WO2017077840A1 - 放射線画像撮像素子 - Google Patents

放射線画像撮像素子 Download PDF

Info

Publication number
WO2017077840A1
WO2017077840A1 PCT/JP2016/080609 JP2016080609W WO2017077840A1 WO 2017077840 A1 WO2017077840 A1 WO 2017077840A1 JP 2016080609 W JP2016080609 W JP 2016080609W WO 2017077840 A1 WO2017077840 A1 WO 2017077840A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
light
conversion layer
pixel electrode
scintillator
Prior art date
Application number
PCT/JP2016/080609
Other languages
English (en)
French (fr)
Inventor
梶山 康一
水村 通伸
田坂 知樹
裕也 藤森
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2017077840A1 publication Critical patent/WO2017077840A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention relates to a radiation image pickup device.
  • an element for capturing a so-called X-ray photograph there is an element for obtaining an image by using a scintillator that absorbs radiation and emits light, and converts it into an electrical signal using a photodiode that detects light emission of the scintillator.
  • Patent Document 1 discloses such a radiation detector.
  • the radiation detector of Patent Document 1 includes a large area thin scintillator 11 that generates scintillation light corresponding to the amount of radiation incident from the outside inside the detector container 14, and the large area thin scintillator 11.
  • a light receiving surface is disposed at a light condensing point toward the thin light condensing body 12, and a photoelectric conversion element 13 that converts the received light into an electric signal and outputs the electric signal is provided.
  • the radiation detector 14 described in Patent Document 1 can efficiently collect the light generated in the scintillator 11 by the thin light collector 12 and cause the photoelectric conversion element 13 to receive the light.
  • an object of the present invention is to provide a radiographic imaging device capable of condensing light emitted from a scintillator more efficiently.
  • a radiographic imaging device includes a scintillator that absorbs radiation and emits light, a transparent electrode, and a photoelectric conversion layer that detects emission and converts it into an electrical signal.
  • a pixel electrode corresponding to each pixel, a TFT circuit, and a micromirror array in which micromirrors having a curved shape formed so as to reflect light emitted from the scintillator toward the photoelectric conversion layer are stacked. Made up.
  • the micromirror array is formed by arranging micromirrors facing each pixel electrode, and the curvature of each micromirror is that the micromirror emits light emitted between the micromirror and the corresponding pixel electrode in the scintillator. It is good also as a curvature which the reflected reflected light condenses on the photoelectric converting layer which touches a corresponding pixel electrode.
  • the radiographic imaging device may be configured by laminating a micromirror array, a scintillator, a transparent electrode, a photoelectric conversion layer, a pixel electrode, and a TFT circuit on a substrate in order from the side on which radiation is incident.
  • the radiation image pickup device may be formed by laminating a TFT circuit, a pixel electrode, a photoelectric conversion layer, a transparent electrode, a scintillator, and a micromirror array on a substrate in order from the side on which radiation is incident.
  • the radiographic image pickup device can detect the back light that is not directed to the photoelectric conversion layer emitted from the scintillator and can be detected by the photoelectric conversion layer by reflecting it with the micromirror array. It can be condensed and converted into an image. Accordingly, since more light can be collected than in the past, the same image as in the past can be taken even if imaging is performed with a smaller radiation dose than in the past.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a radiographic image pickup device according to Embodiment 1.
  • FIG. 1 is a plan view showing a configuration of a radiographic image pickup device according to Embodiment 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a radiographic image pickup device according to Embodiment 2.
  • FIG. It is sectional drawing which shows the structure of the conventional radiation detector.
  • a radiographic imaging device 100 includes a scintillator 105 that absorbs radiation and emits light, a transparent electrode 111, a photoelectric conversion layer 104 that detects light emission and converts it into an electrical signal, and a pixel electrode corresponding to each pixel. 103, a TFT (Thin Film Transistor) circuit 102, and a micromirror (106a to 106f) having a curved shape formed so as to reflect light emitted from the scintillator 105 toward the photoelectric conversion layer.
  • the array 106 is laminated.
  • FIG. 1 is a cross-sectional view of the radiation image pickup device 100.
  • the radiation image pickup element 100 has a TFT circuit 102 formed on a substrate 101.
  • pixel electrodes 103a to 103f corresponding to the pixels of the image are arranged.
  • the pixel electrode is collectively referred to as “pixel electrode 103”.
  • a photoelectric conversion layer 104 is formed on the pixel electrodes 103a to 103f corresponding to each pixel.
  • a transparent electrode 110 is formed on the photoelectric conversion layer 104, a scintillator 105 is formed thereon, and a micromirror array in which micromirrors are arranged corresponding to the pixel electrodes 103 thereon. 106 is formed.
  • the substrate 101 is made of, for example, resin.
  • the TFT circuit 102 has a function of generating an image signal indicating one image based on the electrical signal transmitted from each pixel electrode 103.
  • the pixel electrode 103 is an electrode corresponding to each pixel forming the frame image, and transmits an electrical signal based on the electrical signal transmitted from the photoelectric conversion layer 104 to the TFT circuit 102.
  • the photoelectric conversion layer 104 detects the light emitted from the scintillator 105 through the transparent electrode 111 and converts it into an electrical signal corresponding to the amount of light. Then, the photoelectric conversion layer 104 transmits the electric signal obtained by the conversion to the pixel electrode 103 disposed at a position corresponding to the position where the scintillation light is detected.
  • the photoelectric conversion layer 104 detects scintillation light, the description “through the transparent electrode 111” is omitted.
  • the transparent electrode 111 transmits light emitted from the scintillator 105 to the photoelectric conversion layer 104, and is paired with the pixel electrode 103 to generate an electrical signal generated in the photoelectric conversion layer 104 between the pixel electrodes 103 from the transparent electrode 111. It flows toward the pixel electrode 103 corresponding to the location where the signal is generated.
  • the scintillator 105 is an element that emits light by absorbing irradiated radiation, and emits so-called scintillation light.
  • the micromirror array 106 reflects light emitted from the scintillator 105.
  • the micromirror array 106 is formed by arranging a plurality of micromirrors 106a to 106f. Each micromirror is configured to face one pixel electrode.
  • the pixel electrode 103a is provided in the micromirror 106a
  • the pixel electrode 103b is provided in the micromirror 106b
  • the pixel electrode 103c is provided in the micromirror 106c
  • the pixel electrode 103d is provided in the micromirror 106d
  • the micromirror 106e Is opposed to the pixel electrode 103e
  • the micromirror 106f is opposed to the pixel electrode 103f.
  • FIG. 2 is a plan view of the radiation image pickup device 100 and shows a correspondence relationship between each pixel electrode and the micromirror.
  • the micromirror 106a corresponds to the pixel electrode 103a
  • a square indicated by a one-dot chain line indicates the pixel electrode 103
  • a dotted line indicates a micromirror.
  • Each pixel electrode and the micromirror are arranged in a matrix as shown in FIG. 2, and correspond to one pixel of the frame image in a pair.
  • Each of the micromirrors 106a to 106f constituting the micromirror array 106 has a curvature capable of condensing the light emitted by the scintillator 105 between the pixel electrodes corresponding to the micromirror onto the photoelectric conversion layer 104 immediately above the pixel electrode. It is a concave mirror curved by In the example of FIG. 1, the micromirror 106 c is light that travels toward the micromirror 106 c among light emitted from the scintillator 105 between the micromirror 106 c and the corresponding pixel electrode 103 c (light originating from the light source 107).
  • the back light indicated by the axes 109a and 109b is condensed on the photoelectric conversion layer 104 immediately above the pixel electrode 103c so as to become the photoelectric conversion layer 104 immediately above the pixel electrode 103b and the pixel electrode 103d adjacent to the pixel electrode 103c. It is curved with a curvature that does not allow it to converge.
  • the radiation image pickup device 100 operates as follows.
  • Radiation is irradiated toward an object to be imaged from a radiation irradiation element (not shown). Then, a part of the irradiated radiation is partially reflected / absorbed by the object to be imaged, and the rest is transmitted.
  • the radiation 110 that has passed through the imaging target is applied to the scintillator 105 of the radiographic imaging device 100.
  • the scintillator 105 absorbs the radiation 110 and emits light. At this time, the scintillator 105 emits light in all directions. That is, the scintillator 105 emits light (hereinafter referred to as back light) not only in the direction toward the photoelectric conversion layer 104 but also in the direction opposite to the photoelectric conversion layer 104.
  • back light light
  • light directed from the light source 107 generated in the photoelectric conversion layer 104 toward the photoelectric conversion layer 104 is indicated by optical axes 108 a and 108 b drawn by dotted lines, and is in a direction opposite to the photoelectric conversion layer 104, that is, microscopic
  • the back light toward the mirror array 106 is indicated by optical axes 109a and 109b drawn by a one-dot chain line.
  • the light source 107 is shown as a dot for ease of understanding.
  • the scintillator 105 absorbs radiation 110 from the irradiated side, and reduces the light emission amount. It emits light in a rod shape at the position irradiated with radiation.
  • the light (light indicated by the optical axes 108a and 108b in FIG. 1) emitted from the scintillator 105 toward the photoelectric conversion layer 104 is detected as it is by the photoelectric conversion layer 104 and converted into an electric signal corresponding to the amount of light.
  • the back light emitted from the scintillator 105 (the light indicated by the optical axes 109a and 109b in FIG. 1) is reflected by the micromirrors constituting the micromirror array 106 and is applied to the photoelectric conversion layer 104.
  • the photoelectric conversion layer 104 also detects irradiated back light and converts it into an electrical signal corresponding to the amount of light.
  • the photoelectric conversion layer 104 detects the irradiated light, generates an electrical signal according to the detected light amount, and outputs the electrical signal to a pixel electrode that exists at a position corresponding to the photoelectric conversion layer at the location irradiated with the light. 103.
  • the pixel electrode 103 transmits the electrical signal transmitted from the photoelectric conversion layer 104 to the TFT circuit 102.
  • the TFT circuit 102 generates and outputs a captured image based on the electrical signal transmitted from each pixel electrode 103 and the arrangement position of the pixel electrode 103.
  • the radiographic imaging device 100 can reflect the back light that does not go to the photoelectric conversion layer 104 out of the light emitted from the scintillator 105 by the micromirror array 106. More light can be collected on the photoelectric conversion layer 104. Therefore, even when imaging is performed with a radiation dose smaller than that of the conventional art, the amount of light can be amplified using reflection of the back light, so that a captured image equivalent to the conventional one can be obtained. In addition, when the same amount of radiation as before is irradiated, a sharper captured image can be obtained than before.
  • the micromirror that constitutes the micromirror array 106 is a concave mirror and can be focused on the photoelectric conversion layer disposed immediately above the corresponding pixel electrode 103, so that it is unnecessary for other non-corresponding pixel electrodes 103. It is possible to suppress detection of light as noise.
  • FIG. 3 is a cross-sectional view showing a configuration example of the radiation image pickup element 200 according to the second embodiment.
  • the radiographic imaging device 200 includes a substrate 101, a micromirror array 106, a scintillator 105, a transparent electrode 111, a photoelectric conversion layer 104, pixel electrodes 103 (103a to 103f), TFTs
  • the circuit 102 is laminated in this order.
  • the micromirror array 106 in the radiation image pickup device 200 according to the second embodiment is also formed by arranging a plurality of micromirrors 106a to 106f.
  • the micromirrors 106a to 106f are arranged so as to correspond to the pixel electrodes 103a to 106f, respectively.
  • Each of the micromirrors 106a to 106f is arranged so that the light emitted from the scintillator 105 between the micromirror and the corresponding pixel electrode 103 can be condensed on the photoelectric conversion layer 104 at a position corresponding to each pixel electrode 103. It is a concave mirror having a curved shape with a set curvature.
  • the radiographic image capturing device 200 includes the micromirror array 106, so that the scintillator 105 emits back light (light axes 109a and 109b) that does not travel toward the photoelectric conversion layer 104 among the light (light based on the light source 107). Can be collected on the photoelectric conversion layer 104 more efficiently than in the past.
  • the radiation image capturing element 200 is irradiated from the radiation irradiating element, passes through the imaging target, and receives the radiation 110 partially attenuated due to the influence of the imaging target.
  • the radiation 110 passes through the TFT circuit 102, the pixel electrode 103, the photoelectric conversion layer 104, and the transparent electrode 111 and reaches the scintillator 105.
  • the scintillator 105 absorbs the transmitted radiation 110 and emits light.
  • light starting from the light source 107 is directly irradiated to the photoelectric conversion layer 104 (via the transparent electrode 111) as indicated by the optical axes 108a and 108b.
  • the back light from the light source 107 is directed to the micromirror array 106, reflected by the micromirror 106c, and the photoelectric conversion layer 104 at a location corresponding to the pixel electrode 103c. Is irradiated.
  • the photoelectric conversion layer 104 detects the irradiated direct light and back light and converts them into an electrical signal according to the amount of light.
  • the photoelectric conversion layer 104 transmits an electrical signal obtained by conversion to the pixel electrode 103 at a corresponding location.
  • the pixel electrode 103 transmits the transmitted electric signal to the TFT circuit 102.
  • the TFT circuit 102 generates and outputs a captured image based on the electrical signal transmitted from the pixel electrode 103 and the arrangement position thereof.
  • the radiation image pickup device 200 having such a configuration can also achieve the same effects as the radiation image pickup device 100.
  • the micromirror that constitutes the micromirror array 106 is a concave mirror and can be focused on the photoelectric conversion layer disposed immediately above the corresponding pixel electrode 103, so that it is unnecessary for other non-corresponding pixel electrodes 103. It is possible to suppress detection of light as noise.
  • each micromirror constituting the micromirror array 106 is associated with each pixel electrode, but this is not limited thereto.
  • a configuration in which a plurality of micromirrors correspond to one pixel electrode may be employed.
  • one pixel electrode may correspond to four micromirrors arranged in two rows and two rows, or one pixel electrode in nine micromirrors arranged in three rows and three rows. May be made to correspond.
  • a configuration in which one micromirror is associated with a 2 ⁇ 2 array and a 3 ⁇ 3 array may be mixed.
  • a radiographic imaging device includes a scintillator that absorbs radiation and emits light, a photoelectric conversion layer that detects light emission and converts it into an electrical signal, and a pixel electrode corresponding to each pixel.
  • the TFT circuit and a micromirror array in which micromirrors having a curved shape formed so as to reflect the light emitted from the scintillator toward the photoelectric conversion layer are laminated.
  • the light which the micromirror array does not go to the photoelectric conversion layer can be reflected and detected by the photoelectric conversion layer. Therefore, since the photoelectric conversion layer can detect more light with the same radiation dose as in the past, a clearer radiographic image can be obtained. On the contrary, the fact that the photoelectric conversion layer can detect more light than in the past can obtain the same radiation image as that in the past even if imaging is performed with a smaller radiation dose than in the past.
  • the micromirror array is configured by arranging micromirrors facing each pixel electrode, and the curvature of each micromirror is a pixel corresponding to the micromirror in the scintillator. Let the light emitted between the electrodes be the curvature at which the reflected light reflected by the micromirror is condensed on the photoelectric conversion layer in contact with the corresponding pixel electrode.
  • the light emitted from the scintillator can be easily detected by the corresponding pixel electrode, and it can be suppressed that the light is detected by the non-corresponding pixel electrode and becomes a noise component.
  • the radiographic image pickup device includes a micromirror array, a scintillator, a transparent electrode, a photoelectric conversion layer, a pixel electrode, and a TFT in order from the side on which the radiation is incident.
  • a circuit is laminated on a substrate.
  • the radiation image pickup element is formed by laminating a TFT circuit, a pixel electrode, a photoelectric conversion layer, a transparent electrode, a scintillator, and a micromirror array on a substrate in order from the side on which radiation is incident.
  • Radiographic imaging device 101
  • Substrate 102
  • TFT circuit 103a, 103b, 103c, 103d, 103e, 103f
  • Photoelectric conversion layer 104
  • Scintillator 106
  • Micromirror array 106a, 106b, 106c, 106d, 106e, 106f
  • Micromirror 111 Transparent electrode

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

少ない放射線量で放射線画像を撮像できる放射線画像撮像素子を提供する。 放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、透明電極と、発光を検出して電気信号に変換する光電変換層と、各画素に対応する画素電極と、TFT回路と、シンチレータが発した光を光電変換層に向けて反射させるよう形成された湾曲形状を有するマイクロミラーが配列されて成るマイクロミラーアレイと、が積層されて成る。

Description

放射線画像撮像素子
 本発明は、放射線画像撮像素子に関する。
 従来、いわゆるレントゲン写真を撮像する素子として、放射線を吸収して発光するシンチレータを利用し、当該シンチレータの発光を検出するフォトダイオードを用いて電気信号に変換し、画像を得る素子がある。
 特許文献1には、そのような放射線検出器が開示されている。特許文献1の放射線検出器は、図4に示すように、検出器容器14内部に、外部から入射する放射線量に応じたシンチレーション光を発生する大面積薄型シンチレータ11と、当該大面積薄型シンチレータ11とほぼ平行に配置され、大面積薄型シンチレータ11で発生したシンチレーション光を集光する複数個の薄型集光体12と、検出器該側面に張り付けられた遮光膜15と、薄型集光体12の集光点に受光面を当該薄型集光体12に向けて配置され、受光した光を電気信号に変換して出力する光電変換素子13とを備える。これにより、特許文献1に記載の放射線検出器14は、薄型集光体12によりシンチレータ11で発生した光を効率よく集光して、光電変換素子13に受光させることができる。
特開2012-142704号公報
 ところで、レントゲン写真の撮像にあたっては、放射線の被爆量を少しでも抑制し、人体への影響を軽減することが望まれている。そのため、より少ない放射線量で、撮像可能な放射線画像撮像素子の開発が課題となっている。
 そこで、本発明は、上記課題に鑑みてなされたものであり、より効率よくシンチレータが発した光を集光することができる放射線画像撮像素子を提供することを目的とする。
 上記課題を解決するために、本発明の一実施態様に係る放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、透明電極と、発光を検出して電気信号に変換する光電変換層と、各画素に対応する画素電極と、TFT回路と、シンチレータが発した光を光電変換層に向けて反射させるよう形成された湾曲形状を有するマイクロミラーが配列されて成るマイクロミラーアレイと、が積層されて成る。
 また、マイクロミラーアレイは、各画素電極に対向するマイクロミラーが配列されて成り、各マイクロミラーの曲率は、シンチレータにおいて当該マイクロミラーと対応する画素電極の間で発せられた光を当該マイクロミラーが反射した反射光が、対応する画素電極と接する光電変換層に集光する曲率とすることとしてもよい。
 また、放射線画像撮像素子は、放射線が入射する側から順に、マイクロミラーアレイ、シンチレータ、透明電極、光電変換層、画素電極、TFT回路が基板上に積層されて成ることとしてもよい。
 あるいは、放射線画像撮像素子は、放射線が入射する側から順に、TFT回路、画素電極、光電変換層、透明電極、シンチレータ、マイクロミラーアレイが基板上に積層されて成ることとしてもよい。
 本発明の一態様に係る放射線画像撮像素子は、シンチレータが発した光電変換層に向かわない後背光を、マイクロミラーアレイにより反射させて光電変換層に検出させることができるので、より多くの光を集光して画像に変換することができる。したがって、従来よりも多くの光を集光できるので、従来よりも少ない放射線量での撮像を行っても従来と同様の画像を撮像可能になるという効果を奏する。
実施の形態1に係る放射線画像撮像素子の構成を示す断面図である。 実施の形態1に係る放射線画像撮像素子の構成を示す平面図である。 実施の形態2に係る放射線画像撮像素子の構成を示す断面図である。 従来の放射線検出器の構成を示す断面図である。
 本発明に係る放射線画像撮像素子の一実施態様について図面を用いながら説明する。
<実施の形態1>
 本発明に係る放射線画像撮像素子100は、放射線を吸収して発光するシンチレータ105と、透明電極111と、発光を検出して電気信号に変換する光電変換層104と、各画素に対応する画素電極103と、TFT(Thin Film Transistor)回路102と、シンチレータ105が発した光を光電変換層に向けて反射させるよう形成された湾曲形状を有するマイクロミラー(106a~106f)が配列されて成るマイクロミラーアレイ106と、が積層されて形成される。
 図1は、放射線画像撮像素子100の断面図である。図1に示すように、放射線画像撮像素子100は、基板101上に、TFT回路102が形成されている。そして、TFT回路102上には、画像の各画素に対応する画素電極103a~103fが配されている。なお、本明細書において、画素電極を総称する場合に「画素電極103」と記載する。
 各画素に対応する画素電極103a~103fの上には、光電変換層104が成膜されている。そして、光電変換層104の上には、透明電極110が形成され、その上にシンチレータ105が形成され、その上には、各画素電極103に対応して、マイクロミラーが配列されたマイクロミラーアレイ106が形成されている。
 基板101は、例えば、樹脂により構成されている。
 TFT回路102は、各画素電極103から伝達された電気信号に基づいて、1枚の画像を示す画像信号を生成する機能を有する。
 画素電極103は、フレーム画像を形成する各画素に対応する電極であり、光電変換層104から伝達された電気信号に基づく電気信号をTFT回路102に伝達する。
 光電変換層104は、シンチレータ105が発した光を透明電極111を介して検出して、その光量に応じた電気信号に変換する。そして、光電変換層104は、変換して得られる電気信号を、シンチレーション光を検出した位置に対応する箇所に配された画素電極103に伝達する。なお、以下においては、光電変換層104がシンチレーション光を検出するにあたって、「透明電極111を介する」との記載を省略する。
 透明電極111は、シンチレータ105が発した光を光電変換層104に透過し、画素電極103と対になって、画素電極103の間の光電変換層104で発生した電気信号を透明電極111から電気信号が発生した箇所に対応する画素電極103に向けて流す。
 シンチレータ105は、照射された放射線を吸収して発光する素子であり、いわゆるシンチレーション光を発する。
 マイクロミラーアレイ106は、シンチレータ105が発した光を反射する。図1に示されるようにマイクロミラーアレイ106は、複数のマイクロミラー106a~106fが配列されて成る。各マイクロミラーはそれぞれ1つの画素電極に対向するように構成されている。図1に示す例では、マイクロミラー106aには画素電極103aが、マイクロミラー106bには画素電極103bが、マイクロミラー106cには画素電極103cが、マイクロミラー106dには画素電極103dが、マイクロミラー106eには画素電極103eが、マイクロミラー106fには画素電極103fが、対向する。
 図2には、放射線画像撮像素子100の平面図であって、各画素電極と、マイクロミラーとの対応関係を示す図を示している。図2に示すように、画素電極103aには、マイクロミラー106aが、画素電極103bには、マイクロミラー106b、…が対応している。図2において、一点鎖線で示す四角が画素電極103を示しており、点線がマイクロミラーを示している。そして、各画素電極とマイクロミラーは、図2に示すようにマトリクス状に配され、1対でフレーム画像の一つの画素に対応している。
 マイクロミラーアレイ106を構成する各マイクロミラー106a~106fは、そのマイクロミラーに対応する画素電極の間でシンチレータ105が発した光を、当該画素電極に接する直上の光電変換層104に集光できる曲率で湾曲させた凹面鏡である。図1の例で言えば、マイクロミラー106cは、マイクロミラー106cと対応する画素電極103cとの間でシンチレータ105が発した光(光源107を起点とする光)のうち、マイクロミラー106cに向かう光軸109a、109bで示される後背光を、画素電極103cに接する直上の光電変換層104に集光し、画素電極103cに隣接する画素電極103bや画素電極103dに接する直上の光電変換層104になるべく集光させない曲率で湾曲している。
 図1、図2に示す構成を有することにより、放射線画像撮像素子100は以下のように動作する。
 放射線照射素子(図示せず)から撮像の対象に向けて放射線が照射される。すると、照射された放射線の一部が、撮像の対象により一部が反射・吸収され、その残りが透過する。撮像対象を透過した放射線110は、放射線画像撮像素子100のシンチレータ105に照射される。
 シンチレータ105は、放射線110を吸収して発光する。このとき、シンチレータ105は全方向に対して光を発する。すなわち、シンチレータ105では、光電変換層104に向かう光だけでなく、光電変換層104とは逆の方向に向かっても光(以下、後背光と呼称する。)が発せられる。図1においては、光電変換層104で発生した光源107から、光電変換層104に向かう光を点線で描かれた光軸108a、108bで示し、光電変換層104とは逆の方向、すなわち、マイクロミラーアレイ106に向かう後背光を一点鎖線で描かれた光軸109a、109bで示している。なお、図1においては、理解しやすくするために、光源107を点で示しているが、実際には、シンチレータ105においては、放射線110が照射された側から吸収し、その発光量を弱めながら、放射線が照射された位置において棒状に発光する。
 シンチレータ105が発した光電変換層104に向かう光(図1の光軸108a、108bで示される光)は、そのまま光電変換層104で検出され、その光量に応じた電気信号に変換される。また、シンチレータ105が発した後背光(図1の光軸109a、109bで示される光)は、マイクロミラーアレイ106を構成するマイクロミラーにより反射され、光電変換層104に照射される。光電変換層104は、照射された後背光も検出し、その光量に応じた電気信号に変換する。
 光電変換層104は、照射された光を検出し、検出した光量に応じて電気信号を生成し、当該電気信号を、光が照射された箇所の光電変換層に対応する位置に存在する画素電極103に伝達する。
 画素電極103は、光電変換層104から伝達された電気信号をTFT回路102に伝達する。
 TFT回路102は、各画素電極103から伝達された電気信号と、当該画素電極103の配置位置に基づいて、撮像画像を生成し、出力する。
 以上のように本実施の形態1に係る放射線画像撮像素子100は、シンチレータ105が発した光のうち、光電変換層104に向かわない後背光をマイクロミラーアレイ106により反射することができるので、従来よりも多くの光を光電変換層104に集光することができる。従って、従来よりも少ない放射線量による撮像であっても、後背光の反射を利用して光量を増幅することができるので、従来と同等の撮像画像を得ることができる。また、従来と同量の放射線を照射する場合には、従来よりも、鮮明な撮像画像を得ることができる。また、マイクロミラーアレイ106を構成するマイクロミラーを凹面鏡とし、対応する画素電極103の直上に配された光電変換層に集光できる構成とすることで、対応していない他の画素電極103に不要な光がノイズとして検出されることを抑制することができる。
<実施の形態2>
 本実施の形態2においては、上記実施の形態1とは異なる構成であって、マイクロミラーアレイ106を利用して、光を集光し、光電変換効率を向上させる構成を開示する。
 図3は、本実施の形態2に係る放射線画像撮像素子200の一構成例を示す断面図である。
 図3に示すように、放射線画像撮像素子200は、基板101と、マイクロミラーアレイ106と、シンチレータ105と、透明電極111と、光電変換層104と、画素電極103(103a~103f)と、TFT回路102とが、この順に積層されて成る。
 各部の機能については、上記実施の形態1に示す内容と同様であり、同様の機能を有するものには、同じ符号を振っているため、詳細な説明は割愛する。
 本実施の形態2における放射線画像撮像素子200におけるマイクロミラーアレイ106も、複数のマイクロミラー106a~106fが配列されて成る。各マイクロミラー106a~106fは、それぞれ、各画素電極103a~106fに対応するように配されている。各マイクロミラー106a~106fは、当該マイクロミラーと対応する画素電極103との間でシンチレータ105が発した光を、各画素電極103に対応する箇所の光電変換層104に集光できるように、その曲率が設定された湾曲形状を有する凹面鏡である。そして、放射線画像撮像素子200は、当該マイクロミラーアレイ106を備えることにより、シンチレータ105は発した光(光源107に基づく光)のうち、光電変換層104に向かわない後背光(光軸109a、109bで示される光)を反射させて、従来よりも効率よく光電変換層104に集光することができる。
 以下、放射線画像撮像素子200の放射線110を受けたときの動作について説明する。
 放射線画像撮像素子200は、放射線照射素子から照射され、撮像対象を透過し、撮像対象の影響により一部減衰した放射線110を受ける。
 放射線110は、TFT回路102、画素電極103、光電変換層104、透明電極111を透過して、シンチレータ105に至る。
 シンチレータ105は透過してきた放射線110を吸収して発光する。シンチレータ105において光源107を起点とする光は、光軸108a、108bに示されるように直接(透明電極111を介して)光電変換層104に照射される。一方、光源107を起点とする後背光は、光軸109a、109bに示されるように、マイクロミラーアレイ106に向かい、マイクロミラー106cで反射されて、画素電極103cに対応する箇所の光電変換層104に照射される。
 光電変換層104は、照射された直接光及び後背光を検出してその光量に応じて電気信号に変換する。光電変換層104は、変換して得られる電気信号を対応する箇所の画素電極103に伝達する。
 画素電極103は、伝達された電気信号をTFT回路102に伝達する。そして、TFT回路102は、画素電極103から伝達された電気信号とその配置位置に基づいて撮像画像を生成し出力する。
 このような構成の放射線画像撮像素子200も、放射線画像撮像素子100と同様の効果を奏することができる。
 すなわち、シンチレータ105が発した光のうち、光電変換層104に向かわない後背光をマイクロミラーアレイ106により反射することができるので、従来よりも多くの光を光電変換層104に集光することができる。従って、従来よりも少ない放射線量による撮像であっても、後背光の反射を利用して光量を増幅することができるので、従来と同等の撮像画像を得ることができる。また、従来と同量の放射線を照射する場合には、従来よりも、鮮明な撮像画像を得ることができる。また、マイクロミラーアレイ106を構成するマイクロミラーを凹面鏡とし、対応する画素電極103の直上に配された光電変換層に集光できる構成とすることで、対応していない他の画素電極103に不要な光がノイズとして検出されることを抑制することができる。
<参考例>
 上記実施の形態に本発明に係る発明の一実施態様を説明したが、本発明に係る思想がこれに限られないことは言うまでもない。以下、本発明に係る思想として含まれる各種参考例について説明する。
 (1)上記実施の形態においては、マイクロミラーアレイ106を構成する各マイクロミラーを各画素電極に対応させることとしたが、これはその限りではない。複数のマイクロミラーを1つの画素電極に対応させる構成であってもよい。例えば、縦2個、横2個に配列された4つのマイクロミラーに1つの画素電極を対応させてもよいし、縦3個、横3個に配列された9つのマイクロミラーに1つの画素電極を対応させてもよい。また、これらの配列について、2×2のものと3×3の配列に1つのマイクロミラーを対応させた構成を混在させてもよい。
 (2)上記実施の形態において、更に、特許文献1に記載の構成を組み合わせてもよい。
 (3)上記実施の形態及び参考例に示した構成は適宜組み合わせることとしてもよい。
<補足>
 ここに、本発明に係る放射線画像撮像素子の一実施態様とその効果について説明する。
 (a)本発明の一実施態様に係る放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、発光を検出して電気信号に変換する光電変換層と、各画素に対応する画素電極と、TFT回路と、シンチレータが発した光を光電変換層に向けて反射させるよう形成された湾曲形状を有するマイクロミラーが配列されて成るマイクロミラーアレイと、が積層されて成る。
 これにより、マイクロミラーアレイが光電変換層に向かわない光を反射させて光電変換層に検出させることができる。したがって、従来と同じ放射線量で、従来よりも多くの光を光電変換層に検出させることができるので、より鮮明な放射線画像を得ることができる。逆に、従来よりも多くの光を光電変換層に検出させることができるということは、従来よりも少ない放射線量で撮像しても従来と同様の放射線画像を得ることができる。
 (b)上記(a)に係る放射線画像撮像素子において、マイクロミラーアレイは、各画素電極に対向するマイクロミラーが配列されて成り、各マイクロミラーの曲率は、シンチレータにおいて当該マイクロミラーと対応する画素電極の間で発せられた光を当該マイクロミラーが反射した反射光が、対応する画素電極と接する光電変換層に集光する曲率とする。
 これにより、シンチレータにおいて発せられた光が、対応する画素電極に検出されやすくすることができるとともに、対応しない画素電極に光が検出されてノイズ成分となることを抑制することができる。
 (c)上記(a)又は(b)に係る放射線画像撮像素子において、放射線画像撮像素子は、放射線が入射する側から順に、マイクロミラーアレイ、シンチレータ、透明電極、光電変換層、画素電極、TFT回路が基板上に積層されて成る。
 あるいは、放射線画像撮像素子は、放射線が入射する側から順に、TFT回路、画素電極、光電変換層、透明電極、シンチレータ、マイクロミラーアレイが基板上に積層されて成る。
 このような構成により、放射線画像撮像素子を実現することができる。
100、200 放射線画像撮像素子
101 基板
102 TFT回路
103a、103b、103c、103d、103e、103f 画素電極
104 光電変換層
105 シンチレータ
106 マイクロミラーアレイ
106a、106b、106c、106d、106e、106f マイクロミラー
111 透明電極

Claims (4)

  1.  放射線を吸収して発光するシンチレータと、
     透明電極と、
     前記発光を検出して電気信号に変換する光電変換層と、
     各画素に対応する画素電極と、
     TFT回路と、
     前記シンチレータが発した光を前記光電変換層に向けて反射させるよう形成された湾曲形状を有するマイクロミラーが配列されて成るマイクロミラーアレイと、
     が積層されて成る放射線画像撮像素子。
  2.  前記マイクロミラーアレイは、各画素電極に対向するマイクロミラーが配列されて成り、
     各マイクロミラーの曲率は、前記シンチレータにおいて当該マイクロミラーと対応する画素電極の間で発せられた光を当該マイクロミラーが反射した反射光が、対応する画素電極と接する光電変換層に集光する曲率とすることを特徴とする請求項1に記載の放射線画像撮像素子。
  3.  前記放射線画像撮像素子は、
     放射線が入射する側から順に、
     前記マイクロミラーアレイ、前記シンチレータ、前記透明電極、前記光電変換層、前記画素電極、前記TFT回路が基板上に積層されて成る
     ことを特徴とする請求項1又は2に記載の放射線画像撮像素子。
  4.  前記放射線画像撮像素子は、
     放射線が入射する側から順に、
     前記TFT回路、前記画素電極、前記光電変換層、前記透明電極、前記シンチレータ、前記マイクロミラーアレイが基板上に積層されて成る
     ことを特徴とする請求項1又は2に記載の放射線画像撮像素子。
PCT/JP2016/080609 2015-11-06 2016-10-14 放射線画像撮像素子 WO2017077840A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218616 2015-11-06
JP2015218616A JP2017090163A (ja) 2015-11-06 2015-11-06 放射線画像撮像素子

Publications (1)

Publication Number Publication Date
WO2017077840A1 true WO2017077840A1 (ja) 2017-05-11

Family

ID=58661793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080609 WO2017077840A1 (ja) 2015-11-06 2016-10-14 放射線画像撮像素子

Country Status (3)

Country Link
JP (1) JP2017090163A (ja)
TW (1) TW201717377A (ja)
WO (1) WO2017077840A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083513A1 (fr) * 2002-03-28 2003-10-09 Kabushiki Kaisha Toshiba Detecteur de rayons x
JP2009222578A (ja) * 2008-03-17 2009-10-01 Toshiba Corp X線固体検出器、x線固体検出方法及びx線ct装置
JP2012047723A (ja) * 2010-07-30 2012-03-08 Fujifilm Corp 放射線検出パネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083513A1 (fr) * 2002-03-28 2003-10-09 Kabushiki Kaisha Toshiba Detecteur de rayons x
JP2009222578A (ja) * 2008-03-17 2009-10-01 Toshiba Corp X線固体検出器、x線固体検出方法及びx線ct装置
JP2012047723A (ja) * 2010-07-30 2012-03-08 Fujifilm Corp 放射線検出パネル

Also Published As

Publication number Publication date
TW201717377A (zh) 2017-05-16
JP2017090163A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
US9000382B2 (en) Spectral imaging detector
JP5376897B2 (ja) 放射線画像撮影装置
JP5890099B2 (ja) 放射線画像取得装置
JP2010056396A (ja) X線検出素子
WO2012034401A1 (zh) 辐射探测器及其成像装置、电极结构和获取图像的方法
WO2012101880A1 (ja) 放射線画像取得装置
JP2012154734A5 (ja)
JP2012154735A5 (ja)
US11181488B2 (en) Multi-layer detector with a monolithic scintillator
JP2010223922A (ja) X線撮像装置
JP2012154733A (ja) 放射線画像取得装置
US5554850A (en) X-ray scintillating plate utilizing angled fiber optic rods
JP2007147370A (ja) 放射線検出装置及び放射線撮像システム
JP2018141781A (ja) 放射線検出器および放射線検出装置
JP2016156719A (ja) 放射線検出器
WO2017077840A1 (ja) 放射線画像撮像素子
JP2013072721A (ja) 放射線検出器、放射線画像撮影装置及びプログラム
JP5789223B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2008178522A (ja) 放射線撮像装置及びその駆動方法
CN113167912A (zh) 混合x射线和光学探测器
JP5706387B2 (ja) シンチレータプレート及び画像取得装置
US20230017148A1 (en) X-ray high-absorptivity detection system and image imaging method
WO2017077835A1 (ja) 放射線画像撮像素子及び放射線画像撮像素子の製造方法
JP2017067681A (ja) 放射線画像撮影装置
JPH10300858A (ja) 2次元放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861907

Country of ref document: EP

Kind code of ref document: A1