WO2017075927A1 - 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法 - Google Patents

一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法 Download PDF

Info

Publication number
WO2017075927A1
WO2017075927A1 PCT/CN2016/075844 CN2016075844W WO2017075927A1 WO 2017075927 A1 WO2017075927 A1 WO 2017075927A1 CN 2016075844 W CN2016075844 W CN 2016075844W WO 2017075927 A1 WO2017075927 A1 WO 2017075927A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
monomers
molecular weight
monomer
initiator
Prior art date
Application number
PCT/CN2016/075844
Other languages
English (en)
French (fr)
Inventor
杨万泰
闫旭
王力
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2017075927A1 publication Critical patent/WO2017075927A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F120/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F120/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule

Definitions

  • the present invention relates to a method for preparing a living radical polymer using a class of initiators derived from an X heterothioketone structure and derivatives thereof, and a method for preparing a block copolymer using the living radical polymer as a macroinitiator .
  • Controlled polymer materials have drawn great attention from the scientific and industrial communities. At present, there have been many research work on living polymerization, including living anionic polymerization, living cationic polymerization, living coordination polymerization, active ring opening polymerization, and living radical polymerization. Among them, living radical polymerization has the advantages of simple operation, application to various monomers, and has rapidly become a hot research direction.
  • the Iniferter polymerization method does not control the polymerization process very much.
  • the molecular weight of the obtained polymer deviates greatly from the theoretical value, and the molecular weight distribution coefficient is wider; while the SFRP polymerization requires a higher polymerization temperature, and most of the nitrogen-oxygen-stable free radicals have controllability only for styrene and its derivatives.
  • highly active nitroxide radicals have been discovered, the synthesis process is complicated and the yield is low; the biggest disadvantage of ATRP is that the transition metal complex is not consumed during the polymerization process, and it is difficult to purify, and it is easy to cause residual in the polymer.
  • a cyclic aromatic semi-pinacol group is a new active living polymerization system (CMP) for initiation/initiation control agents (Polym.Chem., 2012, 3, 1982).
  • CMP active living polymerization system
  • the insertion of monomer into the main chain grows.
  • the method has simple synthesis, no metal, and no toxicity, and has good industrialization prospects.
  • the cyclic aromatic bis pinacol group itself is easily in the polymerization reaction, the H radical transfer reaction is easily generated, and the H radical can rapidly initiate the radical polymerization, so that the control of the experimental conditions needs to be very precise.
  • the initiation/initiation control agent itself coupled by two cyclic aromatic bis-propyl alcohol radicals is sensitive to light and heat and is inconvenient to store.
  • the nucleation activity of the carbon radical is very low due to the conjugate and steric hindrance effect of the cyclic aromatic ciprocol itself, resulting in a higher initiation rate in the entire polymerization system. Low, the entire polymerization reaction has a longer induction period.
  • the radical addition/fragmentation of the chain allows the monomer to be inserted into the polymer backbone to achieve an increase in the molecular weight of the polymer, and the resulting polymer is used as a macroinitiator to initiate the preparation of the block copolymer from other monomers.
  • the living polymerization method of the invention has simple process, mild reaction condition, wide application range of monomers, and a one-step organic synthesis method for using the initiation control agent, and the prepared polymer is pure, colorless and odorless.
  • the living polymerization method according to the present invention can be applied to four polymerization methods such as bulk, solution, emulsion and suspension polymerization, and is suitable for industrial production.
  • the invention provides a high-efficiency controllable/living polymerization method, using a control agent such as formula (1), which can be used with a conventional free radical initiator AIBN, etc., and a monomer to achieve a molecular weight conversion rate under heating conditions.
  • a control agent such as formula (1)
  • PDI Mw / Mn
  • the trigger mechanism is as follows:
  • conventional initiators such as AIBN are thermally decomposed to produce two primary radicals, which are initiated by primary radicals to produce chain radicals.
  • the aromatic ring X-heterothione can be coupled with the chain radical to form a large hindered group formed by the aromatic cyclic X compound.
  • Stabilized benzylic carbon free radicals The benzylic carbon radical can initiate polymerization and can be coupled/broken with chain radicals, so that the monomer can continue to be inserted into the main chain to achieve molecular weight growth.
  • the coupling/breaking of carbon-sulfur bonds can also cause monomers to be inserted into chain radicals. The increase in molecular weight is achieved, so the increase in molecular weight is accomplished by these two parts.
  • the monomer has a wide range of applications, suitable for methacrylate monomers (such as methyl methacrylate), acrylate monomers (such as methyl acrylate), styrene monomers (such as ⁇ -methylbenzene).
  • methacrylate monomers such as methyl methacrylate
  • acrylate monomers such as methyl acrylate
  • styrene monomers such as ⁇ -methylbenzene
  • Ethylene vinyl acetate monomer (such as vinyl acetate), acrylic monomer (such as methacrylic acid), olefin monomer (such as n-butene), acid anhydride monomer (such as maleic anhydride), amide
  • amide One or more of the class of monomers (such as acrylamide).
  • the polymer obtained by the above formula (2) is used as a macroinitiator, and one or more monomers are added, and different polymerization methods can be used to obtain a structure-controlled chain extension. Or block polymer.
  • a living radical polymerization method comprising an aromatic cyclic sulfur (oxy)hyperthione and a derivative thereof and a radical initiator, comprising the following steps:
  • the R substituent is H, halogen, alkyl, carboxyl, aldehyde, cyano or methoxy; R occupies any one or more positions of the benzene ring 1, 2, 3, 4, X is substituted
  • the base is C, N, O, S, P;
  • the thermal radical initiator and the initiator control agent are placed together with the monomer in the reaction bottle, and the freeze-thaw gas is degassed or nitrogen-passed. After the oxygen is discharged, the reaction is carried out at 40-150 degrees for 4 to 72 hours to obtain a polymer having a controlled molecular weight and molecular weight distribution, as shown in the formula (2);
  • the polymer obtained by the above formula (2) is used as a macroinitiator, and one or more monomers are added, and different structural polymerization methods are used to obtain a structure-controlled chain extension or Block polymer.
  • the polymerization method is a bulk, solution, emulsion, inverse emulsion, suspension or precipitation heterogeneous polymerization.
  • the monomer is a methacrylate monomer, an acrylate monomer, a styrene monomer, a vinyl acetate monomer, an acrylic monomer, an olefin monomer, an acid anhydride monomer, One or more of the amide monomers.
  • the monomer is one or more of methyl methacrylate, methyl acrylate, ⁇ -methyl styrene, vinyl acetate, methacrylic acid, n-butene, maleic anhydride, and acrylamide. .
  • the initiator is controlled by thiathione
  • the obtained polymer prepared by the method is represented by the formula (2);
  • the homopolymer prepared by using the first embodiment is a macroinitiator, which is added to a polymerization system containing other monomers, and heated under a protective atmosphere for a period of time to prepare a block polymer.
  • monomers which can participate in radical polymerization such as methacrylate monomers (such as methyl methacrylate), acrylate monomers (such as methyl acrylate), and styrene are mainly used.
  • Monomer such as ⁇ -methylstyrene
  • vinyl acetate monomer such as vinyl acetate
  • acrylic monomer such as methacrylic acid
  • olefin monomer such as n-butene
  • anhydride One or more of a body such as maleic anhydride or an amide monomer such as acrylamide.
  • the polymerization method may be: bulk, solution, emulsion, inverse emulsion, suspension or precipitation heterogeneous polymerization.
  • the polymer represented by the formula (2) obtained by the above two technical schemes is a homopolymer or a block copolymer containing a living end group, and is also a protective object of the present invention, and the nuclear magnetic result is as shown in FIG. Show.
  • Figure 2 shows the NMR spectrum of a homopolymer containing reactive end groups
  • Example 1 Thiothione modulates the polymerization of MMA solution at different reaction temperatures.
  • Example 2 Thiathione modulates the polymerization of MMA solution at different MMA concentrations.
  • thiathione, AIBN, MMA and toluene were added.
  • the thiothioketone, AIBN, MMA and toluene were added, the masses of AIBN and thiothione were respectively 0.0328 g and 0.1000 g; the masses of MMA were 2.50 g, 5.00 g, and 10.00 g, respectively.
  • the seal was freeze-thawed and degassed three times, and both were reacted at 70 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate of the two experiments was linearly increased with the reaction time by gravimetric method; the molecular weight was observed by GPC. The rate increases and increases.
  • the MMA concentration was 12.5%.
  • the experimental results are shown in Table 3.
  • the MMA concentration was 25%.
  • the experimental results are shown in Table 4.
  • the MMA concentration was 50%.
  • the experimental results are shown in Table 5.
  • thiothione 0.0500 g, AIBN 0.0164 g, BA 5.00 g, and toluene 15.00 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 70 degrees for 24 hours.
  • the sample was taken out at regular intervals and rapidly quenched in liquid nitrogen.
  • the monomer conversion rate was increased by the gravimetric method as the reaction time prolonged; the molecular weight observed by GPC increased with the increase of monomer conversion rate.
  • the dispersion coefficient is around 1.8.
  • the resulting living polymer can be used as a macroinitiator to initiate copolymerization of other monomer blocks.
  • oxygen-containing heterothione was 0.0212 g
  • AIBN was 0.0082 g
  • BA was 10.00 g
  • toluene was 10.00 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • thioketone was 0.0212 g
  • AIBN was 0.0082 g
  • GMA was 2.50 g
  • toluene was 17.50 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • Example 10 Thiothione macroinitiator initiated BA polymerization.
  • Example 11 Thiothione macroinitiator initiated MMA polymerization.
  • Example 12 Thiothione macroinitiator regulates TBMA polymerization.
  • Example 13 Isopropyl-thiathione modulates MMA polymerization
  • Example 16 4-Hydroxy-oxathione modulates polymerization of MMA solution
  • Example 18 70 degree thiazolidine modulating St solution polymerization
  • thioketone 0.0500 g, AIBN 0.0164 g, St 5.00 g, and toluene 15.00 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 70 degrees for 24 hours.
  • the sample was taken out at regular intervals and rapidly quenched in liquid nitrogen.
  • the monomer conversion rate was increased by the gravimetric method as the reaction time prolonged; the molecular weight observed by GPC increased with the increase of monomer conversion rate.
  • the dispersion coefficient is around 1.3.
  • the resulting living polymer can be used as a macroinitiator to initiate copolymerization of other monomer blocks.
  • thioketone was 0.0212 g
  • AIBN was 0.0082 g
  • toluene was 17.50 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • Example 21 Thiothione modulates MMA bulk polymerization
  • thioketone was 0.0212 g
  • AIBN was 0.0082 g
  • MMA was 20 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • thioketone was 0.0212 g
  • AIBN was 0.0082 g
  • BA was 20 g.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours. Samples were taken out at regular intervals and quickly quenched in liquid nitrogen, dried in vacuo, and passed through gravimetric method. The monomer conversion was measured to increase linearly with the reaction time; the molecular weight observed by GPC increased as the monomer conversion rate increased.
  • Example 23 Thiothione macroinitiator (PBA) regulates MMA polymerization
  • a macroinitiator PBA 1 g, MMA 2 g, and toluene 7 g were added.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • a macroinitiator PBA 1 g, GMA 2 g, and toluene 7 g were added.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .
  • a macroinitiator PBA 1 g, St 2 g, and 7 g of toluene were added.
  • the seal was freeze-thawed and degassed three times, and reacted at 80 degrees for 24 hours.
  • the sample was taken out periodically and quenched in liquid nitrogen. After vacuum drying, the monomer conversion rate increased linearly with the reaction time by gravimetric method; the molecular weight observed by GPC increased with the increase of monomer conversion rate. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法,使用芳香环状硫酮(C=S-Ph2(X)),X为C,N,O,S(将二个苯环链接)及其衍生物作为引发控制剂,使乙烯基类单体进行可控/活性自由基聚合的方法。特点是将C=S-Ph2(X)及其衍生物与AIBN等传统自由基引发剂并用,在加热条件下可获得分子量及分布可控的一端带有休眠基团的聚合物;还可使用所得的聚合物作为大分子引发剂引发其他单体制备嵌段共聚物。本发明采用的聚合方法操作工艺简单,单体适用范围广,可应用于本体、溶液、乳液和悬浮等的热聚合等聚合方法中,为活性自由基聚合反应的工业化应用创造了良好的基础。

Description

一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法 技术领域
本发明涉及使用一类源于X杂硫酮结构的引发控制剂及其衍生物制备活性自由基聚合物的方法,以及使用该活性自由基聚合物作为大分子引发剂制备嵌段共聚物的方法。
背景技术
分子量及分子量分布可控的聚合物材料在诸如高分子结晶学,自组装领域,新型材料的合成与制备领域,表面改性领域,以及生物医药领域有着广泛的应用,因此,制备分子量及分布可控的聚合物材料引起了科学及工业界的极大关注。目前,已有很多关于活性聚合的研究工作,包括活性阴离子聚合、活性阳离子聚合、活性配位聚合、活性开环聚合以及活性自由基聚合。其中活性自由基聚合具备操作简单,适用于多种单体等优点,已迅速成为热门的研究方向。自从1982年,陆续发明了多种主要的活性自由基聚合方法,包括热引发-转移-终止法(Iniferter)(Makromol.Chem.RapidCommun.,1982,3,133;),稳定活性自由基聚合法(SFRP)(Macromolecular,1993,26,2987),原子转移自由基聚合(ATRP)(J.Am.Chem.Soc.,1995,117,5614)以及可逆加成-裂解链转移(RAFT)聚合(Macromolecular,1998,31,5559)等。已有不少研究报道了这四种聚合体系在制备分子量及分子量分布可控的聚合物的优势和应用,但这四种体系各自仍存在一些不足,比如Iniferter聚合方法对聚合过程的控制不是很好,使得所得聚合物的分子量与理论值偏差较大,分子量分布系数较宽;而SFRP聚合需要较高的聚合温度,而且大多数氮氧稳定自由基只对苯乙烯及其衍生物具有控制能力,虽然己有高活性的氮氧自由基被发现,但是合成过程复杂,产率低;ATRP的最大缺点是过渡金属络合物在聚合过程中不消耗,难以提纯,残留在聚合物中容易导致聚合物老化和其他副作用,同时,由于低价过度金属的存在,使其在工业生产的道路上进一步发展的希望十分不理想;RAFT聚合所需的链转移剂双硫酯类化合物的制备过程需要多步有机合成,且通常聚合产物带有双硫酯类化合物的颜色,同时产物具有一定的生物毒性,很难应用于与人体直接接触的高分子材料中。1996年,Ranby和杨万泰发现,在紫外光照射下,光引发剂二苯甲酮(BP)能夺取基材表面的氢,产生表面自由基引发聚合,并能与由BP被还原生成的半频哪醇自由基偶合;半频哪醇自由基可逆地偶合和断裂于接枝链末端,从而控制了接枝链的增长,实现了可控活性表面接枝聚合(Macromolecules,1996,29,3308)。随后,杨和尹等研究发现具有类似二苯甲酮结构的异丙基硫杂蒽酮(ITX),在可见光照射下也可产生ITX-半频哪醇自由基作为活性休眠基团控制接枝链的增长。
在此基础上,杨发明了一种新型的活性聚合体系:环状芳香半频哪醇基团为引发/引发控制剂的活性聚合新体系(CMP)(Polym.Chem.,2012,3,1982)专利号为102181001A;102181001B,其中,环状芳香半频哪醇基团既可以作为引发剂来引发单体聚合,同时,又可以作为引发控制剂,与链自由基加成/断裂,从而实现单体向主链的插入增长。该方法合成简单,不含金属,且并没有毒性,具有很好的工业化前景。然而,由于环状芳香半频哪醇基团本身在聚合反应中,容易产生H自由基转移转移反应,H自由基可以迅速的引发自由基聚合,从而使得实验条件的控制需要十分的精确。同时,由两个环状芳香半频哪醇自由基耦合起来的引发/引发控制剂本身,对光以及热较为敏感,不方便进行储存。并且,从引发剂分子结构上看,由于环状芳香半频哪醇本身的共轭及空间位阻效应的影响,使得碳自由基的引发活性非常低,从而导致了整个聚合体系中引发速率较低,整个聚合反应有较长的诱导期。
在硫酮调节的活性聚合TKMP(Chem.Commun.,2006,835)中,两个共轭基团与碳硫双键(C=S)直接相连,而两个共轭集团之间没有化学键将二者连接在一起,其中,碳硫双键(C=S)可以与由引发剂如AIBN断裂分解产生的链自由基耦合/断裂,使得单体可以插 入链自由基从而实现单体的增长。由于该体系使用的并不是环状芳香结构的硫酮,而是由两个共轭基团分别连接于起主要调节作用的碳硫双键(C=S)的碳原子两侧的硫酮,使得碳原子的引发活性较高,同时,与链自由基耦合能力较小,最终导致,上述方法所获得的产物,分子量增长不明显,且分子量分布十分巨大。并不能够起到对分子量及分子量分布进行有效调控的作用。
鉴于以上原因,我们设计并合成了一系列引发控制剂结构,使得两个共轭基团与碳硫双键(C=S)直接相连,且两个共轭集团之间通过化学键将二者连接在一起,形成了一系列由芳香环状X杂硫酮(C=S-X)及其衍生物的结构,并将这一结构应用于活性聚合的调控中。因此,本发明使用一种包含芳香环状X杂硫酮(C=S-X)的引发控制剂,将其与传统自由基聚合的引发剂AIBN等均裂产生的初级自由基,以及聚合过程中产生的链自由基加成/断裂,从而实现单体插入聚合物主链,实现聚合物分子量的增长,并以生成的聚合物为大分子引发剂引发其他单体制备嵌段共聚物。本发明涉及的活性聚合方法工艺简单,反应条件温和,单体适用范围广,使用的引发控制剂采用一步有机合成方法,制备所得的聚合物纯净且无色无味。本发明涉及的活性聚合方法能够应用于本体、溶液、乳液以及悬浮聚合等四大聚合方法之中,适合工业化生产。
发明内容
本发明提供一种高效的可控/活性聚合方法,使用一种如式(1)引发控制剂,其可以与传统的自由基引发剂AIBN等,和单体在加热条件下实现分子量随转化率的增加而增加,同时达到控制分子量和分子量分布(PDI=Mw/Mn)的目的并保证所得的如式(2)聚合物具有再引发活性,可用来引发其他单体制备嵌段共聚物。
其引发机理如下所示:
Figure PCTCN2016075844-appb-000001
在链引发中,传统的引发剂如AIBN受热分解产生两个初级自由基,由初级自由基引发单体聚合,产生链自由基。
在链增长中,由于引发控制剂—芳香环状X杂硫酮的引入,芳香环状X杂硫酮可以与链自由基发生耦合,生成一个被芳香环状X杂化合物形成的大位阻基团稳定的苄位碳自由基。该苄位碳自由基的既可以引发聚合,又可以与链自由基耦合/断裂,使得单体可以继续插入主链中,实现分子量的增长。同时,碳硫键的耦合/断裂同样可以使得单体插入链自由基中, 实现分子量的增长,所以,分子量的增长,由这两部分共同完成。
本体系具有如下特点:
1.单体适用范围广,适用于甲基丙烯酸酯类单体(如甲基丙烯酸甲酯),丙烯酸酯类单体(如丙烯酸甲酯),苯乙烯类单体(如α-甲基苯乙烯),醋酸乙烯酯类单体(如醋酸乙烯酯),丙烯酸类单体(如甲基丙烯酸),烯烃类单体(如正丁烯),酸酐类单体(如马来酸酐),酰胺类单体(如丙烯酰胺)中的一种或多种。
2.可以适用于各种聚合方法:如本体、溶液、乳液、反相乳液、悬浮或者沉淀非均相聚合。
3.将上述得到的如式(2)所示的聚合物作为大分子引发剂,再加入一种或多种单体,可以分别采用不同的聚合方法,均可获得得到结构可控的扩链或嵌段聚合物。
一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法,其特征在于包括下列步骤:
(1)在一种或多种单体组成的混合物中,加入如式(1)所示的引发控制剂中的一种或几种,与各类热自由基引发剂组成双引发剂聚合体系引发单体反应;引发控制剂与热自由基引发剂摩尔比为1:50-50:1混合;
Figure PCTCN2016075844-appb-000002
式(1)中,R取代基为H,卤素,烷基、羧基、醛基、氰基或甲氧基;R占苯环1,2,3,4的任何一个或者多个位置,X取代基为C,N,O,S,P;
(2)按照引发控制剂与单体摩尔比为1:10-1:100000,将热自由基引发剂与引发剂控制剂与单体一同置于反应瓶中,密封冻融脱气或通氮排氧后,在40-150度下反应4-72小时,得到分子量和分子量分布均可控的聚合物,如式(2)所示;
Figure PCTCN2016075844-appb-000003
式(2)中,聚合度m,n=1-1000,其中X为C,N,O,P,S中的一种;R1,R2,R3,R4为各种单体的不同取代基。
进一步,将上述得到的如式(2)所示的聚合物作为大分子引发剂,再加入一种或多种单体,分别采用不同的聚合方法,均可获得得到结构可控的扩链或嵌段聚合物。
进一步,聚合方法是本体、溶液、乳液、反相乳液、悬浮或者沉淀非均相聚合。
进一步,所述的单体为甲基丙烯酸酯类单体,丙烯酸酯类单体,苯乙烯类单体,醋酸乙烯酯类单体,丙烯酸类单体,烯烃类单体,酸酐类单体,酰胺类单体中的一种或多种。
进一步,所述的单体为甲基丙烯酸甲酯,丙烯酸甲酯,α-甲基苯乙烯,醋酸乙烯酯,甲基丙烯酸,正丁烯,马来酸酐,丙烯酰胺中的一种或多种。
进一步,引发控制剂采用硫杂硫酮;
所述的方法所制备的得到的聚合物,如式(2)所示;
Figure PCTCN2016075844-appb-000004
式(2)中,聚合度m,n=1-1000,其中X为C,N,O,P,S中的一种;R1,R2,R3,R4为各种单体的不同取代基。
本发明所使用的引发剂的制备与提纯方法:
把劳森试剂(2.5mmol)、硫杂蒽酮或其同系物(4mmol)放入50mL甲苯中,40-150度下反应1-72小时,之后加入饱和碳酸氢钠溶液除去过量劳森试剂,分液,将有机相旋干,并用石油醚萃取,将产物重结晶三次,低温真空烘干,产率约为80%。其中C=S-Ph2(S)的核磁谱图如附图1所示。
依据上述构思,发明人提出了如下实施本发明2类技术方案:
技术方案1:引发剂与芳香环状硫酮(C=S-Ph2(X))聚合体系
选择传统的自由基引发剂与芳香环状硫酮(C=S-Ph2(X))在惰性气体保护下,加热一段时间,得到含活性端基的聚合物。、
引发剂与芳香环状硫酮(C=S-Ph2(X))聚合体系的机理如(3)所示,仅以C=S-Ph2(S)引发一种单体聚合为例。由反应机理可知,在链增长阶段,建立了硫酮-链自由基断裂耦合的平衡,正是这种平衡的存在,使得大部分链增长自由基与碳硫双键及苄位的碳自由基结合成休眠链状态,只有少量高分子链自由基处于活性增长状态,由于链增长自由基浓度很低,难以双基或歧化终止,从而按可控活性动力学机理进行反应,得到分子量及其分布可控的聚合物。
Figure PCTCN2016075844-appb-000005
技术方案2:大分子引发剂再引发聚合
使用技术方案1制备的均聚物为大分子引发剂,加入到含有其他单体的聚合体系中,在惰性气体保护下,加热一段时间,可以制备嵌段聚合物。
上述2种技术方案中,主要使用能参与自由基聚合的单体,如甲基丙烯酸酯类单体(如甲基丙烯酸甲酯),丙烯酸酯类单体(如丙烯酸甲酯),苯乙烯类单体(如α-甲基苯乙烯),醋酸乙烯酯类单体(如醋酸乙烯酯),丙烯酸类单体(如甲基丙烯酸),烯烃类单体(如正丁烯),酸酐类单体(如马来酸酐),酰胺类单体(如丙烯酰胺)中的一种或多种。
上述2种技术方案中,聚合方法可以为:本体、溶液、乳液、反相乳液、悬浮或者沉淀非均相聚合。
通过上述2种技术方案聚合得到的如式(2)所示的聚合物,是含有活性端基的均聚物或嵌段共聚物,亦是本发明的保护对象,核磁结果如附图2所示。
附图说明
图1 C=S-Ph2(S)的核磁谱图
图2含有活性端基的均聚物的核磁谱图
具体实施方式
以下通过实施例更进一步地描述本发明,但实施例并不限本发明的保护范围。
实施例1:不同反应温度下,硫杂硫酮调控MMA溶液聚合。
在100ml单口瓶中,加入硫杂硫酮0.0500g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次后,分别在70度和80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体的转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大、分散系数基本在1.8以下。得到的活性自由基聚合物可用作大分子引发剂继续引发其他单体嵌段共聚。
70度实验结果表1所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 27.2 41400 1.78
3 44.5 45100 1.75
5 58.1 46900 1.73
10 67.4 47300 1.73
24 72.1 48200 1.76
80度实验结果表2所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 36.1 42300 1.79
3 58.5 43700 1.81
5 76.2 44900 1.84
10 84.1 47300 1.83
24 91.5 49200 1.84
实施例2:不同MMA浓度下,硫杂硫酮调控MMA溶液聚合。
在100ml单口瓶中,加入硫杂硫酮、AIBN、MMA和甲苯。加入硫杂硫酮、AIBN、MMA和甲苯,AIBN,硫杂硫酮质量分别为0.0328g和0.1000g;MMA质量分别为2.50g,5.00g,10.00g。MMA与甲苯共计20.00g。密封冻融脱气三次,均在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得两组实验的单体转化率均随反应时间呈线性增长;通过GPC观测到分子量均随单体转化率的增加而增大。
MMA浓度为12.5%实验结果如表3所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 8.2 16,300 1.71
3 27.4 19,500 1.72
5 41.8 20,700 1.75
10 52.5 22,300 1.68
24 64.7 24,200 1.66
MMA浓度为25%实验结果如表4所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 33.5 41,400 1.78
3 52.9 45,100 1.76
5 66.4 45,500 1.73
10 72.1 47,400 1.76
24 93.9 48,000 1.82
MMA浓度为50%实验结果如表5所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 21.8 77,100 1.74
3 37.1 85,800 1.71
5 48.6 90,700 1.73
10 65.3 95,200 1.71
24 72.4 96,700 1.83
实施例3:70度硫杂硫酮调控BA溶液聚合
在100ml单口瓶中,硫杂硫酮0.0500g,AIBN0.0164g,BA5.00g,及甲苯15.00g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间延长而增长;通过GPC观测到分子量随单体转化率的增加而增大、分散系数在1.8左右。得到的活性聚合物可以作为大分子引发剂再引发其他单体嵌段共聚。
实验结果如表6所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 14.1 5,500 1.39
3 27.2 6,400 1.41
5 41.5 7,700 1.42
10 53.3 8,300 1.49
24 61.9 8,500 1.61
48 70.2 8,700 1.77
实施例4:70度硫杂硫酮调控GMA溶液聚合
在100ml单口瓶中,硫杂硫酮0.0500g,AIBN0.0164g,GMA5.00g,及甲苯15.00g。。密封冻融脱气三次后,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间延长缓慢增长。
实验结果如表7所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 11.9 22,000 1.22
2 16.3 27,100 1.26
3 21.2 31,400 1.24
4 25.9 32,100 1.26
5 27.1 37,900 1.32
实施例5:氧杂硫酮调控MMA溶液聚合
在100ml单口瓶中,氧杂硫酮0.0212g,AIBN0.0082g,MMA5.00g,及甲苯15.00g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表8所示。
Figure PCTCN2016075844-appb-000006
Figure PCTCN2016075844-appb-000007
实施例6:氧杂硫酮调控BA溶液聚合
在100ml单口瓶中,加氧杂硫酮0.0212g,AIBN0.0082g,BA10.00g,及甲苯10.00g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表9所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 14.1 33,800 1.54
3 36.0 35,300 1.66
5 68.2 44,700 1.63
10 74.9 45,500 1.74
24 83.1 48,100 1.77
36 85.5 48,300 1.76
48 90.2 48,400 1.77
实施例7:氧杂硫酮调控GMA溶液聚合
在100ml单口瓶中,硫酮0.0212g,AIBN0.0082g,GMA2.50g,及甲苯17.50g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表10所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 4.9 4,700 1.23
2 8.1 4,800 1.26
3 10.2 4,900 1.22
4 13.9 5,600 1.27
实施例8:氧杂硫酮大分子引发剂引发MMA聚合
在100ml单口瓶中,加入大分子引发剂1g,MMA2g,甲苯7g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表11所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 7,200 1.57
5 6.9 7,800 1.76
10 11.2 8,200 1.77
24 21.9 8,500 1.81
36 36.5 9,200 1.77
48 49.7 9,500 1.79
实施例9:氧杂硫酮大分子引发剂引发BA聚合
在100ml单口瓶中,加入大分子引发剂1g,BA2g,甲苯7g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表12所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 7,200 1.57
5 9.1 8,800 1.93
10 20.4 8,900 1.96
24 33.8 11,700 2.14
36 47.6 14,000 2.23
48 65.2 14,900 2.06
实施例10:硫杂硫酮大分子引发剂引发BA聚合。
在100ml单口瓶中,加入大分子引发剂1g,BA2g,甲苯7g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表13所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 5,800 1.27
5 13.2 7,100 1.44
10 21.1 8,300 1.61
24 37.5 8,500 1.57
36 54.0 10,200 1.72
48 79.4 17,100 1.68
实施例11:硫杂硫酮大分子引发剂引发MMA聚合。
在100ml单口瓶中,加入大分子引发剂1g,MMA2g,甲苯7g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表14所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 5,800 1.27
5 16.1 7,700 1.47
10 31.7 8,600 1.62
24 47.0 8.900 1.56
36 59.2 12,100 1.58
48 68.9 13,600 1.59
实施例12:硫杂硫酮大分子引发剂调控TBMA聚合。
在100ml单口瓶中,加入大分子引发剂1g,TBMA2g,甲苯7g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表15所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 5,800 1.27
5 11.1 6,100 1.32
10 17.2 6,700 1.36
24 29.4 6,900 1.44
36 40.7 7,600 1.41
48 48.5 8,300 1.47
实施例13:异丙基—硫杂硫酮调控MMA聚合
在100ml单口瓶中,异丙基—硫杂硫酮0.0544g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表16所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 42.1 18,700 1.96
3 61.8 18,800 1.96
5 74.7 19,200 1.97
10 79.9 19,300 2.41
24 93.5 19,400 2.28
实施例14:异丙基—硫杂硫酮调控聚合
在100ml单口瓶中,硫酮0.0544g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表17所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 40.6 18,300 2.12
3 57.6 18,700 2.17
5 64.0 19,200 2.20
10 73.1 19,400 2.11
24 79.1 20,200 2.43
实施例15:异丙基—硫杂硫酮调控GMA聚合
在100ml单口瓶中,异丙基—硫杂硫酮0.0544g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表18所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 17.1 66,300 1.44
3 32.8 72,900 1.55
5 43.5 87,300 1.52
10 51.8 91,400 1.55
实施例16:4-羟基-氧杂硫酮调控MMA溶液聚合
在100ml单口瓶中,硫酮0.0544g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表19所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 10.5 8,000 1.75
3 22.6 10,200 1.79
5 35.9 12,600 1.78
10 50.2 15,500 1.76
24 62.9 16,900 1.77
实施例17:4-羟基-氧杂硫酮调控BA溶液聚合
在100ml单口瓶中,硫酮0.0544g,AIBN0.0164g,MMA5.0000g,及甲苯15g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表20所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 15.5 8,900 1.91
3 29.6 13,200 1.95
5 45.9 16,600 1.97
10 66.2 19,300 1.94
24 82.9 26,100 1.95
实施例18:70度硫杂硫酮调控St溶液聚合
在100ml单口瓶中,硫酮0.0500g,AIBN 0.0164g,St 5.00g,及甲苯15.00g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间延长而增长;通过GPC观测到分子量随单体转化率的增加而增大、分散系数在1.3左右。得到的活性聚合物可以作为大分子引发剂再引发其他单体嵌段共聚。
实验结果如表21所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 7.4 4,500 1.19
3 11.6 5,400 1.21
5 17.9 5,900 1.25
10 29.2 7,700 1.27
24 33.5 8,100 1.29
48 42.8 8,400 1.31
实施例19:4-羟基-氧杂硫酮调控St溶液聚合
在100ml单口瓶中,硫酮0.0544g,AIBN0.0164g,St 2.0000g,及甲苯18g。密封冻融脱气三次,在70度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表22所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 11.2 6,900 1.41
3 17.9 8,800 1.44
5 31.0 9,200 1.40
10 44.3 9,900 1.42
24 60.7 10,700 1.46
实施例20:氧杂硫酮调控St溶液聚合
在100ml单口瓶中,硫酮0.0212g,AIBN0.0082g,St 2.50g,及甲苯17.50g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表23所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 5.7 3,700 1.23
2 10.4 4,200 1.26
3 19.6 4,900 1.22
4 28.7 5,300 1.27
实施例21:硫杂硫酮调控MMA本体聚合
在100ml单口瓶中,硫酮0.0212g,AIBN0.0082g,MMA 20g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表24所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 5.2 156,900 1.66
3 11.9 163,800 1.71
5 19.0 171,200 1.74
10 22.5 179,900 1.72
24 34.1 186,700 1.75
实施例22:硫杂硫酮调控BA本体聚合
在100ml单口瓶中,硫酮0.0212g,AIBN0.0082g,BA 20g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法 测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表25所示。
时间(小时) 转化率(%) 分子量 多分散系数
1 5.2 176,700 1.88
3 11.9 183,400 1.89
5 19.0 187,100 1.94
10 22.5 192,300 1.96
24 34.1 196,000 1.95
实施例23:硫杂硫酮大分子引发剂(PBA)调控MMA聚合
在100ml单口瓶中,加入大分子引发剂PBA 1g,MMA 2g,甲苯7g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表26所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 7,400 1.47
5 17.5 9,100 1.56
10 29.7 10,500 1.61
24 41.0 13,200 1.64
36 53.2 15,700 1.65
48 66.9 16,900 1.62
实施例24:硫杂硫酮大分子引发剂(PBA)调控GMA聚合
在100ml单口瓶中,加入大分子引发剂PBA 1g,GMA 2g,甲苯7g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表27所示。
Figure PCTCN2016075844-appb-000008
Figure PCTCN2016075844-appb-000009
实施例25:硫杂硫酮大分子引发剂(PBA)调控St聚合
在100ml单口瓶中,加入大分子引发剂PBA 1g,St 2g,甲苯7g。密封冻融脱气三次,在80度下反应24小时。定时取出样品并将其迅速置于液氮中淬冷,真空干燥后,通过重量法测得单体转化率随反应时间呈线性增长;通过GPC观测到分子量随单体转化率的增加而增大。
实验结果如表28所示。
时间(小时) 转化率(%) 分子量 多分散系数
0 0 7,400 1.47
5 6.7 8,200 1.49
10 12.5 8,900 1.51
24 21.9 9,300 1.52
36 33.1 9,500 1.55
48 49.7 9,800 1.53

Claims (7)

  1. 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法,其特征在于包括下列步骤:
    (1)在一种或多种单体组成的混合物中,加入如式(1)所示的引发控制剂中的一种或几种,与各类热自由基引发剂组成双引发剂聚合体系引发单体反应;引发控制剂与热自由基引发剂摩尔比为1:50-50:1混合;
    Figure PCTCN2016075844-appb-100001
    式(1)中,R取代基为H,卤素,烷基、羧基、醛基、氰基或甲氧基;R占苯环1,2,3,4的任何一个或者多个位置,X取代基为C,N,O,S,P;
    (2)按照引发控制剂与单体摩尔比为1:10-1:100000,将热自由基引发剂与引发剂控制剂与单体一同置于反应瓶中,密封冻融脱气或通氮排氧后,在40-150度下反应4-72小时,得到分子量和分子量分布均可控的聚合物,如式(2)所示;
    Figure PCTCN2016075844-appb-100002
    式(2)中,聚合度m,n=1-1000,其中X为C,N,O,P,S中的一种;R1,R2,R3,R4为各种单体的不同取代基。
  2. 如权利要求1所述的方法,其特征在于:将上述得到的如式(2)所示的聚合物作为大分子引发剂,再加入一种或多种单体,分别采用不同的聚合方法,均可获得得到结构可控的扩链或嵌段聚合物。
  3. 如权利要求1所述的方法,其特征在于:
    聚合方法是本体、溶液、乳液、反相乳液、悬浮或者沉淀非均相聚合。
  4. 如权利要求1所述的方法,其特征在于:
    所述的单体为甲基丙烯酸酯类单体,丙烯酸酯类单体,苯乙烯类单体,醋酸乙烯酯类单体,丙烯酸类单体,烯烃类单体,酸酐类单体,酰胺类单体中的一种或多种。
  5. 如权利要求1所述的方法,其特征在于:
    所述的单体为甲基丙烯酸甲酯,丙烯酸甲酯,α-甲基苯乙烯,醋酸乙烯酯,甲基丙烯酸,正丁烯,马来酸酐,丙烯酰胺中的一种或多种。
  6. 如权利要求1所述的方法,其特征在于:
    引发控制剂采用硫杂硫酮。
  7. 如权利要求1所述的方法所制备的得到的聚合物,如式(2)所示;
    Figure PCTCN2016075844-appb-100003
    式(2)中,聚合度m,n=1-1000,其中X为C,N,O,P,S中的一种;R1,R2,R3,R4为各种单体的不同取代基。
PCT/CN2016/075844 2015-11-08 2016-03-08 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法 WO2017075927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510753834.4 2015-11-08
CN201510753834.4A CN105218715B (zh) 2015-11-08 2015-11-08 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法

Publications (1)

Publication Number Publication Date
WO2017075927A1 true WO2017075927A1 (zh) 2017-05-11

Family

ID=54988036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075844 WO2017075927A1 (zh) 2015-11-08 2016-03-08 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法

Country Status (2)

Country Link
CN (1) CN105218715B (zh)
WO (1) WO2017075927A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218715B (zh) * 2015-11-08 2018-01-12 北京化工大学 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法
CN107522686B (zh) * 2017-08-25 2020-11-20 北京化工大学 硫醚化合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873774A (ja) * 1994-09-06 1996-03-19 Mitsui Toatsu Chem Inc 可視光感光性樹脂組成物
CN102167754A (zh) * 2011-03-17 2011-08-31 北京化工大学 双硫杂蒽二醇及其衍生物为引发剂的活性自由基聚合方法
CN105218715A (zh) * 2015-11-08 2016-01-06 北京化工大学 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181001B (zh) * 2011-03-11 2013-01-23 北京化工大学 一种可控/活性自由基聚合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873774A (ja) * 1994-09-06 1996-03-19 Mitsui Toatsu Chem Inc 可視光感光性樹脂組成物
CN102167754A (zh) * 2011-03-17 2011-08-31 北京化工大学 双硫杂蒽二醇及其衍生物为引发剂的活性自由基聚合方法
CN105218715A (zh) * 2015-11-08 2016-01-06 北京化工大学 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法

Also Published As

Publication number Publication date
CN105218715B (zh) 2018-01-12
CN105218715A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
EP1322674B1 (en) Control agents for living-type free radical polymerization, methods of polymerizing, emulsions and polymers with same
Diaz et al. Controlled polymerization of functional monomers and synthesis of block copolymers using a β-phosphonylated nitroxide
JP5122041B2 (ja) ミクロゲル調製プロセス
Salem et al. Polymer-layered silicate nanocomposites prepared through in situ reversible addition–fragmentation chain transfer (RAFT) polymerization
Kanagasabapathy et al. Reversible Addition‐Fragmentation Chain‐Transfer Polymerization for the Synthesis of Poly (4‐acetoxystyrene) and Poly (4‐acetoxystyrene)‐block‐polystyrene by Bulk, Solution and Emulsion Techniques
CN104262555A (zh) 一种对温度和二氧化碳具有多重响应性的嵌段聚合物及其制备方法
WO2017075927A1 (zh) 一种由芳香环状硫(氧)杂硫酮及其衍生物与自由基引发剂并用的活性自由基聚合方法
CN102181001B (zh) 一种可控/活性自由基聚合方法
CN102167766B (zh) 乙烯基氨基酸(酯)聚合物及制备方法
Xin et al. Synthesis of zwitterionic block copolymers via RAFT polymerization
US6667376B2 (en) Control agents for living-type free radical polymerization and methods of polymerizing
CN103880995A (zh) 一种活性可控自由基聚合的方法和乙烯基聚合物
US6369165B1 (en) Method for the production of polymers from n-vinyl compounds
CN104558325A (zh) 一种可聚合的组合物及用此组合物制备聚乙烯基吡啶的方法
Yamamoto et al. Synthesis and PSA performance study for novel acrylic and butyl acrylate block copolymers
JPS6357642A (ja) ジメチルシロキサン系ブロツク共重合体の製造方法
US7345186B2 (en) Oxathiazaphospholidine free radical control agent
Seifert et al. A Study of Simple RAFT Transfer Agents for the Polymerization of (Meth‐) acrylates and Acrylamides
JPS63278910A (ja) 高分子量重合体の製造法
CN105418817B (zh) 一种可见光诱导的聚乙烯基吡啶的可控制备方法
Zhang et al. Synthesis and characterization of poly (N-isopropylacrylamide)-modified zinc oxide nanoparticles
CN102002136A (zh) 一种窄分子量分布两亲性嵌段共聚物的制备方法
US6166155A (en) Process for preparing polymers of vinyl monomers with narrow molecular weight distribution by controlled free-radical polymerization
CN109251259B (zh) 一种基于催化剂和Finkelstein反应实现可控自由基聚合的方法
JP2005536626A (ja) リビングラジカルを含む分散体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861200

Country of ref document: EP

Kind code of ref document: A1