WO2017077622A1 - 光音響波検出装置及びこれを有する内視鏡システム - Google Patents

光音響波検出装置及びこれを有する内視鏡システム Download PDF

Info

Publication number
WO2017077622A1
WO2017077622A1 PCT/JP2015/081190 JP2015081190W WO2017077622A1 WO 2017077622 A1 WO2017077622 A1 WO 2017077622A1 JP 2015081190 W JP2015081190 W JP 2015081190W WO 2017077622 A1 WO2017077622 A1 WO 2017077622A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
photoacoustic wave
wave detection
detection device
prism member
Prior art date
Application number
PCT/JP2015/081190
Other languages
English (en)
French (fr)
Inventor
福島郁俊
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016521384A priority Critical patent/JP6045753B1/ja
Priority to PCT/JP2015/081190 priority patent/WO2017077622A1/ja
Publication of WO2017077622A1 publication Critical patent/WO2017077622A1/ja
Priority to US15/956,330 priority patent/US11147533B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements

Definitions

  • the present invention relates to a photoacoustic wave detection device and an endoscope system having the same.
  • Photoacoustic wave is a kind of elastic wave generated in the thermoelastic process that occurs when a substance is irradiated with light in the absorption wavelength range. Therefore, photoacoustic waves are attracting attention as a technique for imaging absorption characteristics.
  • photoacoustic waves are a kind of ultrasonic waves and have a characteristic that they are less susceptible to scattering than light, and thus are applied as imaging means inside a living body.
  • a photoacoustic wave detection apparatus that applies photoacoustic waves to imaging as a detection signal
  • pulsed light that matches the absorption wavelength region of the observation object is used as excitation light
  • the excitation light is condensed by an objective lens to move inside the sample.
  • a technique is used in which a photoacoustic wave generated at each focused spot position is detected by a transducer using a focused spot.
  • a photoacoustic wave detection device when a specimen is scanned with a condensing spot, a photoacoustic wave is generated if an absorbing substance is present at the condensing spot position. The absorption characteristics of can be imaged.
  • a photoacoustic wave detection device for example, the one disclosed in Patent Document 1 is known.
  • Laser light from a laser light source in the near-infrared wavelength region passes through the fiber coupler and reaches the objective lens.
  • the light from the objective lens is focused and transmitted through the ultrasonic transducer, reflected by a light / ultrasonic rotating mirror that is rotationally driven from the outside, and applied to the tissue on the inner wall of the blood vessel.
  • the photoacoustic wave is reflected by the optical / ultrasonic rotating mirror and reaches the detector. Based on the photoacoustic wave reaching the detector, the distribution absorbed by the laser light source is obtained.
  • the detected photoacoustic wave since the detected photoacoustic wave has a high frequency, the attenuation is severe in the air. For this reason, a mediator that reduces the attenuation of photoacoustic waves such as water is required between the detector and the specimen.
  • a mediator that reduces the attenuation of photoacoustic waves such as water is required between the detector and the specimen.
  • a waterproof measure is required to prevent the photoacoustic wave detection device from being broken even in a deep water state.
  • a photoacoustic wave detection apparatus will enlarge in size for a waterproof measure.
  • a light source and a driving mechanism for scanning need to be arranged at the distal end portion of the endoscope. For this reason, a front end will become long from a scanning part.
  • the conventional photoacoustic wave detection apparatus does not have an acoustic lens. For this reason, the sensitivity to sound waves was low.
  • the present invention has been made in view of the above, and provides a photoacoustic wave detection device that can detect photoacoustic waves with high sensitivity and does not require waterproofing measures, and an endoscope system having the photoacoustic wave detection device. Objective.
  • the present invention provides a projecting optical system for projecting excitation light onto a test object, and an excitation light emitted by the excitation light projected by the projecting optical system.
  • a photoacoustic wave detection system for detecting a photoacoustic wave of an object to be detected by reversing an optical path for light projection by a photoacoustic wave sensor unit, and a light projecting optical system Is an excitation light emitting part that emits excitation light, an excitation light incident surface that guides the excitation light emitted from the excitation light emission part to the inside by transmission, and an internal reflection surface that reflects the excitation light incident from the excitation light incident surface by internal reflection And a prism member having an excitation light emission surface that emits the excitation light reflected by the internal reflection surface to the outside by transmission and having a positive refractive power, and the photoacoustic wave detection system includes a prism member, After passing through the excitation light exit surface of the prism member
  • the present invention is an endoscope system having a gripping part, an insertion part extending in the longitudinal direction of the gripping part, and a columnar tip constituent part provided on the tip side of the insertion part,
  • the endoscope system has the above-described photoacoustic wave detection device at the distal end configuration portion, a prism member is disposed at the distal end configuration portion, and the excitation light incident surface of the prism member faces the gripping portion side. It is characterized by.
  • the present invention has been made in view of the above, and is advantageous in that it is possible to provide a photoacoustic wave detection device capable of detecting photoacoustic waves with high sensitivity and a high sensitivity without requiring a waterproof measure and an endoscope system having the photoacoustic wave detection device. Play.
  • FIG. 1 is a diagram illustrating a schematic configuration of a photoacoustic wave detection apparatus 100 according to the first embodiment.
  • the photoacoustic wave detection device 100 projects light of a specimen SMP (test object) that is excited and emitted by the projection optical system that projects excitation light onto the test object and the pump light projected by the light projection optical system.
  • a photoacoustic wave detection system that reversely follows an optical path for projecting an acoustic wave and detects the acoustic wave with a transducer 11a (photoacoustic wave sensor unit).
  • the light projecting optical system includes a light source 10 (excitation light emitting unit) that emits excitation light, an excitation light incident surface 12a that guides excitation light emitted from the light source 10 (excitation light emitting unit) to the inside by transmission, and an excitation light incident surface 12a.
  • the photoacoustic wave detection system passes through the prism 12 (prism member) and the excitation light exit surface 12c of the prism 12 (prism member), then reflects off the internal reflection surface 12b and exits from the prism 12 (prism member).
  • the photoacoustic wave detection system has a transducer 11a (photoacoustic wave sensor unit) that detects an acoustic wave, and the optical path from the excitation light exit surface 12c to the transducer 11a (photoacoustic wave sensor unit) is a prism 12 (prism member). Is filled with prism glass material 13 (solid medium).
  • the prism 12 has a positive refracting power, so that it has a function of condensing excitation light. Furthermore, by filling the space from the excitation light exit surface 12c of the photoacoustic waveguide 100c of the photoacoustic wave detection device 100 to the transducer 11a with the prism glass material 13 (solid medium), it is not necessary to fill the device with water, and no waterproof mechanism is required. It becomes. In addition, it is possible to increase the distance from the internal reflection surface to the sample SMP, and it is possible to increase the numerical aperture (NA) of the photoacoustic wave when the same working distance (working distance) is assumed.
  • NA numerical aperture
  • the light source 10 projects excitation light onto the specimen SMP.
  • the light source 10 emits collimated light (pulse light).
  • the emitted collimated light passes through the hollow portion of the cylindrical transducer 11a.
  • the collimated light that has passed through is incident on the prism 12.
  • the prism 12 is a right-angle prism, and has an excitation light incident surface 12a, an internal reflection surface 12b, and an excitation light emission surface 12c.
  • the excitation light incident surface 12a is a surface that guides excitation light emitted from the light source 10 (excitation light emitting unit) to the inside of the prism 12 by transmission.
  • the internal reflection surface 12b bends the optical path by approximately 90 degrees by internal reflection of the excitation light incident from the excitation light incident surface 12a.
  • the excitation light emission surface 12c emits the excitation light reflected by the internal reflection surface 12b to the outside by transmission.
  • the prism 12 desirably has only one internal reflection surface 12b. Thereby, the photoacoustic wave detection apparatus 100 can be reduced in size. Moreover, since the internal reflection surface 12b that reflects the photoacoustic wave is an interface between the prism glass material 13 (glass) and air, the reflectance can be increased. For this reason, a photoacoustic wave can be detected efficiently.
  • the excitation light incident surface 12a of the prism 12 is a surface having optical power with respect to the excitation light.
  • the excitation light incident surface 12a has a concave shape.
  • the hollow cylindrical transducer 11 a is joined to the surface of the prism 12 on the excitation light incident surface 12 a side so as to surround the excitation light incident on the prism 12.
  • the condensing performance of the excitation light can be optically enhanced. Further, it is advantageous to secure the sound collection area of the transducer 11a and enhance the sound collection effect.
  • the internal reflection surface 12b is preferably a concave reflection surface that reflects the optical axis of the light source 10 that is a light projecting optical system between 80 degrees and 92 degrees. Thereby, the excitation light is condensed by the concave reflecting surface, and the prism 12 for collecting the photoacoustic wave is advantageously reduced in size.
  • the internal reflection surface 12b is desirably a concave reflection surface that reflects the optical axis of the light source 10 that is a light projecting optical system between 80 degrees and 88 degrees.
  • the concave reflecting surface desirably has a shape that is plane-symmetric with respect to a plane including the optical axis of the light source 10 that is the light projection optical system before and after reflection, and a non-rotationally symmetric surface shape, for example, an anamorphic shape or a cylindrical shape. .
  • a non-rotationally symmetric surface shape for example, an anamorphic shape or a cylindrical shape.
  • the concave reflecting surface has a rotationally symmetric quadric surface shape. Therefore, it becomes conjugate between the focal points of the two surfaces, or collimated light is condensed at the focal point of the surface, which is advantageous in securing the condensing performance of the excitation light.
  • the concave reflecting surface has a rotationally symmetric paraboloid shape.
  • the acoustic wave can be substantially collimated and reflected to the transducer 11a side.
  • high detection sensitivity can be obtained by providing power to the internal reflection surface 12b so that a wavefront of a photoacoustic wave substantially parallel to the transducer 11a is incident.
  • the excitation light exit surface 12c of the prism 12 is an entrance window. Thereby, the number of parts which comprise photoacoustic wave detection device 100 can be reduced.
  • the photoacoustic wave detection device 100 has a medium that mediates from the excitation light exit surface 12c (incident window) to the specimen SMP.
  • the excitation light emitted to the outside from the excitation light emission surface 12c is incident on the sample SMP via the extendable container 15 filled with water 15a that is a photoacoustic wave transmission medium.
  • the container 15 is formed of a member that is optically transparent to excitation light and has flexibility. As a result, the attenuation of the photoacoustic wave generated from the sample SMP can be reduced and propagated.
  • the thickness of the container 15 in the Z direction can be changed by controlling the amount of the water 15a. As a result, scanning with the focused spot in the depth direction of the sample SMP becomes possible.
  • the excitation light incident on the specimen SMP is condensed at one point by the optical action of the prism 12 having a positive refractive power.
  • a photoacoustic wave is generated if an absorbing material is present at the focused spot position.
  • the generated photoacoustic wave travels backward in the optical path of the excitation light.
  • the scanning of the focused spot can be performed by rotationally driving the transducer 11a and the prism 12 together by the motor 14. Thereby, since it is not necessary to move a contribution optical system, it becomes possible to scan easily.
  • the motor 14 (prism member rotating mechanism) is arranged on the side where the excitation light is incident with respect to the prism 12, and rotates the prism 12 to deflect the light projecting direction of the excitation light. This is advantageous for photoacoustic wave detection for a tubular specimen SMP such as an inner wall of a blood vessel.
  • the photoacoustic wave reflected by the internal reflection surface 12b of the prism 12 is reflected in the direction of the light source 10 as a substantially parallel photoacoustic wave by the concave shape of the internal reflection surface 12b.
  • the internal reflection surface 12b is a surface having a function of an acoustic lens.
  • the photoacoustic wave emitted from the prism 12 is incident on the transducer 11 a bonded to the prism 12.
  • the output signal from the transducer 11a is sent to the calculation / control unit 28 (FIG. 4B).
  • the calculation / control unit 28 images the absorption characteristics in the sample SMP.
  • the apparatus can be reduced in size.
  • the prism 12 has a positive refracting power, so that it has a function of condensing excitation light. Furthermore, it is not necessary to fill the apparatus with water or the like by filling the prism glass material 13 (solid medium) from the excitation light exit surface 12c (incident window) of the photoacoustic wave guide to the transducer 11a in the photoacoustic waveguide.
  • FIG. 2A is a diagram illustrating a schematic configuration of the photoacoustic wave detection device 110 according to the second embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the excitation light emitting unit includes a light source 16 and an optical fiber 17 that emits the guided excitation light.
  • the optical fiber 17 is disposed between the light source 16 and the prism 12.
  • the motor 20 rotates the gear mechanism 22 via the wire 21. By this rotation, the transducer 11b and the prism 12 are rotated together.
  • the incident window is a cover glass CG.
  • the lubricant 29 is filled between the prism 12 and the cover glass CG. Thereby, the rotational drive of the prism 12 can be performed smoothly.
  • the lens 18 (condensing position changing lens) guides the diverging excitation light emitted from the optical fiber 17 to the hollow portion of the transducer 11b.
  • the position of the lens 18 can be changed by the lens driving unit 19. By changing the position of the lens 18 in the optical path between the light source 16 and the prism 12, the condensing position of the excitation light can be changed.
  • the transducer 11b is composed of three (plural) transducers 11b1 (channel CH1), 11b2 (channel CH2), and 11b3 (channel CH3) that are formed by annular lamination. It is an array.
  • 3A and 3B show a state in which the position of the lens 18 is changed, and the condensing position of the excitation light is changed from the excitation light exit surface 12c of the prism 12 to the distances Z1 and Z2.
  • FIG. 3C shows the timing at which the photoacoustic wave generated from the vicinity of the focal position of the internal reflection surface 12b having the function of the acoustic lens (position at the distance Z1 shown in FIG. 3A) reaches the three channels CH1, CH2, and CH3.
  • FIGS. 3C and 3D the horizontal axis T represents time.
  • the photoacoustic wave (spherical wave) generated in the vicinity of the focal position is converted into substantially parallel by the internal reflection surface 12b and is incident on the three transducers 11b1, 11b2, and 11b3. For this reason, as shown in FIG. 3C, the photoacoustic waves generated from the vicinity of the focal position are detected at the same time by the three channels CH1, CH2, and CH3.
  • the lens 18 when the lens 18 is moved and condensed at a distance Z2 closer to the focal position (distance Z1), the photoacoustic waves are shifted in time to the three channels CH1, CH2, and CH3, respectively. To reach. By measuring the time delay of the photoacoustic wave in each channel, the position in the Z direction can be obtained.
  • the excitation light can be condensed at a desired position in the Z direction by moving the lens 18.
  • the detection position can be changed in the Z (depth) direction of the sample SMP, and the photoacoustic wavefront is detected by different transducers to be detected to detect the photoacoustic wave so as to correspond to the depth of the sample SMP. Can be detected.
  • FIGS. 4A and 4B are diagrams illustrating a schematic configuration of an endoscope system 200 according to the third embodiment.
  • the endoscope system 200 includes a gripping part 23, an insertion part 24 extending in the longitudinal direction of the gripping part 23, and a columnar tip constituent part 25 provided on the distal end side of the insertion part 24.
  • the endoscope system 200 includes the photoacoustic wave detection devices 100 and 110 according to the first embodiment and the second embodiment.
  • the prism 12 is disposed in the tip configuration part 25, and the excitation light incident surface 12 a of the prism 12 faces the grip part 23. Thereby, the front-end
  • the water supply unit 27 can send water to the container 15 or suck water from the container 15 through the universal cord 26 through the tube 26a.
  • the size of the container 15 in the Z direction that is, the interval between the photoacoustic wave detection device 100 and the specimen SMP can be adjusted.
  • the excitation light emitted from the light source 16 is guided by the optical fiber 17.
  • the calculation / control unit 28 controls the driving amounts of the motors 14 and 20 and the lens driving unit 19 via the signal line 26b. Further, the calculation / control unit 28 performs imaging of the specimen by processing the photoacoustic wave signals detected by the transducers 11a and 11b.
  • Modification 5A and 5B are diagrams illustrating a schematic configuration of an endoscope system 210 according to a modified example.
  • a detection tool 220 having the photoacoustic wave detection device 100 at the tip is inserted into the forceps channel of the endoscope system 210.
  • the photoacoustic wave can be detected by the small photoacoustic wave detection apparatus 100.
  • the present invention is useful for a small-sized photoacoustic wave detection device capable of detecting photoacoustic waves with high sensitivity and an endoscope system having the same.

Abstract

投光光学系と、光音響波検出系と、を有する光音響波検出装置100であって、投光光学系は、励起光を発する光源10と、光源10から発する励起光を透過により内部に導く励起光入射面12aと、励起光入射面12aより入射した励起光を内部反射により反射する内部反射面12bと、内部反射面12bにて反射した励起光を透過により外部へ射出する励起光射出面12cを有し正の屈折力をもつプリズム12と、を有し、光音響波検出系は、プリズム12と、プリズム12の励起光射出面12cを通過後、内部反射面12bにて反射し、プリズム12から射出した光音響波を検知するトランスデューサ11aと、を有し、光音響波検出系は、励起光射出面12cからトランスデューサ11aまでの光路がプリズム12を含むプリズム硝材13により満たされている。

Description

光音響波検出装置及びこれを有する内視鏡システム
 本発明は、光音響波検出装置及びこれを有する内視鏡システムに関するものである。
 光音響波とは、物質に吸収波長域の光を照射した際に生じる熱弾性過程にて発生する弾性波の一種である。そのため、光音響波は、吸収特性をイメージングする手法として注目されている。また、光音響波は、超音波の一種で、光に比べて散乱の影響を受けにくい特徴を有していることから、生体内部のイメージング手段として適用されている。
 光音響波を検出信号としてイメージングに適用する光音響波検出装置では、観察対象物の吸収波長域に合わせたパルス光を励起光として用い、該励起光を対物レンズにより集光して標本内を集光スポットにより走査し、これにより各集光スポット位置で発生する光音響波をトランスデューサ等で検出する手法が用いられている。かかる光音響波検出装置によると、標本を集光スポットで走査した際に、集光スポット位置に吸収物質が存在すると光音響波が発生するので、その光音響波を検出することにより、標本内の吸収特性をイメージングすることができる。
 このような光音響波検出装置として、例えば特許文献1に開示のものが知られている。近赤外波長域のレーザ光源からのレーザ光は、ファイバーカップラーを通って、対物レンズに達する。対物レンズからの光はフォーカスされて超音波トランスデューサを透過し、外部から回転駆動される光・超音波回転ミラーで反射されて血管内壁の組織に照射される。血管内壁の組織内部で光が集光し、その集光位置から光音響波が発生する。光音響波は、光・超音波回転ミラーで反射され、検出器に到達する。検出器に到達した光音響波に基づいて、レーザ光源の吸収する分布が求まる。
特開2005-224399号公報
 従来技術の構成において、検出される光音響波は高周波数であるため、空気中では減衰が激しい。このため、検出器と標本との間には、水などの光音響波の減衰が少なくなる媒介物質が必要となる。水などの媒介物質が光音響波検出装置の近傍に存在すると、水深状態においても光音響波検出装置の故障を防止するため、防水対策が必要となる。そして、防水対策のため、光音響波検出装置が大型化してしまう。また、光音響波検出装置を内視鏡に適用すると、内視鏡の先端部に光源、スキャンのための駆動機構を配置する必要を生ずる。このため、スキャン部から先端が長くなってしまう。さらに、従来の光音響波検出装置は、音響レンズを有していない。このため、音波に対する感度が低いものであった。
 本発明は、上記に鑑みてなされたものであって、防水対策が不要で小型な、高感度に光音響波を検出できる光音響波検出装置及びこれを有する内視鏡システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、励起光を被検物へ投光する投光光学系と、投光光学系により投光される励起光により励起されて発せられる被検物の光音響波を投光のための光路を逆にたどり光音響波センサ部にて検出する光音響波検出系と、を有する光音響波検出装置であって、投光光学系は、励起光を発する励起光射出部と、励起光射出部から発する励起光を透過により内部に導く励起光入射面と、励起光入射面より入射した励起光を内部反射により反射する内部反射面と、内部反射面にて反射した励起光を透過により外部へ射出する励起光射出面を有し正の屈折力をもつプリズム部材と、を有し、光音響波検出系は、プリズム部材と、プリズム部材の励起光射出面を通過後、内部反射面にて反射し、プリズム部材から射出した光音響波を検知する光音響波センサ部と、を有し、光音響波検出系は、励起光射出面から光音響波センサ部までの光路がプリズム部材を含む固体媒質により満たされていることを特徴とする。
 また、本発明は、把持部と、把持部の長手方向に延在する挿入部と、挿入部の先端側に設けられた円柱状の先端構成部と、を有する内視鏡システムであって、内視鏡システムは、先端構成部に上述の光音響波検出装置を有し、先端構成部には、プリズム部材が配置され、プリズム部材の励起光入射面は把持部の側を向けていることを特徴とする。
 本発明は、上記に鑑みてなされたものであって、防水対策が不要で小型な、高感度に光音響波を検出できる光音響波検出装置及びこれを有する内視鏡システムを提供できるという効果を奏する。
第1実施形態に係る光音響波検出装置の概略構成を示す図である。 第2実施形態に係る光音響波検出装置の概略構成を示す図である。 第2実施形態に係る光音響波検出装置の概略構成を示す他の図である。 第2実施形態に係る光音響波検出装置の概略構成を示す別の図である。 第2実施形態に係る光音響波検出装置の概略構成を示すさらに他の図である。 第2実施形態における検出された光音響波を示す図である。 第2実施形態における検出された光音響波を示す他の図である。 第3実施形態に係る光音響波検出装置の概略構成を示す図である。 第3実施形態に係る光音響波検出装置の概略構成を示す他の図である。 変形例に係る光音響波検出装置の概略構成を示す図である。 変形例に係る光音響波検出装置の概略構成を示す他の図である。
 以下、本実施形態に係る光音響波検出装置及びこれを有する内視鏡システムについて、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
(第1実施形態)
 図1は、第1実施形態に係る光音響波検出装置100の概略構成を示す図である。
 光音響波検出装置100は、励起光を被検物へ投光する投光光学系と、投光光学系により投光される励起光により励起されて発せられる標本SMP(被検物)の光音響波を投光のための光路を逆にたどりトランスデューサ11a(光音響波センサ部)にて検出する光音響波検出系と、を有する。投光光学系は、励起光を発する光源10(励起光射出部)と、光源10(励起光射出部)から発する励起光を透過により内部に導く励起光入射面12aと、励起光入射面12aより入射した励起光を内部反射により反射する内部反射面12bと、内部反射面12bにて反射した励起光を透過により外部へ射出する励起光射出面12cを有し正の屈折力をもつプリズム12(プリズム部材)と、を有する。光音響波検出系は、プリズム12(プリズム部材)と、プリズム12(プリズム部材)の励起光射出面12cを通過後、内部反射面12bにて反射し、プリズム12(プリズム部材)から射出した光音響波を検知するトランスデューサ11a(光音響波センサ部)を有し、光音響波検出系は、励起光射出面12cからトランスデューサ11a(光音響波センサ部)までの光路がプリズム12(プリズム部材)を含むプリズム硝材13(固体媒質)により満たされている。
 これにより、励起光の光路と光音響波路を重ねることで光音響波の検出を行う構成の小型化が行える。また、プリズム12を正の屈折力とすることで励起光の集光機能を持たせられる。さらに、光音響波路のうち光音響波検出装置100の励起光射出面12cからトランスデューサ11aまでをプリズム硝材13(固体媒質)により満たすことで装置内に水などを満たす必要がなく、防水機構が不要となる。また、内部反射面から標本SMPまでの距離を長くすることが可能となり、同じ作動距離(Working Distance)を想定した場合、光音響波の開口数(NA)を大きくすることが可能となる。
 さらに具体的な説明を続ける。光源10は、励起光を標本SMPへ投光する。本実施形態では、光源10は、コリメート光(パルス光)を射出する。射出されたコリメート光は、円筒形状のトランスデューサ11aの中空部分を通過する。通過したコリメート光は、プリズム12に入射する。
 プリズム12は、直角プリズムであり、励起光入射面12aと、内部反射面12bと、励起光射出面12cを有する。励起光入射面12aは、光源10(励起光射出部)から発する励起光を透過によりプリズム12の内部に導く面である。内部反射面12bは、励起光入射面12aより入射した励起光を内部反射により、光路を略90度折り曲げる。励起光射出面12cは、内部反射面12bにて反射した励起光を透過により外部へ射出する。
 プリズム12は、内部反射面12bを1面のみ有することが望ましい。こにより、光音響波検出装置100を小型化できる。また、光音響波を反射する内部反射面12bがプリズム硝材13(ガラス)と空気の界面であるために、反射率を高くできる。このため、効率良く光音響波を検出できる。
 プリズム12の励起光入射面12aは励起光に対して光学パワーを持つ面である。本実施形態では、励起光入射面12aは凹面形状を有する。なお、励起光入射面12aを平面とし、光源10側に凹面を向けた凹平負レンズを励起光入射面12aに接合する構成とすることもできる。また、中空円筒形状のトランスデューサ11aは、プリズム12に入射する励起光の周囲を囲んでプリズム12の励起光入射面12a側の面に接合されている。
 これにより、励起光の集光性能を光学的に高めることができる。また、トランスデューサ11aの集音面積を確保して、集音効果も高めることに有利となる。
 内部反射面12bは、投光光学系である光源10の光軸を80度から92度の間で反射する凹面反射面であることが望ましい。これにより、凹面の反射面により励起光の集光を行うとともに、光音響波を集音するプリズム12の小型化にも有利となる。
 また、内部反射面12bは、投光光学系である光源10の光軸を80度から88度の間で反射する凹面反射面であることが望ましい。光音響波を効率良く反響(反射)させるには鋭角反響(反射)させることが好ましい。上述の角度とすることで光音響波検出装置100の小型化と、光音響波の集光効率の向上と、の両立に一層有利となる。
 凹面反射面は、反射前後の投光光学系である光源10の光軸を含む平面に対して面対称な形状、且つ非回転対称な面形状、例えば、アナモフィック形状、シリンドリカル形状を有することが望ましい。これにより、直交する2方向での偏芯収差を低減し、光音響波の収差を大きく減少させることが可能となる。
 また、凹面反射面は、回転対称二次曲面形状を有することが望ましい。これにより、2つの面の焦点間で共役となる、若しくは、平行光を面の焦点に集光するので励起光の集光性能の確保に有利となる。
 また、凹面反射面は、回転対称放物面形状を有することが望ましい。これにより、音響波をほぼコリメートにしてトランスデューサ11a側へ反射させることができる。特に、トランスデューサ11aに略平行な光音響波の波面が入射するように、内部反射面12bにパワーを持たせることで、高い検出感度を得られる。
 プリズム12の励起光射出面12cは入射窓であることが望ましい。これにより、光音響波検出装置100を構成する部品点数を削減できる。
 ここで、光音響波検出装置100は、励起光射出面12c(入射窓)から標本SMPまでを媒介する媒介物を有する。例えば、励起光射出面12cから外部へ射出した励起光は、光音響波伝達媒質である水15aが充填されている伸縮可能な容器15を介して標本SMPへ入射する。容器15は、励起光に対して光学的に透明で、かつ柔軟性を有する部材で形成されている。この結果、標本SMPから生じた光音響波の減衰を小さく抑えて伝播させることができる。
 また、水15aの量を制御することで、容器15のZ方向の厚さを変えることができる。これにより、標本SMPの深さ方向の集光スポットによる走査が可能となる。
 標本SMPに入射した励起光は、正の屈折力を有するプリズム12の光学的な作用により、1点に集光される。標本SMPを集光スポットで走査した際に、集光スポット位置に吸収物質が存在すると光音響波が発生する。発生した光音響波は、励起光の光路を逆に進行する。
 集光スポットの走査は、モータ14により、トランスデューサ11aとプリズム12とを一体として回転駆動することで行うことができる。これにより、投稿光学系を移動させる必要がないために、容易に走査することが可能となる。
 モータ14(プリズム部材回動機構)は、プリズム12よりも励起光が入射する側へ配置され、プリズム12を回動させて励起光の投光方向を偏向する。これにより、血管内壁などの管状の標本SMPを対象として光音響波検出に有利となる。
 プリズム12の内部反射面12bで反射した光音響波は、内部反射面12bの凹面形状により略平行な光音響波として、光源10の方向へ反射される。換言すると、内部反射面12bは、音響レンズの機能を有する面である。
 プリズム12を射出した光音響波は、プリズム12に接合されているトランスデューサ11aに入射する。トランスデューサ11aからの出力信号は、演算・制御部28(図4B)に送られる。演算・制御部28は、標本SMP内の吸収特性をイメージングする。
 本実施形態によれば、励起光の光路と光音響波路とを重ねることで光音響の検出を行うため、装置を小型化できる。また、プリズム12を正の屈折力とすることで励起光の集光機能を持たせられる。さらに、光音響波路のうち光音響波検出装置100の励起光射出面12c(入射窓)からトランスデューサ11aまでをプリズム硝材13(固体媒質)により満たすことで装置内に水などを満たす必要がない。
(第2実施形態)
 図2Aは、第2実施形態に係る光音響波検出装置110の概略構成を示す図である。第1実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
 本実施形態では、励起光射出部は、光源16と、導光された励起光を射出する光ファイバ17とで構成されている。光ファイバ17は、光源16とプリズム12との間に配置されている。これにより、光音響波検出装置110の検出機構の小型化にいっそう有利となる。また、光源16を標本SMPから遠ざけることができるので、光源16の発熱による標本SMPへの影響を抑えられる。
 また、モータ20は、ワイヤ21を介して、歯車機構22を回転させる。この回転により、トランスデューサ11bと、プリズム12とが一体となり回転する。
 また、入射窓はカバーガラスCGであることが望ましい。このとき、プリズム12とカバーガラスCGとの間は、潤滑剤29が充填されている。これにより、プリズム12の回転駆動を円滑に行うことができる。
 また、レンズ18(集光位置変更レンズ)は、光ファイバ17から射出された発散する励起光をトランスデューサ11bの中空部分へ導く。レンズ18は、レンズ駆動部19により、位置を可変にすることができる。光源16と、プリズム12との間の光路においてレンズ18の位置を変えることにより、励起光の集光位置を変えることができる。
 さらに、図2Bに示すように、トランスデューサ11bは、輪帯積層して構成される3つ(複数)のトランスデューサ11b1(チャンネルCH1)、11b2(チャンネルCH2)、11b3(チャンネルCH3)から構成されるトランスデューサアレイである。
 図3A、3Bは、それぞれレンズ18の位置を変え、励起光の集光位置をプリズム12の励起光射出面12cから距離Z1、Z2に変えた状態を示している。
 3つのチャンネルCH1、CH2、CH3で検出される光音響波について説明する。図3Cは、音響レンズの機能を有する内部反射面12bの焦点位置近傍(図3Aで示す距離Z1の位置)から生じた光音響波が、3つのチャンネルCH1、CH2、CH3に到達するタイミングを示す図である。ここで、図3C、3Dにおいて、横軸Tは、時間を示す。
 焦点位置近傍で生じた光音響波(球面波)は、内部反射面12bにより、略平行に変換されて3つのトランスデューサ11b1、11b2、11b3に入射する。このため、図3Cに示すように、焦点位置近傍から生じた光音響波は、3つのチャンネルCH1、CH2、CH3により、同一の時刻に検出される。
 これに対して、レンズ18を移動して焦点位置(距離Z1)よりも近傍の距離Z2に集光させた場合、光音響波は、3つのチャンネルCH1、CH2、CH3に、それぞれ時間的にずれて到達する。各チャンネルにおける光音響波の時間的な遅れを測定することで、Z方向の位置を求めることができる。
 このように、本実施形態では、レンズ18を移動することで、Z方向の所望の位置へ励起光を集光できる。このため、検出位置を標本SMPのZ(深さ)方向に変更可能とし、検出する輪帯状の異なるトランスデューサにて光音響波面を検出することで、光音響波を標本SMPの深さに対応させて検出できる。
(第3実施形態)
 図4A、4Bは、第3実施形態に係る内視鏡システム200の概略構成を示す図である。
 内視鏡システム200は、把持部23と、把持部23の長手方向に延在する挿入部24と、挿入部24の先端側に設けられた円柱状の先端構成部25と、を有する。内視鏡システム200は、第1実施形態、第2実施形態に係る光音響波検出装置100、110を有する。先端構成部25には、プリズム12が配置され、プリズム12の励起光入射面12aは把持部23の側を向けている。これにより、内視鏡システム200の挿入部24の先端構成部25を小型できる。
 また、図4Bに示すように、ユニバーサルコード26を介して、水供給部27は、チューブ26aにより、容器15へ水を送出すること、または容器15の水を吸引することができる。これにより、容器15のZ方向の大きさ、即ち光音響波検出装置100と標本SMPとの間隔を調整できる。また、光源16から射出された励起光は、光ファイバ17により導光される。
 演算・制御部28は、信号線26bを介して、モータ14、20、レンズ駆動部19の駆動量を制御する。また、演算・制御部28は、トランスデューサ11a、11bにより検出された光音響波の信号を処理することで、標本のイメージングを行う。
(変形例)
 図5A、5Bは、変型例に係る内視鏡システム210の概略構成を示す図である。図5Aにおいて、内視鏡システム210の鉗子チャンネルに光音響波検出装置100を先端に有する検出用具220を挿通する。本例においても、小型な光音響波検出装置100にて、光音響波を検出できる。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 以上のように、本発明は、防水対策が不要で小型な、高感度に光音響波を検出できる光音響波検出装置及びこれを有する内視鏡システムに有用である。
 10 光源
 11a、11b トランスデューサ
 11b1、11b2、11b3 トランスデューサ
 12 プリズム
 12a 励起光入射面
 12b 内部反射面
 12c 励起光射出面
 13 プリズム硝材
 14 モータ
 15 容器
 15a 水
 16 光源
 17 光ファイバ
 18 レンズ
 19 レンズ駆動部
 20 モータ
 21 ワイヤ
 22 歯車機構
 23 把持部
 24 挿入部
 25 先端構成部
 26 ユニバーサルコード
 26a チューブ
 26b 信号線
 27 水供給部
 28 演算・制御部
 29 潤滑剤
 CG カバーガラス
 100、110 光音響波検出装置 
 220 検出用具
 200、210 内視鏡システム
 SMP 標本

Claims (16)

  1.  励起光を被検物へ投光する投光光学系と、
     前記投光光学系により投光される前記励起光により励起されて発せられる被検物の光音響波を投光のための光路を逆にたどり光音響波センサ部にて検出する光音響波検出系と、
    を有する光音響波検出装置であって、
     前記投光光学系は、
     前記励起光を発する励起光射出部と、
     前記励起光射出部から発する前記励起光を透過により内部に導く励起光入射面と、
     前記励起光入射面より入射した前記励起光を内部反射により反射する内部反射面と、
     前記内部反射面にて反射した前記励起光を透過により外部へ射出する励起光射出面を有し正の屈折力をもつプリズム部材と、を有し、
     前記光音響波検出系は、
     前記プリズム部材と、
     前記プリズム部材の前記励起光射出面を通過後、前記内部反射面にて反射し、前記プリズム部材から射出した前記光音響波を検知する前記光音響波センサ部と、を有し、
     前記光音響波検出系は、前記励起光射出面から前記光音響波センサ部までの光路が前記プリズム部材を含む固体媒質により満たされていることを特徴とする光音響波検出装置。
  2.  前記励起光射出面は入射窓であることを特徴とする請求項1に記載の光音響波検出装置。
  3.  前記入射窓はカバーガラスであることを特徴とする請求項2に記載の光音響波検出装置。
  4.  前記プリズム部材は内部反射面を1面のみ有することを特徴とする請求項1~3のいずれか1項に記載の光音響波検出装置。
  5.  前記内部反射面は、前記投光光学系の光軸を80度から92度の間で反射する凹面反射面であることを特徴とする請求項4に記載の光音響波検出装置。
  6.  前記内部反射面は、前記投光光学系の光軸を80度から88度の間で反射する凹面反射面であることを特徴とする請求項4に記載の光音響波検出装置。
  7.  前記凹面反射面は、反射前後の前記投光光学系の光軸を含む平面に対して面対称な形状であり、且つ非回転対称な面形状を有することを特徴とする請求項5または6に記載の光音響波検出装置。
  8.  前記凹面反射面は、回転対称二次曲面形状を有することを特徴とする請求項5または6に記載の光音響波検出装置。
  9.  前記凹面反射面は、回転対称放物面形状を有することを特徴とする請求項5または6に記載の光音響波検出装置。
  10.  前記プリズム部材の前記励起光入射面は前記励起光に対して光学パワーを持つ面であり、
     前記光音響波センサ部は、前記プリズム部材に入射する励起光の周囲を囲んで前記プリズム部材の励起光入射側の面に接合されることを特徴とする請求項1から9のいずれか1項に記載の光音響波検出装置。
  11.  前記投光光学系は、前記励起光射出部と前記プリズム部材との間に動作により前記励起光の集光位置を変更可能とする集光位置変更レンズを有し、
     さらに、前記光音響波センサ部は、輪帯積層して構成される複数のトランデューサアレイであることを特徴とする請求項10に記載の光音響波検出装置。
  12.  前記励起光射出部は、光源と、導光された励起光を射出する光ファイバとで構成され、前記光ファイバは、前記光源と前記プリズム部材との間に配置されていることを特徴とする請求項1から11のいずれか1項に記載の光音響波検出装置。
  13.  前記励起光射出部は、パルス光を射出する光源であることを特徴とする請求項1~11のいずれか1項に記載の光音響波検出装置。
  14.  前記プリズム部材よりも励起光が入射する側へ配置され、前記プリズム部材を回動させて励起光の投光方向を偏向するプリズム部材回動機構を有することを特徴とする請求項1から13のいずれか1項に記載の光音響波検出装置。
  15.  光音響波検出装置の入射窓から前記被検物までを媒介する媒介物を有することを特徴とする請求項1から14のいずれか1項に記載の光音響波検出装置。
  16.  把持部と、
     前記把持部の長手方向に延在する挿入部と、
     前記挿入部の先端側に設けられた円柱状の先端構成部と、
    を有する内視鏡システムであって、
     前記内視鏡システムは、前記先端構成部に請求項1~15のいずれか1項に記載の光音響波検出装置を有し、
     前記先端構成部には、前記プリズム部材が配置され、前記プリズム部材の前記励起光入射面は前記把持部の側を向けていることを特徴とする内視鏡システム。
PCT/JP2015/081190 2015-11-05 2015-11-05 光音響波検出装置及びこれを有する内視鏡システム WO2017077622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016521384A JP6045753B1 (ja) 2015-11-05 2015-11-05 光音響波検出装置及びこれを有する内視鏡システム
PCT/JP2015/081190 WO2017077622A1 (ja) 2015-11-05 2015-11-05 光音響波検出装置及びこれを有する内視鏡システム
US15/956,330 US11147533B2 (en) 2015-11-05 2018-04-18 Photoacoustic wave detection device and endoscope system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081190 WO2017077622A1 (ja) 2015-11-05 2015-11-05 光音響波検出装置及びこれを有する内視鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/956,330 Continuation US11147533B2 (en) 2015-11-05 2018-04-18 Photoacoustic wave detection device and endoscope system including the same

Publications (1)

Publication Number Publication Date
WO2017077622A1 true WO2017077622A1 (ja) 2017-05-11

Family

ID=57543985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081190 WO2017077622A1 (ja) 2015-11-05 2015-11-05 光音響波検出装置及びこれを有する内視鏡システム

Country Status (3)

Country Link
US (1) US11147533B2 (ja)
JP (1) JP6045753B1 (ja)
WO (1) WO2017077622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021048951A1 (ja) * 2019-09-11 2021-03-18

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596313B2 (en) 2017-10-13 2023-03-07 Arizona Board Of Regents On Behalf Of Arizona State University Photoacoustic targeting with micropipette electrodes
US20190282069A1 (en) * 2018-03-16 2019-09-19 Barbara Smith Deep brain stimulation electrode with photoacoustic and ultrasound imaging capabilities
US11768182B2 (en) 2019-04-26 2023-09-26 Arizona Board Of Regents On Behalf Of Arizona State University Photoacoustic and optical microscopy combiner and method of generating a photoacoustic image of a sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516305A (ja) * 2007-01-19 2010-05-20 サニーブルック・ヘルス・サイエンシズ・センター 撮像プローブ用の走査機構
US20110275890A1 (en) * 2009-01-09 2011-11-10 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP2012143384A (ja) * 2011-01-12 2012-08-02 Canon Inc 光音響ミラーおよび音響波取得装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224399A (ja) 2004-02-13 2005-08-25 Clinical Supply:Kk 光超音波断層画像測定方法及び装置
JP5643101B2 (ja) * 2007-10-25 2014-12-17 ワシントン・ユニバーシティWashington University 散乱媒体の画像化方法、画像化装置及び画像化システム
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
US9528966B2 (en) * 2008-10-23 2016-12-27 Washington University Reflection-mode photoacoustic tomography using a flexibly-supported cantilever beam
US8997572B2 (en) * 2011-02-11 2015-04-07 Washington University Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
US20120275262A1 (en) * 2011-04-29 2012-11-01 Washington University Section-illumination photoacoustic microscopy with ultrasonic array detection
KR102040148B1 (ko) * 2012-06-29 2019-11-04 삼성전자주식회사 파이버 스캐닝 광 프로브 및 이를 채용한 의료 영상 기기
US9439570B2 (en) * 2013-03-15 2016-09-13 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516305A (ja) * 2007-01-19 2010-05-20 サニーブルック・ヘルス・サイエンシズ・センター 撮像プローブ用の走査機構
US20110275890A1 (en) * 2009-01-09 2011-11-10 Washington University In St. Louis Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP2012143384A (ja) * 2011-01-12 2012-08-02 Canon Inc 光音響ミラーおよび音響波取得装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021048951A1 (ja) * 2019-09-11 2021-03-18
WO2021048951A1 (ja) * 2019-09-11 2021-03-18 日本電信電話株式会社 光音響プローブ
JP7168097B2 (ja) 2019-09-11 2022-11-09 日本電信電話株式会社 光音響プローブ

Also Published As

Publication number Publication date
US20180235570A1 (en) 2018-08-23
US11147533B2 (en) 2021-10-19
JP6045753B1 (ja) 2016-12-14
JPWO2017077622A1 (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
US11147533B2 (en) Photoacoustic wave detection device and endoscope system including the same
JP6174658B2 (ja) 対象体の断層光音響撮像用の手持ち式装置及び方法
CN104188625B (zh) 一种多模态显微成像系统
JP4494127B2 (ja) 断層画像観察装置、内視鏡装置、及び、それらに用いるプローブ
US10342435B2 (en) Photoacoustic measurement apparatus and probe for photoacoustic measurement apparatus
CN103690141A (zh) 直肠内光学、光声、超声多模成像内窥镜及其成像方法
JP2010117442A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
WO2013168531A1 (ja) 光音響計測装置および光音響計測装置用プローブ
CN110859601A (zh) 一种光声成像探头及光声成像系统
CN106264604B (zh) 全扫描光声双模内窥镜探头
CN109620162A (zh) 一种基于贝塞尔光束扩展焦深的光声内窥镜装置及成像方法
CN105167747A (zh) 一种手持式光声成像探头
CN105996967A (zh) 可调焦光声双模内窥镜探头
US8411366B2 (en) Optical probe and optical system therefor
US10349835B2 (en) Optical switching unit, optical probe including the same, and medical imaging apparatus including optical probe
US11399719B2 (en) Probe for photoacoustic measurement and photoacoustic measurement apparatus including same
WO2013183247A1 (ja) 音響光学撮像装置
US20150135839A1 (en) Photoacoustic probe module and photoacoustic imaging apparatus having the same
CN114129132A (zh) 一种大视场高速光声显微成像装置及方法
US20130345557A1 (en) Light scanning probe and medical imaging apparatus employing the same
CN113598710A (zh) 一种光声内窥装置
US20160003777A1 (en) Recording device and recording method
JP6129694B2 (ja) 光音響計測用プローブおよびそれを備えた光音響計測装置
JP2015004570A (ja) 光音響対物光学系及び光音響顕微鏡
WO2016103374A1 (ja) 光音響装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016521384

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907808

Country of ref document: EP

Kind code of ref document: A1