresponds to pattern A.
  • the transmittable area of area # 2 and subsequent areas included in the transmittable area pattern of PUCCH for user terminal # 1 is omitted for convenience of illustration.
  • the transmittable area pattern for user terminal # 0 is known in the radio base station 10 and the user terminal # 0.
  • the transmittable area pattern for user terminal # 1 is known in the radio base station 10 and the user terminal # 1.
  • the transmittable area pattern may be determined according to the specification, or may be notified by upper layer signal and / or broadcast information (eg, MIB (Master Information Block) and / or SIB (System Information Block)). good.
  • MIB Master Information Block
  • SIB System Information Block
  • FIG. 8 shows an example in which PUCCH transmittable area patterns for user terminal # 0 and user terminal # 1 are different.
  • the transmittable region pattern may be notified using PDCCH (UE-specific PDCCH) addressed to each user terminal 20.
  • PDCCH UE-specific PDCCH
  • the transmittable area pattern may be common to a plurality of user terminals 20.
  • the transmittable area pattern may be notified in the user terminal 20 using a common PDCCH (Common PDCCH).
  • PDCCH Common PDCCH
  • the setting method of the PUCCH transmission area is different from that in the first configuration example. Specifically, the PUCCH transmission area of each user terminal 20 starts from the transmission end timing of the DL signal addressed to each user terminal 20 (in the example of FIG. 8, the transmission end timing of PDSCH), and for each user terminal 20 It is set based on the PUCCH transmittable area pattern of.
  • the scheduler 101 when the scheduler 101 sets the PUCCH transmission area of the user terminal # 0, the scheduler 101 schedules the DL signal addressed to the user terminal # 0 and specifies the transmission end timing of the DL signal addressed to the user terminal # 0 Do. Then, the scheduler 101 sets a PUCCH transmittable area pattern for user terminal # 0, starting from the identified transmission end timing. Then, scheduler 101 specifies a transmittable area included in an area in which the DL signal is not transmitted and an area in which another UL signal is not received among the PUCCH transmittable area patterns for user terminal # 0. Then, scheduler 101 sets at least one of the specified transmittable areas as a PUCCH transmission area in user terminal # 0.
  • areas # 4 to # 7 Is a transmittable area included in the area where the DL signal is not transmitted.
  • the scheduler 101 sets the area # 5 as a PUCCH transmission area in the user terminal # 0.
  • the scheduler 101 when the scheduler 101 sets the PUCCH transmission area of the user terminal # 1, the scheduler 101 performs scheduling of the DL signal addressed to the user terminal # 1, and the transmission end timing of the DL signal addressed to the user terminal # 1. Identify Then, the scheduler 101 sets the PUCCH transmittable area pattern for the user terminal # 1 with the specified transmission end timing as a starting point. Then, scheduler 101 specifies a transmittable area included in an area in which the DL signal is not transmitted and an area in which another UL signal is not received among the transmittable area patterns of the PUCCH for user terminal # 1. Then, scheduler 101 sets at least one of the specified transmittable areas as a PUCCH transmission area in user terminal # 1.
  • areas # 0 and # 1 Is a transmittable area included in the area where the DL signal is not transmitted.
  • the scheduler 101 sets the area # 1 as a PUCCH transmission area in the user terminal # 1.
  • the scheduler 101 may set, for example, the area # 6 and / or the area # 7 included in the PUCCH transmittable area pattern for the user terminal # 0 as the PUCCH transmission area in the user terminal # 0. In this case, since area # 1 included in the PUCCH transmittable area pattern for user terminal # 1 and area # 6 and area # 7 included in the PUCCH transmittable area pattern for user terminal # 0 overlap, The scheduler 101 may set the area # 0 included in the PUCCH transmittable area pattern for the user terminal # 1 as the PUCCH transmission area in the user terminal # 1.
  • the mapping unit 208 of the user terminal 20 sets the PUCCH transmission area based on the information on the index acquired from the demodulation and decoding unit 205 and the known transmittable area pattern. At that time, the mapping unit 208 acquires information on the reception end timing of the DL signal from the demodulation / decoding unit 205, sets a known transmittable area pattern starting from the reception end timing, and indicates the PUCCH indicated by the index information. Map ACK / NACK in the transmission area.
  • the transmittable area pattern is not limited to the example shown in FIG.
  • any of the plurality of transmittable area patterns illustrated in FIG. 5 and / or FIG. 6 may be set for each user terminal 20.
  • the transmittable area pattern is set individually for each user terminal 20.
  • a method may be used in which the transmittable area pattern is associated with other information defined for each user terminal 20.
  • the other information defined for each user terminal 20 includes, for example, uplink transmission signal information on uplink signals transmitted by the user terminal 20, downlink transmission signal information on downlink signals received by the user terminal 20, uplink quality And at least one of downlink quality information on downlink quality.
  • the uplink transmission signal information is, for example, at least one of TBS (Transport Block Size) and MCS (Modulation and Coding Scheme) set for the uplink signal.
  • the downlink transmission signal information is, for example, at least one of TBS and MCS configured for the downlink signal.
  • TBS is merely an example, and may be a term indicating a transmission size and / or a reception size used in a future communication scheme.
  • CB Code Block
  • Transport Block Transport Block
  • MCS is merely an example, and may be a term corresponding to MCS intended for a modulation and / or coding scheme used in a future communication scheme.
  • the uplink quality information is, for example, at least one of uplink reference signal received power (RSRP) and reverberation signal received quality (RSRQ).
  • the downlink quality information is, for example, at least one of downlink RSRP and RSRQ.
  • RSRP uplink reference signal received power
  • RSRQ reverberation signal received quality
  • the terms “RSRP” and “RSRQ” are merely examples, and terms corresponding to “RSRP” and “RSRQ” indicating quality information for each antenna port used in a future communication scheme (eg, CSI (Channel State Information) —RSRP and CSI-RSRQ) ) May be.
  • CSI Channel State Information
  • TBS and MCS Information on TBS and MCS is set for each user terminal 20 in the radio base station 10 and notified to the user terminal 20, and thus is known in the user terminal 20 and the radio base station 10.
  • RSRP and RSRQ information is known in the user terminal 20 and the radio base station 10 because it is measured in the user terminal 20 and fed back to the radio base station 10.
  • a transmittable area pattern having a relatively large transmittable area size for example, pattern B in FIG. 5
  • the transmittable area sizes are compared.
  • a very small transmittable area pattern (for example, pattern A in FIG. 5) may be associated.
  • a transmittable area pattern for example, pattern B in FIG. 5 having a relatively large transmittable area size is associated. If the amount (the number of information bits) is less than the threshold, a transmittable area pattern (for example, pattern A in FIG. 5) having a relatively small transmittable area size may be associated.
  • the user terminal 20 specifies the transmittable area pattern based on the other information defined in the user terminal 20. .
  • the radio base station 10 since the radio base station 10 does not have to notify the user terminal 20 of the transmittable area pattern, it is possible to suppress an increase in the amount of information (the number of information bits) notified to the user terminal 20.
  • the PUCCH transmission area of each user terminal 20 is set with the transmission end timing of the DL signal addressed to each user terminal 20 (the PDSCH transmission end timing in the example of FIG. 8) as the starting point.
  • the starting point is not limited to the transmission end timing of the DL signal addressed to each user terminal 20.
  • the transmission start timing of the DL signal addressed to each user terminal 20 in the example of FIG. 8, PDCCH transmission start timing
  • the starting point may be set commonly to the plurality of user terminals 20.
  • the radio base station 10 sets the PUCCH transmission area for the user terminal 20 based on the transmittable area pattern known in the radio base station 10 and the user terminal 20. Then, the radio base station 10 notifies the user terminal 20 of information of an index indicating a transmission area set for the user terminal 20. The user terminal 20 identifies the PUCCH transmission area based on the notified index information and the transmittable area pattern, and sends a PUCCH including a response signal indicating the decoding result of the DL data signal to the radio base station 10. Send.
  • an increase in the amount of information (the number of information bits) to be notified to the user terminal 20 can be suppressed, and the PUCCH transmission area can be flexibly set.
  • the PUCCH transmission area for each user terminal 20 can be set more flexibly.
  • ⁇ Third configuration example> In the first configuration example and the second configuration example described above, the example in which the radio base station 10 notifies the user terminal 20 of the information of the index indicating the transmission area of the PUCCH has been described. In the third configuration example, an example in which the user terminal 20 sets a PUCCH transmission area without receiving a notification from the wireless base station 10 will be described.
  • FIG. 9 is a diagram showing an example of a transmission signal of the radio base station 10 and a transmission signal of the user terminal 20 according to the third configuration example of the present embodiment.
  • the horizontal axis of FIG. 9 indicates a time axis.
  • the arrow A1 in the transmission signal shown in FIG. 9 indicates a transmission point at which the DL signal and the UL signal are transmitted by a single carrier, as in FIG.
  • a predetermined margin is provided starting from the transmission end timing of the DL signal addressed to the user terminal # 0 transmitted from the radio base station 10. Then, the PUCCH transmission area of the user terminal # 0 is set to the later constant time area on the time axis of the predetermined margin. Similarly, a predetermined margin is provided starting from the transmission end timing of the DL signal addressed to the user terminal # 1 transmitted from the radio base station 10. Then, the PUCCH transmission area of the user terminal # 1 is set to the later constant time area on the time axis of the predetermined margin.
  • the predetermined margin is a difference between DL link and UL link switching time, DL link and / or UL link arrival time (e.g., transmission timing of DL signal in radio base station 10 and reception of the DL signal in user terminal 20) And the processing time in the radio base station 10 and the user terminal 20.
  • the scheduler 101 of the radio base station 10 schedules the DL signal addressed to the user terminal # 0, and specifies the transmission end timing of the DL signal addressed to the user terminal # 0. Then, the scheduler 101 sets a predetermined margin and a fixed time region as a PUCCH reception interval from the user terminal # 0 without transmitting another DL signal, starting from the specified transmission end timing. Similarly, the scheduler 101 schedules the DL signal addressed to the user terminal # 1 and specifies the transmission end timing of the DL signal addressed to the user terminal # 1. Then, the scheduler 101 sets a predetermined margin and a fixed time region as a PUCCH reception interval from the user terminal # 1 without transmitting another DL signal, starting from the identified transmission end timing.
  • the mapping unit 208 of the user terminal 20 acquires, from the demodulation / decoding unit 205, information on the DL signal reception end timing. Then, mapping section 208 provides a predetermined margin starting from reception end timing, sets a certain time domain after that on the time axis of the predetermined margin as a PUCCH transmission domain, and maps ACK / NACK.
  • the predetermined margin and / or the PUCCH constant time domain information may be the same for a plurality of user terminals 20, or are individually set for each user terminal 20. Also good.
  • predetermined margin and / or PUCCH constant time domain information is associated with other information (for example, at least one of TBS, MCS, RSRP, and RSRQ) defined for each user terminal 20. It is good.
  • the PUCCH transmission area for the user terminal 20 is based on the predetermined margin known in the radio base station 10 and the user terminal 20, and the information on the PUCCH constant time domain. It is set.
  • the user terminal 20 sets the PUCCH transmission area based on the known predetermined margin and the PUCCH constant time domain information, and shows the radio base station 10 the decoding result of the DL data signal. Transmit PUCCH including response signal.
  • the PUCCH transmission area is implicitly set to the common area in the radio base station 10 and the user terminal 20 without notifying the user terminal 20 of the information indicating the PUCCH transmission area. It is possible to suppress an increase in the amount of information (the number of information bits) to be notified.
  • each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • a wireless base station, a user terminal, and the like in one embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 10 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 performs a calculation by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performs communication by the communication device 1004 or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described scheduler 101, transmission signal generation units 102 and 206, coding / modulation units 103 and 207, mapping units 104 and 208, control units 108 and 203, channel estimation units 109 and 204, demodulation / decoding units 110 and 205 And the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the scheduler 101 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, a network controller, a network card, a communication module, or the like.
  • the above-described transmission units 105 and 209, antennas 106 and 201, and reception units 107 and 202 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • the various operations performed for communication with the terminals may be the base station and / or other network nodes other than the base station (eg, It is obvious that this may be performed by, but not limited to, MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, etc. may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, etc. may be sent and received via a transmission medium.
  • software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
  • wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
  • Information, signal The information, signals, etc. described herein may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • the channels and / or symbols may be signals.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell or the like.
  • radio resources may be indexed.
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station RRH for indoor use: Remote Communication service can also be provided by Radio Head.
  • the terms "cell” or “sector” refer to a part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • base station “eNB”, “cell” and “sector” may be used interchangeably herein.
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), femtocell, small cell, and the like.
  • the user terminal may be a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal by a person skilled in the art It may also be called a terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, a UE (User Equipment), or some other suitable term.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) according to the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • a radio frame may be comprised of one or more frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, and so on.
  • a subframe may be further comprised of one or more slots in the time domain.
  • the slot may be further configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier-frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a radio frame, a subframe, a slot, a minislot, and a symbol may be another name corresponding to each.
  • the base station performs scheduling to assign radio resources (frequency bandwidth usable in each mobile station, transmission power, etc.) to each mobile station.
  • the minimum time unit of scheduling may be called a TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • one minislot may be called a TTI
  • a resource unit is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers in frequency domain.
  • the time domain of the resource unit may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI long.
  • One TTI and one subframe may be configured of one or more resource units, respectively.
  • resource units may be referred to as resource blocks (RBs), physical resource blocks (PRBs: physical RBs), PRB pairs, RB pairs, scheduling units, frequency units, and subbands.
  • a resource unit may be configured of one or more REs.
  • 1 RE may be a resource of a unit smaller than the resource unit serving as a resource allocation unit (for example, the smallest resource unit), and is not limited to the name of RE.
  • the above-described radio frame structure is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, and the symbols and resource blocks included in the slots.
  • the number and the number of subcarriers included in the resource block can be variously changed.
  • notification of predetermined information is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
  • One aspect of the present invention is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本発明のユーザ端末(20)は、下りリンク制御信号と下りリンクデータ信号を含む下りリンク信号を無線基地局(10)から受信し、下りリンク制御信号を用いて下りリンクデータ信号を復調および復号し、複数の送信可能領域の中から下りリンク制御信号に含まれるインデックス情報によって指定された送信領域に、下りリンクデータ信号の復号結果を示す応答信号をマッピングし、応答信号を含む上りリンク制御信号を送信する。

Description

ユーザ端末及び無線通信方法
 本発明は、ユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。
 LTEの仕様では、下りリンクの通信方式としてOFDM(Orthogonal Frequency Division Multiplexing)が採用されている。OFDMの場合、14シンボルで構成されるリソースブロックにおいて、1シンボル毎に、制御信号を含む物理制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)とデータ信号を含む物理データチャネル(例えば、PDSCH:Physical Downlink Shared Channel)の領域が規定されている(非特許文献2、3)。
 次世代移動通信システムでは、PAPR(Peak to Average Power Ratio)を小さくすることが望まれる。したがって、5Gでは、下りリンクの通信方式として、PAPRが小さいシングルキャリア伝送方式が採用される可能性がある。シングルキャリア伝送方式の場合、時間領域において信号がマッピングされるため、OFDMの1シンボル毎に物理制御チャネルおよび物理データチャネルを規定する必要はなく、柔軟に設定することができる。また、シングルキャリア伝送方式では、下りリンク信号に含まれるデータ信号の復号結果をユーザ端末がフィードバックする上りリンクの物理制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)も柔軟に設定することができる。
 しかしながら、上りリンクの物理制御チャネルの具体的な設定方法については検討されていない。
 本発明の一態様は、上りリンクの物理制御チャネルを柔軟に設定することができるユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、下りリンク制御信号と下りリンクデータ信号を含む下りリンク信号を無線基地局から受信する受信部と、前記下りリンク制御信号を用いて前記下りリンクデータ信号を復調および復号する復調復号部と、複数の送信可能領域の中から前記下りリンク制御信号に含まれるインデックス情報によって指定された送信領域に、前記下りリンクデータ信号の復号結果を示す応答信号をマッピングするマッピング部と、前記応答信号を含む上りリンク制御信号を送信する送信部と、を具備する。
 本発明の一態様によれば、上りリンクの物理制御チャネルを柔軟に設定することができる。
本発明の一実施の形態に係る無線基地局の全体構成の一例を示すブロック図である。 本発明の一実施の形態に係るユーザ端末の全体構成の一例を示すブロック図である。 無線基地局の送信信号およびユーザ端末の送信信号の一例を示す図である。 本発明の一実施の形態の第1の構成例に係る無線基地局の送信信号およびユーザ端末の送信信号の一例を示す図である。 本発明の一実施の形態の第1の構成例における送信可能領域パターンの第1の例を示す図である。 本発明の一実施の形態の第1の構成例における送信可能領域パターンの第2の例を示す図である。 本発明の一実施の形態の第1の構成例におけるPUCCHの送信領域の通知方法の一例を示す図である。 本発明の一実施の形態の第2の構成例に係る無線基地局の送信信号およびユーザ端末の送信信号の一例を示す図である。 本発明の一実施の形態の第3の構成例に係る無線基地局の送信信号およびユーザ端末の送信信号の一例を示す図である。 本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。
(一実施の形態)
 本実施の形態に係る無線通信システムは、少なくとも、図1に示す無線基地局10、及び、図2に示すユーザ端末20(例えば、UE(User Equipment)とも呼ばれる)を備える。ユーザ端末20は、無線基地局10に接続している。
 無線基地局10は、ユーザ端末20に対して、下りリンク(DL:Downlink)の物理制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)を用いて、下り制御情報(例えば、DCI:Downlink Control Information)を含むDL制御信号を送信し、DLの物理データチャネル(例えば、下り共有チャネル:PDSCH:Physical Downlink Shared Channel)を用いてDLデータ信号及びDLデータ信号を復調するための復調用参照信号(Demodulation Reference Signal、以下、DMRS)を送信する。
 また、ユーザ端末20は、無線基地局10に対して、上りリンク(UL:Uplink)の物理制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)もしくはULの物理データチャネル(例えば、上り共有チャネル:PUSCH:Physical Uplink Shared Channel)を用いて、上り制御情報(例えば、UCI:Uplink Control Information)を含むUL制御信号を送信し、ULの物理データチャネル(例えば、上り共有チャネル:PUSCH:Physical Uplink Shared Channel)を用いてULデータ信号及びDMRSを送信する。
 なお、無線基地局10及びユーザ端末20が送受信するDLのチャネル及びULのチャネルは、上記のPDCCH、PDSCH、PUCCH、PUSCH等に限定されず、例えば、PBCH(Physical Broadcast Channel)、RACH(Random Access Channel)等の他のチャネルでもよい。
 また、本実施の形態では、無線基地局10とユーザ端末20との間の通信は、高周波数帯(例えば、70GHz帯)においてシングルキャリアを用いる例を説明する。本発明は、例えば、シングルキャリアの方式として、DFT-S-OFDM(DFT(Discrete Fourier Transform)-Spread-OFDM(Orthogonal Frequency Division Multiplexing)))であっても良い。あるいは、無線基地局10とユーザ端末20との間の通信は、マルチキャリアの方式であっても良い。また、本発明は、周波数帯についても特に限定されず、例えば、数十GHz程度の周波数帯であっても良い。
 <無線基地局>
 図1は、本実施の形態に係る無線基地局10の全体構成の一例を示すブロック図である。図1に示す無線基地局10は、スケジューラ101と、送信信号生成部102と、符号化・変調部103と、マッピング部104と、送信部105と、アンテナ106と、受信部107と、制御部108と、チャネル推定部109と、復調・復号部110と、を含む構成を採る。
 スケジューラ101は、DL信号(DLデータ信号、DL制御信号及びDMRS等)のスケジューリング(例えば、リソース割当)を行う。また、スケジューラ101は、UL信号(ULデータ信号、UL制御信号及びDMRS等)のスケジューリング(例えば、リソース割当)を行う。
 無線基地局10とユーザ端末20との間の通信がシングルキャリアを用いて行われる場合、スケジューラ101は、シングルキャリアの時間領域(時間方向)の無線リソースに対して各信号を割り当てるスケジューリングを行う。
 スケジューリングにおいて、スケジューラ101は、DLの物理制御チャネルの送信領域と、DLの物理データチャネルの送信領域を設定する。そして、スケジューラ101は、各送信領域において、DL信号のスケジューリングを行う。
 また、スケジューラ101は、少なくとも、ULの物理制御チャネルの受信領域(ユーザ端末20におけるULの物理制御チャネルの送信領域)を設定する。
 なお、スケジューラ101は、ULの物理データチャネルの受信領域を設定しても良い。この場合、スケジューラ101は、設定した各受信領域において、UL信号のスケジューリングを行う。
 なお、スケジューラ101において設定される、DLの物理制御チャネルおよび物理データチャネル、ならびに、ULの物理制御チャネルの構成の具体例については後述する。
 スケジューラ101は、リソース割当の情報を含むスケジューリング情報を送信信号生成部102及びマッピング部104に出力する。
 また、スケジューラ101は、後述する復調・復号部110から入力されるDLデータ信号の復号結果を示す信号に基づき、DLデータ信号の再送制御を行う。例えば、スケジューラ101は、DLデータ信号の復号結果に誤りがある場合、送信信号生成部102に対して、誤りが有ったDLデータ信号を再送する指示を行う。あるいは、スケジューラ101は、DLデータ信号の復号結果に誤りが無い場合、送信信号生成部102に対して、次のDLデータ信号を送信する指示を行う。
 また、スケジューラ101は、例えば、無線基地局10とユーザ端末20との間のチャネル品質に基づいて、DLデータ信号及びULデータ信号のMCS(Modulation and Coding Scheme)(符号化率、変調方式等)を設定し、MCS情報を送信信号生成部102及び符号化・変調部103へ出力する。なお、MCSは、無線基地局10が設定する場合に限定されず、ユーザ端末20が設定してもよい。ユーザ端末20がMCSを設定する場合、無線基地局10は、ユーザ端末20からMCS情報を受信すればよい(図示せず)。
 送信信号生成部102は、DLデータ信号と、DL制御信号とを含むDL信号を生成する。例えば、DL制御信号には、スケジューラ101から出力されたスケジューリング情報(例えば、DLデータ信号のリソース割当情報)又はMCS情報を含む下り制御情報(DCI:Downlink Control Information)が含まれる。
 また、送信信号生成部102は、スケジューラ101の指示に基づき、DLデータ信号の再送、または、次のDLデータ信号の送信を行うためのDL信号を生成する。
 送信信号生成部102は、生成した送信信号を符号化・変調部103に出力する。
 符号化・変調部103は、例えば、スケジューラ101から入力されるMCS情報に基づいて、送信信号生成部102から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部103は、変調後の送信信号をマッピング部104に出力する。
 マッピング部104は、スケジューラ101から入力されるスケジューリング情報(例えば、DLのリソース割当)に基づいて、符号化・変調部103から入力される送信信号を所定の無線リソースにマッピングする。また、マッピング部104は、スケジューリング情報に基づいて、参照信号(例えば、DMRS)を所定の無線リソースにマッピングする。マッピング部104は、無線リソースにマッピングされたDL信号を送信部105に出力する。
 送信部105は、マッピング部104から入力されるDL信号に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(DL信号)をアンテナ106から送信する。
 受信部107は、アンテナ106で受信された無線周波数信号(UL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、UL信号を制御部108に出力する。
 制御部108は、スケジューラ101から入力されるスケジューリング情報(ULのリソース割当)に基づいて、受信部107から入力されるUL信号からUL制御信号、ULデータ信号及びDMRSを分離(デマッピング)する。そして、制御部108は、UL制御信号およびULデータ信号を復調・復号部110に出力し、DMRSをチャネル推定部109に出力する。
 チャネル推定部109は、UL信号のDMRSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部110に出力する。
 復調・復号部110は、制御部108から入力されるUL制御信号に対して復調及び復号処理を行う。UL制御信号には、ユーザ端末20において復号されたDLデータ信号の復号結果を示す応答信号が含まれている。例えば、DLデータ信号の復号結果に誤りがある場合、DLデータ信号の復号結果を示す信号はNACK(Negative ACKnowledgement)(または、否定応答)であり、DLデータ信号の復号結果に誤りが無い場合、DLデータ信号の復号結果を示す信号はACK(ACKnowledgement)(または、肯定応答)である。復調・復号部110は、DLデータの復号結果を示す応答信号(例えば、ACKまたはNACK)をスケジューラ101へ出力する。以下では、ACKまたはNACKを、適宜、ACK/NACKと記載する。
 復調・復号部110は、チャネル推定部109から入力されるチャネル推定値に基づいて、制御部108から入力されるULデータ信号に対して復調及び復号処理を行う。復調・復号部110は、復調後のULデータ信号を、アプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。
 <ユーザ端末>
 図2は、本実施の形態に係るユーザ端末20の全体構成の一例を示すブロック図である。図2に示すユーザ端末20は、アンテナ201と、受信部202と、制御部203と、チャネル推定部204と、復調・復号部205と、送信信号生成部206と、符号化・変調部207と、マッピング部208と、送信部209と、を含む構成を採る。
 受信部202は、アンテナ201で受信された無線周波数信号(DL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、DL信号を制御部203に出力する。DL信号には、少なくとも、DLデータ信号、DL制御信号及びDMRSが含まれる。
 制御部203は、受信部202から入力されるDL信号からDL制御信号及びDMRSを分離(デマッピング)する。そして、制御部203は、DL制御信号を復調・復号部205に出力し、DMRSをチャネル推定部204に出力する。
 また、制御部203は、復調・復号部205から入力されるスケジューリング情報(例えば、DLのリソース割当情報)に基づいて、DL信号からDLデータ信号を分離(デマッピング)し、DLデータ信号を復調・復号部205に出力する。
 チャネル推定部204は、分離したDMRSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部205に出力する。
 復調・復号部205は、制御部203から入力されるDL制御信号を復調する。また、復調・復号部205は、復調後のDL制御信号に対して復号処理(例えば、ブラインド検出処理)を行う。復調・復号部205は、DL制御信号を復号することによって得られた自機宛てのスケジューリング情報(DL/ULのリソース割当)を制御部203及びマッピング部208に出力し、ULデータ信号に対するMCS情報を符号化・変調部207へ出力する。
 また、復調・復号部205は、制御部203から入力されるDL制御信号に含まれるDLデータ信号に対するMCS情報に基づいて、チャネル推定部204から入力されるチャネル推定値を用いて制御部203から入力されるDLデータ信号に対して復調及び復号処理を行う。また、復調・復号部205は、復号後のDLデータ信号をアプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。
 また、復調・復号部205は、復号後のDLデータ信号に対して誤り検出を行い、復号後のDLデータ信号に誤りがあるか否かを判定する。復調・復号部205は、判定結果を送信信号生成部206へ出力する。
 送信信号生成部206は、送信信号(ULデータ信号又はUL制御信号を含む)を生成し、生成した送信信号を符号化・変調部207に出力する。
 例えば、送信信号生成部206は、復調・復号部205から、DLデータ信号の復号結果に誤りがある判定結果を取得した場合、NACKを生成し、DLデータ信号の復号結果に誤りが無い判定結果を取得した場合、ACKを生成する。
 符号化・変調部207は、例えば、復調・復号部205から入力されるMCS情報に基づいて、送信信号生成部206から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部207は、変調後の送信信号をマッピング部208に出力する。
 マッピング部208は、復調・復号部205から入力されるスケジューリング情報(ULのリソース割当)に基づいて、符号化・変調部207から入力される送信信号を所定の無線リソースにマッピングする。また、マッピング部208は、スケジューリング情報に基づいて、参照信号(例えば、DMRS)を所定の無線リソースにマッピングする。
 マッピング部208は、無線リソースにマッピングされたUL信号を送信部209に出力する。
 送信部209は、マッピング部208から入力されるUL信号(少なくとも、UL制御信号を含む)に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(UL信号)をアンテナ201から送信する。
 <送信信号の構成例>
 次に、本実施の形態における、無線基地局10およびユーザ端末20の送信信号の構成例について説明する。
 なお、以下では、DLの物理制御チャネルをPDCCH、DLの物理データチャネルをPDSCH、ULの物理制御チャネルをPUCCHと記載する。
 また、以下では、PDCCHに含まれる信号を送信/受信することを、適宜、PDCCHを送信/受信する、と記載する。同様に、PDSCHに含まれる信号を送信/受信することを、適宜、PDSCHを送信/受信する、と記載する。同様に、PUCCHに含まれる信号を送信/受信することを、適宜、PUCCHを送信/受信する、と記載する。
 図3は、無線基地局10の送信信号およびユーザ端末20の送信信号の一例を示す図である。図3の横軸は時間軸を示している。なお、図3では、2つのユーザ端末20を区別するために、それぞれ、ユーザ端末#0およびユーザ端末#1と記載している。
 図3に示す送信信号における矢印A1は、DL信号およびUL信号がシングルキャリアによって送信される送信点を示している。以下では、矢印A1に示す送信点をサンプル点と呼ぶことがある。サンプル点の間隔は、例えば、「1/システム帯域幅」である。なお、矢印A1に示す送信点は、サブキャリア、トーン、リソースエレメント、リソースグループ、コンポーネント、シンボル、ミニシンボル、スロット、ミニスロットまたはサンプルと呼んでもよい。すなわち、矢印A1に示す送信点は、サンプル点という名称に限定されない。また、前述で列挙した名称に限定されない。
 図3に示す構成では、無線基地局10がユーザ端末#0およびユーザ端末#1それぞれのPDCCHおよびPDSCHを送信する。シングルキャリアでは、OFDM方式のように特定の区間(例えば、1OFDMシンボルの区間)に対してFFT(Fast Fourier Transform)を行うなどの処理が必要無いため、時間領域において信号(チャネル)が1サンプル毎に設定される。そのため、PDCCHおよび/またはPDSCHなどの長さおよび/または配置などを柔軟に構成できる。以下、シングルキャリアにおける、このような柔軟な構成を適宜「Flexibleシングルキャリア構成」と呼ぶ。
 Flexibleシングルキャリア構成では、無線基地局10の送信信号が柔軟に構成されると共に、ユーザ端末20の送信信号も柔軟に構成される。Flexibleシングルキャリア構成では、例えば、1サンプル毎にPUCCHを割り当てるか否かを設定できるため、PUCCHが柔軟に構成される。PUCCHには、例えば、ユーザ端末20がPDSCHに含まれるデータ信号を復号した結果を示す応答信号(例えば、ACK/NACK)が含まれる。
 PUCCHが柔軟に構成されるため、無線基地局10は、各ユーザ端末20に対して、PDCCHに含まれるDCIを用いて、ACK/NACKの送信タイミング(PUCCHの送信領域)を通知する。
 図3では、無線基地局10は、ユーザ端末#0に対して、PDCCHに含まれるDCIを用いて、Nサンプル後(Nは、1以上の整数)がACK/NACKの送信タイミングであることを通知する。ユーザ端末#0は、DCIを含むPDCCHを受信し、ACK/NACKの送信タイミングを取得する。また、ユーザ端末#0は、PDSCHを受信し、PDSCHに含まれるデータ信号を復調および復号する。そして、ユーザ端末#0は、PDSCHの受信を終えたタイミングから、Nサンプル後に、ACK/NACKを含むPUCCHを送信する。
 同様に、図3では、無線基地局10は、ユーザ端末#1に対して、PDCCHに含まれるDCIを用いて、Nサンプル後(Nは、1以上の整数)にACK/NACK送信タイミングであることを通知する。ユーザ端末#1は、DCIを含むPDCCHを受信し、ACK/NACK送信タイミングを取得する。また、ユーザ端末#1は、PDSCHを受信し、PDSCHに含まれるデータ信号を復調および復号する。そして、ユーザ端末#1は、PDSCHの受信を終えたタイミングから、Nサンプル後に、ACK/NACKを含むPUCCHを送信する。
 図3では、無線基地局10は、ACK/NACKの送信タイミングとなるサンプル数を通知する。サンプル数を通知する場合では、通知するための情報ビット数が増加してしまう。
 以下、本実施の形態では、ACK/NACKの送信タイミングを通知するための情報ビット数の増加を抑制し、ACK/NACKの送信領域である上りリンクの物理制御チャネル(例えば、PUCCH)を柔軟に設定することができる方法を説明する。
 <第1の構成例>
 図4は、本実施の形態の第1の構成例に係る無線基地局10の送信信号およびユーザ端末20の送信信号の一例を示す図である。図4の横軸は時間軸を示している。なお、図4では、2つのユーザ端末20を区別するために、それぞれ、ユーザ端末#0およびユーザ端末#1と記載している。また、図4に示す送信信号における矢印A1は、図3と同様、DL信号およびUL信号がシングルキャリアによって送信される送信点を示している。
 また、図4には、複数のPUCCHの送信可能領域が示されている。以下では、時間領域(および周波数領域)のリソースにおける複数のPUCCHの送信可能領域(図4では、領域#0~領域#4)の配置を示す配置パターンを送信可能領域パターンと記載する。送信可能領域は、PUCCHを送信可能な時間領域の位置および長さを示している。送信可能領域パターンは、無線基地局10およびユーザ端末20において既知である。また、第1の構成例において、送信可能領域パターンは、複数のユーザ端末20において共通である。つまり、第1の構成例では、複数の送信可能領域は、複数のユーザ端末20において共通な配置パターンに従って配置されている。
 送信可能領域パターンは、仕様により決められても良いし、上位レイヤの信号および/または報知情報(例えば、MIB(Master Information Block)、および/または、SIB(System Information Block))により通知されても良い。あるいは、送信可能領域パターンは、ユーザ端末20において共通のPDCCH(Common PDCCH)により通知されてもよい。
 無線基地局10のスケジューラ101は、例えば、無線通信システムの要求条件(例えば、システムの通信速度、通信容量、遅延時間、および、無線基地局10に接続するユーザ端末20の数)に応じて、ユーザ端末#0およびユーザ端末#1それぞれのPDCCHおよびPDSCHの配置および長さを設定する。
 また、スケジューラ101は、例えば、ユーザ端末20宛のデータ量(例えば、DL制御信号、および/または、DLデータ信号のサイズ)に応じて、ユーザ端末#0およびユーザ端末#1それぞれのPDCCHおよびPDSCHの配置および長さを設定する。
 そして、スケジューラ101は、設定したPDCCHおよびPDSCHにおいて、DL信号のスケジューリングを行う。PDCCHとPDSCHのそれぞれの長さおよび配置を示す情報(以下、設定情報)は、無線基地局10からユーザ端末20へ通知される。
 また、スケジューラ101は、PUCCHの送信可能領域パターンに基づいて、ユーザ端末#0が送信するPUCCHおよびユーザ端末#1が送信するPUCCHの送信領域を設定する。
 例えば、スケジューラ101は、PUCCHの送信可能領域パターンに含まれる複数の送信可能領域のうち、DL信号を送信しない領域、および、他のUL信号を受信しない領域に含まれる送信可能領域を特定する。そして、スケジューラ101は、特定した送信可能領域のうち、各ユーザ端末20宛の送信信号の後に設けられる送信可能領域を、当該ユーザ端末20におけるPUCCHの送信領域として設定する。
 図4の例では、送信可能領域のうち、領域#3および領域#4がDL信号を送信しない領域に含まれる送信可能領域である。また、領域#3および領域#4は、いずれも、ユーザ端末20(ユーザ端末#0およびユーザ端末#1)宛の送信信号の後に設けられている。スケジューラ101は、領域#3を、ユーザ端末#0におけるPUCCHの送信領域として設定し、領域#4を、ユーザ端末#1におけるPUCCHの送信領域として設定する。
 なお、スケジューラ101は、領域#4を、ユーザ端末#0におけるPUCCHの送信領域として設定し、領域#3を、ユーザ端末#1におけるPUCCHの送信領域として設定してもよい。
 スケジューラ101は、各ユーザ端末20宛のPDCCHに含まれるDCIを用いて、PUCCHの送信領域を示すインデックスの情報を通知する。例えば、スケジューラ101は、ユーザ端末#0宛のPDCCHに含まれるDCIを用いて、PUCCHの送信領域として設定した領域#3を示すインデックスの情報を通知し、ユーザ端末#1宛のPDCCHに含まれるDCIを用いて、PUCCHの送信領域として設定した領域#4を示すインデックスの情報を通知する。
 ユーザ端末20は、無線基地局10から送信されたDL信号を受信すると、復調処理および復号処理を行う。その際、ユーザ端末20の復調・復号部205は、設定情報に基づいて、DL信号のPDCCHの配置および長さを特定し、特定したPDCCHにマッピングされているDL制御信号の復調処理および復号処理を行う。そして、復調・復号部205は、DL制御信号を用いて、PDSCHにマッピングされているDLデータ信号の復調処理および復号処理を行う。
 復調・復号部205は、DL制御信号のDCIに含まれるインデックスの情報をマッピング部208へ出力する。また、復調・復号部205は、DLデータ信号の復号処理を行い、DLデータ信号に誤りがあるか否かを判定する。復調・復号部205は、判定結果を送信信号生成部206へ出力する。
 送信信号生成部206は、DLデータ信号に誤りがある判定結果を取得した場合、NACKを生成し、DLデータ信号に誤りが無い判定結果を取得した場合、ACKを生成する。送信信号生成部206は、ACK/NACKを符号化・変調部207へ出力する。
 符号化・変調部207は、ACK/NACKに対して、符号化処理および変調処理を行う。符号化・変調部207は、符号化処理および変調処理を施したACK/NACKをマッピング部208へ出力する。
 マッピング部208は、復調・復号部205から取得したインデックスの情報および既知の送信可能領域パターンに基づいて、PUCCHの送信領域を設定し、設定したPUCCHの送信領域においてACK/NACKをマッピングする。つまり、マッピング部208は、複数の送信可能領域の中から、インデックスの情報によって指定された送信領域にACK/NACKをマッピングする。
 なお、送信可能領域パターンは、図4に示す例に限られない。以下、送信可能領域パターンのバリエーションについて説明する。
 図5は、本実施の形態の第1の構成例における送信可能領域パターンの第1の例を示す図である。図5の横軸は時間軸である。図5には、送信可能領域パターンA~送信可能領域パターンDの4つの送信可能領域パターンが示されている。なお、送信可能領域パターンAは、図4に示した送信可能領域パターンに相当する。
 送信可能領域パターンAと送信可能領域パターンBに示すように、1つの送信可能領域の時間領域の長さは変更されても良い。
 また、送信可能領域パターンCに示すように、送信可能領域は、時間領域において連続して設定されていてもよい。
 また、送信可能領域パターンDに示すように、送信可能領域は、時間領域において重なっていてもよい。
 なお、複数のユーザ端末20が同一の周波数帯域においてPUCCHを送信する場合、送信可能領域パターンDにおける領域#0と領域#1は、異なるユーザ端末20のPUCCHの送信領域として設定されない。
 なお、図5に示した送信可能領域パターンは、1つの周波数帯域における送信可能領域を規定するパターンである。次に、複数の周波数帯域の間でPUCCHを送信する帯域を切替える(周波数ホッピングを行う)場合の、送信可能領域パターンのバリエーションについて説明する。
 図6は、本実施の形態の第1の構成例における送信可能領域パターンの第2の例を示す図である。図6の横軸は時間軸であり、縦軸は周波数軸である。図6には、図5に示した送信可能領域パターンAと、図5に示していない送信可能領域パターンEが示されている。
 送信可能領域パターンEでは、1つの送信可能領域(例えば、領域#1)が2つの周波数帯域B1およびB2において設定されている。なお、1つの送信可能領域として設定されている、2つの周波数帯域B1およびB2の部分領域は時間軸方向では重複しない。
 なお、図6では、2つの周波数帯域B1およびB2において1つの送信可能領域が設定される例を示した。本発明は、1つの送信可能領域が、3つ以上の周波数帯域において設定されていても良い。
 次に、無線基地局10からユーザ端末20へ通知されるPUCCHの送信領域の通知方法の一例について説明する。
 図7は、本実施の形態の第1の構成例におけるPUCCHの送信領域の通知方法の一例を示す図である。図7の横軸は時間軸である。図7には、ユーザ端末20が受信する受信信号が示されている。
 まず、ユーザ端末20は、MIBまたはSIBを用いて通知される、ユーザ端末20に共通のPDCCH(Common PDCCH)の位置の情報を取得する。
 次に、ユーザ端末20は、取得したCommon PDCCHの位置の情報に基づいて、Common PDCCHを受信し、Common PDCCHを用いて通知される、PUCCHの送信可能領域パターンの情報を取得する。PUCCHの送信可能領域パターンの情報とは、例えば、図5に示した複数の送信可能領域パターンそれぞれに対応付けられた識別子の情報である。
 次に、ユーザ端末20は、各ユーザ端末20宛のPDCCH(UE-specific PDCCH)を用いて通知される、PUCCHの送信領域を示すインデックスの情報を取得する。
 ユーザ端末20は、PUCCHの送信可能領域パターンの情報に基づき、無線基地局10が適用する送信可能領域パターンを特定する。そして、ユーザ端末20は、PUCCHの送信領域を示すインデックスの情報に基づき、特定した送信可能領域パターンにおける、ユーザ端末20に設定されたPUCCHの送信領域を特定する。
 <第1の構成例の効果>
 上述した第1の構成例では、無線基地局10は、無線基地局10およびユーザ端末20において既知である送信可能領域パターンに基づいて、ユーザ端末20に対してPUCCHの送信領域を設定する。そして、無線基地局10は、ユーザ端末20に対して設定した送信領域を示すインデックスの情報を、ユーザ端末20に通知する。ユーザ端末20は、通知されたインデックスの情報と送信可能領域パターンに基づいて、PUCCHの送信領域を特定し、無線基地局10に対して、DLデータ信号の復号結果を示す応答信号を含むPUCCHを送信する。この方法によって、ユーザ端末20に通知する情報量(情報ビット数)の増加を抑制し、PUCCHの送信領域を柔軟に設定できる。
 <第2の構成例>
 上述した第1の構成例では、送信可能領域パターンが、複数のユーザ端末20において共通である例について説明した。第2の構成例では、送信可能領域パターンが、ユーザ端末20毎に個別に設定される例について説明する。
 図8は、本実施の形態の第2の構成例に係る無線基地局10の送信信号およびユーザ端末20の送信信号の一例を示す図である。図8の横軸は時間軸を示している。なお、図8では、2つのユーザ端末20を区別するために、それぞれ、ユーザ端末#0およびユーザ端末#1と記載している。また、図8に示す送信信号における矢印A1は、図3と同様、DL信号およびUL信号がシングルキャリアによって送信される送信点を示している。
 また、図8には、ユーザ端末#0およびユーザ端末#1それぞれに対する、PUCCHの送信可能領域パターンが示されている。ユーザ端末#0用のPUCCHの送信可能領域パターンは、図5に示した送信可能領域パターンCに相当し、ユーザ端末#1用のPUCCHの送信可能領域パターンは、図5に示した送信可能領域パターンAに相当する。なお、図8では、ユーザ端末#1用のPUCCHの送信可能領域パターンに含まれる、領域#2以降の送信可能領域を、図示の便宜上、省略する。
 ユーザ端末#0用の送信可能領域パターンは、無線基地局10およびユーザ端末#0において既知である。ユーザ端末#1用の送信可能領域パターンは、無線基地局10およびユーザ端末#1において既知である。
 送信可能領域パターンは、仕様により決められても良いし、上位レイヤの信号および/または報知情報(例えば、MIB(Master Information Block)、および/または、SIB(System Information Block))により通知されても良い。
 なお、図8では、ユーザ端末#0およびユーザ端末#1それぞれに対するPUCCHの送信可能領域パターンが異なる例を示している。この場合、送信可能領域パターンは、各ユーザ端末20宛のPDCCH(UE-specific PDCCH)を用いて通知されてもよい。
 また、上述した第1の構成例と同様、送信可能領域パターンは、複数のユーザ端末20において共通であっても良い。この場合、送信可能領域パターンは、ユーザ端末20において共通のPDCCH(Common PDCCH)を用いて通知されてもよい。
 第2の構成例では、PUCCHの送信領域の設定方法が、第1の構成例と異なる。具体的には、各ユーザ端末20のPUCCHの送信領域は、各ユーザ端末20宛のDL信号の送信終了タイミング(図8の例では、PDSCHの送信終了タイミング)を起点とし、各ユーザ端末20用のPUCCHの送信可能領域パターンに基づいて設定される。
 例えば、スケジューラ101がユーザ端末#0のPUCCHの送信領域を設定する場合、スケジューラ101は、ユーザ端末#0宛のDL信号のスケジューリングを行い、ユーザ端末#0宛のDL信号の送信終了タイミングを特定する。そして、スケジューラ101は、特定した送信終了タイミングを起点として、ユーザ端末#0用のPUCCHの送信可能領域パターンを設定する。そして、スケジューラ101は、ユーザ端末#0用のPUCCHの送信可能領域パターンのうち、DL信号を送信しない領域、および、他のUL信号を受信しない領域に含まれる送信可能領域を特定する。そして、スケジューラ101は、特定した送信可能領域のうち、少なくとも1つをユーザ端末#0におけるPUCCHの送信領域として設定する。
 図8の例では、ユーザ端末#0のPDSCHの送信終了タイミングを起点として設定されたユーザ端末#0用のPUCCHの送信可能領域パターンに含まれる送信可能領域のうち、領域#4~領域#7がDL信号を送信しない領域に含まれる送信可能領域である。スケジューラ101は、領域#5を、ユーザ端末#0におけるPUCCHの送信領域として設定する。
 また、例えば、スケジューラ101がユーザ端末#1のPUCCHの送信領域を設定する場合、スケジューラ101は、ユーザ端末#1宛のDL信号のスケジューリングを行い、ユーザ端末#1宛のDL信号の送信終了タイミングを特定する。そして、スケジューラ101は、特定した送信終了タイミングを起点として、ユーザ端末#1用のPUCCHの送信可能領域パターンを設定する。そして、スケジューラ101は、ユーザ端末#1用のPUCCHの送信可能領域パターンのうち、DL信号を送信しない領域、および、他のUL信号を受信しない領域に含まれる送信可能領域を特定する。そして、スケジューラ101は、特定した送信可能領域のうち、少なくとも1つをユーザ端末#1におけるPUCCHの送信領域として設定する。
 図8の例では、ユーザ端末#1のPDSCHの送信終了タイミングを起点として設定されたユーザ端末#1用のPUCCHの送信可能領域パターンに含まれる送信可能領域のうち、領域#0および領域#1がDL信号を送信しない領域に含まれる送信可能領域である。スケジューラ101は、領域#1を、ユーザ端末#1におけるPUCCHの送信領域として設定する。
 なお、スケジューラ101は、例えば、ユーザ端末#0用のPUCCHの送信可能領域パターンに含まれる領域#6および/または領域#7を、ユーザ端末#0におけるPUCCHの送信領域として設定してもよい。この場合、ユーザ端末#1用のPUCCHの送信可能領域パターンに含まれる領域#1とユーザ端末#0用のPUCCHの送信可能領域パターンに含まれる領域#6および領域#7とが重複するため、スケジューラ101は、ユーザ端末#1用のPUCCHの送信可能領域パターンに含まれる領域#0を、ユーザ端末#1におけるPUCCHの送信領域として設定してもよい。
 各ユーザ端末20に設定されたPUCCHの送信領域を示すインデックスの情報は、第1の構成例と同様に、各ユーザ端末20宛のPDCCHに含まれるDCIを用いて通知される。
 ユーザ端末20のマッピング部208は、第1の構成例と同様に、復調・復号部205から取得したインデックスの情報および既知の送信可能領域パターンに基づいて、PUCCHの送信領域を設定する。その際、マッピング部208は、復調・復号部205から、DL信号の受信終了タイミングの情報を取得し、受信終了タイミングを起点として既知の送信可能領域パターンを設定し、インデックスの情報が示すPUCCHの送信領域においてACK/NACKをマッピングする。
 なお、第2の構成例においても、第1の構成例と同様に、送信可能領域パターンは、図8に示す例に限られない。例えば、ユーザ端末20毎に、図5および/または図6に示した複数の送信可能領域パターンのいずれかが設定されても良い。
 また、第2の構成例では、送信可能領域パターンが、ユーザ端末20毎に個別に設定される。この場合、送信可能領域パターンとユーザ端末20毎に定められる他の情報とを対応づける方法を用いても良い。
 ユーザ端末20毎に定められる他の情報とは、例えば、ユーザ端末20が送信する上りリンク信号に関する上りリンク送信信号情報、ユーザ端末20が受信する下り信号に関する下りリンク送信信号情報、上りリンクの品質に関する上りリンク品質情報、および、下りリンクの品質に関する下りリンク品質情報の少なくとも1つである。
 上りリンク送信信号情報は、例えば、上りリンク信号に対して設定されるTBS(Transport Block Size)およびMCS(Modulation and Coding Scheme)の少なくとも1つである。下りリンク送信信号情報は、例えば、下りリンク信号に対して設定されるTBSおよびMCSの少なくとも1つである。ただし、TBSという用語はあくまで一例であり、将来の通信方式において用いられる送信サイズおよび/または受信サイズを示す用語であってもよい。例えば、TBSの代わりに、TB(Transport Block)を細分化したブロックであるCB(Code Block)のサイズに相当する用語であってもよい。また、MCSという用語はあくまで一例であり、将来の通信方式において用いられる変調および/または符号化方式を意図したMCSに相当する用語であってもよい。
 上りリンク品質情報は、例えば、上りリンクのRSRP(Reference Signal Received Power)およびRSRQ(Reverence Signal Received Quality)の少なくとも1つである。下りリンク品質情報は、例えば、下りリンクのRSRPおよびRSRQの少なくとも1つである。ただし、RSRPおよびRSRQという用語はあくまで一例であり、将来の通信方式において用いられるアンテナポート毎の品質情報を示すRSRPおよびRSRQに相当する用語(例えば、CSI(Channel State Information)-RSRPおよびCSI-RSRQ)であってもよい。
 TBSおよびMCSの情報は、無線基地局10においてユーザ端末20毎に設定され、ユーザ端末20に通知されるため、ユーザ端末20および無線基地局10において既知である。また、RSRPおよびRSRQの情報は、ユーザ端末20において測定され、無線基地局10にフィードバックされるため、ユーザ端末20および無線基地局10において既知である。
 例えば、RSRPが閾値以下の場合、送信可能領域のサイズが比較的大きい送信可能領域パターン(例えば、図5におけるパターンB)が対応づけられ、RSRPが閾値より大きい場合、送信可能領域のサイズが比較的小さい送信可能領域パターン(例えば、図5におけるパターンA)が対応づけられていても良い。そして、RSRPが閾値以下の場合、低い符号化率および/または繰り返し(Repetition)を用いても良い。低い符号化率および/または繰り返し(Repetition)を用いた場合、無線基地局10におけるPUCCHの受信品質の低下を抑制できる。
 また、例えば、PUCCHにマッピングされる情報量(情報ビット数)が閾値以上の場合、送信可能領域のサイズが比較的大きい送信可能領域パターン(例えば、図5におけるパターンB)が対応づけられ、情報量(情報ビット数)が閾値未満の場合、送信可能領域のサイズが比較的小さい送信可能領域パターン(例えば、図5におけるパターンA)が対応づけられていても良い。
 送信可能領域パターンとユーザ端末20毎に定められる他の情報とを対応づける方法を用いた場合、ユーザ端末20は、ユーザ端末20に定められる他の情報に基づいて、送信可能領域パターンを特定する。この方法では、無線基地局10が送信可能領域パターンをユーザ端末20に通知しなくても良いため、ユーザ端末20に通知する情報量(情報ビット数)の増加を抑制できる。
 なお、上述した第2の構成例では、各ユーザ端末20のPUCCHの送信領域が各ユーザ端末20宛のDL信号の送信終了タイミング(図8の例では、PDSCHの送信終了タイミング)を起点として設定される例について説明した。起点は、各ユーザ端末20宛のDL信号の送信終了タイミングに限られず、例えば、各ユーザ端末20宛のDL信号の送信開始タイミング(図8の例では、PDCCHの送信開始タイミング)であっても良い。また、起点は、複数のユーザ端末20において共通に設定されていても良い。
 <第2の構成例の効果>
 上述した第2の構成例では、無線基地局10は、無線基地局10およびユーザ端末20において既知である送信可能領域パターンに基づいて、ユーザ端末20に対してPUCCHの送信領域を設定する。そして、無線基地局10は、ユーザ端末20に対して設定した送信領域を示すインデックスの情報を、ユーザ端末20に通知する。ユーザ端末20は、通知されたインデックスの情報と送信可能領域パターンに基づいて、PUCCHの送信領域を特定し、無線基地局10に対して、DLデータ信号の復号結果を示す応答信号を含むPUCCHを送信する。この方法によって、ユーザ端末20に通知する情報量(情報ビット数)の増加を抑制し、PUCCHの送信領域を柔軟に設定できる。
 また、第2の構成例では、ユーザ端末20毎に送信可能領域パターンが設定されるため、ユーザ端末20毎のPUCCHの送信領域をより柔軟に設定できる。
 <第3の構成例>
 上述した第1の構成例および第2の構成例では、無線基地局10がユーザ端末20に対して、PUCCHの送信領域を示すインデックスの情報を通知する例について説明した。第3の構成例では、ユーザ端末20が、無線基地局10からの通知を受けることなく、PUCCHの送信領域を設定する例について説明する。
 図9は、本実施の形態の第3の構成例に係る無線基地局10の送信信号およびユーザ端末20の送信信号の一例を示す図である。図9の横軸は時間軸を示している。なお、図9では、2つのユーザ端末20を区別するために、それぞれ、ユーザ端末#0およびユーザ端末#1と記載している。また、図9に示す送信信号における矢印A1は、図3と同様、DL信号およびUL信号がシングルキャリアによって送信される送信点を示している。
 図9の例では、無線基地局10から送信されるユーザ端末#0宛のDL信号の送信終了タイミングを起点として所定のマージンが設けられる。そして、ユーザ端末#0のPUCCHの送信領域は、所定のマージンの時間軸において後の一定の時間領域に設定されている。同様に、無線基地局10から送信されるユーザ端末#1宛のDL信号の送信終了タイミングを起点として所定のマージンが設けられる。そして、ユーザ端末#1のPUCCHの送信領域は、所定のマージンの時間軸において後の一定の時間領域に設定されている。
 所定のマージンは、DLリンクとULリンクとの切替時間、DLリンクおよび/またはULリンクの到来時間の差(例えば、無線基地局10におけるDL信号の送信タイミングとユーザ端末20における当該DL信号の受信タイミングとの差)、無線基地局10およびユーザ端末20における処理時間などを考慮して設けられる。
 所定のマージン、および、PUCCHの一定の時間領域の情報は、無線基地局10および各ユーザ端末20において既知である。
 無線基地局10のスケジューラ101は、ユーザ端末#0宛のDL信号のスケジューリングを行い、ユーザ端末#0宛のDL信号の送信終了タイミングを特定する。そして、スケジューラ101は、特定した送信終了タイミングを起点として、所定のマージンおよび一定の時間領域を、他のDL信号を送信せずにユーザ端末#0からのPUCCHの受信区間として設定する。同様に、スケジューラ101は、ユーザ端末#1宛のDL信号のスケジューリングを行い、ユーザ端末#1宛のDL信号の送信終了タイミングを特定する。そして、スケジューラ101は、特定した送信終了タイミングを起点として、所定のマージンおよび一定の時間領域を、他のDL信号を送信せずにユーザ端末#1からのPUCCHの受信区間として設定する。
 ユーザ端末20のマッピング部208は、復調・復号部205から、DL信号の受信終了タイミングの情報を取得する。そして、マッピング部208は、受信終了タイミングを起点として所定のマージンを設け、所定のマージンの時間軸において後の一定の時間領域をPUCCHの送信領域として設定し、ACK/NACKをマッピングする。
 なお、第3の構成例において、所定のマージンおよび/またはPUCCHの一定の時間領域の情報は、複数のユーザ端末20において同一であっても良いし、ユーザ端末20毎に個別に設定されていても良い。
 また、所定のマージンおよび/またはPUCCHの一定の時間領域の情報は、ユーザ端末20毎に定められる他の情報(例えば、TBS、MCS、RSRP、および、RSRQの少なくとも1つ)と対応づけられていても良い。
 <第3の構成例の効果>
 上述した第3の構成例では、無線基地局10およびユーザ端末20において既知である所定のマージン、および、PUCCHの一定の時間領域の情報に基づいて、ユーザ端末20に対してPUCCHの送信領域が設定される。ユーザ端末20は、既知である所定のマージン、および、PUCCHの一定の時間領域の情報に基づいて、PUCCHの送信領域を設定し、無線基地局10に対して、DLデータ信号の復号結果を示す応答信号を含むPUCCHを送信する。この方法によって、ユーザ端末20にPUCCHの送信領域を示す情報を通知することなく、無線基地局10およびユーザ端末20においてPUCCHの送信領域が暗示的に共通の領域に設定されるため、ユーザ端末20に通知する情報量(情報ビット数)の増加を抑制できる。
 以上、本発明の実施の形態について説明した。
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のスケジューラ101、送信信号生成部102,206、符号化・変調部103,207、マッピング部104,208、制御部108,203、チャネル推定部109,204、復調・復号部110,205などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10のスケジューラ101は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部105,209、アンテナ106,201、受信部107,202などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよいし、1ミニスロットをTTIと呼んでもよい。
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本発明の一態様は、移動通信システムに有用である。
 10 無線基地局
 20 ユーザ端末
 101 スケジューラ
 102,206 送信信号生成部
 103,207 符号化・変調部
 104,208 マッピング部
 105,209 送信部
 106,201 アンテナ
 107,202 受信部
 108,203 制御部
 109,204 チャネル推定部
 110,205 復調・復号部
 

Claims (6)

  1.  下りリンク制御信号と下りリンクデータ信号を含む下りリンク信号を無線基地局から受信する受信部と、
     前記下りリンク制御信号を用いて前記下りリンクデータ信号を復調および復号する復調復号部と、
     複数の送信可能領域の中から前記下りリンク制御信号に含まれるインデックス情報によって指定された送信領域に、前記下りリンクデータ信号の復号結果を示す応答信号をマッピングするマッピング部と、
     前記応答信号を含む上りリンク制御信号を送信する送信部と、
     を具備する、
     ユーザ端末。
  2.  前記複数の送信可能領域は、複数のユーザ端末において共通な配置パターンに従ってリソースに配置されている、
     請求項1に記載のユーザ端末。
  3.  前記複数の送信可能領域は、ユーザ端末毎に個別に設定される配置パターンに従ってリソースに配置されており、
     前記配置パターンを示す情報は、前記無線基地局から通知される、
     請求項1に記載のユーザ端末。
  4.  前記複数の送信可能領域は、ユーザ端末毎に個別に設定される配置パターンに従ってリソースに配置されており、
     前記配置パターンは、上りリンク送信信号情報、下りリンク送信信号情報、上りリンク品質情報、下りリンク品質情報の少なくとも1つの情報と対応付けられており、
     前記マッピング部は、前記ユーザ端末の前記情報に基づいて前記配置パターンを特定する、
     請求項1に記載のユーザ端末。
  5.  前記送信可能領域は、複数の周波数帯において規定されている、
     請求項1に記載のユーザ端末。
  6.  下りリンク制御信号と下りリンクデータ信号を含む下りリンク信号を無線基地局から受信し、
     前記下りリンク制御信号を用いて前記下りリンクデータ信号を復調および復号し、
     複数の送信可能領域の中から前記下りリンク制御信号に含まれるインデックス情報によって指定された送信領域に、前記下りリンクデータ信号の復号結果を示す応答信号をマッピングし、
     前記応答信号を含む上りリンク制御信号を送信する、
     無線通信方法。
PCT/JP2017/031028 2017-08-29 2017-08-29 ユーザ端末及び無線通信方法 WO2019043800A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17923338.2A EP3678343A4 (en) 2017-08-29 2017-08-29 USER DEVICE AND WIRELESS COMMUNICATION PROCEDURE
CN201780094400.5A CN111052693B (zh) 2017-08-29 2017-08-29 用户终端以及无线通信方法
RU2020111088A RU2741520C1 (ru) 2017-08-29 2017-08-29 Пользовательский терминал и способ радиосвязи
US16/643,374 US11528709B2 (en) 2017-08-29 2017-08-29 User terminal and radio communication method
JP2019538799A JP7145861B2 (ja) 2017-08-29 2017-08-29 端末、無線通信方法及び基地局
PCT/JP2017/031028 WO2019043800A1 (ja) 2017-08-29 2017-08-29 ユーザ端末及び無線通信方法
BR112020003961-6A BR112020003961A2 (pt) 2017-08-29 2017-08-29 terminal, método de radiocomunicação e estação base
KR1020207007459A KR102557246B1 (ko) 2017-08-29 2017-08-29 유저단말 및 무선 통신 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031028 WO2019043800A1 (ja) 2017-08-29 2017-08-29 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019043800A1 true WO2019043800A1 (ja) 2019-03-07

Family

ID=65526318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031028 WO2019043800A1 (ja) 2017-08-29 2017-08-29 ユーザ端末及び無線通信方法

Country Status (8)

Country Link
US (1) US11528709B2 (ja)
EP (1) EP3678343A4 (ja)
JP (1) JP7145861B2 (ja)
KR (1) KR102557246B1 (ja)
CN (1) CN111052693B (ja)
BR (1) BR112020003961A2 (ja)
RU (1) RU2741520C1 (ja)
WO (1) WO2019043800A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020003961A2 (pt) * 2017-08-29 2020-09-01 Ntt Docomo, Inc. terminal, método de radiocomunicação e estação base

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254244B2 (en) * 2007-10-30 2012-08-28 Qualcomm Incorporated Arrangement and method for transmitting control information in wireless communication systems
US9288021B2 (en) * 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
CN102144367B (zh) * 2008-06-30 2013-07-31 诺基亚西门子通信公司 在正常和虚拟双层ack/nack之间选择
CN103796318B (zh) * 2009-01-30 2017-12-26 三星电子株式会社 在数据信道或控制信道上发送上行链路控制信息
CA2786954C (en) * 2010-01-07 2016-08-09 Samsung Electronics Co., Ltd. Resource indexing for acknowledgement signals in response to receptions of multiple assignments
JP2011166411A (ja) * 2010-02-09 2011-08-25 Sharp Corp 移動局装置、無線通信方法および集積回路
JP4969682B2 (ja) * 2010-12-09 2012-07-04 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
CN107465491B (zh) * 2011-06-27 2021-02-12 华为技术有限公司 确定控制信道资源的方法和用户设备
JP5940850B2 (ja) * 2012-03-19 2016-06-29 株式会社Nttドコモ 通信システム、基地局装置、移動端末装置及び通信方法
JP5781028B2 (ja) * 2012-07-23 2015-09-16 株式会社Nttドコモ 無線通信方法、無線基地局、ユーザ端末及び無線通信システム
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
HUE037326T2 (hu) * 2012-10-26 2018-08-28 Intel Corp Felhasználói sík túlterhelés jelentése
US9167451B2 (en) * 2013-01-02 2015-10-20 Lg Electronics Inc. Method and apparatus for measuring interference in wireless communication system
US9473289B2 (en) * 2013-09-27 2016-10-18 Nokia Solutions And Networks Oy PUCCH resource allocation and use
JP2015142350A (ja) * 2014-01-30 2015-08-03 株式会社Nttドコモ ユーザ装置及び方法
US10158474B2 (en) * 2015-05-06 2018-12-18 Qualcomm Incorporated Block acknowledgement mechanism for acknowledging DL-MU data on UL-MU wireless communication system
US10637629B2 (en) * 2015-06-25 2020-04-28 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
JP6101311B2 (ja) * 2015-06-26 2017-03-22 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10447438B2 (en) 2015-08-21 2019-10-15 Lg Electronics Inc. Method for transmitting and receiving downlink data in wireless communication system, and apparatus therefor
WO2017057943A1 (ko) * 2015-09-30 2017-04-06 엘지전자(주) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
JP6092347B1 (ja) * 2015-11-05 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR102271448B1 (ko) * 2016-07-01 2021-07-01 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
EP3500018B1 (en) * 2016-08-09 2024-05-08 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
US11528729B2 (en) * 2016-11-01 2022-12-13 Ntt Docomo, Inc. User terminal and radio communication method
WO2018088415A1 (ja) * 2016-11-09 2018-05-17 株式会社Nttドコモ ユーザ端末及び無線通信方法
BR112020003961A2 (pt) * 2017-08-29 2020-09-01 Ntt Docomo, Inc. terminal, método de radiocomunicação e estação base
US11139941B2 (en) * 2017-09-11 2021-10-05 Qualcomm Incorporated Uplink acknowledgment mapping and resource allocation
US11330569B2 (en) * 2018-04-06 2022-05-10 Apple Inc. Multiplexing of multiple uplink control information types on an uplink physical control channel in new radio
US11088800B2 (en) * 2018-05-31 2021-08-10 Qualcomm Incorporated Autonomous reference signal transmission configuration
US11095415B2 (en) * 2018-07-02 2021-08-17 Samsung Electronics Co., Ltd. Enhancements to reception reliability for data and control information

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 14", 3GPP TS 36.300, June 2017 (2017-06-01)
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 14", 3GPP TS 36.211, March 2017 (2017-03-01)
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 14", 3GPP TS 36.213, March 2017 (2017-03-01)
GUANGDONG OPPO MOBILE TELECOM: "Time-domain resource allocation for NR", 3GPP TSG-RAN WG1#90 R1-1713263, 25 August 2017 (2017-08-25), XP051316070, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RL1/TSGRl_90/Docs/R1 -1713263. zip> *
See also references of EP3678343A4

Also Published As

Publication number Publication date
EP3678343A1 (en) 2020-07-08
EP3678343A4 (en) 2021-04-14
BR112020003961A2 (pt) 2020-09-01
JP7145861B2 (ja) 2022-10-03
KR102557246B1 (ko) 2023-07-20
CN111052693B (zh) 2022-07-22
JPWO2019043800A1 (ja) 2020-10-15
US11528709B2 (en) 2022-12-13
US20210068112A1 (en) 2021-03-04
RU2741520C1 (ru) 2021-01-26
CN111052693A (zh) 2020-04-21
KR20200043421A (ko) 2020-04-27

Similar Documents

Publication Publication Date Title
US11018920B2 (en) User terminal and wireless communication method
JP7054701B2 (ja) 端末および通信方法
JPWO2018052060A1 (ja) ユーザ端末及び無線通信方法
JPWO2018056338A1 (ja) ユーザ端末及び無線通信方法
WO2018143396A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019224876A1 (ja) 送信装置及び受信装置
WO2019092856A1 (ja) ユーザ端末及び無線通信方法
WO2019030871A1 (ja) ユーザ端末及び無線通信方法
WO2019082244A1 (ja) ユーザ端末及び無線通信方法
WO2019107239A1 (ja) ユーザ端末及び無線通信方法
WO2019030870A1 (ja) ユーザ端末及び無線通信方法
JPWO2018207370A1 (ja) ユーザ端末及び無線通信方法
WO2019138510A1 (ja) ユーザ端末及び無線通信方法
WO2019030869A1 (ja) ユーザ端末、基地局及び無線通信方法
US11647484B2 (en) User terminal and radio communication method
WO2019102531A1 (ja) 無線送信装置および無線受信装置
JP7145861B2 (ja) 端末、無線通信方法及び基地局
JPWO2018225230A1 (ja) ユーザ端末及び無線通信方法
WO2019097702A1 (ja) ユーザ端末及び無線通信方法
WO2019097704A1 (ja) ユーザ端末及び無線通信方法
WO2019049351A1 (ja) ユーザ端末および無線通信方法
JP7335375B2 (ja) 端末、無線通信方法及びシステム
WO2019012594A1 (ja) ユーザ端末及び無線通信方法
WO2019012595A1 (ja) ユーザ端末及び無線通信方法
WO2019012596A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020003961

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207007459

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017923338

Country of ref document: EP

Effective date: 20200330

ENP Entry into the national phase

Ref document number: 112020003961

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200227