WO2017073428A1 - 真空断熱構造 - Google Patents

真空断熱構造 Download PDF

Info

Publication number
WO2017073428A1
WO2017073428A1 PCT/JP2016/080962 JP2016080962W WO2017073428A1 WO 2017073428 A1 WO2017073428 A1 WO 2017073428A1 JP 2016080962 W JP2016080962 W JP 2016080962W WO 2017073428 A1 WO2017073428 A1 WO 2017073428A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum heat
heat insulating
insulating material
tubular member
tank
Prior art date
Application number
PCT/JP2016/080962
Other languages
English (en)
French (fr)
Inventor
一藤 山城
洋輝 中土
今井 達也
村岸 治
良介 浦口
孝 河本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201680062517.0A priority Critical patent/CN108139027B/zh
Priority to KR1020187013626A priority patent/KR102451628B1/ko
Priority to EP16859658.3A priority patent/EP3369984B1/en
Publication of WO2017073428A1 publication Critical patent/WO2017073428A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/013Reinforcing means in the vessel, e.g. columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/032Multi-sheet layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to a vacuum heat insulating structure.
  • a vacuum heat insulating structure in which a first member on a low temperature side and a second member on a high temperature side face each other with a vacuum space therebetween.
  • the first member is covered with a laminated vacuum heat insulating material in order to prevent heat from entering from the second member to the first member due to heat radiation.
  • Patent Document 1 a plurality of tubular members are disposed in a vacuum space between an inner tank (first member on the low temperature side) and an outer tank (second member on the high temperature side), and these tubular members are interposed therebetween.
  • a double shell tank in which the inner tank is supported by the outer tank is disclosed.
  • the tubular member when the tubular member is arranged in the vacuum space as described above, it is desired to prevent the heat from entering from the second member to the first member even inside the tubular member.
  • the first member is covered with a flat laminated vacuum heat insulating material inside the tubular member, and the inner peripheral surface of the tubular member is covered with a cylindrical laminated vacuum heat insulating material.
  • the laminated vacuum heat insulating material is wound around the outside of the heat insulation object and held on the heat insulation object by tension.
  • the cylindrical laminated vacuum heat insulating material how to maintain the cylindrical laminated vacuum heat insulating material along the inner peripheral surface of the tubular member. It will be a problem.
  • an object of the present invention is to provide a vacuum heat insulating structure capable of maintaining a cylindrical laminated vacuum heat insulating material in a state along the inner peripheral surface of the tubular member.
  • a vacuum heat insulating structure includes a first member, a second member that is opposed to the first member across a vacuum space, and has a higher temperature than the first member, and the first member.
  • a tubular member extending from the member toward the second member, a planar first laminated vacuum heat insulating material covering the first member inside the tubular member, and a tubular first covering the inner peripheral surface of the tubular member 2 laminated vacuum heat insulating material, and the holding member around which the said 2nd laminated vacuum heat insulating material was arrange
  • stacking vacuum heat insulating material which covers the internal peripheral surface of a tubular member is wound around the holding member, the 2nd lamination
  • the holding member may include a first holding part on which the first laminated vacuum heat insulating material is placed and a second holding part around which the second laminated vacuum heat insulating material is wound. According to this structure, even if it does not provide a stud bolt etc. in a 1st member, a 1st lamination
  • the holding member may have a container shape opening toward the second member, in which the first holding portion is a ceiling wall and the second holding portion is a peripheral wall. According to this configuration, the holding member can have a simple shape.
  • the tubular member is in contact with the second member, and the tubular member is made of a material having a thermal conductivity smaller than 1 W / m ⁇ K, and is disposed on the second member side of the second laminated vacuum heat insulating material.
  • the distance from one end to the one end on the second member side of the tubular member may be 1/2 or less and 1/6 or more of the length of the tubular member.
  • the laminated vacuum heat insulating material tends to conduct heat easily in a direction orthogonal to the thickness direction (stacking direction).
  • the tubular member is formed with a temperature gradient in which the temperature gradually decreases from one end on the second member side toward the other end on the first member side.
  • the second laminated vacuum heat insulating material when the second laminated vacuum heat insulating material extends to the immediate vicinity of the second member, the second laminated vacuum heat insulating material serves as a bypass route for heat bypassing the intermediate portion of the tubular member.
  • the length of the second laminated vacuum heat insulating material is too short, the inner peripheral surface of the tubular member is greatly exposed, so that a large amount of heat enters the first member through the tubular member by heat radiation.
  • the second laminated vacuum heat insulating material can be effectively suppressed from serving as a heat detour route that bypasses the intermediate portion of the tubular member.
  • first member and the second member may be an inner tank and an outer tank of a double shell tank, respectively.
  • the double shell tank may be a marine tank mounted on a marine vessel.
  • the cylindrical laminated vacuum heat insulating material can be maintained in a state along the inner peripheral surface of the tubular member.
  • FIG. 1 shows a double shell tank 1 employing a vacuum heat insulating structure according to an embodiment of the present invention.
  • the double shell tank 1 is a marine tank mounted on a marine vessel, for example.
  • the double shell tank 1 does not need to be a marine tank, and may be a tank installed on the ground, for example.
  • the double shell tank 1 includes an inner tank 11 and an outer tank 12 that face each other with a vacuum space 13 therebetween.
  • the inner tank 11 corresponds to the first member of the present invention
  • the outer tank 12 corresponds to the second member of the present invention.
  • a low-temperature liquefied gas is stored in the inner tank 11.
  • the outer tank 12 that encloses the inner tank 11 is exposed to the atmosphere. That is, the temperature of the outer tub 12 is a room temperature higher than the temperature of the inner tub 11.
  • the vacuum space 13 plays a role of preventing heat transfer due to air convection between the inner tank 11 and the outer tank 12.
  • a plurality of tubular members 2 are disposed between the inner tank 11 and the outer tank 12. Each tubular member 2 extends from the inner tank 11 toward the outer tank 12 and is in contact with the outer tank 12. The inner tank 11 is supported by the outer tank 12 through the tubular member 2.
  • the inner tank 11 has a cylindrical shape extending in a direction orthogonal to the paper surface.
  • the tubular members 2 are arranged in two rows on a line extending in the circumferential direction of the inner tank 11 at positions separated from each other in the axial direction of the inner tank 11, and the axial direction of each tubular member 2 is the diameter of the inner tank 11. It matches the direction.
  • the arrangement of the tubular members 2 can be appropriately changed according to the shape of the inner tank 11.
  • the tubular members 2 may be arranged in a cross shape in two orthogonal directions with the lowermost end of the inner tank 11 as the center.
  • the tubular members 2 may be arranged in a matrix between the bottoms of the inner tank 11 and the outer tank 12.
  • each tubular member 2 is in direct contact with the inner tank 11 and the outer tank 12.
  • another member may be fitted to one end and the other end of the tubular member 2, and the tubular member 2 may be in contact with the inner tank 11 and the outer tank 12 through the member.
  • each tubular member 2 is circular.
  • the cross-sectional shape of each tubular member 2 may be other shapes such as a polygon.
  • each tubular member 2 is made of a material having a thermal conductivity at room temperature smaller than 1 W / m ⁇ K.
  • a material having a thermal conductivity at room temperature smaller than 1 W / m ⁇ K.
  • FRP fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • the inner tank 11 is covered with a plurality of planar outer first laminated vacuum heat insulating materials 14. Moreover, the outer peripheral surface of each tubular member 2 is covered with a cylindrical outer second laminated vacuum heat insulating material 15. On the other hand, inside each tubular member 2, the inner tank 11 is covered with a planar inner first laminated vacuum heat insulating material 3. The inner peripheral surface of each tubular member 2 is covered with a cylindrical inner second laminated vacuum heat insulating material 4.
  • Each of the laminated vacuum heat insulating materials 14, 15, 3, and 4 has a structure in which, for example, a radiation shield film and a spacer are alternately laminated.
  • the radiation shield film is formed, for example, by evaporating aluminum (or gold or silver) on the surface of the resin sheet.
  • the spacer is a sheet having a low thermal conductivity. As such a sheet, a resin net, woven fabric, non-woven fabric, paper, glass fiber material, or the like can be used.
  • the outer first laminated vacuum heat insulating material 14 is wound around the inner tank 11 so that the ends of the adjacent outer first laminated vacuum heat insulating materials 14 overlap each other.
  • the ends of the adjacent outer first laminated vacuum heat insulating materials 14 are joined by a surface fastener.
  • the outer first laminated vacuum heat insulating material 14 may be held on the inner tub 11 by tension, may be held on the inner tub 11 using a stud bolt provided in the inner tub 11, or may be a ring. It may be held on the inner tank 11 by a shaped band.
  • the outer second laminated vacuum heat insulating material 15 is wound around the tubular member 2 so that the ends overlap each other.
  • the ends of the outer second laminated vacuum heat insulating material 15 are joined by a surface fastener so that a tension acts on the outer second laminated vacuum heat insulating material 15, and the outer second laminated vacuum heat insulating material 15 is tubular by the tension. It is held on the outer peripheral surface of the member 2.
  • the length of the outer second laminated vacuum heat insulating material 15 is shorter than the length of the tubular member 2, and the lower part of the outer peripheral surface of the tubular member 2 is exposed. However, the outer peripheral surface of the tubular member 2 may be entirely covered with the outer second laminated vacuum heat insulating material 15.
  • a holding member 5 is disposed inside each tubular member 2.
  • the holding member 5 includes a first holding part 51 on which the inner first laminated vacuum heat insulating material 3 is placed and a second holding part 52 around which the inner second laminated vacuum heat insulating material 4 is wound.
  • the holding member 5 has a container shape that opens toward the outer tub 12 in which the first holding portion 51 is a ceiling wall and the second holding portion 52 is a peripheral wall.
  • the first holding part 51 that is a ceiling wall is circular
  • the second holding part 52 that is a peripheral wall is cylindrical.
  • Each of the ceiling wall and the peripheral wall may be a continuous plate as shown in FIG. 3 or a plate having a large number of holes (for example, punching metal or expanded metal).
  • the configuration of the holding member 5 can be changed as appropriate.
  • the first holding part 51 that is a ceiling wall may be polygonal.
  • the second holding part 52 may be composed of a plurality of vertical bars 53 arranged along the outline of the first holding part 51 that is a ceiling wall and a plurality of horizontal bars 54 that connect the vertical bars 53.
  • maintenance part 51 may also be comprised by two bars arrange
  • the height of the holding member 5 is set to be shorter than the length of the tubular member 2, and the holding member 5 is tubular with an unillustrated pin in contact with the outer tub 12. It is connected to the member 2.
  • the inner first laminated vacuum heat insulating material 3 is slightly separated from the inner tank 11.
  • the inner first laminated vacuum heat insulating material 3 may be in close contact with the inner tank 11 entirely.
  • the holding member 5 may be connected to the tubular member 2 in a state of floating from the outer tub 12.
  • the inner first laminated vacuum heat insulating material 3 may be fixed to the first holding part 51, or may be simply placed on the first holding part 51 without being fixed to the first holding part 51.
  • the inner second laminated vacuum heat insulating material 4 is wound around the second holding part 52 of the holding member 5 so that the ends overlap each other.
  • the ends of the inner second laminated vacuum heat insulating material 4 are joined to each other by a surface fastener so that a tension acts on the inner second laminated vacuum heat insulating material 4, and the inner second laminated vacuum heat insulating material 4 is tubular by the tension. It is held on the outer peripheral surface of the member 2.
  • the inner second laminated vacuum heat insulating material 4 may be in close contact with the inner peripheral surface of the tubular member 2, but is slightly spaced from the inner peripheral surface while being close to the inner peripheral surface of the tubular member 2. Is desirable. For this reason, it is desirable that the outer diameter of the second holding portion 52, which is a peripheral wall, be slightly smaller than the inner diameter of the tubular member 2 than the twice of the thickness of the inner second laminated vacuum heat insulating material 4.
  • the relative position of the holding member 5 with respect to the tubular member 2 is fixed by the above-described pin (not shown) (the pin that connects the holding member 5 to the tubular member 2).
  • the length of the inner second laminated vacuum heat insulating material 4 is shorter than the length of the tubular member 2, and the lower part of the inner peripheral surface of the tubular member 2 is exposed.
  • the distance D from the lower end (one end on the outer tub 12 side) of the inner second laminated vacuum heat insulating material 4 to the lower end (one end on the outer tub 12 side) 21 of the tubular member 2 is 1 ⁇ 2 or less of the length of the tubular member 2. And 1/6 or more.
  • the upper end of the inner second laminated vacuum heat insulating material 4 (the other end on the inner tub 11 side) is preferably in contact with the inner first laminated vacuum heat insulating material 3, but slightly from the inner first laminated vacuum heat insulating material 3. It may be separated.
  • the inner first laminated vacuum heat insulating material 3 and the inner second laminated vacuum heat insulating material 4 may be integrated.
  • the inner second laminated vacuum heat insulating material 4 that covers the inner peripheral surface of the tubular member 2 is wound around the holding member 5.
  • the laminated vacuum heat insulating material 4 can be maintained in a state along the inner peripheral surface of the tubular member 2.
  • the holding member 5 includes not only the second holding portion 52 around which the inner second laminated vacuum heat insulating material 4 is wound, but also the first holding portion 51 on which the inner first laminated vacuum heat insulating material 3 is placed, the inner tank 11 Even if a stud bolt or the like is not provided, the inner first laminated vacuum heat insulating material 3 can be held using the holding member 5.
  • the holding member 5 since the holding member 5 has a container shape, the holding member 5 can be formed into a simple shape.
  • the laminated vacuum heat insulating material tends to easily conduct heat in a direction orthogonal to the thickness direction (lamination direction).
  • the thermal conductivity of the tubular member 2 is low, a temperature gradient in which the temperature gradually decreases from the lower end on the outer tub 12 side to the upper end on the inner tub 11 side is formed in the tubular member 2.
  • the inner second laminated vacuum heat insulating material 4 when the inner second laminated vacuum heat insulating material 4 extends to the immediate vicinity of the outer tub 12, the inner second laminated vacuum heat insulating material 4 bypasses the intermediate portion of the tubular member 2, that is, the tubular member. 2 becomes a heat detour route for transferring heat from the lower part to the upper part.
  • the length of the inner second laminated vacuum heat insulating material 4 is too short, the inner peripheral surface of the tubular member 2 is greatly exposed, so that a large amount of heat is generated by heat radiation to the inner tank 11 through the tubular member 2. invade.
  • the distance D from the lower end of the inner second laminated vacuum heat insulating material 4 to the lower end of the tubular member 2 is 1/2 or less and 1/6 or more of the length of the tubular member 2 as in this embodiment.
  • the first member and the second member of the present invention are not necessarily the inner tank 11 and the outer tank 12 of the double shell tank 1.
  • the first member may be a low temperature plate protruding from the inner tank 11
  • the second member may be a high temperature plate protruding from the outer tank 12 so as to face the low temperature plate.
  • tubular member 2 is not necessarily in contact with the second member, and may be separated from the second member. Furthermore, the tubular member 2 does not necessarily need to be made of a material having a thermal conductivity lower than 1 W / m ⁇ K at room temperature, and when the thermal conduction by the tubular member 2 is small (for example, when the tubular member 2 is long).
  • the tubular member 2 may be made of a metal having high thermal conductivity.
  • the holding member 5 does not necessarily have the first holding part 51.
  • the inner first laminated vacuum heat insulating material 3 may be held using a stat bolt provided in the inner tank 11.
  • the inner second laminated vacuum heat insulating material 4 may cover the entire inner peripheral surface of the tubular member 2.
  • the present invention can also be applied to various structures other than tanks.
  • Double shell tank 11 Inner tank (first member) 12 Outer tank (second member) 13 Vacuum space 2 Tubular member 3 Inner first laminated vacuum heat insulating material 4 Inner second laminated vacuum heat insulating material 5 Holding member 51 First holding portion 52 Second holding portion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

真空断熱構造は、第1部材と、真空空間を隔てて第1部材と対向する、第1部材よりも高温の第2部材と、第1部材から第2部材に向かって延びる管状部材と、管状部材の内側で第1部材を覆う平面状の第1積層真空断熱材と、管状部材の内周面を覆う筒状の第2積層真空断熱材と、管状部材の内側に配置された、第2積層真空断熱材が巻き付けられた保持部材と、を備える。

Description

真空断熱構造
 本発明は、真空断熱構造に関する。
 従来から、低温側の第1部材と高温側の第2部材とが真空空間を隔てて互いに対向する真空断熱構造が知られている。このような真空断熱構造では、一般的に、第2部材から第1部材への熱輻射による熱の侵入を防止するために、第1部材が積層真空断熱材で覆われる。
 例えば、特許文献1には、内槽(低温側の第1部材)と外槽(高温側の第2部材)の間の真空空間内に複数の管状部材が配置され、これらの管状部材を介して内槽が外槽に支持された二重殻タンクが開示されている。
国際公開第2014/174819号
 ところで、上述したように真空空間内に管状部材が配置される場合には、管状部材の内側でも、第2部材から第1部材への熱輻射による熱の侵入を防止することが望まれる。このためには、管状部材の内側で第1部材を平面状の積層真空断熱材で覆うとともに、管状部材の内周面を筒状の積層真空断熱材で覆うことが考えられる。
 通常、積層真空断熱材は、防熱対象物の外側に巻き付けられ、張力によって防熱対象物上に保持される。しかしながら、上述したように管状部材の内周面を筒状の積層真空断熱材で覆う場合には、筒状の積層真空断熱材をどのようにして管状部材の内周面に沿った状態に維持するかが問題となる。
 そこで、本発明は、筒状の積層真空断熱材を管状部材の内周面に沿った状態に維持することができる真空断熱構造を提供することを目的とする。
 前記課題を解決するために、本発明の真空断熱構造は、第1部材と、真空空間を隔てて前記第1部材と対向する、前記第1部材よりも高温の第2部材と、前記第1部材から前記第2部材に向かって延びる管状部材と、前記管状部材の内側で前記第1部材を覆う平面状の第1積層真空断熱材と、前記管状部材の内周面を覆う筒状の第2積層真空断熱材と、前記管状部材の内側に配置された、前記第2積層真空断熱材が巻き付けられた保持部材と、を備える、ことを特徴とする。
 上記の構成によれば、管状部材の内周面を覆う第2積層真空断熱材が保持部材に巻き付けられているので、保持部材によって第2積層真空断熱材を管状部材の内周面に沿った状態に維持することができる。
 前記保持部材は、前記第1積層真空断熱材が載置される第1保持部と、前記第2積層真空断熱材が巻き付けられる第2保持部を含んでもよい。この構成によれば、第1部材にスタッドボルトなどを設けなくても、保持部材を利用して第1積層真空断熱材を保持することができる。
 前記保持部材は、前記第1保持部が天井壁であって前記第2保持部が周壁となる、前記第2部材に向かって開口する容器状であってもよい。この構成によれば、保持部材をシンプルな形状とすることができる。
 前記管状部材は、前記第2部材に接触しており、前記管状部材は、熱伝導率が1W/m・Kよりも小さな材料からなり、前記第2積層真空断熱材の前記第2部材側の一端から前記管状部材の前記第2部材側の一端までの距離は、前記管状部材の長さの1/2以下かつ1/6以上であってもよい。積層真空断熱材は、厚さ方向(積層方向)と直交する方向には熱を伝導し易い傾向がある。一方、管状部材の熱伝導率は低いため、管状部材には、第2部材側の一端から第1部材側の他端に向かって温度が徐々に低下する温度勾配が形成される。このような構成において、第2積層真空断熱材が第2部材の直ぐ近くまで延びていると、第2積層真空断熱材が、管状部材の中間部を迂回する熱の迂回ルートとなる。一方で、第2積層真空断熱材の長さが短すぎれば、管状部材の内周面が大きく露出されるため、管状部材を介して第1部材へ熱輻射によって多くの熱が侵入する。これに対し、第2積層真空断熱材の第2部材側の一端から管状部材の第2部材側の一端までの距離が管状部材の長さの1/2以下かつ1/6以上であれば、管状部材の内周面を十分な面積で覆いつつ、第2積層真空断熱材が管状部材の中間部を迂回する熱の迂回ルートとなることを効果的に抑制することができる。
 例えば、前記第1部材および前記第2部材は、それぞれ二重殻タンクの内槽および外槽であってもよい。
 例えば、前記二重殻タンクは、船舶に搭載される舶用タンクであってもよい。
 本発明によれば、筒状の積層真空断熱材を管状部材の内周面に沿った状態に維持することができる。
本発明の一実施形態に係る真空断熱構造が採用された二重殻タンクの断面図である。 図1に示す二重殻タンクにおける1つの管状部材の断面図である。 前記一実施形態における保持部材の斜視図である。 変形例の保持部材の斜視図である。
 図1に、本発明の一実施形態に係る真空断熱構造が採用された二重殻タンク1を示す。二重殻タンク1は、例えば、船舶に搭載される舶用タンクである。ただし、二重殻タンク1は、舶用タンクである必要はなく、例えば、地上に設置されるタンクであってもよい。
 具体的に、二重殻タンク1は、真空空間13を隔てて互いに対向する内槽11および外槽12を含む。内槽11は本発明の第1部材に相当し、外槽12は本発明の第2部材に相当する。
 内槽11内には、例えば低温の液化ガスが貯留される。内槽11を包み込む外槽12は、大気中に露出している。すなわち、外槽12の温度は、内槽11の温度よりも高い常温である。真空空間13は、内槽11と外槽12の間での空気の対流による熱伝達を防止する役割を果たす。
 内槽11と外槽12の間には、複数の管状部材2が配置されている。各管状部材2は、内槽11から外槽12に向かって延びており、外槽12に接触している。内槽11は、管状部材2を介して外槽12に支持されている。
 本実施形態では、内槽11が紙面と直交する方向に延びる円筒形である。このため、管状部材2は、内槽11の軸方向に互いに離間する位置で内槽11の周方向に延びる線上に2列で並んでおり、各管状部材2の軸方向が内槽11の径方向と一致している。ただし、管状部材2の並び方は、内槽11の形状に応じて適宜変更可能である。例えば、内槽11が球形である場合には、管状部材2が内槽11の最下端を中心として直交する二方向に十字状に並んでいてもよい。また、例えば、内槽11が方形である場合には、内槽11および外槽12の底同士の間に管状部材2がマトリクス状に並んでいてもよい。
 図2に示すように、本実施形態では、各管状部材2が内槽11および外槽12に直接的に接触している。ただし、管状部材2の一端および他端に別の部材が嵌合しており、管状部材2がその部材を介して内槽11および外槽12に接触していてもよい。
 本実施形態では、各管状部材2の断面形状が円形である。ただし、各管状部材2の断面形状は多角形などの他の形状であってもよい。
 また、本実施形態では、各管状部材2が、常温での熱伝導率が1W/m・Kよりも小さな材料からなる。このような材料としては、例えば、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、布強化フェノール樹脂などの繊維強化プラスチック(FRP)が挙げられる。
 各管状部材2の外側では、内槽11が複数の平面状の外側第1積層真空断熱材14で覆われている。また、各管状部材2の外周面は、筒状の外側第2積層真空断熱材15で覆われている。一方、各管状部材2の内側では、内槽11が平面状の内側第1積層真空断熱材3で覆われている。また、各管状部材2の内周面は、筒状の内側第2積層真空断熱材4で覆われている。
 積層真空断熱材14,15,3,4のそれぞれは、例えば、輻射シールドフィルムとスペーサが交互に積層された構造を有する。輻射シールドフィルムは、例えば、樹脂シートの表面にアルミニウム(金または銀でもよい)を蒸着させることにより形成される。スペーサは、熱伝導率の小さなシートである。このようなシートとしては、樹脂製のネット、織布、不織布などや、紙、ガラス繊維材などを用いることができる。
 外側第1積層真空断熱材14は、隣り合う外側第1積層真空断熱材14の端部同士が重なり合うように内槽11に巻き付けられている。隣り合う外側第1積層真空断熱材14の端部同士は、面ファスナによって接合されている。外側第1積層真空断熱材14は、張力によって内槽11上に保持されてもよいし、内槽11に設けられたスタッドボルトを利用して内槽11上に保持されてもよいし、リング状のバンドによって内槽11上に保持されてもよい。
 外側第2積層真空断熱材15は、端部同士が重なり合うように管状部材2に巻き付けられている。外側第2積層真空断熱材15の端部同士は、外側第2積層真空断熱材15に張力が作用するように面ファスナによって接合されており、外側第2積層真空断熱材15はその張力によって管状部材2の外周面上に保持されている。外側第2積層真空断熱材15の長さは管状部材2の長さよりも短く、管状部材2の外周面の下部は露出している。ただし、管状部材2の外周面が全面的に外側第2積層真空断熱材15で覆われていてもよい。
 各管状部材2の内側には、保持部材5が配置されている。保持部材5は、内側第1積層真空断熱材3が載置される第1保持部51と、内側第2積層真空断熱材4が巻き付けられる第2保持部52を含む。
 本実施形態では、保持部材5が、図3に示すように、第1保持部51が天井壁であって第2保持部52が周壁となる、外槽12に向かって開口する容器状である。より詳しくは、天井壁である第1保持部51は円形であり、周壁である第2保持部52は円筒形である。なお、天井壁および周壁のそれぞれは、図3に示すような連続した板であってもよいし、多数の穴を有する板(例えば、パンチングメタルやエキスパンドメタル)であってもよい。
 ただし、保持部材5の構成は適宜変更可能である。例えば、図4に示すように、天井壁である第1保持部51は多角形であってもよい。また、第2保持部52は、天井壁である第1保持部51の輪郭に沿って配置された複数の縦棒53およびそれらの縦棒53を連結する複数の横棒54で構成されてもよい。あるいは、図示は省略するが、第1保持部51も、十字に配置される2本の棒で構成されてもよいし、格子状に配置される4本以上の棒で構成されてもよい。
 本実施形態では、図2に示すように、保持部材5の高さが管状部材2の長さよりも短く設定されており、保持部材5が外槽12に接触する状態で図略のピンにより管状部材2と連結されている。このため、内側第1積層真空断熱材3が内槽11から僅かに離間している。ただし、内側第1積層真空断熱材3は、内槽11に全面的に密着していてもよい。また、保持部材5は、外槽12から浮いた状態で管状部材2に連結されていてもよい。内側第1積層真空断熱材3は、第1保持部51に固定されてもよいし、第1保持部51に固定されずに第1保持部51上に載置されるだけでもよい。
 内側第2積層真空断熱材4は、端部同士が重なり合うように保持部材5の第2保持部52に巻き付けられている。内側第2積層真空断熱材4の端部同士は、内側第2積層真空断熱材4に張力が作用するように面ファスナによって接合されており、内側第2積層真空断熱材4はその張力によって管状部材2の外周面上に保持されている。
 内側第2積層真空断熱材4は、管状部材2の内周面に密着していてもよいが、管状部材2の内周面に近接しつつも当該内周面から僅かに離間していることが望ましい。このため、周壁である第2保持部52の外径は、内側第2積層真空断熱材4の厚さの2倍分よりも少しだけ管状部材2の内径よりも小さいことが望ましい。なお、保持部材5の管状部材2に対する相対位置は、上述した図略のピン(保持部材5を管状部材2と連結するピン)により固定される。
 内側第2積層真空断熱材4の長さは管状部材2の長さよりも短く、管状部材2の内周面の下部は露出している。内側第2積層真空断熱材4の下端(外槽12側の一端)から管状部材2の下端(外槽12側の一端)21までの距離Dは、管状部材2の長さの1/2以下かつ1/6以上である。
 内側第2積層真空断熱材4の上端(内槽11側の他端)は、内側第1積層真空断熱材3と接触していることが望ましいが、内側第1積層真空断熱材3から僅かに離間していてもよい。また、内側第1積層真空断熱材3および内側第2積層真空断熱材4は、一体化されていてもよい。
 以上説明したように、本実施形態の真空断熱構造では、管状部材2の内周面を覆う内側第2積層真空断熱材4が保持部材5に巻き付けられているので、保持部材5によって内側第2積層真空断熱材4を管状部材2の内周面に沿った状態に維持することができる。
 さらに、保持部材5は内側第2積層真空断熱材4が巻き付けられる第2保持部52だけでなく内側第1積層真空断熱材3が載置される第1保持部51を含むので、内槽11にスタッドボルトなどを設けなくても、保持部材5を利用して内側第1積層真空断熱材3を保持することができる。
 また、本実施形態では保持部材5が容器状であるので、保持部材5をシンプルな形状とすることができる。
 ところで、積層真空断熱材は、厚さ方向(積層方向)と直交する方向には熱を伝導し易い傾向がある。一方、管状部材2の熱伝導率は低いため、管状部材2には、外槽12側の下端から内槽11側の上端に向かって温度が徐々に低下する温度勾配が形成される。このような構成において、内側第2積層真空断熱材4が外槽12の直ぐ近くまで延びていると、内側第2積層真空断熱材4が、管状部材2の中間部を迂回する、すなわち管状部材2の下部から上部へ熱を伝達する熱の迂回ルートとなる。一方で、内側第2積層真空断熱材4の長さが短すぎれば、管状部材2の内周面が大きく露出されるため、管状部材2を介して内槽11へ熱輻射によって多くの熱が侵入する。これに対し、本実施形態のように内側第2積層真空断熱材4の下端から管状部材2の下端までの距離Dが管状部材2の長さの1/2以下かつ1/6以上であれば、管状部材2の内周面を十分な面積で覆いつつ、内側第2積層真空断熱材4が管状部材2の中間部を迂回する熱の迂回ルートとなることを効果的に抑制することができる。
 (変形例)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
 例えば、本発明の第1部材および第2部材は、必ずしも二重殻タンク1の内槽11および外槽12である必要はない。例えば、第1部材は内槽11から突出する低温板であってもよいし、第2部材は低温板と対向するように外槽12から突出する高温板であってもよい。
 また、管状部材2は、必ずしも第2部材に接触している必要はなく、第2部材から離間していてもよい。さらに、管状部材2は、必ずしも常温での熱伝導率が1W/m・Kよりも小さな材料からなる必要はなく、管状部材2による熱伝導が小さい場合(例えば、管状部材2の長い場合)には、管状部材2が熱伝導率の高い金属からなってもよい。
 また、保持部材5は、必ずしも第1保持部51を有している必要はない。例えば、内側第1積層真空断熱材3は、内槽11に設けられたスタットボルトを利用して保持されてもよい。
 また、内側第2積層真空断熱材4の厚さを下方に向かうにつれて薄くする場合には、内側第2積層真空断熱材4が管状部材2の内周面を全面的に覆っていてもよい。
 本発明は、タンク以外の種々の構造物にも適用可能である。
 1  二重殻タンク
 11 内槽(第1部材)
 12 外槽(第2部材)
 13 真空空間
 2  管状部材
 3  内側第1積層真空断熱材
 4  内側第2積層真空断熱材
 5  保持部材
 51 第1保持部
 52 第2保持部
 

Claims (6)

  1.  第1部材と、
     真空空間を隔てて前記第1部材と対向する、前記第1部材よりも高温の第2部材と、
     前記第1部材から前記第2部材に向かって延びる管状部材と、
     前記管状部材の内側で前記第1部材を覆う平面状の第1積層真空断熱材と、
     前記管状部材の内周面を覆う筒状の第2積層真空断熱材と、
     前記管状部材の内側に配置された、前記第2積層真空断熱材が巻き付けられた保持部材と、
    を備える、真空断熱構造。
  2.  前記保持部材は、前記第1積層真空断熱材が載置される第1保持部と、前記第2積層真空断熱材が巻き付けられる第2保持部を含む、請求項1に記載の真空断熱構造。
  3.  前記保持部材は、前記第1保持部が天井壁であって前記第2保持部が周壁となる、前記第2部材に向かって開口する容器状である、請求項2に記載の真空断熱構造。
  4.  前記管状部材は、前記第2部材に接触しており、
     前記管状部材は、熱伝導率が1W/m・Kよりも小さな材料からなり、
     前記第2積層真空断熱材の前記第2部材側の一端から前記管状部材の前記第2部材側の一端までの距離は、前記管状部材の長さの1/2以下かつ1/6以上である、請求項1~3のいずれか一項に記載の真空断熱構造。
  5.  前記第1部材および前記第2部材は、それぞれ二重殻タンクの内槽および外槽である、請求項1~4のいずれか一項に記載の真空断熱構造。
  6.  前記二重殻タンクは、船舶に搭載される舶用タンクである、請求項5に記載の真空断熱構造。
PCT/JP2016/080962 2015-10-29 2016-10-19 真空断熱構造 WO2017073428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680062517.0A CN108139027B (zh) 2015-10-29 2016-10-19 真空隔热构造
KR1020187013626A KR102451628B1 (ko) 2015-10-29 2016-10-19 진공 단열 구조
EP16859658.3A EP3369984B1 (en) 2015-10-29 2016-10-19 Vacuum heat insulation structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212733A JP6641155B2 (ja) 2015-10-29 2015-10-29 真空断熱構造
JP2015-212733 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073428A1 true WO2017073428A1 (ja) 2017-05-04

Family

ID=58630134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080962 WO2017073428A1 (ja) 2015-10-29 2016-10-19 真空断熱構造

Country Status (5)

Country Link
EP (1) EP3369984B1 (ja)
JP (1) JP6641155B2 (ja)
KR (1) KR102451628B1 (ja)
CN (1) CN108139027B (ja)
WO (1) WO2017073428A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387955B2 (ja) * 2018-08-20 2023-11-29 トーヨーカネツ株式会社 断熱床構造
KR102315489B1 (ko) 2020-09-01 2021-10-21 에스탱크엔지니어링(주) 액화수소 저장탱크
WO2023096030A1 (ko) * 2021-11-24 2023-06-01 하이리움산업(주) 극저온 유체 저장탱크의 내외조 연결부 서포트 시스템 및 이를 적용한 극저온 유체 저장탱크

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198899U (ja) * 1987-06-11 1988-12-21
JP2014074452A (ja) * 2012-10-04 2014-04-24 Air Water Plant & Engineering Inc 低温用真空断熱容器
WO2014174819A1 (ja) * 2013-04-23 2014-10-30 川崎重工業株式会社 船舶用タンクの支持構造および液化ガス運搬船

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428748B2 (ja) * 1994-11-16 2003-07-22 株式会社アイ・エイチ・アイ マリンユナイテッド 液体運搬船用自立角型タンク
CN2634259Y (zh) * 2003-07-09 2004-08-18 兰州理工大学 液化天然气贮罐内支承结构
CN102305347B (zh) * 2011-05-24 2012-11-21 张家港圣汇气体化工装备有限公司 高真空多层绝热深冷双壳球形储罐
JP6387528B2 (ja) * 2013-03-01 2018-09-12 パナソニックIpマネジメント株式会社 断熱容器および断熱構造体
KR20150001585A (ko) * 2013-06-26 2015-01-06 (주)대창솔루션 초저온 단열 저장 탱크

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198899U (ja) * 1987-06-11 1988-12-21
JP2014074452A (ja) * 2012-10-04 2014-04-24 Air Water Plant & Engineering Inc 低温用真空断熱容器
WO2014174819A1 (ja) * 2013-04-23 2014-10-30 川崎重工業株式会社 船舶用タンクの支持構造および液化ガス運搬船

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369984A4 *

Also Published As

Publication number Publication date
EP3369984A1 (en) 2018-09-05
JP6641155B2 (ja) 2020-02-05
KR102451628B1 (ko) 2022-10-06
CN108139027B (zh) 2020-01-03
KR20180077184A (ko) 2018-07-06
CN108139027A (zh) 2018-06-08
EP3369984A4 (en) 2019-03-13
JP2017082931A (ja) 2017-05-18
EP3369984B1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2017073428A1 (ja) 真空断熱構造
JP6220164B2 (ja) 二重殻タンクおよび液化ガス運搬船
JP6186122B2 (ja) 低温用真空断熱容器
US20100251653A1 (en) Integrated Multilayer Insulation
JP6935236B2 (ja) トロイダル支持構造
JP2014521917A5 (ja)
WO2017069196A1 (ja) 舶用二重殻タンクおよび船舶
JP6378388B2 (ja) 低温用真空断熱容器
WO2015176177A1 (en) Bracketed support for a double walled cryogenic storage vessel
US20160230932A1 (en) Low heat loss cryogenic fluid storage equipment using multilayered cylindrical support
US20160229150A1 (en) Alveolar multilayer structure having a metal coating
JP6546849B2 (ja) 輸送容器用緩衝体及びキャスク
JP2016161116A (ja) 液化ガスタンクの球状曲面被覆用断熱パネル
JP6405096B2 (ja) 液化ガスタンクおよび液化ガス運搬船
EP3336405B1 (en) Heat insulation structure
KR20150105687A (ko) 다원통형 압력 용기
JP2015096756A (ja) 低温タンク
JP6331350B2 (ja) 低温タンク
KR101741633B1 (ko) 액화천연가스 화물창의 펌프타워 지지 구조체
JP7387955B2 (ja) 断熱床構造
JP2007056905A (ja) 断熱構造体及び断熱容器
JP7460039B1 (ja) 積層構造体
JPH07139699A (ja) 極低温タンク
JP6409496B2 (ja) 超電導機器
JP6924035B2 (ja) 断熱構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013626

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016859658

Country of ref document: EP