WO2017069472A1 - 공기조화기 및 그 제어방법 - Google Patents

공기조화기 및 그 제어방법 Download PDF

Info

Publication number
WO2017069472A1
WO2017069472A1 PCT/KR2016/011631 KR2016011631W WO2017069472A1 WO 2017069472 A1 WO2017069472 A1 WO 2017069472A1 KR 2016011631 W KR2016011631 W KR 2016011631W WO 2017069472 A1 WO2017069472 A1 WO 2017069472A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
pump
air conditioner
flow path
Prior art date
Application number
PCT/KR2016/011631
Other languages
English (en)
French (fr)
Inventor
장용희
구형모
임병국
조일용
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US15/765,856 priority Critical patent/US10760807B2/en
Priority to EP16857730.2A priority patent/EP3336442B1/en
Priority to CN201680061849.7A priority patent/CN108139086B/zh
Publication of WO2017069472A1 publication Critical patent/WO2017069472A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/60Arrangement or mounting of the outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to an air conditioner capable of performing a cooling operation stably in an environment where the outdoor temperature is lower than the room temperature.
  • an air conditioner is a device for controlling the temperature and humidity of indoor air by using a refrigeration cycle.
  • the air conditioner sucks hot air in a room, heats it with a low-temperature refrigerant, and discharges it to the room to cool the room, or conversely,
  • the air may be heated by sucking low temperature air and heat-exchanging it with a high temperature refrigerant and then discharging it into the room.
  • the air conditioner may include an outdoor unit installed in an outdoor space and an indoor unit installed in an indoor space, and the outdoor unit connects a compressor for compressing a refrigerant, an outdoor heat exchanger for blowing heat between the outdoor air, and a refrigerant fan, and a compressor and an indoor unit.
  • the indoor unit may include an indoor heat exchanger and expansion device for heat exchange between the indoor air and the refrigerant.
  • An air conditioner may cool or heat a room by a refrigerant cycle that circulates a compressor, an outdoor heat exchanger (condenser), an expansion device, and an indoor heat exchanger (evaporator) in a forward or reverse direction.
  • a refrigerant cycle that circulates a compressor, an outdoor heat exchanger (condenser), an expansion device, and an indoor heat exchanger (evaporator) in a forward or reverse direction.
  • the gas refrigerant compressed by the compressor flows into the outdoor heat exchanger to phase change into a liquid refrigerant, and in the outdoor heat exchanger, the refrigerant changes phase and releases heat to the outside.
  • the refrigerant discharged from the air expands through the expansion device and flows into the indoor heat exchanger.
  • the liquid refrigerant introduced into the indoor heat exchanger is changed into a gas refrigerant.
  • the refrigerant absorbs external heat while making a phase change in the indoor heat exchanger.
  • the air conditioner controls the room temperature by discharging the heat-exchanged air (cold air) into the indoor space by absorbing the surrounding heat when the refrigerant in the liquid state is vaporized or releasing the heat when the refrigerant in the gas state is liquefied. Done.
  • cooling is performed even in winter for stable operation of the server and electronic equipment.
  • the outdoor temperature is low, the condensation temperature of the refrigerant passing through the outdoor heat exchanger is lowered, and the evaporation temperature of the refrigerant passing through the indoor heat exchanger is lowered.
  • One aspect of the present invention provides an air conditioner capable of performing a cooling operation stably in an environment where the outdoor temperature is lower than the room temperature.
  • an aspect of the present invention provides a control method of the air conditioner that can be efficiently cooled operation without damaging the air conditioner in an environment where the outdoor temperature is lower than the room temperature.
  • an aspect of the present invention provides an air conditioner provided to be mounted between the outdoor unit and the indoor unit of the existing air conditioner separate outdoor unit including a pump capable of low temperature cooling.
  • An air conditioner includes an outdoor unit including a first heat exchanger, an indoor unit including a second heat exchanger, an accumulator for separating refrigerant from the first heat exchanger or the indoor unit into a liquid and a gas, and the accumulator from the accumulator. And a compressor for compressing the gaseous coolant to be supplied to the first heat exchanger, and a pump for pressurizing and supplying the liquid refrigerant from the accumulator to the indoor unit.
  • the air conditioner is provided in the flow path for connecting the first heat exchanger and the accumulator, the expansion valve for controlling the opening degree according to the supercooling degree of the refrigerant from the first heat exchanger and the flow path for connecting the indoor unit and the accumulator
  • the control valve may be further provided to open when the outdoor temperature is lower than the reference temperature than the indoor temperature.
  • the air conditioner may further include a receiver provided in a flow path connecting the first heat exchanger and the expansion valve to store a refrigerant.
  • the air conditioner may further include a first check valve to allow the flow of the refrigerant from the compressor to the first heat exchanger, and a second check valve to allow the flow of the refrigerant from the pump to the outdoor unit.
  • the air conditioner may further include a bypass passage for connecting the first heat exchanger and the indoor unit so that the refrigerant does not pass through the pump, and a control valve for controlling the flow of the refrigerant.
  • the air conditioner may further include a bypass passage provided with a check valve connecting the indoor unit and the first heat exchanger to prevent the refrigerant from passing through the compressor, and allowing a flow of the refrigerant from the indoor unit to the first heat exchanger. It may include.
  • an air conditioner includes: an outdoor unit including a first heat exchanger, a compressor, an accumulator, and a pump; an indoor unit including a second heat exchanger; and connecting the first heat exchanger and the indoor unit;
  • the accumulator for separating the refrigerant from the heat exchanger or the indoor unit into a liquid and a gas is provided, the first flow path is provided with the pump for pressurizing the liquid refrigerant from the accumulator to supply to the indoor unit, the indoor unit and the first
  • an accumulator for connecting a heat exchanger and separating the refrigerant from the first heat exchanger or the indoor unit into a liquid and a gas, and the compressor for compressing and supplying the gas refrigerant from the accumulator to the first heat exchanger.
  • the second heat exchanger and the first heat exchange such that a refrigerant does not pass through the pump A first bypass passage connecting the indoor unit with the indoor unit, a second bypass passage connecting the indoor unit and the first heat exchanger such that the refrigerant does not pass through the compressor, and a refrigerant through the first passage and the first bypass passage. And a control unit for flowing one of the flow paths and one of the second and second bypass flow paths.
  • the controller may allow the refrigerant to flow into the first flow path and the second flow path, or the refrigerant flowing in the first bypass flow path and the second flow path.
  • the first flow path and the second flow path may be switched to flow, or the refrigerant flowing in the first flow path and the second flow path may be switched to flow in the first flow path and the second bypass flow path.
  • the air conditioner includes a first pressure sensor and a second pressure sensor on the outlet side and the inlet side of the pump provided in the first flow path, respectively, the pressure detected by the first pressure sensor and the second pressure sensor detected
  • the control unit causes the refrigerant to flow into the first flow path and the second flow path, or the refrigerant flowing in the first bypass flow path and the second flow path to the first flow path.
  • the first flow path and the second flow path may be switched to flow, or the refrigerant flowing in the first flow path and the second flow path may be switched to flow in the first flow path and the second bypass flow path.
  • the control unit flows the refrigerant flowing in the first bypass channel and the second channel to the first channel and the second channel. Can be switched to
  • the air conditioner may further include a temperature sensor provided at an outlet of the first heat exchanger.
  • the controller may further include the first sensor.
  • the refrigerant flowing in the first bypass flow passage and the second flow passage may be switched to flow in the first flow passage and the second flow passage.
  • the outdoor unit may further include a blower fan for introducing air to the first heat exchanger and a sensor capable of measuring a rotational speed of the blower fan.
  • the controller may include: The refrigerant flowing in the first bypass passage and the second passage may be switched to flow in the first passage and the second passage.
  • the control method of the air conditioner according to an embodiment of the present invention in the cooling operation of the air conditioner composed of an outdoor unit including a second heat exchanger and an outdoor unit including a first heat exchanger, a compressor and a pump, A first mode for circulating the first heat exchanger, the compressor, and the indoor unit, a second mode for circulating the first heat exchanger, the pump, and the indoor unit, and a refrigerant for the first heat exchanger, the compressor; It may include a third mode for circulating the pump and the indoor unit.
  • the first mode is to block the expansion valve provided in the first flow path so that the refrigerant from the first heat exchanger does not flow to the first flow path provided with the pump, the refrigerant from the first heat exchanger is
  • the first control valve provided in the first bypass passage is opened to flow to the first bypass passage connected to the indoor unit, and the refrigerant from the indoor unit flows into the second bypass passage directly connected to the indoor unit and the first heat exchanger.
  • opening the second control valve provided in the second flow path so as to flow into the second flow path provided with the compressor.
  • the expansion valve provided in the first flow path is opened so that the coolant from the first heat exchanger flows into the first flow path provided with the pump, and the coolant from the first heat exchanger flows into the indoor unit.
  • the first control valve provided in the first bypass flow passage is closed so as not to flow to the first bypass flow passage connected to each other, and the refrigerant from the indoor unit does not flow into the second flow path provided with the compressor, and the first control valve is provided. And closing the second control valve provided in the second flow path such that the heat exchanger flows into the second bypass flow path directly connected to the heat exchanger.
  • the expansion valve provided in the first flow path is opened so that the coolant from the first heat exchanger flows into the first flow path provided with the pump, and the coolant from the first heat exchanger flows into the indoor unit.
  • the first control valve provided in the first bypass flow passage is closed so as not to flow to the first bypass flow passage connected to each other, and the refrigerant from the indoor unit flows into the second bypass flow passage directly connected with the indoor heat exchanger. And opening the second control valve provided in the second flow path so as to flow into the second flow path provided with the compressor.
  • the control method it is determined whether the outdoor temperature is lower than the indoor temperature by a reference value or more, the test operation of the pump is performed for a predetermined time or more, and the pressure at the outlet of the pump and the pressure at the inlet are measured, and the outdoor temperature is the room temperature If the reference value is lower than the reference value and the difference between the pressure at the outlet and the inlet of the pump is equal to or lower than the lower limit of the reference range, the operation is performed in the second mode when the air conditioner is stopped, or the air conditioner is operated in the first mode. In operation, the controller may switch to the third mode.
  • control method when the air conditioner is operating in the first mode, the temperature of the refrigerant at the outlet of the first heat exchanger is measured, the pressure at the inlet of the pump and at the outlet of the pump The pressure is measured, the subcooling of the refrigerant at the outlet of the first heat exchanger exceeds the upper limit of the reference range, the pressure at the outlet of the pump is below the allowable pressure of the pump, and at the inlet and outlet of the pump.
  • the pressure difference is equal to or less than the allowable differential pressure of the pump, it is possible to switch to the third mode.
  • control method when the air conditioner is operating in the first mode, measuring the rotational speed of the blowing fan for introducing air to the first heat exchanger, the rotational speed of the blowing fan is less than the lower limit of the reference range In this case, it may be switched to the third mode.
  • the control method may further include an accumulator for separating the refrigerant from the first heat exchanger and the refrigerant from the indoor unit into liquid and gas and supplying the refrigerant to the pump and the compressor.
  • an accumulator for separating the refrigerant from the first heat exchanger and the refrigerant from the indoor unit into liquid and gas and supplying the refrigerant to the pump and the compressor.
  • the opening degree of the expansion valve When the difference in the dryness of the refrigerant passing through the expansion valve exceeds the upper limit of the reference range, it is possible to increase the opening degree of the expansion valve provided in the flow path connecting the first heat exchanger and the accumulator, which is introduced into the accumulator Difference between the dryness of the refrigerant and the dryness of the refrigerant exiting the expansion valve from the first heat exchanger If this is less than the lower limit of the reference range, the opening degree of the expansion valve can be reduced.
  • control method is characterized in that, when the air conditioner is operating in the third mode, when the rotational speed of the pump is lower than the limit rotational speed of the pump and a larger load is required for the air conditioner, Can increase the speed of rotation.
  • the control method may include calculating the dryness of the refrigerant flowing into the accumulator and the dryness of the refrigerant passing out of the first heat exchanger and passing through the expansion valve when the pump is rotating at the limit rotation speed, and flows into the accumulator.
  • the difference between the dryness of the refrigerant and the dryness of the refrigerant passing through the expansion valve exceeds the upper limit of the reference range, the speed of the compressor may be increased and the dryness of the refrigerant flowing into the accumulator may be increased.
  • the difference in the dryness of the refrigerant passing through the expansion valve from the first heat exchanger is less than a lower limit of the reference range, the speed of the compressor may be reduced.
  • control method when the air conditioner is operating in the second mode, by measuring the temperature of the refrigerant at the outlet of the first heat exchanger, the degree of subcooling of the refrigerant at the outlet of the first heat exchanger If it is less than the lower limit of the reference range, it is possible to increase the rotational speed of the blower fan for introducing air to the first heat exchanger, and if the overcooling of the refrigerant at the outlet of the first heat exchanger exceeds the upper limit of the reference range, The rotation speed of the blower fan can be reduced.
  • control method when the air conditioner is operating in the third mode, determines whether the compression ratio of the compressor exceeds the minimum compression ratio, and if the compression ratio of the compressor exceeds the minimum compression ratio, the rotational speed of the blowing fan When the compression ratio of the compressor is less than the minimum compression ratio, it is possible to reduce the rotational speed of the blower fan.
  • the control method may further include the first method if the difference between the set temperature of the indoor unit and the saturation temperature of the outlet of the pump is less than the lower limit of the reference range when the air conditioner is operating in the second mode or the third mode. You can switch to the mode.
  • an air conditioner includes: a first outdoor unit including a first heat exchanger and a compressor, an indoor unit including a second heat exchanger, and a refrigerant from the first outdoor unit or the indoor unit to be separated into liquid and gas.
  • a second outdoor unit may include an accumulator and a pump configured to pressurize and supply the liquid refrigerant from the accumulator to the indoor unit, and the gas refrigerant from the accumulator may be supplied to the first outdoor unit.
  • the second outdoor unit may include a third heat exchanger configured to heat-exchange the refrigerant from the indoor unit, and connect the indoor unit and the third heat exchanger such that the refrigerant does not pass through the compressor of the first outdoor unit, and the second outdoor unit is connected to the third heat exchanger.
  • the apparatus may further include a bypass passage provided with a control valve for controlling the flow of the refrigerant directed to the heat exchanger.
  • the second outdoor unit may include a bypass passage that connects the first outdoor unit to the indoor unit so that the refrigerant does not pass through the pump, and a control valve is provided to control the flow of the refrigerant.
  • an air conditioner includes a first outdoor unit including a first heat exchanger and a compressor, an indoor unit including a second heat exchanger, and a refrigerant received from the first outdoor unit and supplied to the indoor unit or the indoor unit.
  • a second outdoor unit disposed between the first outdoor unit and the indoor unit to receive the refrigerant from the indoor unit, and to supply the refrigerant to the first outdoor unit, wherein the second outdoor unit includes a third heat exchanger configured to heat-exchange the refrigerant from the indoor unit; It may include an accumulator for separating the refrigerant from the third heat exchanger into a liquid and gas, and a pump for pressurizing the liquid refrigerant from the accumulator to supply to the indoor unit.
  • the second outdoor unit may include a first transfer path connecting the first outdoor unit to the indoor unit to receive the refrigerant from the first outdoor unit, and supply the refrigerant to the indoor unit, and the refrigerant from the indoor unit may include the third heat exchanger,
  • the apparatus may further include a second transfer passage connecting the indoor unit and the first outdoor unit so as not to pass the accumulator and the pump.
  • the air conditioner according to the spirit of the present invention includes both a compressor capable of compressing and circulating gaseous refrigerant and a pump capable of pressurizing and circulating a liquid refrigerant, so that even if the outdoor temperature is lower than the room temperature, the air conditioner is stable. Cooling operation is possible.
  • control method of the air conditioner according to the spirit of the present invention is to control the operation of the pump at the same time or to operate the pump alone when the operating efficiency of the compressor is lower in the environment where the outdoor temperature is lower than the room temperature, the air conditioner of the cooling function Cooling operation can be performed efficiently without disconnection, and the flow of refrigerant can be controlled to prevent damage to the compressor and pump.
  • the air conditioner according to the spirit of the present invention can be mounted to the existing outdoor unit including a pump to enable low-temperature cooling, it is possible to implement a low-temperature cooling system by utilizing the outdoor unit used previously.
  • FIG. 1 is a view for explaining a state in which the compressor and the pump of the air conditioner according to an embodiment of the present invention is driven at the same time.
  • FIG. 2 is a view for explaining a state in which only the compressor of the air conditioner shown in FIG. 1 is driven.
  • FIG. 3 is a view for explaining a state in which only the pump of the air conditioner shown in FIG.
  • FIG. 4 is a control block diagram of the air conditioner shown in FIG. 1.
  • 5A through 5C are flowcharts illustrating a control method for operating the air conditioner illustrated in FIG. 1 in a first mode, a second mode, or a third mode.
  • FIG. 6 is a flowchart illustrating a control method for controlling the expansion valve during operation of the air conditioner shown in FIG. 1 in a third mode.
  • FIG. 7 is a flowchart illustrating a control method for controlling a compressor or a pump while operating the air conditioner shown in FIG. 1 in a third mode.
  • FIG. 8 is a flowchart illustrating a control method for controlling a blowing fan while operating the air conditioner shown in FIG. 1 in a second mode.
  • FIG. 9 is a flowchart illustrating a control method for controlling a blowing fan while operating the air conditioner illustrated in FIG. 1 in a third mode.
  • FIG. 10 is a flowchart illustrating a control method for controlling the air conditioner shown in FIG. 1 to switch to the first mode while operating in the second mode or the third mode.
  • FIG. 11 is a view for explaining a state in which the compressor and the pump of the air conditioner according to another embodiment of the present invention is driven at the same time.
  • FIG. 12 is a view for explaining a state in which only the compressor of the air conditioner shown in FIG.
  • FIG. 13 is a view for explaining a state in which only the pump of the air conditioner shown in FIG. 11 is driven.
  • FIG. 14 is a view for explaining a state in which only the compressor of the air conditioner according to another embodiment of the present invention.
  • FIG. 15 is a view for explaining a state in which only the pump of the air conditioner shown in FIG. 14 is driven.
  • first may be referred to as the second component
  • second component may also be referred to as the first component.
  • the term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
  • FIG. 1 is a view for explaining a state in which the compressor and the pump of the air conditioner according to an embodiment of the present invention is driven at the same time
  • Figure 2 illustrates a state in which only the compressor of the air conditioner shown in FIG. 3 is a view for explaining a state in which only the pump of the air conditioner shown in FIG. 1 is driven.
  • 4 is a control block diagram of the air conditioner shown in FIG. 1.
  • an air conditioner 1 according to an embodiment of the present invention includes an outdoor unit 10 including a first heat exchanger 100 and an indoor unit including a second heat exchanger 21. And 20.
  • the first heat exchanger 100 included in the outdoor unit 10 is used as a condenser
  • the second heat exchanger 21 included in the indoor unit 20 is used as an evaporator.
  • the air conditioner 1 includes a compressor 150 and an expansion device 22 constituting a refrigeration cycle, the compressor 150 may be included in the outdoor unit 10 and the expansion device 22 is connected to the indoor unit 20. May be included.
  • the air conditioner 1 may include a pump 140 for efficiently operating the air conditioner 1 when the outdoor temperature in which the outdoor unit 10 is installed is lower than a predetermined level lower than the temperature of the indoor unit 20 by which the indoor unit 20 is installed. It may further include.
  • the air conditioner 1 separates the refrigerant from the first heat exchanger 100 of the outdoor unit 10 or the second heat exchanger 21 of the indoor unit 20 into liquid and gas to separate the compressor 150 and the pump. It may include an accumulator 130 that can be supplied to (140).
  • the gas refrigerant collected in the accumulator 130 is supplied to the compressor 150 through a flow path 66 connected to the compressor 150 at an outlet provided at the upper part of the accumulator 130, and the liquid refrigerant collected in the accumulator 130 is accumulated in the accumulator ( It is supplied to the pump 140 through the flow path 63 connected to the pump 140 at the outlet provided in the lower portion of 130.
  • the compressor 150 compresses the gas refrigerant from the accumulator 130 and supplies it to the first heat exchanger 100 of the outdoor unit 10, and the pump 140 pressurizes the liquid refrigerant from the accumulator 130 to pressurize the indoor unit ( 20).
  • an expansion valve 120 for adjusting the opening degree according to the supercooling degree of the refrigerant from the first heat exchanger 100 may be provided.
  • the outdoor temperature is lower than the reference value lower than the room temperature may be provided with a control valve 170 that is open when the compressor 150 and the pump 140 must be driven at the same time.
  • a receiver 110 capable of storing the liquid refrigerant to be pressurized by the pump 140 in the flow path 61 connecting the first heat exchanger 100 and the expansion valve 120 is provided. It may be provided, the receiver 110 may be provided with a liquid level sensor (not shown) that can check the amount of the liquid refrigerant stored.
  • the first check valve 14 for allowing the flow of the refrigerant from the compressor 150 to the first heat exchanger 100 is provided in the flow path 67 connecting the compressor 150 and the first heat exchanger 100.
  • a flow path 64 connecting the pump 140 and the outdoor unit 10 may be provided, specifically, the outlet valve 11 and the pump of the outdoor unit 10 from which the refrigerant goes from the outdoor unit 10 to the indoor unit 20.
  • the flow path 64 connecting the 140 may be provided with a second check valve 15 allowing the flow of the refrigerant from the pump 140 to the indoor unit 20.
  • the air conditioner 1 may be configured to perform a cooling operation using only the compressor 150 without using the pump 140 when a general cooling operation is required, rather than a low temperature cooling having an outdoor temperature lower than an indoor temperature.
  • the bypass passage 68 may further include.
  • the first bypass passage 68 connects the first heat exchanger 100 and the outlet valve 11 of the indoor unit 20 or the outdoor unit so that the refrigerant does not pass through the pump 140, and the first bypass passage 68. ) May be provided with a control valve 160 to control the flow of the refrigerant.
  • the air conditioner 1 when the outdoor air conditioner 1 has a low temperature cooling operation because the outdoor temperature is lower than the room temperature, the air conditioner 1 does not use the compressor 150 but uses the pump 140 to perform the cooling operation using only the second bypass passage ( 69) may be further included.
  • the second bypass passage 69 connects the inlet valve 12 and the first heat exchanger 100 of the indoor unit 20 or the outdoor unit 10 so that the refrigerant does not pass through the compressor 150, and the second bypass passage 69.
  • the flow path 69 may be provided with a check valve 13 to allow the flow of the refrigerant from the indoor unit 20 to the first heat exchanger 100.
  • the outdoor unit 10 may include a blowing fan 180 provided on the side of the first heat exchanger 100 to introduce air into the first heat exchanger 100 to help heat exchange in the first heat exchanger 100. have.
  • the air conditioner 1 according to an embodiment of the present invention will be described according to the flow of the refrigerant.
  • the air conditioner 1 connects a first heat exchanger 100 and an indoor unit 20, and includes a first flow path 61 in which an accumulator 130 and a pump 140 are provided.
  • 62, 63, and 64 may include second flow paths 65, 66, and 67 that connect the indoor unit 20 and the first heat exchanger 100, and include an accumulator 130 and a compressor 150.
  • gaseous refrigerants of the refrigerant flowing out of the first heat exchanger 100 and entering the accumulator 130 may be mixed into the second flow path, and may be discharged from the indoor unit 20.
  • Liquid refrigerant among the refrigerant entering the accumulator 130 may be mixed into the first flow path.
  • the air conditioner 1 branches from the flow path 61 connecting the first heat exchanger 100 and the expansion valve 120 so that the refrigerant from the first heat exchanger 100 does not pass through the pump 140.
  • the air conditioner 1 flows the refrigerant into one of the first passages 61, 62, 63, and 64 through which the refrigerant passes the pump 140 and one of the first bypass passages 68 through which the refrigerant does not pass.
  • a control unit capable of flowing the coolant into one of the second flow paths 65, 66, 67 passing through the compressor 150, and the second bypass flow path 69 not passing through the compressor 150. 600 may be included.
  • the air conditioner 1 may include a sensor 250 for measuring an outdoor temperature Tout, and a sensor 260 for measuring an indoor temperature Tin.
  • the controller 600 moves the refrigerant to the first flow paths 61, 62, 63, and 64 and the second flow paths 65, 66, and 67.
  • the refrigerant flowing in the first bypass passage 68 and the second passage 65, 66, 67 may be transferred to the first passage 61, 62, 63, 64, and the second passage 65, 66, 67.
  • the air conditioner 1 includes a first pressure sensor 240 and a second pressure which are respectively provided in the flow path 64 connected to the outlet side of the pump 140 and the flow path 63 connected to the inlet side of the first flow path. It may include a sensor 220.
  • the controller 600 moves the refrigerant to the first flow paths 61, 62, 63, and 64 and the second flow paths 65, 66, and 67, or the first bypass flow path 68 and the second flow path 65.
  • the refrigerant flowing in the 64 and the second flow paths 65, 66, and 67 may be switched to flow into the first flow paths 61, 62, 63, and 64, and the second bypass flow path 69.
  • the pressure of the refrigerant flowing into the flow path 68 should be less than or equal to the allowable pressure of the pump 140. Since the flow path 64 connected to the outlet side of the pump 140 is laminated with the flow path 68 directly connecting the first heat exchanger and the indoor unit 20 to be connected to the outlet valve 11 of the outdoor unit 10, The pressure sensor 240 may measure the pressure of the refrigerant flowing into the flow path 68, and this pressure becomes the outlet side pressure Pout of the pump 140.
  • the coolant 600 flows the refrigerant flowing into the first bypass passage 68 and the second passage 65, 66, 67 and the first passage 61, 62, 63, 64, and the second passage 65, 66, 67. Can be switched to flow.
  • the air conditioner 1 may include a temperature sensor 210 provided in the flow path 61 connected to the outlet side of the first heat exchanger 100.
  • the supercooling degree of the refrigerant at the outlet of the first heat exchanger 100 is an indicator that indicates how much liquid refrigerant can be supplied to the pump 140 at the refrigerant at the outlet of the first heat exchanger 100. Therefore, based on the temperature Tc sensed by the temperature sensor 210, the degree of subcooling of the refrigerant at the outlet of the first heat exchanger 100 exceeds the upper limit of the reference range so that the amount of the liquid refrigerant is secured above the reference value.
  • the controller 600 may transfer the refrigerant flowing into the first bypass passage 68 and the second passage 65, 66, 67 to the first passage 61, 62, 63, 64, and the second passage 65. 66, 67).
  • the air conditioner 1 may further include a sensor 270 capable of measuring the rotational speed Vf of the blowing fan 180 provided on the first heat exchanger 100 side.
  • a sensor 270 capable of measuring the rotational speed Vf of the blowing fan 180 provided on the first heat exchanger 100 side.
  • the controller 600 is flowing in the first bypass passage 68 and the second flow passages 65, 66, 67.
  • the refrigerant may be switched to flow into the first flow paths 61, 62, 63, and 64 and the second flow paths 65, 66, and 67.
  • the sensor 270 that measures the rotational speed Vf of the blowing fan 180 may replace the rotational speed Vf by measuring the power consumption of the blowing fan 180.
  • the air conditioner 1 may include an input unit 200 that receives a cooling operation or a heating operation start from a user.
  • the user may not only input a cooling operation through the input unit 200 but also input a desired set temperature Ts.
  • the input unit 200 may be provided in the indoor unit 20.
  • the expansion valve 120 and the first bypass passage 68 allow the air conditioner 1 to operate efficiently based on data detected by various sensors.
  • the provided blowing fan 180 may be controlled.
  • the reference value of the control is set to a range in consideration of hysteresis, and the controller may control the air conditioner using the upper and lower limit values of the reference range as the critical point.
  • Control method the first mode 700, the second mode for driving the compressor 150 and / or pump 140 in accordance with the operating environment of the interior and exterior of the air conditioner (1) 800 or the third mode 900.
  • the first mode 700 is an operation mode in which only the compressor is driven by allowing the refrigerant to circulate the first heat exchanger 100, the compressor 150, and the indoor unit 20, and the second mode 800 is a refrigerant mode.
  • 1 is a driving mode in which only the pump 140 is driven by circulating the heat exchanger 100, the pump 140, and the indoor unit 20.
  • the refrigerant is the first heat exchanger 100, The compressor 150, the pump 140, and the indoor unit 20 are circulated to operate the compressor 150 and the pump 140 at the same time.
  • the first mode 700 includes an expansion valve 120 provided in the first flow passage so that the refrigerant from the first heat exchanger 100 does not flow into the first flow passages 61, 62, 63, and 64 provided with the pump 140.
  • the first control valve (710) provided in the first bypass passage 68 to block 710, the refrigerant from the first heat exchanger 100 flows to the first bypass passage 68 connected to the indoor unit 20 (
  • the compressor 150 is provided without opening 160 and the refrigerant from the indoor unit 20 does not flow into the second bypass passage 69 directly connected to the indoor unit 20 and the first heat exchanger 100.
  • the compressor 150 may be driven alone by opening the second control valve 170 provided in the second flow paths 65, 66, and 67 so as to flow into the second flow paths 65, 66, and 67 (730). 740).
  • FIG. 3 illustrates a circulation of the refrigerant in the second mode 800.
  • the refrigerant from the first heat exchanger 100 flows into the first flow paths 61, 62, 63, and 64 provided with the pump 140, and thus the first flow paths 61, 62, 63, and 64.
  • the expansion valve 120 provided in the () is opened (810), and the first bypass flow passage so that the refrigerant from the first heat exchanger (100) does not flow into the first bypass passage (68) connected to the indoor unit (20).
  • the first control valve 160 provided at 68 is closed 820, and the refrigerant from the indoor unit 20 does not flow to the second flow paths 65, 66, 67 provided with the compressor 150, and the indoor unit 20 does not flow.
  • the second control valve 170 provided in the second flow paths 65, 66, and 67 so as to flow to the second bypass flow path 69 directly connected to the first heat exchanger 100 in operation 830.
  • the refrigerant flowing out of the first heat exchanger 100 flows into the first flow paths 61, 62, 63, and 64 provided with the pump 140.
  • the expansion valve 120 provided in the () is opened (910), and the first bypass flow passage so that the refrigerant from the first heat exchanger (100) does not flow into the first bypass passage (68) connected to the indoor unit (20).
  • the first control valve 160 provided at 68 is closed (920), and the refrigerant from the indoor unit 20 passes to the second bypass passage 69 to which the indoor unit 20 and the first heat exchanger 100 are directly connected.
  • the compressor 150 is opened by opening the second control valve 170 provided in the second flow paths 65, 66, 67 so as to flow into the second flow paths 65, 66, 67 provided with the compressor 150 without flow. ) And the pump 140 may be driven simultaneously (940).
  • 5A through 5C are flowcharts illustrating a control method for operating the air conditioner illustrated in FIG. 1 in a first mode, a second mode, or a third mode.
  • the outdoor temperature (Tout) and the indoor temperature (Tin) by the outdoor temperature (Tout) sensor 250 and the indoor temperature (Tin) sensor 260 Measure (1010). It is determined that the outdoor temperature (Tout) is lower than the indoor temperature (Tin) by more than the reference value ( ⁇ ) (1020), and when the outdoor temperature (Tout) is not lower than the reference value ( ⁇ ) by the indoor temperature (Tin), it is not a low temperature cooling environment.
  • the furnace air conditioner 1 performs a general cooling operation in the first mode 700.
  • the pump 140 may be turned on for a predetermined time ( ⁇ ) to check whether a liquid refrigerant sufficient to drive the pump 140 is prepared. )
  • the outlet pressure Pout is measured 1040.
  • the air conditioner 1 When the pressure Pout at the outlet of the pump 140 and the pressure Pin at the inlet of the pump 140 exceed the lower limit ⁇ min of the reference range, it is determined whether the air conditioner 1 is in a stopped state (1060). When the air conditioner 1 is in the stopped state in which the operation is not started, the air conditioner 1 is operated in the second mode 800.
  • the air conditioner 1 If the air conditioner 1 is not in a stopped state and is operating in an arbitrary driving mode, it is determined whether the air conditioner 1 is operating in the first mode 700 (1070), and if it is not operating in the first mode 700, FIGS. Returning to the start position of the flowchart shown in 5c, the operation environment of the air conditioner 1 is again determined.
  • the temperature Tc at the outlet of the first heat exchanger 100 of the refrigerant by the temperature sensor 210 provided at the outlet side of the first heat exchanger 100 Measure (1080).
  • the cooling efficiency is low in the first mode 700 which drives only the compressor 150 alone due to a high ratio of.
  • the subcooling degree K of the refrigerant at the outlet of the first heat exchanger 100 exceeds the upper limit Kmax of the reference range (1090), and the subcooling degree of the refrigerant at the outlet of the first heat exchanger 100 is determined. If k does not exceed the upper limit Kmax of the reference range, the operation environment of the air conditioner 1 is determined again by returning to the start position of the flowchart while continuing to operate in the first mode 700. If the subcooling degree (K) of the refrigerant at the outlet of the first heat exchanger (100) exceeds the upper limit (Kmax) of the reference range, the pressure at the outlet of the pump 140 to check whether the pump 140 can be driven without damage. It is determined whether Pout is less than the allowable pressure ⁇ (1100).
  • the first bypass passage 68 and the passage 64 connected to the outlet side of the pump 140 are laminated to pass through the outlet valve 11 of the outdoor unit 10 to the indoor unit 20. ). Therefore, when the air conditioner 1 is operating in the first mode 700 as shown in FIG. 2, since the refrigerant flows in the first bypass passage 68, the air conditioner 1 in the first bypass passage 68. The pressure of the refrigerant becomes the pressure Pout at the outlet of the pump 140 and the pressure Pout at the outlet of the pump 140 is lower than the allowable pressure ⁇ of the pump 140 to drive the pump 140 without damage. You can.
  • the pump 140 cannot be driven, so that the air conditioner 1 continues to operate in the first mode 700 while the start position of the flowchart is maintained. Returning to the control unit, the operation environment of the air conditioner 1 is determined again.
  • the difference between the pressure Pout at the outlet side of the pump 140 and the pressure Pin at the inlet side of the pump 140 is determined by the pump 140. It is determined whether or not less than the allowable differential pressure ( ⁇ ) of (1110). This is because even if the pressure Pout at the outlet of the pump 140 is less than the allowable pressure ⁇ , the pump 140 may be damaged if the pressure difference between the inlet and outlet of the pump 140 is not less than the allowable differential pressure ⁇ .
  • the pump 140 is driven. Since the air conditioner 1 continues to operate in the first mode 700, the air conditioner 1 returns to the start position of the flowchart to determine the operation environment of the air conditioner 1 again.
  • the pump 140 can be started. It can be determined that the environment is provided, and the next step is to switch the air conditioner 1 operating in the first mode 700 to the third mode 900 to operate the air conditioner 1 with high efficiency. Determine whether or not.
  • Whether the operation of the air conditioner 1 with the high efficiency by switching the air conditioner 1 operating in the first mode 700 to the third mode 900 may include a rotational speed measuring sensor provided in the blower fan 180 (The rotation speed Vf of the blower fan 180 may be measured and determined by the reference numeral 270 (1120).
  • the air conditioner 1 operating in the first mode 700 is switched to the third mode 900, If the rotational speed Vf of the blower fan 180 is not less than the lower limit value ⁇ min of the reference range, the operation environment of the air conditioner 1 is returned to the starting position of the flowchart while continuing to operate in the first mode 700. To judge.
  • FIG. 6 is a flowchart illustrating a control method for controlling the expansion valve during operation of the air conditioner shown in FIG. 1 in a third mode.
  • the air conditioner 1 operating 1200 in the third mode 900 has a flow path in which the refrigerant from the first heat exchanger 100 is provided with an expansion valve 120. 61 and 62 are supplied to the accumulator 130, and the refrigerant from the indoor unit 20 is supplied to the accumulator 130 through the flow passage 65 in which the second control valve 170 is provided.
  • the amount of the liquid refrigerant and the gas refrigerant supplied from the accumulator 130 must be adjusted.
  • the opening degree of the expansion valve 120 may be controlled to adjust the amount of the liquid refrigerant and the gas refrigerant.
  • the dryness D of the refrigerant flowing into the accumulator 130 exits the first heat exchanger 100, measures the dryness E of the refrigerant passing through the expansion valve 120 (1210), and flows into the accumulator 130.
  • the dryness (D) of the refrigerant is higher than the upper limit ( ⁇ max) of the reference range (1220) than the dryness (E) of the refrigerant passing from the first heat exchanger 100 and passing through the expansion valve 120 (1220)
  • the amount of the liquid refrigerant is higher.
  • the opening degree of the expansion valve 120 is increased (1230).
  • the opening degree of the expansion valve 120 is reduced to secure the amount of the gas refrigerant (1250).
  • the dryness D of the refrigerant flowing into the accumulator 130 may be calculated by an average enthalpy (hm) value of the refrigerant passing through the pump 140 and the refrigerant passing through the compressor 150 under the evaporation pressure.
  • the average enthalpy (hm) value of the refrigerant passing through the pump 140 and the refrigerant passing through the compressor 150 is obtained by the following equation.
  • Average enthalpy (hm) [(pump flow rate * indoor unit outlet enthalpy) + (compressor flow rate * first heat exchanger outlet enthalpy)] / [pump flow rate + compressor flow rate]
  • the dryness E of the refrigerant passing through the expansion valve 120 may be calculated by an enthalpy value of the refrigerant at the outlet of the first heat exchanger 100 under the evaporation pressure.
  • FIG. 7 is a flowchart illustrating a control method for controlling a compressor or a pump while operating the air conditioner shown in FIG. 1 in a third mode.
  • the air conditioner 1 in operation 1300 in the third mode 900 may adjust the operation speeds of the compressor 150 and the pump 140 for efficient operation. .
  • the rotational speed Vp of the pump 140 is measured (1310) and the rotational speed Vp of the pump 140 is less than the limit rotational speed ⁇ (1320), the rotational speed Vp of the pump 140 is determined. 1330, and when the pump 140 is rotating at the limit rotational speed ⁇ (1340), the dryness D of the refrigerant flowing into the accumulator 130 and the expansion valve are discharged from the first heat exchanger 100. The dryness E of the refrigerant passing through 120 is measured (1350).
  • FIG. 8 is a flowchart illustrating a control method for controlling a blowing fan while operating the air conditioner shown in FIG. 1 in a second mode.
  • the air conditioner 1 in operation 1400 in the second mode 800 may adjust the rotational speed Vf of the blower fan 180 for efficient operation.
  • the temperature Tc at the outlet of the first heat exchanger 100 of the refrigerant is measured by the temperature sensor 210 provided at the outlet side of the first heat exchanger 100 (1410).
  • the heat exchange efficiency of the first heat exchanger 100 is increased.
  • the rotation speed Vf of the blower fan 180 is increased (1430).
  • FIG. 9 is a flowchart illustrating a control method for controlling a blowing fan while operating the air conditioner illustrated in FIG. 1 in a third mode.
  • the air conditioner 1 in operation 1500 in the third mode 900 may adjust the rotational speed Vf of the blower fan 180 for efficient operation.
  • the compressor 150 does not perform the function of the compressor 150 when the compression ratio R, which is the ratio of the pressure at the inlet and the outlet of the compressor 150, is less than or equal to the minimum compression ratio Rmin.
  • the compression ratio R of the compressor 150 is measured by the compression ratio R sensor 280 of the compressor 150 (1510), and if the compression ratio R exceeds the minimum compression ratio Rmin (1520). Since the compressor 150 is operating normally, the rotational speed Vf of the blowing fan 180 is increased (1530), and if the compression ratio R is less than the minimum compression ratio Rmin (1540), the rotational speed of the blowing fan 180 is increased. Reduce (Vf) (1550).
  • FIG. 10 is a flowchart illustrating a control method for controlling the air conditioner shown in FIG. 1 to switch to the first mode while operating in the second mode or the third mode.
  • the air conditioner 1 operating in the second mode 800 or the third mode 900 1600 is targeted for cooling by refrigerant circulation by the pump 140. If the effect cannot be achieved, even if the cooling by the compressor 150 is not efficient, the operation can be switched to the first mode 700 to achieve the target cooling effect.
  • the saturation temperature (Tp) of the refrigerant is measured at the outlet of the pump 140 by the temperature sensor 230 provided in the flow path 84 connected to the outlet of the pump 140 (1610), and the indoor unit ( If the saturation temperature (Tp) of the refrigerant at the outlet of the pump 140 is lower than the lower limit ( ⁇ ) of the reference range (1620) than the temperature Ts set in (20) (1620), the set temperature ( Since cooling cannot be performed until Ts), the operation is switched to the first mode 700 which drives the compressor 150 alone.
  • the power consumption of the pump 140 is reduced to below the reference, and the differential pressure of the pump 140 is below the reference.
  • the difference between the outdoor temperature Tout and the indoor temperature Tin decreases below the reference value ⁇ and the liquid level in the receiver 110 falls below the reference value, the pump 140 cannot circulate the refrigerant normally.
  • the controller 150 switches to the first mode 700 and drives the compressor 150 alone.
  • FIG. 11 is a view for explaining a state in which the compressor and the pump of the air conditioner according to another embodiment of the present invention is driven at the same time
  • Figure 12 is a view illustrating a state in which only the compressor of the air conditioner shown in FIG. 13 is a view for explaining a state in which only the pump of the air conditioner shown in FIG. 11 is driven.
  • the air conditioner 2 according to another embodiment of the present invention circulates a refrigerant to the pump 440 between the first outdoor unit 30 and the indoor unit 20, which are installed in advance.
  • the second outdoor unit 40 configured to be able to be arranged may be disposed.
  • the air conditioner 2 includes a first outdoor unit 30 including a first heat exchanger 300 and an indoor unit 20 including a second heat exchanger 21.
  • first heat exchanger 300 included in the first outdoor unit 30 is used as a condenser
  • second heat exchanger 21 included in the indoor unit 20 is used as an evaporator.
  • the air conditioner 2 includes a compressor 350 and an expansion device 22 constituting a refrigeration cycle, the compressor 350 may be included in the first outdoor unit 30 and the expansion device 22 is an indoor unit 20. ) May be included.
  • the air conditioner 2 includes a second outdoor unit 40 including a pump 440 for efficiently operating the air conditioner 2 when the outdoor temperature is lower than the indoor temperature by a predetermined level or more.
  • the second outdoor unit 40 separates the refrigerant from the first heat exchanger 300 of the first outdoor unit 30 or the second heat exchanger 21 of the indoor unit 20 into a liquid and a gas to pump 440.
  • a first accumulator 430 that may be supplied to the compressor 350 of the first outdoor unit 30.
  • the gas refrigerant collected in the first accumulator 430 is connected to the first outlet valve 41 of the second outdoor unit 40 at the outlet provided at the upper portion of the first accumulator 430 by the second outdoor unit 40. ) Is supplied and supplied to the first outdoor unit 30.
  • the gas refrigerant entering the inlet valve 32 of the first outdoor unit 30 reaches the four-way valve 390 through which the flow path is switched according to the cooling operation and the heating operation through the flow passage 72 connected to the inlet valve 32. 2 flows into the flow path 73 connected to the accumulator 310, and only the gaseous refrigerant is again supplied with the liquid refrigerant condensed while the refrigerant flows in the second accumulator 310 to prevent damage to the compressor 350.
  • the compressor 350 is supplied to the compressor 350 through a flow path 74 connected to the compressor 350.
  • the compressor 350 may compress the gas refrigerant from the second accumulator 310 and supply the gas refrigerant to the first heat exchanger 300 of the first outdoor unit 30 through the four-way valve 390.
  • the flow path 75 connecting the compressor 350 and the four-way valve 390 is provided with a check valve 33 so that the gas refrigerant can flow only to the four-way valve 390, and the gas introduced into the four-way valve 390 is provided.
  • the refrigerant is supplied to the first heat exchanger 300 through a flow path 76 connecting the four-way valve 390 and the first heat exchanger 300.
  • the condensed refrigerant from the first heat exchanger 300 may be supplied to the second outdoor unit 40 via the first heat exchanger 300 and the outlet valve 31 of the first outdoor unit.
  • An expansion valve 320 may be provided in a flow path 71 connecting the first heat exchanger 300 and the outlet valve 31 of the first outdoor unit 30 to allow the refrigerant to flow in the reverse direction during the heating operation.
  • the bypass passage provided with the check valve 34 may be provided in parallel with the expansion valve 320.
  • the refrigerant exiting the first outdoor unit 30 and entering the first inlet valve 42 of the second outdoor unit 40 is supplied to the first accumulator 430 through flow paths 87 and 82 connected to the first accumulator 430. Can be. Expansion openings are adjusted in the flow paths 87 and 82 connecting the first inlet valve 42 and the first accumulator 430 of the second outdoor unit 40 according to the supercooling degree of the refrigerant from the first outdoor unit 30.
  • the valve 420 may be provided, and the liquid refrigerant to be pressurized by the pump 440 may be stored in the flow path 87 connecting the first inlet valve 42 and the expansion valve 420 of the second outdoor unit 40.
  • the receiver 410 may be provided.
  • the receiver 410 may be provided with a liquid level sensor (not shown) for checking the amount of the liquid refrigerant stored.
  • the flow path 82 connecting the expansion valve 420 and the first accumulator 430 includes a flow path 85 connecting the indoor unit 20 and the first accumulator 430, specifically, a refrigerant is formed from the indoor unit 20. 2 is combined with a flow path 85 connecting the second inlet valve 44 and the first accumulator 430 to the outdoor unit 40, which connects the second inlet valve 44 and the first accumulator 430.
  • the control valve 470 provided in the flow path may be opened when the outdoor temperature is lower than the reference value lower than the room temperature to simultaneously drive the compressor 350 and the pump 440.
  • the liquid refrigerant collected in the first accumulator 430 is supplied to the pump 440 through a flow path 83 connected to the pump 440 at an outlet provided under the accumulator 430.
  • the pump 440 may pressurize the liquid refrigerant from the first accumulator 430 and supply the liquid refrigerant to the indoor unit 20 through the second outlet valve 43 of the second outdoor unit 40.
  • the flow path 84 connecting the pump 440 and the second outlet valve 43 is provided with a check valve 46 so that the liquid refrigerant can flow only to the second outlet valve 43 side, and the second outlet valve ( The refrigerant leaving the second outdoor unit 40 through 43 is supplied to the indoor unit 20.
  • the air conditioner 2 is connected to the first outdoor unit 30 without using the pump 440 provided in the second outdoor unit 40 when a general cooling operation is required, rather than low temperature cooling where the outdoor temperature is lower than the room temperature.
  • the first bypass flow passage branched from the flow path 87 connecting the first inlet valve 42 and the expansion valve 430 of the second outdoor unit 40 so that the cooling operation using only the compressor 150 provided ( 88) may be further included.
  • the first bypass passage 88 connects the first outdoor unit 30 and the indoor unit 20 to prevent the refrigerant from passing through the pump 440, and controls the flow of the refrigerant in the first bypass passage 88.
  • the control valve 460 may be provided.
  • the air conditioner (2) when the outdoor temperature is lower than the room temperature by a certain level or more to perform the low-temperature cooling operation, the pump of the second outdoor unit 40 without using the compressor 350 of the first outdoor unit 30 (
  • the third heat exchanger 400 and the second bypass passage 89 may be further included to perform the cooling operation using only the 440.
  • the third heat exchanger 400 heat-exchanges the refrigerant from the indoor unit 20, and the second bypass passage 89 may prevent the refrigerant from passing through the compressor 350 of the first outdoor unit 30.
  • the second inlet valve 44 of the second outdoor unit 40 is connected to the third heat exchanger 400.
  • the second bypass passage 89 may be provided with a control valve 471 for controlling the flow of the refrigerant so that the refrigerant from the indoor unit 20 is supplied only when the third heat exchanger 400 is used.
  • the flow path 81 provided at the outlet side of the third heat exchanger 400 to supply the refrigerant from the third heat exchanger 400 to the first accumulator 430 may include a first inlet valve of the second outdoor unit 40. It may be laminated on the flow paths 87 and 82 connecting the 42 and the first accumulator 430.
  • the third heat exchanger is provided in the flow path 81 provided at the outlet side of the third heat exchanger 400 such that the refrigerant entering the first inlet valve 42 of the second outdoor unit 40 does not enter the third heat exchanger 400.
  • a check valve 45 may be provided to allow only the flow of the refrigerant from the 400.
  • the first outdoor unit 30 includes a blowing fan 380 provided on the side of the first heat exchanger 300 to introduce air into the first heat exchanger 300 to help heat exchange in the first heat exchanger 300.
  • the second outdoor unit 40 may be provided at the third heat exchanger 400 to supply air to the third heat exchanger 400 to help heat exchange in the third heat exchanger 400. It may include.
  • the air conditioner 2 operates to drive the compressor 350 and the pump 440 at the same time as shown in FIG. 11, or operates only the compressor 350 as shown in FIG. 12, or FIG.
  • various sensors may be provided to provide driving environment information of the air conditioner to operate by driving only the pump 440.
  • the air conditioner 2 may include a temperature sensor 210 provided in the flow path 81 connected to the outlet side of the third heat exchanger 400 of the second outdoor unit 40, and the pump 440.
  • the first pressure sensor 240 and the second pressure sensor 220 respectively provided in the flow path 84 connected to the outlet side and the flow path 83 connected to the inlet side.
  • it may include a temperature sensor 230 provided in the flow path 84 connected to the outlet of the pump 440.
  • the air conditioner 2 is further provided with the second outdoor unit 40 in the first outdoor unit 30 and the indoor unit 20, which are installed in advance, to one embodiment of the present invention described with reference to FIGS. It can perform all the same functions as the air conditioner (1) according.
  • FIG. 14 is a view for explaining a state in which only the compressor of the air conditioner according to another embodiment of the present invention
  • FIG. 15 is a view for explaining a state in which only the pump of the air conditioner shown in FIG. to be.
  • the air conditioner 3 uses a pump 540 between a first outdoor unit 30 and an indoor unit 20 that are previously installed.
  • the second outdoor unit 50 configured to be circulated may be disposed.
  • the first outdoor unit 30 and the indoor unit 20 of the air conditioner 3 may include the first outdoor unit 30 and the indoor unit 20 of the air conditioner 2 according to the embodiments illustrated in FIGS. 11 to 13. Have the same configuration.
  • the refrigerant introduced into the inlet valve 32 of the first outdoor unit 30 is the compressor 350 of the first outdoor unit 30 in the same manner as in the embodiment shown in FIGS. 11 to 13. And flows to the outlet valve 31 through the first heat exchanger 300.
  • the refrigerant coming out of the outlet valve 31 of the first outdoor unit 30 is introduced into the second outdoor unit 50 through the first inlet valve 52 of the second outdoor unit 50.
  • the second outdoor unit 50 receives a refrigerant from the first outdoor unit 30 and connects the first inlet valve 52 and the first outlet valve 53 of the second outdoor unit 50 to each other.
  • the second delivery passage 96 for supplying to the indoor unit 20 through the connection or receiving the refrigerant from the indoor unit 20 to connect the second inlet valve 54 and the second outlet valve 51 of the second outdoor unit 50. ) May be supplied to the first outdoor unit 30.
  • the second outdoor unit 50 transmits the first valve 58 and the second transfer unit provided in the first transfer passage 95. Opening the second valve 57 provided in the flow path 96 may serve to deliver only the refrigerant without passing through the internal components of the second outdoor unit 50.
  • the air conditioner 3 recovers the refrigerant from the first outdoor unit 30 by using the second outdoor unit 50 including the pump 540 in the case of low temperature cooling in which the outdoor temperature is lower than the indoor temperature by a predetermined level or more. Cooling operation is possible.
  • the second outdoor unit 50 includes a third heat exchanger 500 for exchanging the refrigerant from the indoor unit 20, an accumulator 510 for separating the refrigerant from the third heat exchanger 500 into liquid and gas, and an accumulator 510. It may include a pump 540 to pressurize the liquid refrigerant from the supply to the indoor unit (20).
  • Refrigerant introduced from the indoor unit 20 to the second outdoor unit 50 through the second inlet valve 54 branches off the second transfer passage 96 to diverge the second inlet valve 54 and the third heat exchanger 500. It may be supplied to the third heat exchanger 500 through the flow path 94 connecting the.
  • a third valve 55 may be provided in the flow path 94 connecting the second inlet valve 54 and the third heat exchanger 500 and the low temperature cooling operation is performed using the second outdoor unit 50.
  • the second valve 57 shuts off and opens the third valve 55.
  • the refrigerant introduced into the third heat exchanger 500 flows into the accumulator 510 through a flow path 91 to which the outlet of the third heat exchanger 500 and the accumulator 510 are connected, and is separated from the accumulator 510.
  • the liquid refrigerant flows into the pump 540 via the flow path 92 through which the outlet of the accumulator 510 and the pump 540 are connected.
  • the refrigerant pressurized by the pump 540 is laminated to the first transfer passage 95 via a flow passage 93 connected to the outlet of the pump 540, and then through the first outlet valve 53 of the second outdoor unit 50. It may be supplied to the indoor unit 20.
  • the flow path 93 connected to the outlet of the pump 540 may be provided with a check valve 46 to allow only the flow of the refrigerant toward the indoor unit 20, and to perform a low temperature cooling operation using the second outdoor unit 50. If so, the first valve 58 is blocked.
  • the second outdoor unit 50 may include a blower fan 580 provided at the third heat exchanger 500 side to introduce air into the third heat exchanger 500 to assist heat exchange in the third heat exchanger 500. can do.
  • the air conditioner 3 operates by driving only the compressor 350 as shown in FIG. 14, or provides driving environment information of the air conditioner so as to operate by driving only the pump 440 as shown in FIG. 15. It may include a variety of sensors.
  • the air conditioner 3 may include a temperature sensor 210 provided in the flow path 91 connected to the outlet side of the third heat exchanger 500 of the second outdoor unit 50, and the pump 540.
  • the first pressure sensor 240 and the second pressure sensor 220 are provided in the flow path 93 connected to the outlet side and the flow path 92 connected to the inlet side, respectively.
  • it may include a temperature sensor 230 provided in the flow path 93 connected to the outlet of the pump 440.
  • the second outdoor unit 50 of the air conditioner 3 has a simple structure compared to the second outdoor unit 40 of the air conditioner 2 according to the embodiment of the present invention described with reference to FIGS. 11 to 13. have.
  • the user may additionally install the second outdoor unit 50 in the first outdoor unit 30 and the indoor unit 20, which are installed in advance, to configure the air conditioner 3 capable of circulating the pump in a low temperature cooling environment at low cost.
  • the air conditioner 3 capable of circulating the pump in a low temperature cooling environment at low cost. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명에 따른 공기조화기는 실외 온도가 실내 온도보다 낮은 저온 냉방 환경에서 압축기와 펌프를 동시에 구동하여 효율적이고 안정적인 냉방을 수행할 수 있는 구조를 가지는 것을 특징으로 한다.

Description

공기조화기 및 그 제어방법
본 발명은 실외 온도가 실내 온도보다 낮은 환경에서 안정적으로 냉방 운전을 수행할 수 있는 공기조화기에 관한 것이다.
일반적으로 공기조화기는 냉동 사이클을 이용하여 실내 공기의 온도 및 습도 등을 조절하는 장치로, 실내의 더운 공기를 흡입하여 저온의 냉매로 열교환 후 이를 실내로 토출하여 실내를 냉방시키거나, 반대로 실내의 낮은 온도의 공기를 흡입하여 고온의 냉매로 열교환한 후 이를 실내로 토출하여 실내를 난방시킬 수 있다.
공기조화기는 실외 공간에 설치되는 실외기와 실내 공간에 설치되는 실내기를 포함할 수 있으며, 실외기는 냉매의 압축을 위한 압축기와 실외공기와 냉매의 열교환을 위한 실외 열교환기와 송풍팬 및 압축기와 실내기를 연결하는 각종 배관을 포함하고, 실내기는 실내공기와 냉매의 열교환을 위한 실내 열교환기 및 팽창장치를 포함할 수 있다.
공기조화기는 압축기, 실외 열교환기(응축기), 팽창장치, 실내 열교환기(증발기)를 정방향 또는 역방향으로 순환하는 냉매 사이클에 의해 실내를 냉방 또는 난방시킬 수 있다.
냉매 사이클을 구체적으로 살펴보면, 압축기에서 압축된 기체 냉매는 실외 열교환기로 유입되어 액체 냉매로 상변화를 하게 되고, 실외 열교환기에서 냉매가 상변화를 하면서 외부로 열을 방출하게 되며, 이후에 실외 열교환기에서 배출되는 냉매는 팽창장치를 거치면서 팽창되고 실내 열교환기로 유입된다.
이후, 실내 열교환기로 유입된 액체 냉매는 기체 냉매로 상변화를 하게 된다. 마찬가지로, 냉매는 실내 열교환기에서 상변화를 하면서 외부의 열을 흡수하게 된다.
이처럼 공기조화기는 액체 상태의 냉매가 기화될 때에 주위의 열을 흡수하거나 기체 상태의 냉매가 액화될 때에 그 열을 방출하는 특성에 의해 열교환된 공기(냉기)를 실내공간으로 토출하여 실내온도를 조절하게 된다.
한편, 대형 서버와 전자장비가 많이 설치된 공간에는 서버와 전자장비의 안정적인 작동을 위하여 겨울철에도 냉방이 이루어진다. 특히, 실외온도가 낮은 경우에는 실외 열교환기를 통과하는 냉매의 응축온도가 낮아지고 실내 열교환기를 통과하는 냉매의 증발온도가 낮아진다.
또한, 압축기에 액상 냉매가 유입되거나 실내 열교환기가 동결되는 현상이 발생하며, 이에 따라 공기조화기가 불안정하게 작동하게 되고, 무리하게 압축기를 작동시킴에 따라 전력사용량이 증가하는 문제가 발생한다.
본 발명의 일 측면은 실외 온도가 실내 온도보다 낮은 환경에서 안정적으로 냉방 운전을 수행할 수 있는 공기조화기를 제공한다.
또한, 본 발명의 일 측면은 실외 온도가 실내 온도보다 낮은 환경에서 공기조화기의 파손 없이 효율적으로 냉방 운전할 수 있는 공기조화기의 제어방법을 제공한다.
또한, 본 발명의 일 측면은 저온 냉방이 가능한 펌프를 포함하는 별도의 실외기를 기존의 공기조화기의 실외기와 실내기 사이에 장착할 수 있도록 마련된 공기조화기를 제공한다.
본 발명의 일 실시예에 따른 공기조화기는 제1 열교환기를 포함하는 실외기, 제2 열교환기를 포함하는 실내기, 상기 제1 열교환기 또는 상기 실내기로부터 나온 냉매를 액체와 기체로 분리하는 어큐뮬레이터, 상기 어큐뮬레이터로부터 나온 기체 냉매를 압축하여 상기 제1 열교환기로 공급하는 압축기, 및 상기 어큐뮬레이터로부터 나온 액체 냉매를 가압하여 상기 실내기로 공급하는 펌프를 포함할 수 있다.
또한, 상기 공기조화기는 상기 제1 열교환기와 상기 어큐뮬레이터를 연결하는 유로에 마련되고, 상기 제1 열교환기로부터 나오는 냉매의 과냉도에 따라 개도가 조절되는 팽창밸브 및 상기 실내기와 상기 어큐뮬레이터를 연결하는 유로에 마련되고, 실외 온도가 실내 온도보다 기준치 이상 낮은 경우 개방되는 제어밸브를 더 포함할 수 있다.
또한, 상기 공기조화기는 상기 제1 열교환기와 상기 팽창밸브를 연결하는 유로에 마련되어 냉매를 저장하는 리시버를 더 포함할 수 있다.
또한, 상기 공기조화기는 상기 압축기로부터 상기 제1 열교환기로 향하는 냉매의 유동을 허용하는 제1 체크밸브, 및 상기 펌프로부터 상기 실외기로 향하는 냉매의 유동을 허용하는 제2 체크밸브를 더 포함할 수 있다.
또한, 상기 공기조화기는 냉매가 상기 펌프를 통과하지 않도록 상기 제1 열교환기와 상기 실내기를 연결하고, 냉매의 유동을 조절하는 제어밸브가 마련되는 바이패스유로를 더 포함할 수 있다.
또한, 상기 공기조화기는 냉매가 상기 압축기를 통과하지 않도록 상기 실내기와 상기 제1 열교환기를 연결하고, 상기 실내기로부터 상기 제1 열교환기로 향하는 냉매의 유동을 허용하는 체크밸브가 마련되는 바이패스유로를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 공기조화기는 제1 열교환기, 압축기, 어큐뮬레이터 및 펌프를 포함하는 실외기와, 제2 열교환기를 포함하는 실내기와, 상기 제1 열교환기와 상기 실내기를 연결하고, 상기 제1 열교환기 또는 상기 실내기로부터 나온 냉매를 액체와 기체로 분리하는 상기 어큐뮬레이터가 마련되고, 상기 어큐뮬레이터에서 나온 액체 냉매를 가압하여 상기 실내기로 공급하는 상기 펌프가 마련되는 제1 유로와, 상기 실내기와 상기 제1 열교환기를 연결하고, 상기 제1 열교환기 또는 상기 실내기로부터 나온 냉매를 액체와 기체로 분리하는 상기 어큐뮬레이터가 마련되고, 상기 어큐뮬레이터에서 나온 기체 냉매를 압축하여 상기 제1 열교환기로 공급하는 상기 압축기가 마련되는 제2 유로와, 냉매가 상기 펌프를 통과하지 않도록 상기 제1 열교환기와 상기 실내기를 연결하는 제1 바이패스유로와, 냉매가 상기 압축기를 통과하지 않도록 상기 실내기와 상기 제1 열교환기를 연결하는 제2 바이패스유로와, 냉매를 상기 제1유로와 상기 제1 바이패스유로 중 하나의 유로 및 상기 제2 유로와 제2 바이패스유로 중 하나의 유로로 유동시키기 위한 제어부를 포함할 수 있다.
여기서, 실외 온도가 실내 온도보다 기준치 이상 낮은 경우, 상기 제어부는, 냉매를 상기 제1 유로와 상기 제2 유로로 유동시키거나, 상기 제1 바이패스유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 유로로 유동하도록 전환시키거나, 상기 제1 유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 바이패스유로로 유동하도록 전환시킬 수 있다.
또한, 상기 공기조화기는 상기 제1 유로에 마련된 상기 펌프의 출구 측과 입구 측에 각각 제1 압력센서 및 제2 압력센서를 포함하고, 제1 압력센서에 검출된 압력과 제2 압력센서에 검출된 압력의 차이가 기준범위의 하한치이상인 경우, 상기 제어부는, 냉매를 상기 제1 유로와 상기 제2 유로로 유동시키거나, 상기 제1 바이패스유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 유로로 유동하도록 전환시키거나, 상기 제1 유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 바이패스유로로 유동하도록 전환시킬 수 있다.
또한, 상기 제1 압력센서에 검출된 압력이 상기 펌프의 허용압력 이하인 경우, 상기 제어부는 상기 제1 바이패스유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 유로로 유동하도록 전환시킬 수 있다.
또한, 상기 공기조화기는 상기 제1 열교환기의 출구에 마련된 온도센서를 더 포함하고, 상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하는 경우, 상기 제어부는 상기 제1 바이패스유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 유로로 유동하도록 전환시킬 수 있다.
또한, 상기 실외기는 상기 제1 열교환기로 공기를 유입시키는 송풍팬과 송풍팬의 회전 속도를 측정할 수 있는 센서를 더 포함하고, 상기 송풍팬이 회전 속도가 기준범위의 하한치 미만인 경우, 상기 제어부는 상기 제1 바이패스유로와 상기 제2 유로로 유동 중인 냉매를 상기 제1 유로와 상기 제2 유로로 유동하도록 전환시킬 수 있다.
본 발명의 일 실시예에 따른 공기조화기의 제어방법은, 제1 열교환기, 압축기 및 펌프를 포함하는 실외기와 제2 열교환기를 포함하는 실내기로 구성되는 공기조화기의 냉방운전에 있어서, 냉매가 상기 제1 열교환기, 상기 압축기 및 상기 실내기를 순환하는 제1 모드와, 냉매가 상기 제1 열교환기, 상기 펌프 및 상기 실내기를 순환하는 제2 모드와, 냉매가 상기 제1 열교환기, 상기 압축기, 상기 펌프 및 상기 실내기를 순환하는 제3 모드를 포함할 수 있다.
여기서, 상기 제1 모드는, 상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하지 않도록 상기 제1 유로에 마련된 팽창밸브를 차단하고, 상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 개방하고, 상기 실내기에서 나온 냉매가 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하지 않고 상기 압축기가 마련된 제2 유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 개방하는 것을 포함할 수 있다.
또한, 상기 제2 모드는, 상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하도록 상기 제1 유로에 마련된 팽창밸브를 개방하고, 상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하지 않도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 폐쇄하고, 상기 실내기에서 나온 냉매가 상기 압축기가 마련된 제2 유로로 유동하지 않고 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 폐쇄하는 것을 포함할 수 있다.
또한, 상기 제3 모드는, 상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하도록 상기 제1 유로에 마련된 팽창밸브를 개방하고, 상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하지 않도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 폐쇄하고, 상기 실내기에서 나온 냉매가 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하지 않고 상기 압축기가 마련된 제2 유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 개방하는 것을 포함할 수 있다.
상기 제어방법은, 실외 온도가 실내 온도보다 기준치 이상 낮은지 판단하고, 상기 펌프를 소정 시간 이상 시험운전을 하여, 상기 펌프의 출구에서의 압력과 입구에서의 압력을 측정하고, 실외 온도가 실내 온도보다 기준치 이상 낮고, 상기 펌프의 출구와 입구에서의 압력의 차이가 기준범위의 하한치 이상이면, 상기 공기조화기가 정지상태인 경우 상기 제2 모드로 운전을 수행하거나, 상기 공기조화기가 상기 제1 모드로 운전 중인 경우 상기 제3 모드로 전환할 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제1 모드로 작동 중인 경우, 상기 제1 열교환기의 출구에서의 냉매의 온도를 측정하고, 상기 펌프의 입구에서의 압력과 상기 펌프의 출구에서의 압력을 측정하고, 상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하고, 상기 펌프의 출구에서의 압력이 상기 펌프의 허용압력 이하이고, 상기 펌프의 입구와 출구에서의 압력의 차이가 상기 펌프의 허용차압 이하이면, 상기 제3 모드로 전환할 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제1 모드로 작동 중인 경우, 상기 제1 열교환기로 공기를 유입시키는 송풍팬의 회전 속도를 측정하고, 상기 송풍팬의 회전 속도가 기준범위의 하한치 미만이면, 상기 제3 모드로 전환할 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제1 열교환기에서 나온 냉매와 상기 실내기에서 나온 냉매를 액체와 기체로 분리하여 상기 펌프와 상기 압축기로 공급하는 어큐뮬레이터를 더 포함하고, 상기 공기조화기가 상기 제3 모드로 작동 중인 경우, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도를 계산하고, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도의 차이가 기준범위의 상한치를 초과하면, 상기 제1 열교환기와 상기 어큐뮬레이터를 연결하는 유로에 마련된 팽창밸브의 개도를 증가시킬 수 있고, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도의 차이가 기준범위의 하한치 미만이면, 상기 팽창밸브의 개도를 감소시킬 수 있다.
*또한, 상기 제어방법은, 상기 공기조화기가 상기 제3 모드로 작동 중인 경우, 상기 펌프의 회전속도가 펌프의 한계 회전속도보다 낮고, 상기 공기조화기에 더 큰 부하가 요구되는 경우, 상기 펌프의 회전속도를 증가시킬 수 있다.
또한, 상기 제어방법은, 상기 펌프가 한계 회전속도로 회전 중이면, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도를 계산하고, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도의 차이가 기준범위의 상한치를 초과하면, 상기 압축기의 속도를 증가시킬 수 있고, 상기 어큐뮬레이터로 유입되는 냉매의 건도와 상기 제1 열교환기에서 나와 상기 팽창밸브를 지난 냉매의 건도의 차이가 기준범위의 하한치 미만이면, 상기 압축기의 속도를 감소시킬 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제2 모드로 작동 중인 경우, 상기 제1 열교환기의 출구에서의 냉매의 온도를 측정하고, 상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 하한치 미만이면, 상기 제1 열교환기로 공기를 유입시키는 송풍팬의 회전속도를 증가시킬 수 있고, 상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하면, 상기 송풍팬의 회전속도를 감소시킬 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제3 모드로 작동 중인 경우, 상기 압축기의 압축비가 최소 압축비를 초과하는지 판단하고, 상기 압축기의 압축비가 최소 압축비를 초과하면, 상기 송풍팬의 회전속도를 증가시킬 수 있고, 상기 압축기의 압축비가 최소 압축비 미만이면, 상기 송풍팬의 회전속도를 감소시킬 수 있다.
또한, 상기 제어방법은, 상기 공기조화기가 상기 제2 모드 또는 제3 모드로 작동 중인 경우, 상기 실내기의 설정온도와 상기 펌프의 출구의 포화온도의 차이가 기준범위의 하한치 미만이면, 상기 제1 모드로 전환할 수 있다.
본 발명의 다른 실시예에 따른 공기조화기는, 제1 열교환기 및 압축기를 포함하는 제1 실외기, 제2 열교환기를 포함하는 실내기, 상기 제1 실외기 또는 상기 실내기로부터 나온 냉매를 액체와 기체로 분리하는 어큐뮬레이터와, 상기 어큐뮬레이터로부터 나온 액체 냉매를 가압하여 상기 실내기로 공급하는 펌프를 포함하는 제2 실외기를 포함하고, 상기 어큐뮬레이터로부터 나온 기체 냉매는 상기 제1 실외기로 공급될 수 있다.
여기서, 상기 제2 실외기는, 상기 실내기로부터 나온 냉매를 열교환시키는 제3 열교환기와, 냉매가 상기 제1 실외기의 상기 압축기를 통과하지 않도록 상기 실내기와 상기 제3 열교환기를 연결하고, 상기 실내기로부터 상기 제1 열교환기로 향하는 냉매의 유동을 조절할 수 있는 제어밸브가 마련되는 바이패스유로를 더 포함할 수 있다.
또한, 상기 제2 실외기는 냉매가 상기 펌프를 통과하지 않도록 상기 제1 실외기와 상기 실내기를 연결하고, 냉매의 유동을 조절하는 제어밸브가 마련되는 바이패스유로를 포함할 수 있다.
본 발명의 또 다른 실시에에 따른 공기조화기는 제1 열교환기 및 압축기를 포함하는 제1 실외기, 제2 열교환기를 포함하는 실내기, 및 상기 제1 실외기로부터 냉매를 전달받아 상기 실내기로 공급하거나 상기 실내기로부터 냉매를 전달받아 상기 제1 실외기로 공급할 수 있도록, 상기 제1 실외기와 상기 실내기 사이에 배치되는 제2 실외기를 포함하고, 상기 제2 실외기는, 상기 실내기로부터 나온 냉매를 열교환시키는 제3 열교환기와, 상기 제3 열교환기로부터 나온 냉매를 액체와 기체로 분리하는 어큐뮬레이터와, 상기 어큐뮬레이터로부터 나온 액체 냉매를 가압하여 상기 실내기로 공급하는 펌프를 포함할 수 있다.
여기서 상기 제2 실외기는, 상기 제1 실외기로부터 냉매를 공급받아 상기 실내기로 공급할 수 있도록 상기 제1 실외기와 상기 실내기를 연결하는 제1 전달유로, 및 상기 실내기로부터 나온 냉매가 상기 제3 열교환기, 상기 어큐뮬레이터와 상기 펌프를 지나지 않도록 상기 실내기와 상기 제1 실외기를 연결하는 제2 전달유로를 더 포함할 수 있다.
본 발명의 사상에 따른 공기조화기는 기체상태의 냉매를 압축하여 순환시킬 수 있는 압축기와 액체상태의 냉매를 가압하여 순환시킬 수 있는 펌프를 모두 포함하므로, 실외 온도가 실내 온도보다 낮은 환경이라고 하더라도 안정적으로 냉방운전을 할 수 있다.
또한, 본 발명의 사상에 따른 공기조화기의 제어방법은 실외 온도가 실내 온도보다 낮은 환경에서 압축기의 운전 효율이 떨어지면 펌프를 동시에 운전하거나 펌프만 단독으로 운전하도록 제어하여, 공기조화기를 냉방기능의 단절 없이 효율적으로 냉방 운전을 할 수 있고, 냉매의 흐름을 조절하여 압축기와 펌프의 파손을 방지할 수 있다.
또한, 본 발명의 사상에 따른 공기조화기는 저온 냉방이 가능하도록 펌프를 포함하는 실외기를 기존의 실외기에 장착할 수 있어, 기존에 사용하던 실외기를 활용하여 저온 냉방 시스템을 구현할 수 있다.
도 1은 본 발명의 일 실시에에 따른 공기조화기의 압축기와 펌프가 동시에 구동되는 상태를 설명하기 위한 도면이다.
도 2는 도 1에 도시된 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이다.
도 3은 도 1에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다.
도 4는 도 1에 도시된 공기조화기의 제어 블록도이다.
도 5a 내지 도 5c는 도 1에 도시된 공기조화기를 제1 모드, 제2 모드 또는 제3 모드로 운전하기 위한 제어 방법을 도시한 순서도이다.
도 6은 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 팽창 밸브를 제어하기 위한 제어 방법을 도시한 순서도이다.
도 7은 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 압축기 또는 펌프를 제어하기 위한 제어 방법을 도시한 순서도이다.
도 8은 도 1에 도시된 공기조화기를 제2 모드로 운전 중에 송풍팬을 제어하기 위한 제어 방법을 도시한 순서도이다.
도 9는 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 송풍팬을 제어하기 위한 제어 방법을 도시한 순서도이다.
도 10은 도 1에 도시된 공기조화기를 제2 모드 또는 제3 모드로 운전 중에 제1 모드로 전환하도록 제어하기 위한 제어 방법을 도시한 순서도이다.
도 11은 본 발명의 다른 실시예에 따른 공기조화기의 압축기와 펌프가 동시에 구동되는 상태를 설명하기 위한 도면이다.
도 12는 도 11에 도시된 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이다.
도 13은 도 11에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다.
도 14는 본 발명의 또 다른 실시예에 따른 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이다.
도 15는 도 14에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 실시예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조 번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성 요소를 나타낸다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성 요소는 제2구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 공기조화기 및 그 제어 방법을 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 공기조화기의 압축기와 펌프가 동시에 구동되는 상태를 설명하기 위한 도면이고, 도 2는 도 1에 도시된 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이고, 도 3은 도 1에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다. 또한, 도 4는 도 1에 도시된 공기조화기의 제어 블록도이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 공기조화기(1)는 제1 열교환기(100)를 포함하는 실외기(10) 및 제2 열교환기(21)를 포함하는 실내기(20)를 포함한다. 일반적으로 냉방 운전에서 실외기(10)에 포함되는 제1 열교환기(100)는 응축기로 사용되고, 실내기(20)에 포함되는 제2 열교환기(21)는 증발기로 사용된다.
공기조화기(1)는 냉동사이클을 구성하는 압축기(150)와 팽창장치(22)를 포함하고, 압축기(150)는 실외기(10)에 포함될 수 있고 팽창장치(22)는 실내기(20)에 포함될 수 있다.
또한, 공기조화기(1)는 실외기(10)가 설치된 실외의 온도가 실내기(20)가 설치된 실내의 온도보다 일정 수준 이상 낮은 경우 공기조화기(1)를 효율적으로 가동하기 위한 펌프(140)를 더 포함할 수 있다.
또한, 공기조화기(1)는 실외기(10)의 제1 열교환기(100) 또는 실내기(20)의 제2 열교환기(21)로부터 나온 냉매를 액체와 기체로 분리하여 압축기(150)와 펌프(140)로 공급할 수 있는 어큐뮬레이터(130)를 포함할 수 있다.
어큐뮬레이터(130)에 모인 기체 냉매는 어큐뮬레이터(130)의 상부에 마련된 출구에서 압축기(150)와 연결된 유로(66)를 통해 압축기(150)로 공급되고, 어큐뮬레이터(130)에 모인 액체 냉매는 어큐뮬레이터(130)의 하부에 마련된 출구에서 펌프(140)와 연결된 유로(63)를 통해 펌프(140)로 공급된다.
압축기(150)는 어큐뮬레이터(130)로부터 나온 기체 냉매를 압축하여 실외기(10)의 제1 열교환기(100)로 공급하고, 펌프(140)는 어큐뮬레이터(130)로부터 나온 액체 냉매를 가압하여 실내기(20)로 공급할 수 있다.
*제1 열교환기(100)와 어큐뮬레이터(130)를 연결하는 유로(61,62)에는 제1 열교환기(100)로부터 나오는 냉매의 과냉도에 따라 개도가 조절되는 팽창밸브(120)가 마련될 수 있고, 실내기(20)와 어큐뮬레이터(130)를 연결하는 유로(65) - 구체적으로는 냉매가 실내기(20)로부터 실외기(10)로 들어오는 실외기(10)의 입구밸브(12)와 어큐뮬레이터(130)를 연결하는 유로(65) - 에는 실외 온도가 실내 온도보다 기준치 이상 낮아 압축기(150)와 펌프(140)를 동시에 구동해야 하는 경우 개방되는 제어밸브(170)가 마련될 수 있다.
또한, 제1 열교환기(100)와 팽창밸브(120)를 연결하는 유로(61)에는 제1 열교환기(100)로부터 나와 펌프(140)에서 가압될 액체 냉매를 저장할 수 있는 리시버(110)가 마련될 수 있고, 리시버(110)에는 저장된 액냉매의 양을 체크할 수 있는 액위센서(미도시)가 마련될 수 있다.
또한, 압축기(150)와 제1 열교환기(100)를 연결하는 유로(67)에는 압축기(150)로부터 제1 열교환기(100)로 향하는 냉매의 유동을 허용하는 제1 체크밸브(14)가 마련될 수 있고, 펌프(140)와 실외기(10)를 연결하는 유로(64) - 구체적으로는 냉매가 실외기(10)로부터 실내기(20)기로 나가는 실외기(10)의 출구밸브(11)와 펌프(140)를 연결하는 유로(64) - 에는 펌프(140)로부터 실내기(20)로 향하는 냉매의 유동을 허용하는 제2 체크밸브(15)가 마련될 수 있다.
공기조화기(1)는 실외온도가 실내온도보다 낮은 저온 냉방의 경우가 아닌 일반 냉방운전이 필요한 경우에 펌프(140)를 사용하지 않고 압축기(150)만을 이용하여 냉방운전을 할 수 있도록 제1 바이패스유로(68)를 더 포함할 수 있다. 제1 바이패스유로(68)는 냉매가 펌프(140)를 통과하지 않도록 제1 열교환기(100)와 실내기(20) 혹은 실외기의 출구밸브(11)를 연결하고, 제1 바이패스유로(68)에는 냉매의 유동을 조절할 수 있는 제어밸브(160)가 마련될 수 있다.
또한, 공기조화기(1)는 실외온도가 실내온도보다 낮아 저온 냉방 운전을 하는 경우, 압축기(150)를 사용하지 않고 펌프(140)만을 이용하여 냉방운전을 할 수 있도록 제2 바이패스유로(69)를 더 포함할 수 있다. 제2 바이패스유로(69)는 냉매가 압축기(150)를 통과하지 않도록 실내기(20) 또는 실외기(10)의 입구밸브(12)와 제1 열교환기(100)를 연결하고, 제2 바이패스유로(69)에는 실내기(20)로부터 제1 열교환기(100)로 향하는 냉매의 유동을 허용하는 체크밸브(13)가 마련될 수 있다.
또한, 실외기(10)는 제1 열교환기(100) 측에 마련되어 제1 열교환기(100)에 공기를 유입시켜 제1 열교환기(100)에서의 열교환을 돕는 송풍팬(180)을 포함할 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 공기조화기(1)를 냉매의 흐름에 따라 설명한다.
도 1 내지 도 3을 참조하면, 공기조화기(1)는 제1 열교환기(100)와 실내기(20)를 연결하고, 어큐뮬레이터(130)와 펌프(140)가 마련되는 제1 유로(61, 62, 63, 64)와 실내기(20)와 제1 열교환기(100)를 연결하고 어큐뮬레이터(130)와 압축기(150)가 마련되는 제2 유로(65, 66, 67)를 포함할 수 있다.
제1 유로와 제2 유로가 교차하는 어큐뮬레이터(130)에서는 제1 열교환기(100)로부터 나와 어큐뮬레이터(130)로 들어온 냉매 중 기체 냉매가 제2 유로로 혼입될 수 있고, 실내기(20)로부터 나와 어큐뮬레이터(130)로 들어온 냉매 중 액체 냉매가 제1 유로로 혼입될 수 있다.
또한, 공기조화기(1)는 제1 열교환기(100)에서 나온 냉매가 펌프(140)를 통과하지 않도록 제1 열교환기(100)와 팽창밸브(120)를 연결하는 유로(61)에서 분기되어 제1 열교환기(100)와 실내기(20)를 바로 연결하는 제1 바이패스유로(68)를 포함할 수 있고, 실내기(20)에서 나온 냉매가 압축기(150)를 통과하지 않도록 실내기(20)와 어큐뮬레이터(130)를 연결하는 유로(65)에서 분기되어 실내기(20)와 제1 열교환기(100)를 바로 연결하는 제2 바이패스유로(69)를 포함할 수 있다.
또한, 공기조화기(1)는 냉매가 펌프(140)를 지나는 제1 유로(61, 62, 63, 64)와 펌프를 지나지 않는 제1 바이패스유로(68) 중 하나의 유로로 냉매를 유동 시킬 수 있고, 냉매가 압축기(150)를 지나는 제2 유로(65, 66, 67)와 압축기(150)를 지나지 않는 제2 바이패스유로(69) 중 하나의 유로로 냉매를 유동시킬 수 있는 제어부(600)를 포함할 수 있다.
도 1 및 도 4를 참조하면, 공기조화기(1)는 실외온도(Tout)를 측정하기 위한 센서(250)와, 실내온도(Tin)를 측정하기 위한 센서(260)를 포함할 수 있다. 실내온도(Tin)가 실외온도(Tout)보다 기준치 이상 낮은 경우, 제어부(600)는 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 이동시키거나, 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동하도록 전환시키거나, 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 바이패스유로(69)로 유동하도록 전환시킬 수 있다.
또한, 공기조화기(1)는 제1 유로 중 펌프(140)의 출구 측에 연결된 유로(64)와 입구 측에 연결된 유로(63)에 각각 마련되는 제1 압력센서(240)와 제2 압력센서(220)를 포함할 수 있다. 제1 압력센서(240)에 검출된 펌프(140) 출구 압력(Pout)과 제2 압력센서(220)에 검출된 펌프(140) 입구 압력(Pin)의 차이가 기준범위의 하한치를 초과하는 경우, 제어부(600)는 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 이동시키거나, 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동하도록 전환시키거나, 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 바이패스유로(69)로 유동하도록 전환시킬 수 있다.
여기서, 이미 공기조화기(1)의 냉매가 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 경우에, 냉매의 유로를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 전환시키기 위해서는 유로(68)로 유동 중인 냉매의 압력이 펌프(140)의 허용압력 이하이어야 한다. 펌프(140)의 출구 측에 연결된 유로(64)가 제1 열교환기와 실내기(20)를 직접 연결하는 유로(68)와 합지되어 실외기(10)의 출구밸브(11)로 연결이 되므로, 제1 압력센서(240)는 유로(68)로 유동하는 냉매의 압력을 측정할 수 있고 이 압력이 펌프(140)의 출구 측 압력(Pout)이 된다. 따라서, 제1 압력센서(240)에 검출된 펌프(140)의 출구 압력(Pout)이 펌프(140)의 허용압력 이하인 경우에, 펌프(140)는 손상을 입지 않고 구동될 수 있고, 제어부(600)는 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동하도록 전환시킬 수 있다.
또한, 공기조화기(1)는 제1 열교환기(100)의 출구 측에 연결되는 유로(61)에 마련되는 온도센서(210)를 포함할 수 있다. 제1 열교환기(100)의 출구에서의 냉매의 과냉도는 제1 열교환기(100)의 출구에서의 냉매에 펌프(140)에 공급될 수 있는 액체 냉매의 양이 얼마나 되는지 알 수 있는 지표가 되므로, 온도센서(210)에 의해 감지되는 온도(Tc)를 기초로 제1 열교환기(100)의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하여 액냉매의 양이 기준치 이상 확보되는 경우, 제어부(600)는 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동하도록 전환시킬 수 있다.
또한, 공기조화기(1)는 제1 열교환기(100) 측에 마련된 송풍팬(180)의 회전 속도(Vf)를 측정할 수 있는 센서(270)를 더 포함할 수 있다. 실외기(10)가 설치된 실외의 온도(Tout)가 하강하면 제1 열교환기(100)에서의 냉매의 응축압력이 저하되고, 제1 열교환기(100)에서의 응축압력이 저하되면 압축기(150)에서의 압축비 확보를 위해서 송풍팬(180)의 풍량을 감소시키게 되는데, 송풍팬(180)의 회전 속도(Vf)가 기준범위의 하한치 이하로 떨어지는 경우는 압축기(150) 만으로 냉방 운전을 할 수 없게 된다. 따라서, 송풍팬(180)의 회전 속도(Vf)가 기준범위의 하한치 이하로 떨어지는 경우, 제어부(600)는 제1 바이패스유로(68) 및 제2 유로(65, 66, 67)로 유동 중인 냉매를 제1 유로(61, 62, 63, 64) 및 제2 유로(65, 66, 67)로 유동하도록 전환시킬 수 있다.
송풍팬(180)의 회전 속도(Vf)를 측정하는 센서(270)는 송풍팬(180)의 소비전력을 측정하는 것으로 회전 속도(Vf) 측정을 대신할 수 있다.
이하에서는 도 1 내지 도 10을 참조하여 본 발명의 일 실시예에 따른 공기조화기의 제어방법에 관해 자세히 설명한다.
도 4에 도시된 바와 같이, 공기조화기(1)는 사용자로부터 냉방운전 또는 난방운전 시동을 입력 받는 입력부(200)를 포함할 수 있다. 사용자는 입력부(200)를 통해 냉방운전을 가동하도록 입력할 수 있을 뿐만 아니라, 사용자가 원하는 설정온도(Ts)를 입력할 수 있다. 입력부(200)는 실내기(20)에 마련될 수 있다.
제어부(600)는 입력부(200)로부터 냉방운전 가동을 입력 받으면 각종 센서에 의해 검출된 데이터에 기초하여 공기조화기(1)가 효율적으로 운전하도록 팽창밸브(120), 제1 바이패스유로(68)에 마련된 제1 제어밸브(160), 제2 유로(65, 66, 67)에 마련된 제2 제어밸브(170), 압축기(150), 펌프(140), 제1 열교환기(100) 측에 마련된 송풍팬(180) 등을 제어할 수 있다.
본 발명에 따른 공기조화기의 제어는 히스테리시스(Hysteresis)를 고려하여 제어의 기준 값을 범위로 설정하였고, 제어부는 그 기준 범위의 상한치와 하한치를 임계점으로 하여 공기조화기를 제어할 수 있다.
본 발명의 일 실시예에 따른 제어방법은 공기조화기(1)의 내부 및 외부의 운전 환경에 따라 압축기(150) 및/또는 펌프(140)를 구동하는 제1 모드(700), 제2 모드(800) 또는 제3 모드(900)를 포함할 수 있다.
제1 모드(700)는 냉매가 제1 열교환기(100), 압축기(150), 실내기(20)를 순환하도록 하여 압축기만 단독으로 구동되는 운전 모드이고, 제2 모드(800)는 냉매가 제1 열교환기(100), 펌프(140), 실내기(20)를 순환하도록 하여 펌프(140)만 단독으로 구동되는 운전 모드이고, 제3 모드(900)는 냉매가 제1 열교환기(100), 압축기(150), 펌프(140), 실내기(20)를 순환하도록 하여 압축기(150)와 펌프(140)가 동시에 구동되도록 하는 운전 모드이다.
도 1 내지 도 3 및 도 5a 내지 5c를 참조하여 각 운전 모드에 대해 구체적으로 설명한다.
도 2는 제1 모드(700)에 의한 냉매의 순환을 도시하고 있다. 제1 모드(700)는 제1 열교환기(100)에서 나온 냉매가 펌프(140)가 마련된 제1 유로(61, 62, 63, 64)로 유동하지 않도록 제1 유로에 마련된 팽창밸브(120)를 차단하고(710), 제1 열교환기(100)에서 나온 냉매가 실내기(20)로 연결된 제1 바이패스유로(68)로 유동하도록 제1 바이패스유로(68)에 마련된 제1 제어밸브(160)를 개방하고(720), 실내기(20)에서 나온 냉매가 실내기(20)와 제1 열교환기(100)가 바로 연결된 제2 바이패스유로(69)로 유동하지 않고 압축기(150)가 마련된 제2 유로(65, 66, 67)로 유동하도록 제2 유로(65, 66, 67)에 마련된 제2 제어밸브(170)를 개방하여(730) 압축기(150)만을 단독으로 구동할 수 있다(740).
도 3은 제2 모드(800)에 의한 냉매의 순환을 도시하고 있다. 제2 모드(800)는 제1 열교환기(100)에서 나온 냉매가 펌프(140)가 마련된 제1 유로(61, 62, 63, 64)로 유동하도록 제1 유로(61, 62, 63, 64)에 마련된 팽창밸브(120)를 개방하고(810), 제1 열교환기(100)에서 나온 냉매가 실내기(20)로 연결된 제1 바이패스유로(68)로 유동하지 않도록 제1 바이패스유로(68)에 마련된 제1 제어밸브(160)를 폐쇄하고(820), 실내기(20)에서 나온 냉매가 압축기(150)가 마련된 제2 유로(65, 66, 67)로 유동하지 않고 실내기(20)와 제1 열교환기(100)가 바로 연결된 제2 바이패스유로(69)로 유동하도록 제2 유로(65, 66, 67)에 마련된 제2 제어밸브(170)를 폐쇄하여(830) 펌프(140)만 단독으로 구동할 수 있다(840).
도 1은 제3 모드(900)에 의한 냉매의 순환을 도시하고 있다. 제3 모드(900)는 제1 열교환기(100)에서 나온 냉매가 펌프(140)가 마련된 제1 유로(61, 62, 63, 64)로 유동하도록 제1 유로(61, 62, 63, 64)에 마련된 팽창밸브(120)를 개방하고(910), 제1 열교환기(100)에서 나온 냉매가 실내기(20)로 연결된 제1 바이패스유로(68)로 유동하지 않도록 제1 바이패스유로(68)에 마련된 제1 제어밸브(160)를 폐쇄하고(920), 실내기(20)에서 나온 냉매가 실내기(20)와 제1 열교환기(100)가 바로 연결된 제2 바이패스유로(69)로 유동하지 않고 압축기(150)가 마련된 제2 유로(65, 66, 67)로 유동하도록 제2 유로(65, 66, 67)에 마련된 제2 제어밸브(170)를 개방하여(930) 압축기(150)와 펌프(140)를 동시에 구동할 수 있다(940).
이하에서는 제1 모드(700), 제2 모드(800) 및 제3 모드(900)를 포함하는 공기조화기(1)의 제어방법에 관해 설명한다.
도 5a 내지 도 5c는 도 1에 도시된 공기조화기를 제1 모드, 제2 모드 또는 제3 모드로 운전하기 위한 제어 방법을 도시한 순서도이다.
사용자에 의해 입력부(200)에 냉방운전이 입력되면(1000), 실외온도(Tout) 센서(250)와 실내온도(Tin) 센서(260)에 의해 실외온도(Tout)와 실내온도(Tin)를 측정한다(1010). 실외온도(Tout)가 실내온도(Tin)보다 기준치(α) 이상 낮은지 판단하여(1020), 실외온도(Tout)가 실내온도(Tin)보다 기준치(α) 이상 낮지 않은 경우 저온 냉방 환경이 아니므로 공기조화기(1)는 제1 모드(700)로 일반 냉방 운전을 수행한다.
실외온도(Tout)가 실내온도(Tin)보다 기준치(α) 이상 낮은 경우, 펌프(140)를 구동할 수 있을 정도의 액체 냉매가 준비되어 있는지 확인하기 위해 펌프(140)를 소정의 시간(η) 이상 시험 운전을 하고(1030), 펌프(140)의 입구 측에 마련된 압력 센서(220)와 출구 측에 마련된 압력 센서(240)에 의해 펌프(140) 입구 압력(Pin)과 펌프(140) 출구 압력(Pout)을 측정한다(1040).
펌프(140) 출구의 압력(Pout)과 펌프(140) 입구의 압력(Pin)이 기준범위의 하한치(βmin)를 초과하는지 판단하여(1050), 펌프(140) 출구의 압력(Pout)과 펌프(140) 입구의 압력(Pin)이 기준범위의 하한치(βmin)를 초과하지 않는 경우에는 액체 냉매의 양이 충분하지 않은 경우이므로 펌프(140)를 가동할 수 없고 공기조화기(1)는 제1 모드(700)로 운전을 수행한다.
펌프(140) 출구의 압력(Pout)과 펌프(140) 입구의 압력(Pin)이 기준범위의 하한치(βmin)를 초과하는 경우에는, 공기조화기(1)가 정지 상태인지 판단하여(1060), 공기조화기(1)가 운전이 시작되지 않은 정지 상태인 경우 공기조화기(1)를 제2 모드(800)로 운전을 수행한다.
공기조화기(1)가 정지상태가 아니고 임의의 운전 모드로 운전 중인 경우, 제1 모드(700)로 운전 중인지를 판단하여(1070), 제1 모드(700)로 운전 중이 아니면 도 5a 내지 도 5c에 도시된 순서도의 시작위치로 돌아가서 공기조화기(1)의 운전 환경을 다시 판단한다.
공기 조화기가 제1 모드(700)로 운전 중인 경우, 제1 열교환기(100)의 출구 측에 마련된 온도 센서(210)에 의해 냉매의 제1 열교환기(100)의 출구에서의 온도(Tc)를 측정한다(1080). 제1 열교환기(100) 출구에서 냉매의 온도(Tc)를 기초로 냉매의 과냉도(К)가 기준범위의 상한치(Кmax)를 초과하는 경우 제1 열교환기(100)에서 나오는 냉매 중에 액체 냉매의 비율이 높아 압축기(150)만을 단독을 구동하는 제1 모드(700)로는 냉방 효율이 떨어진다.
따라서, 제1 열교환기(100) 출구에서 냉매의 과냉도(К)가 기준범위의 상한치(Кmax)를 초과하는지 여부를 판단하여(1090), 제1 열교환기(100) 출구에서 냉매의 과냉도(К)가 기준범위의 상한치(Кmax)를 초과하지 않는 경우는 제1 모드(700)로 계속 운전하면서 순서도의 시작 위치로 돌아가서 공기조화기(1)의 운전 환경을 다시 판단한다. 제1 열교환기(100) 출구에서 냉매의 과냉도(К)가 기준범위의 상한치(Кmax)를 초과하는 경우는 펌프(140)를 손상 없이 구동할 수 있는지 확인하기 위하여 펌프(140) 출구의 압력(Pout)이 허용압력(θ) 미만인지 판단한다(1100).
도 1 내지 도 3을 참조하면, 제1 바이패스유로(68)와 펌프(140)의 출구 측에 연결되는 유로(64)가 합지되어 실외기(10)의 출구밸브(11)를 지나 실내기(20)로 연결된다. 따라서, 공기조화기(1)가 도 2에 도시된 바와 같이 제1 모드(700)로 운전 중인 경우 제1 바이패스유로(68)에는 냉매가 흐르고 있으므로, 제1 바이패스유로(68)에서의 냉매의 압력이 펌프(140) 출구 측의 압력(Pout)이 되며, 펌프(140) 출구 측의 압력(Pout)이 펌프(140)의 허용압력(θ)보다 낮아야 펌프(140)를 손상 없이 구동시킬 수 있다.
펌프(140) 출구의 압력(Pout)이 허용압력(θ) 미만이 아니라면, 펌프(140)를 구동할 수 없으므로 공기조화기(1)는 제1 모드(700)로 계속 운전하면서 순서도의 시작 위치로 돌아가서 공기조화기(1)의 운전환경을 다시 판단한다.
펌프(140) 출구의 압력(Pout)이 허용압력(θ) 미만이라면, 펌프(140)의 출구 측의 압력(Pout)과 펌프(140)의 입구 측의 압력(Pin)의 차이가 펌프(140)의 허용 차압(γ) 미만인지 여부를 판단하여야 한다(1110). 펌프(140) 출구의 압력(Pout)이 허용압력(θ) 미만이라고 하더라도 펌프(140) 입구와 출구의 차압이 허용차압(γ) 미만이 아니라면 펌프(140)에 손상을 줄 수 있기 때문이다.
따라서, 펌프(140)의 출구 측의 압력(Pout)과 펌프(140)의 입구 측의 압력(Pin)의 차이가 펌프(140)의 허용차압(γ) 미만이 아니라면, 펌프(140)를 구동할 수 없으므로 공기조화기(1)는 제1 모드(700)로 계속 운전하면서 순서도의 시작 위치로 돌아가서 공기조화기(1)의 운전환경을 다시 판단한다.
펌프(140)의 출구 측의 압력(Pout)과 펌프(140)의 입구 측의 압력(Pin)의 차이가 펌프(140)의 허용차압(γ) 미만이라면, 펌프(140)를 시동시킬 수 있는 환경이 마련된 것으로 판단할 수 있고, 그 다음 단계로서 제1 모드(700)로 운전 중인 공기조화기(1)를 제3 모드(900)로 전환하는 것이 공기조화기(1)를 고효율로 운전하는 것인지를 판단한다.
제1 모드(700)로 운전 중인 공기조화기(1)를 제3 모드(900)로 전환하는 것이 공기조화기(1)를 고효율로 운전하는 것인지는 송풍팬(180)에 마련된 회전속도 측정 센서(270)에 의해 송풍팬(180)의 회전 속도(Vf)를 측정하여 판단할 수 있다(1120).
송풍팬(180)의 회전 속도(Vf)가 기준범위의 하한치(εmin) 미만으로 떨어지면 압축기(150)에 의한 냉매 공급으로는 제1 열교환기(100)의 열교환 효율이 떨어지는 것으로 판단할 수 있으므로(1130), 송풍팬(180)의 회전 속도(Vf)가 기준범위의 하한치(εmin) 미만인 경우 제1 모드(700)로 운전 중인 공기조화기(1)를 제3 모드(900)로 전환하고, 송풍팬(180)의 회전 속도(Vf)가 기준범위의 하한치(εmin) 미만이 아닌 경우 제1 모드(700)로 계속 운전하면서 순서도의 시작 위치로 돌아가서 공기조화기(1)의 운전환경을 다시 판단한다.
도 6은 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 팽창 밸브를 제어하기 위한 제어 방법을 도시한 순서도이다.
도 5a 내지 도 5c에 도시된 순서도에 따라 제3 모드(900)로 운전(1200) 중인 공기조화기(1)는 제1 열교환기(100)에서 나온 냉매가 팽창밸브(120)가 마련된 유로(61,62)를 지나 어큐뮬레이터(130)로 공급되고, 실내기(20)에서 나온 냉매가 제2 제어밸브(170)가 마련된 유로(65)를 지나 어큐뮬레이터(130)로 공급된다.
공기조화기(1)의 압축기(150)와 펌프(140)를 효율적으로 운전하기 위하여 어큐뮬레이터(130)에서 공급되는 액체 냉매와 기체 냉매의 양을 조절해야 한다. 액체 냉매와 기체 냉매의 양을 조절하기 위하여 팽창밸브(120)의 개도를 제어할 수 있다.
어큐뮬레이터(130)에 유입되는 냉매의 건도(D)가 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)를 측정하여(1210), 어큐뮬레이터(130)에 유입되는 냉매의 건도(D)가 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)보다 기준범위의 상한치(δmax)를 초과하도록 높은 경우(1220) 액체 냉매의 양이 부족하다는 의미이므로 액체 냉매의 양을 확보하기 위하여 팽창밸브(120)의 개도를 증가시킨다(1230).
또한, 어큐뮬레이터(130)에 유입되는 냉매의 건도(D)가 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)보다 기준범위의 하한치(δmin) 미만인 경우(1240) 기체 냉매의 양이 부족하다는 의미이므로 기체 냉매의 양을 확보하기 위하여 팽창밸브(120)의 개도를 감소시킨다(1250).
구체적으로, 어큐뮬레이터(130)에 유입되는 냉매의 건도(D)는 증발압력 하에서 펌프(140)를 지나는 냉매와 압축기(150)를 지나는 냉매의 평균 엔탈피(hm) 값에 의해 계산할 수 있다.
펌프(140)를 지나는 냉매와 압축기(150)를 지나는 냉매의 평균 엔탈피(hm) 값은 아래의 식에 의해 구한다.
평균 엔탈피(hm) = [(펌프 유량 * 실내기 출구 엔탈피) + (압축기 유량 * 제1 열교환기 출구 엔탈피)] / [펌프 유량 + 압축기 유량]
또한, 팽창밸브(120)를 지난 냉매의 건도(E)는 증발압력 하에서 제1 열교환기(100)의 출구에서의 냉매의 엔탈피 값에 의해 계산할 수 있다.
도 7은 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 압축기 또는 펌프를 제어하기 위한 제어 방법을 도시한 순서도이다.
도 5a 내지 도 5c에 도시된 순서도에 따라 제3 모드(900)로 운전(1300) 중인 공기조화기(1)는 효율적인 운전을 위하여 압축기(150)와 펌프(140)의 운전 속도를 조절할 수 있다.
펌프(140)의 회전속도(Vp)를 측정하여(1310) 펌프(140)의 회전속도(Vp)가 한계 회전속도(ν)를 미만인 경우(1320) 펌프(140)의 회전속도(Vp)를 증가시키고(1330), 펌프(140)가 한계 회전속도(ν)로 회전하고 있는 경우(1340) 어큐뮬레이터(130)에 유입되는 냉매의 건도(D)와 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)를 측정한다(1350).
어큐뮬레이터(130)에 유입되는 냉매의 건도(D)가 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)보다 기준범위의 상한치(δmax)를 초과하도록 높은 경우(1360) 기체 냉매의 양이 많다는 의미이므로 압축기(150)의 속도(Vc)를 증가시킨다(1370).
또한, 어큐뮬레이터(130)에 유입되는 냉매의 건도(D)가 제1 열교환기(100)에서 나와 팽창밸브(120)를 지난 냉매의 건도(E)보다 기준범위의 하한치(δmin) 미만인 경우(1380) 기체 냉매의 양이 부족하다는 의미이므로 압축기(150)의 속도(Vc)를 감소시킨다(1250).
도 8은 도 1에 도시된 공기조화기를 제2 모드로 운전 중에 송풍팬을 제어하기 위한 제어 방법을 도시한 순서도이다.
도 5a 내지 도 5c에 도시된 순서도에 따라 제2 모드(800)로 운전(1400) 중인 공기조화기(1)는 효율적인 운전을 위하여 송풍팬(180)의 회전 속도(Vf)를 조절할 수 있다.
제1 열교환기(100)의 출구 측에 마련된 온도 센서(210)에 의해 냉매의 제1 열교환기(100)의 출구에서의 온도(Tc)를 측정한다(1410). 제1 열교환기(100) 출구에서 냉매의 온도(Tc)를 기초로 냉매의 과냉도(К)가 기준범위의 하한치(Кmin) 미만인 경우(1420) 제1 열교환기(100)의 열교환 효율을 높일 수 있도록 송풍팬(180)의 회전 속도(Vf)를 증가시킨다(1430).
또한, 제1 열교환기(100) 출구에서 냉매의 온도(Tc)를 기초로 냉매의 과냉도(К)가 기준범위의 상한치(Кmax)를 초과하는 경우(1440) 제1 열교환기(100) 출구에서 냉매의 과냉도(К)가 필요 이상으로 높으므로 송풍팬(180)의 회전 속도(Vf)를 감소시킨다(1450).
도 9는 도 1에 도시된 공기조화기를 제3 모드로 운전 중에 송풍팬을 제어하기 위한 제어 방법을 도시한 순서도이다.
도 5a 내지 도 5c에 도시된 순서도에 따라 제3 모드(900)로 운전(1500) 중인 공기조화기(1)는 효율적인 운전을 위하여 송풍팬(180)의 회전 속도(Vf)를 조절할 수 있다.
압축기(150)는 압축기(150)의 입구에서의 압력과 출구에서의 압력의 비율인 압축비(R)가 최소 압축비(Rmin) 이하인 경우, 압축기(150)의 기능을 발휘하지 못한다.
따라서, 압축기(150)의 압축비(R) 센서(280)에 의해 압축기(150)의 압축비(R)를 측정하고(1510)하여, 압축비(R)가 최소 압축비(Rmin)를 초과하면(1520) 압축기(150)가 정상적으로 작동하고 있으므로 송풍팬(180)의 회전 속도(Vf)를 증가시키고(1530), 압축비(R)가 최소 압축비(Rmin) 미만이면(1540) 송풍팬(180)의 회전 속도(Vf)를 감소시킨다(1550).
도 10은 도 1에 도시된 공기조화기를 제2 모드 또는 제3 모드로 운전 중에 제1 모드로 전환하도록 제어하기 위한 제어 방법을 도시한 순서도이다.
도 5a 내지 도 5c에 도시된 순서도에 따라 제2 모드(800) 또는 제3 모드(900)로 운전(1600) 중인 공기조화기(1)는 펌프(140)에 의한 냉매 순환으로 목표로 하는 냉방 효과를 달성할 수 없는 경우 압축기(150)에 의한 냉방이 효율적이지 못하더라도 목표로 하는 냉방효과를 달성하기 위하여 제1 모드(700)로 운전을 전환할 수 있다.
펌프(140)의 출구에 연결된 유로(84)에 마련된 온도센서(230)에 의해 펌프(140)의 출구에서 냉매의 포화온도(Tp)를 측정하여(1610), 입력부(200)에 의해 실내기(20)에 설정된 온도(Ts)보다 펌프(140)의 출구에서 냉매의 포화온도(Tp)가 기준범위의 하한치(ω) 이상 낮은 경우(1620), 펌프(140)에 의한 냉매 순환으로 설정온도(Ts)까지 냉방을 할 수 없으므로, 압축기(150)를 단독으로 구동하는 제1 모드(700)로 운전을 전환한다.
또한, 공기조화기(1)를 제2 모드(800) 또는 제3 모드(900)로 운전하는 중에 펌프(140)의 소비전력이 기준 이하로 감소하고, 펌프(140)의 차압이 기준 이하로 감소하고, 실외온도(Tout)와 실내온도(Tin)의 차이가 기준치(α) 이하로 작아지고, 리시버(110) 내에 액위가 기준 이하로 낮아지는 경우 펌프(140)가 정상적으로 냉매를 순환시키지 못하는 것으로 판단하고 제1 모드(700)로 전환하여 압축기(150) 단독으로 구동한다.
이하에서는, 도 11 내지 도 13을 참조하여 본 발명의 다른 실시예에 따른 공기조화기(2)를 설명한다.
도 11은 본 발명의 다른 실시예에 따른 공기조화기의 압축기와 펌프가 동시에 구동되는 상태를 설명하기 위한 도면이고, 도 12는 도 11에 도시된 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이고, 도 13은 도 11에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다.
도 11 내지 도 13을 참조하면, 본 발명의 다른 실시예에 따른 공기조화기(2)는 기존에 설치되어 있는 제1 실외기(30)와 실내기(20) 사이에 펌프(440)로 냉매를 순환시킬 수 있도록 구성된 제2 실외기(40)를 배치할 수 있다.
공기조화기(2)는 제1 열교환기(300)를 포함하는 제1 실외기(30) 및 제2 열교환기(21)를 포함하는 실내기(20)를 포함한다. 일반적으로 냉방 운전에서 제1 실외기(30)에 포함되는 제1 열교환기(300)는 응축기로 사용되고, 실내기(20)에 포함되는 제2 열교환기(21)는 증발기로 사용된다.
공기조화기(2)는 냉동사이클을 구성하는 압축기(350)와 팽창장치(22)를 포함하고, 압축기(350)는 제1 실외기(30)에 포함될 수 있고 팽창장치(22)는 실내기(20)에 포함될 수 있다.
또한, 공기조화기(2)는 실외온도가 실내온도보다 일정 수준 이상 낮은 경우 공기조화기(2)를 효율적으로 가동하기 위한 펌프(440)를 포함하는 제2 실외기(40)를 포함한다.
또한, 제2 실외기(40)는 제1 실외기(30)의 제1 열교환기(300) 또는 실내기(20)의 제2 열교환기(21)로부터 나온 냉매를 액체와 기체로 분리하여 펌프(440)와 제1 실외기(30)의 압축기(350)로 공급할 수 있는 제1 어큐뮬레이터(430)를 포함할 수 있다.
제1 어큐뮬레이터(430)에 모인 기체 냉매는 제1 어큐뮬레이터(430)의 상부에 마련된 출구에서 제2 실외기(40)의 제1 출구밸브(41)와 연결된 유로(86)를 통해 제2 실외기(40)를 나가서 제1 실외기(30)에 공급된다. 제1 실외기(30)의 입구밸브(32)로 들어온 기체 냉매는 입구밸브(32)와 연결된 유로(72)를 통해 냉방운전과 난방운전에 따라 유로가 전환되는 사방밸브(390)에 도달하여 제2 어큐뮬레이터(310)와 연결된 유로(73)로 유동되고, 압축기(350)의 파손을 방지하기 위해 냉매가 유동하면서 응축된 액체 냉매를 제2 어큐뮬레이터(310)에 남겨둔 채로 다시 기체 냉매만이 제2 어큐뮬레이터(310)의 상부에 마련된 출구에서 압축기(350)와 연결된 유로(74)를 통해 압축기(350)로 공급된다.
압축기(350)는 제2 어큐뮬레이터(310)로부터 나온 기체 냉매를 압축하여 사방밸브(390)를 거쳐 제1 실외기(30)의 제1 열교환기(300)로 공급할 수 있다. 압축기(350)와 사방밸브(390)를 연결하는 유로(75)에는 기체 냉매가 사방밸브(390) 측으로만 유동할 수 있도록 체크밸브(33)가 마련되고, 사방밸브(390)로 유입된 기체 냉매는 사방밸브(390)와 제1 열교환기(300)를 연결하는 유로(76)를 통해 제1 열교환기(300)로 공급된다.
제1 열교환기(300)로부터 나온 응축된 냉매는 제1 열교환기(300)와 제1 실외기의 출구밸브(31)를 거쳐 제2 실외기(40)에 공급될 수 있다. 제1 열교환기(300)와 제1 실외기(30)의 출구밸브(31)를 연결하는 유로(71)에는 팽창밸브(320)가 마련될 수 있고, 난방 운전시에 냉매가 역방향으로 흐를 수 있도록 체크밸브(34)가 마련된 바이패스유로가 팽창밸브(320)와 병렬로 마련될 수 있다.
제1 실외기(30)를 나와 제2 실외기(40)의 제1 입구밸브(42)로 들어온 냉매는 제1 어큐뮬레이터(430)로 연결된 유로(87, 82)를 통해 제1 어큐뮬레이터(430)로 공급될 수 있다. 제2 실외기(40)의 제1 입구밸브(42)와 제1 어큐뮬레이터(430)를 연결하는 유로(87, 82)에는 제1 실외기(30)로부터 나오는 냉매의 과냉도에 따라 개도가 조절되는 팽창밸브(420)가 마련될 수 있고, 제2 실외기(40)의 제1 입구밸브(42)와 팽창밸브(420)를 연결하는 유로(87)에는 펌프(440)에서 가압될 액체 냉매를 저장할 수 있는 리시버(410)가 마련될 수 있다. 리시버(410)에는 저장된 액냉매의 양을 체크할 수 있는 액위센서(미도시)가 마련될 수 있다.
팽창밸브(420)와 제1 어큐뮬레이터(430)를 연결하는 유로(82)는 실내기(20)와 제1 어큐뮬레이터(430)를 연결하는 유로(85) - 구체적으로는 냉매가 실내기(20)로부터 제2 실외기(40)로 들어오는 제2 입구밸브(44)와 제1 어큐뮬레이터(430)를 연결하는 유로(85) - 와 합지되는데, 제2 입구밸브(44)와 제1 어큐뮬레이터(430)를 연결하는 유로에 마련되는 제어밸브(470)는 실외 온도가 실내 온도보다 기준치 이상 낮아 압축기(350)와 펌프(440)를 동시에 구동해야 하는 경우 개방될 수 있다.
제1 어큐뮬레이터(430)에 모인 액체 냉매는 어큐뮬레이터(430)의 하부에 마련된 출구에서 펌프(440)와 연결된 유로(83)를 통해 펌프(440)로 공급된다.
펌프(440)는 제1 어큐뮬레이터(430)로부터 나온 액체 냉매를 가압하여 제2 실외기(40)의 제2 출구밸브(43)를 거쳐 실내기(20)로 공급할 수 있다. 펌프(440)와 제2 출구밸브(43)를 연결하는 유로(84)에는 액체 냉매가 제2 출구밸브(43) 측으로만 유동할 수 있도록 체크밸브(46)가 마련되고, 제2 출구밸브(43)를 통해 제2 실외기(40)를 나간 냉매는 실내기(20)로 공급된다.
공기조화기(2)는 실외온도가 실내온도보다 낮은 저온 냉방의 경우가 아닌 일반 냉방운전이 필요한 경우에 제2 실외기(40)에 마련된 펌프(440)를 사용하지 않고 제1 실외기(30)에 마련된 압축기(150)만을 이용하여 냉방운전을 할 수 있도록 제2 실외기(40)의 제1 입구밸브(42)와 팽창밸브(430)를 연결하는 유로(87)에서 분기되는 제1 바이패스유로(88)를 더 포함할 수 있다. 제1 바이패스유로(88)는 냉매가 펌프(440)를 통과하지 않도록 제1 실외기(30)와 실내기(20)를 연결하고, 제1 바이패스유로(88)에는 냉매의 유동을 조절할 수 있는 제어밸브(460)가 마련될 수 있다.
또한, 공기조화기(2)는 실외온도가 실내온도보다 일정 수준 이상 낮아 저온 냉방 운전을 하는 경우, 제1 실외기(30)의 압축기(350)를 사용하지 않고 제2 실외기(40)의 펌프(440)만을 이용하여 냉방운전을 할 수 있도록 제3 열교환기(400)와 제2 바이패스유로(89)를 더 포함할 수 있다. 제3 열교환기(400)는 실내기(20)로부터 나온 냉매를 열교환하고, 제2 바이패스유로(89)는 냉매가 제1 실외기(30)의 압축기(350)를 통과하지 않도록 실내기(20) 또는 제2 실외기(40)의 제2 입구밸브(44)와 제3 열교환기(400)를 연결한다. 제2 바이패스유로(89)에는 제3 열교환기(400)를 사용할 때에만 실내기(20)로부터 나온 냉매가 공급되도록 냉매의 유동을 조절할 수 있는 제어밸브(471)가 마련될 수 있다.
제3 열교환기(400)를 나온 냉매가 제1 어큐뮬레이터(430)로 공급될 수 있도록 제3 열교환기(400)의 출구 측에 마련된 유로(81)는 제2 실외기(40)의 제1 입구밸브(42)와 제1 어큐뮬레이터(430)를 연결하는 유로(87, 82)에 합지될 수 있다. 제3 열교환기(400)의 출구 측에 마련된 유로(81)에는 제2 실외기(40)의 제1 입구밸브(42)로 들어온 냉매가 제3 열교환기(400)로 들어가지 않도록 제3 열교환기(400)로부터 나오는 냉매의 유동만 허용하는 체크밸브(45)가 마련될 수 있다.
또한, 제1 실외기(30)는 제1 열교환기(300) 측에 마련되어 제1 열교환기(300)에 공기를 유입시켜 제1 열교환기(300)에서의 열교환을 돕는 송풍팬(380)을 포함할 수 있고, 제2 실외기(40)는 제3 열교환기(400) 측에 마련되어 제3 열교환기(400)에 공기를 유입시켜 제3 열교환기(400)에서의 열교환을 돕는 송풍팬(480)을 포함할 수 있다.
또한, 공기조화기(2)는 도 11에서 도시된 바와 같이 압축기(350)와 펌프(440)를 동시에 구동하도록 운전하거나, 도 12 에서 도시된 바와 같이 압축기(350)만을 구동하여 운전하거나, 도 13에서 도시된 바와 같이 펌프(440)만을 구동하여 운전할 수 있도록 공기조화기의 운전 환경 정보를 제공하는 각종 센서들을 포함할 수 있다.
특히, 공기조화기(2)는 제2 실외기(40)의 제3 열교환기(400)의 출구 측에 연결되는 유로(81)에 마련되는 온도센서(210)를 포함할 수 있고, 펌프(440)의 출구 측에 연결된 유로(84)와 입구 측에 연결된 유로(83)에 각각 마련되는 제1 압력센서(240)와 제2 압력센서(220)를 포함할 수 있다. 또한, 펌프(440)의 출구에 연결된 유로(84)에 마련되는 온도센서(230)를 포함할 수 있다.
공기조화기(2)는 기존에 설치된 제1 실외기(30)와 실내기(20)에 제2 실외기(40)를 추가로 설치함으로써, 도 1 내지 도 10을 참조하여 설명한 본 발명의 일 실시예에 따른 공기조화기(1)와 동일한 기능을 모두 수행할 수 있다.
이하에서는, 도 14 및 도 15를 참조하여 본 발명의 또 다른 실시예에 따른 공기조화기(3)를 설명한다.
도 14는 본 발명의 또 다른 실시예에 따른 공기조화기의 압축기만 구동되는 상태를 설명하기 위한 도면이고, 도 15는 도 14에 도시된 공기조화기의 펌프만 구동되는 상태를 설명하기 위한 도면이다.
도 14 및 도 15를 참조하면, 본 발명의 또 다른 실시예에 따른 공기조화기(3)는 기존에 설치되어 있는 제1 실외기(30)와 실내기(20) 사이에 펌프(540)로 냉매를 순환시킬 수 있도록 구성된 제2 실외기(50)를 배치할 수 있다.
공기조화기(3)의 제1 실외기(30)와 실내기(20)는 도 11 내지 도 13에 도시된 실시예에 따른 공기조화기(2)의 제1 실외기(30)와 실내기(20)와 같은 구성을 가진다.
따라서, 냉방운전에 있어서, 제1 실외기(30)의 입구밸브(32)로 유입된 냉매는 도 11 내지 도 13에 도시된 실시예에서와 같은 방식으로 제1 실외기(30)의 압축기(350)와 제1 열교환기(300)를 거쳐 출구밸브(31)로 유출된다.
제1 실외기(30)의 출구밸브(31)로 나온 냉매는 제2 실외기(50)의 제1 입구밸브(52)를 통해 제2 실외기(50)로 유입된다. 제2 실외기(50)는 제1 실외기(30)로부터 냉매를 전달받아 제2 실외기(50)의 제1 입구밸브(52)와 제1 출구밸브(53)를 연결하는 제1 전달유로(95)를 통해 실내기(20)로 공급하거나, 실내기(20)로부터 냉매를 전달받아 제2 실외기(50)의 제2 입구밸브(54)와 제2 출구밸브(51)를 연결하는 제2 전달유로(96)를 통해 제1 실외기(30)로 공급할 수 있다.
따라서, 실외온도가 실내온도보다 낮은 저온 냉방의 경우가 아닌 일반 냉방운전이 필요한 경우에, 제2 실외기(50)는 제1 전달유로(95)에 마련되는 제1 밸브(58)와 제2 전달유로(96)에 마련되는 제2 밸브(57)를 개방하여 제2 실외기(50)의 내부 구성들을 거치지 않고 냉매를 전달만 해 주는 역할을 할 수 있다.
한편, 공기조화기(3)는 실외온도가 실내온도보다 일정 수준 이상 낮은 저온 냉방의 경우 제1 실외기(30)로부터 냉매를 회수하여 펌프(540)를 포함하는 제2 실외기(50)를 이용하여 냉방운전을 할 수 있다.
제2 실외기(50)는 실내기(20)로부터 나온 냉매를 열교환시키는 제3 열교환기(500), 제3 열교환기(500)로부터 나온 냉매를 액체와 기체로 분리하는 어큐뮬레이터(510), 어큐뮬레이터(510)로부터 나온 액체 냉매를 가압하여 실내기(20)로 공급하는 펌프(540)를 포함할 수 있다.
실내기(20)로부터 제2 입구밸브(54)를 통해 제2 실외기(50)로 유입된 냉매는 제2 전달유로(96)에서 분기되어 제2 입구밸브(54)와 제3 열교환기(500)를 연결하는 유로(94)를 통해 제3 열교환기(500)로 공급될 수 있다. 제2 입구밸브(54)와 제3 열교환기(500)를 연결하는 유로(94)에는 제3 밸브(55)가 마련될 수 있고, 제2 실외기(50)를 이용하여 저온 냉방 운전을 하는 경우 제2 밸브(57)는 차단하고 제3 밸브(55)를 개방한다.
제3 열교환기(500)로 유입된 냉매는 제3 열교환기(500)의 출구와 어큐뮬레이터(510)가 연결되는 유로(91)를 거쳐 어큐뮬레이터(510)에 유입되고, 어큐뮬레이터(510)에서 분리된 액체 냉매는 어큐뮬레이터(510)의 출구와 펌프(540)가 연결되는 유로(92)를 거처 펌프(540)로 유입된다.
펌프(540)에서 가압된 냉매는 펌프(540)의 출구에 연결되는 유로(93)를 거쳐 제1 전달유로(95)에 합지되어 제2 실외기(50)의 제1 출구밸브(53)를 통해 실내기(20)에 공급될 수 있다. 펌프(540)의 출구에 연결되는 유로(93)에는 실내기(20)를 향하는 냉매의 유동만 허용하는 체크밸브(46)가 마련될 수 있고, 제2 실외기(50)를 이용하여 저온 냉방 운전을 하는 경우 제1 밸브(58)는 차단한다.
또한, 제2 실외기(50)는 제3 열교환기(500) 측에 마련되어 제3 열교환기(500)에 공기를 유입시켜 제3 열교환기(500)에서의 열교환을 돕는 송풍팬(580)을 포함할 수 있다.
공기조화기(3)는 도 14 에서 도시된 바와 같이 압축기(350)만을 구동하여 운전하거나, 도 15에서 도시된 바와 같이 펌프(440)만을 구동하여 운전할 수 있도록 공기조화기의 운전 환경 정보를 제공하는 각종 센서들을 포함할 수 있다.
특히, 공기조화기(3)는 제2 실외기(50)의 제3 열교환기(500)의 출구 측에 연결되는 유로(91)에 마련되는 온도센서(210)를 포함할 수 있고, 펌프(540)의 출구 측에 연결된 유로(93)와 입구 측에 연결된 유로(92)에 각각 마련되는 제1 압력센서(240)와 제2 압력센서(220)를 포함할 수 있다. 또한, 펌프(440)의 출구에 연결된 유로(93)에 마련되는 온도센서(230)를 포함할 수 있다.
공기조화기(3)의 제2 실외기(50)는 도 11 내지 도 13을 참조하여 설명한 본 발명의 일 실시예에 따른 공기조화기(2)의 제2 실외기(40)에 비하여 간단한 구조를 가지고 있다.
따라서, 사용자는 기존에 설치된 제1 실외기(30)와 실내기(20)에 제2 실외기(50)를 추가로 설치함으로써, 저온 냉방 환경에서 펌프 순환이 가능한 공기조화기(3)를 저비용으로 구성할 수 있다.
본 발명의 권리범위는 상기 설명한 특정 실시예에만 한정되는 것이 아니다. 특허청구범위에 명시된 본 발명의 기술적 사상으로서의 요지를 일탈하지 아니하는 범위 안에서 당 분야에서 통상의 지식을 가진 자에 의하여 수정 또는 변형 가능한 다양한 다른 실시예들도 본 발명의 권리범위에 속한다 할 것이다.

Claims (15)

  1. 제1 열교환기를 포함하는 실외기;
    제2 열교환기를 포함하는 실내기;
    상기 제1 열교환기 또는 상기 실내기로부터 나온 냉매를 액체와 기체로 분리하는 어큐뮬레이터;
    상기 어큐뮬레이터로부터 나온 기체 냉매를 압축하여 상기 제1 열교환기로 공급하는 압축기; 및
    상기 어큐뮬레이터로부터 나온 액체 냉매를 가압하여 상기 실내기로 공급하는 펌프;를 포함하는 공기조화기.
  2. 제1항에 있어서,
    상기 제1 열교환기와 상기 어큐뮬레이터를 연결하는 유로에 마련되고, 상기 제1 열교환기로부터 나오는 냉매의 과냉도에 따라 개도가 조절되는 팽창밸브; 및
    상기 실내기와 상기 어큐뮬레이터를 연결하는 유로에 마련되고, 실외 온도가 실내 온도보다 기준치 이상 낮은 경우 개방되는 제어밸브;를 더 포함하는 공기조화기.
  3. 제2항에 있어서,
    상기 제1 열교환기와 상기 팽창밸브를 연결하는 유로에 마련되어 냉매를 저장하는 리시버를 더 포함하는 공기조화기.
  4. 제1항에 있어서,
    상기 압축기로부터 상기 제1 열교환기로 향하는 냉매의 유동을 허용하는 제1 체크밸브; 및
    상기 펌프로부터 상기 실외기로 향하는 냉매의 유동을 허용하는 제2 체크밸브;를 더 포함하는 공기조화기.
  5. 제1항에 있어서,
    냉매가 상기 펌프를 통과하지 않도록 상기 제1 열교환기와 상기 실내기를 연결하고, 냉매의 유동을 조절하는 제어밸브가 마련되는 바이패스유로를 더 포함하는 공기조화기.
  6. 제1항에 있어서,
    냉매가 상기 압축기를 통과하지 않도록 상기 실내기와 상기 제1 열교환기를 연결하고, 상기 실내기로부터 상기 제1 열교환기로 향하는 냉매의 유동을 허용하는 체크밸브가 마련되는 바이패스유로를 더 포함하는 공기조화기.
  7. 제1항에 따른 공기조화기의 냉방운전에 있어서,
    냉매가 상기 제1 열교환기, 상기 압축기 및 상기 실내기를 순환하는 제1 모드;
    냉매가 상기 제1 열교환기, 상기 펌프 및 상기 실내기를 순환하는 제2 모드; 및
    냉매가 상기 제1 열교환기, 상기 압축기, 상기 펌프 및 상기 실내기를 순환하는 제3 모드;를 포함하는 공기조화기 제어방법.
  8. 제7항에 있어서,
    상기 제1 모드는,
    상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하지 않도록 상기 제1 유로에 마련된 팽창밸브를 차단하고,
    상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 개방하고,
    상기 실내기에서 나온 냉매가 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하지 않고 상기 압축기가 마련된 제2 유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 개방하는 것을 포함하는 공기조화기 제어방법.
  9. 제7항에 있어서,
    상기 제2 모드는,
    상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하도록 상기 제1 유로에 마련된 팽창밸브를 개방하고,
    상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하지 않도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 폐쇄하고,
    상기 실내기에서 나온 냉매가 상기 압축기가 마련된 제2 유로로 유동하지 않고 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 폐쇄하는 것을 포함하는 공기조화기 제어방법.
  10. 제7항에 있어서,
    상기 제3 모드는,
    상기 제1 열교환기에서 나온 냉매가 상기 펌프가 마련된 제1 유로로 유동하도록 상기 제1 유로에 마련된 팽창밸브를 개방하고,
    상기 제1 열교환기에서 나온 냉매가 상기 실내기로 연결된 제1 바이패스유로로 유동하지 않도록 상기 제1 바이패스유로에 마련된 제1 제어밸브를 폐쇄하고,
    상기 실내기에서 나온 냉매가 상기 실내기와 상기 제1 열교환기가 바로 연결된 제2 바이패스유로로 유동하지 않고 상기 압축기가 마련된 제2 유로로 유동하도록 상기 제2 유로에 마련된 제2 제어밸브를 개방하는 것을 포함하는 공기조화기 제어방법.
  11. 제7항에 있어서,
    실외 온도가 실내 온도보다 기준치 이상 낮은지 판단하고;
    상기 펌프를 소정 시간 이상 시험운전을 하여, 상기 펌프의 출구에서의 압력과 입구에서의 압력을 측정하고;
    실외 온도가 실내 온도보다 기준치 이상 낮고, 상기 펌프의 출구와 입구에서의 압력의 차이가 기준범위의 하한치 이상이면, 상기 공기조화기가 정지상태인 경우 상기 제2 모드로 운전을 수행하거나, 상기 공기조화기가 상기 제1 모드로 운전 중인 경우 상기 제3 모드로 전환이 가능한 공기조화기 제어방법.
  12. 제11항에 있어서,
    상기 공기조화기가 상기 제1 모드로 작동 중인 경우,
    상기 제1 열교환기의 출구에서의 냉매의 온도를 측정하고,
    상기 펌프의 입구에서의 압력과 상기 펌프의 출구에서의 압력을 측정하고,
    상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하고, 상기 펌프의 출구에서의 압력이 상기 펌프의 허용압력 이하이고, 상기 펌프의 입구와 출구에서의 압력의 차이가 상기 펌프의 허용차압 이하이면, 상기 제3 모드로 전환이 가능한 공기조화기 제어방법.
  13. 제11항에 있어서,
    상기 공기조화기가 상기 제1 모드로 작동 중인 경우, 상기 제1 열교환기로 공기를 유입시키는 송풍팬의 회전 속도를 측정하고,
    상기 송풍팬의 회전 속도가 기준범위의 하한치 미만이면, 상기 제3 모드로 전환이 가능한 공기조화기 제어방법
  14. 제11항에 있어서,
    상기 공기조화기가 상기 제2 모드로 작동 중인 경우,
    상기 제1 열교환기의 출구에서의 냉매의 온도를 측정하고,
    상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 하한치 미만이면, 상기 제1 열교환기로 공기를 유입시키는 송풍팬의 회전속도를 증가시킬 수 있고,
    상기 제1 열교환기의 출구에서의 냉매의 과냉도가 기준범위의 상한치를 초과하면, 상기 송풍팬의 회전속도를 감소시킬 수 있는 공기조화기 제어방법.
  15. 제11항에 있어서,
    상기 공기조화기가 상기 제2 모드 또는 제3 모드로 작동 중인 경우,
    상기 실내기의 설정온도와 상기 펌프의 출구의 포화온도의 차이가 기준범위의 하한치 미만이면, 상기 제1 모드로 전환이 가능한 공기조화기 제어방법.
PCT/KR2016/011631 2015-10-20 2016-10-17 공기조화기 및 그 제어방법 WO2017069472A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/765,856 US10760807B2 (en) 2015-10-20 2016-10-17 Air conditioner and control method therefor
EP16857730.2A EP3336442B1 (en) 2015-10-20 2016-10-17 Air conditioner and control method therefor
CN201680061849.7A CN108139086B (zh) 2015-10-20 2016-10-17 空调及控制空调的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0146020 2015-10-20
KR1020150146020A KR102435203B1 (ko) 2015-10-20 2015-10-20 공기조화기 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2017069472A1 true WO2017069472A1 (ko) 2017-04-27

Family

ID=58557696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011631 WO2017069472A1 (ko) 2015-10-20 2016-10-17 공기조화기 및 그 제어방법

Country Status (5)

Country Link
US (1) US10760807B2 (ko)
EP (1) EP3336442B1 (ko)
KR (1) KR102435203B1 (ko)
CN (1) CN108139086B (ko)
WO (1) WO2017069472A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087822A1 (ja) * 2016-11-09 2018-05-17 三菱電機株式会社 空気調和機の室内機及び空気調和機
JP6625240B2 (ja) * 2016-11-16 2019-12-25 三菱電機株式会社 空気調和制御装置及び空気調和制御方法
JP2018204944A (ja) * 2017-05-30 2018-12-27 パナソニックIpマネジメント株式会社 換気方法、制御装置および換気システム
US11739740B2 (en) * 2018-12-31 2023-08-29 Halliburton Energy Services, Inc. Active accumulator
AU2020240496B2 (en) * 2019-03-18 2023-06-01 Nec Corporation Data center air conditioning control device, method, non-transitory computer readable medium, and air conditioning system
US10935293B2 (en) * 2019-06-28 2021-03-02 Trane International Inc. Systems and methods for controlling differential refrigerant pressure
US11428445B2 (en) * 2019-09-05 2022-08-30 Gridworthy Technologies LLC System and method of pumped heat energy storage
CN112747391A (zh) * 2019-10-29 2021-05-04 青岛海尔空调电子有限公司 空调机组及其压缩机冷却控制方法
CN110906500B (zh) * 2019-12-11 2021-07-30 宁波奥克斯电气股份有限公司 一种空调器的制冷控制方法、装置及空调器
CN110940055B (zh) * 2019-12-16 2021-10-22 宁波奥克斯电气股份有限公司 一种空调器制热除霜控制方法、装置及空调器
JP6890727B1 (ja) * 2020-04-23 2021-06-18 日立ジョンソンコントロールズ空調株式会社 空気調和システムおよび制御方法
CN111503824B (zh) * 2020-04-29 2022-06-17 广东美的制冷设备有限公司 空调系统的控制方法和空调系统
CN112728712B (zh) * 2021-01-21 2022-05-06 广东美的暖通设备有限公司 多联机运行能力检测方法、多联机、存储介质及装置
CN115031360A (zh) * 2021-03-08 2022-09-09 广东美的制冷设备有限公司 空调器制冷方法、空调器、存储介质及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106986A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 空気調和装置およびその制御方法
JP2006322617A (ja) * 2005-05-17 2006-11-30 Hitachi Ltd マルチ型空気調和装置
JP2007212078A (ja) * 2006-02-10 2007-08-23 Fujitsu General Ltd 空気調和機の制御装置
KR20090098691A (ko) * 2008-03-13 2009-09-17 아이신세이끼가부시끼가이샤 공기 조화 장치 및 그 어큐뮬레이터
KR20130090133A (ko) * 2012-02-03 2013-08-13 엘지전자 주식회사 공기조화장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
KR101340725B1 (ko) * 2006-10-17 2013-12-12 엘지전자 주식회사 수냉식 공기조화기
EP2102563B1 (en) * 2006-12-22 2018-02-07 Carrier Corporation Air conditioning systems and methods having free-cooling pump-protection sequences
CN201066217Y (zh) * 2007-07-27 2008-05-28 珠海格力电器股份有限公司 一种带有双向储液罐的新型热泵系统
CN104048366B (zh) * 2013-03-15 2017-02-08 珠海格力电器股份有限公司 空调器及其室外机、制热补气方法和制冷补气方法
CN203395990U (zh) * 2013-08-12 2014-01-15 北京雅驿欣科技有限公司 集成喷雾冷却节能功能的多制冷循环空调机组
US20150107294A1 (en) 2013-10-22 2015-04-23 Panasonic Intellectual Property Management Co., Ltd. Refrigeration-cycle equipment
KR102203436B1 (ko) 2013-12-31 2021-01-14 엘지전자 주식회사 공기조화기
KR101645845B1 (ko) * 2015-01-12 2016-08-04 엘지전자 주식회사 공기 조화기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106986A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 空気調和装置およびその制御方法
JP2006322617A (ja) * 2005-05-17 2006-11-30 Hitachi Ltd マルチ型空気調和装置
JP2007212078A (ja) * 2006-02-10 2007-08-23 Fujitsu General Ltd 空気調和機の制御装置
KR20090098691A (ko) * 2008-03-13 2009-09-17 아이신세이끼가부시끼가이샤 공기 조화 장치 및 그 어큐뮬레이터
KR20130090133A (ko) * 2012-02-03 2013-08-13 엘지전자 주식회사 공기조화장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336442A4 *

Also Published As

Publication number Publication date
EP3336442B1 (en) 2021-06-30
KR20170045921A (ko) 2017-04-28
US10760807B2 (en) 2020-09-01
EP3336442A4 (en) 2018-09-26
KR102435203B1 (ko) 2022-08-24
US20180299157A1 (en) 2018-10-18
CN108139086A (zh) 2018-06-08
CN108139086B (zh) 2022-04-12
EP3336442A1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
WO2017069472A1 (ko) 공기조화기 및 그 제어방법
WO2021215695A1 (ko) 자동차용 히트 펌프 시스템
WO2018012818A1 (ko) 차량용 히트 펌프 시스템
WO2011062348A1 (en) Heat pump
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2016148476A1 (ko) 차량용 히트 펌프 시스템
WO2019147085A1 (ko) 공기 조화기 및 그 제어 방법
WO2016017939A1 (ko) 차량용 히트 펌프 시스템
WO2016114557A1 (en) Air conditioning system
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2020071803A1 (ko) 열관리 시스템
WO2020040418A1 (ko) 열관리 시스템
WO2021172752A1 (ko) 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
WO2011062349A1 (ko) 히트 펌프
WO2015194891A1 (en) Refrigerator
WO2019160294A1 (ko) 차량용 열관리 시스템
WO2022050586A1 (ko) 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
WO2019143195A1 (ko) 멀티형 공기조화기
WO2020209474A1 (en) Air conditioning apparatus
WO2020197044A1 (en) Air conditioning apparatus
WO2014030884A1 (ko) 차량용 히트 펌프 시스템
WO2021040427A1 (en) Air conditioner and control method thereof
CN100458312C (zh) 冷冻装置
WO2019050077A1 (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016857730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15765856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE