WO2017068896A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2017068896A1
WO2017068896A1 PCT/JP2016/077589 JP2016077589W WO2017068896A1 WO 2017068896 A1 WO2017068896 A1 WO 2017068896A1 JP 2016077589 W JP2016077589 W JP 2016077589W WO 2017068896 A1 WO2017068896 A1 WO 2017068896A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
estimated
steering torque
correction value
Prior art date
Application number
PCT/JP2016/077589
Other languages
English (en)
French (fr)
Inventor
修 宮谷
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2017068896A1 publication Critical patent/WO2017068896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to an electric power steering apparatus.
  • JP 2004-224077A includes a steering wheel rotation angle, a motor rotation angle, a spring constant of a connecting member, and a reduction ratio of a reduction mechanism when the abnormality detection means of the torque sensor detects an abnormality. It is disclosed that the steering torque is calculated based on this.
  • an estimated value of the steering torque is calculated by the method described in JP2004-224077A when the torque sensor is broken, and the drive of the electric motor is controlled based on the estimated value.
  • An object of the present invention is to improve the steering feeling when a torque sensor fails.
  • an electric power steering device that acts on a steering shaft that rotates in accordance with a steering operation by a driver, a torsion bar that constitutes a part of the steering shaft, and the torsion bar.
  • a torque sensor that detects steering torque, an electric motor that applies steering assist torque that assists a steering operation by a driver, a motor control unit that controls driving of the electric motor, and a failure determination that determines failure of the torque sensor
  • a steering angle acquisition unit that acquires a steering angle associated with a steering operation
  • a motor rotation angle acquisition unit that acquires a rotation angle of the electric motor
  • an acquisition result of the steering angle acquisition unit and a motor rotation angle acquisition unit
  • a steering torque estimating unit for calculating an estimated steering torque, and a positive value of the torque sensor.
  • a correction value setting unit that sets a correction value of the estimated steering torque based on a comparison between the steering torque detected by the torque sensor and the estimated steering torque calculated by the steering torque estimating unit;
  • the motor control unit controls the driving of the electric motor based on the steering torque detected by the torque sensor when the torque sensor is normal, and estimates the steering torque when the torque sensor fails.
  • a corrected estimated steering torque is calculated by correcting the estimated steering torque calculated by the unit with the correction value, and the drive of the electric motor is controlled based on the corrected estimated steering torque.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram of the electric power steering apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the steering angle and the steering torque.
  • FIG. 4 is a map diagram showing the relationship between the steering angular velocity and the correction coefficient.
  • FIG. 5 is a diagram illustrating hysteresis of the estimated steering torque.
  • FIG. 6 is a map of hysteresis correction values.
  • FIG. 7 is a flowchart showing a procedure for determining whether or not to correct the estimated steering torque based on the hysteresis correction value.
  • an electric power steering apparatus 100 includes an input shaft 2 that rotates in response to an operation of a steering wheel 1 by a driver (hereinafter referred to as “steering operation”), and a rack that steers wheels 6.
  • An output shaft 3 linked to the shaft 5 and a torsion bar 4 connecting the input shaft 2 and the output shaft 3 are provided.
  • a steering shaft 7 is configured by the input shaft 2, the output shaft 3, and the torsion bar 4.
  • a pinion gear 3a that meshes with a rack gear 5a formed on the rack shaft 5 is formed below the output shaft 3.
  • the electric power steering apparatus 100 includes an electric motor 10 that is a power source for assisting the steering of the steering wheel 1 by the driver, a speed reducer 11 that decelerates and transmits the rotation of the electric motor 10 to the steering shaft 7, and driving.
  • a torque sensor 12 that detects a steering torque that acts on the torsion bar 4 by relative rotation of the input shaft 2 and the output shaft 3 in response to a steering operation by a person, and a controller 30 that controls the electric motor 10.
  • the electric motor 10 is provided with a motor rotation angle sensor 10a as a motor rotation angle acquisition unit that acquires the rotation angle of the electric motor 10.
  • the motor rotation angle sensor 10a is configured by a resolver.
  • the reducer 11 includes a worm shaft 11a connected to the output shaft of the electric motor 10 and a worm wheel 11b connected to the output shaft 3 and meshing with the worm shaft 11a.
  • the torque output from the electric motor 10 is transmitted from the worm shaft 11a to the worm wheel 11b and applied to the output shaft 3 as a steering assist torque.
  • the steering torque applied to the input shaft 2 in accordance with the steering operation by the driver is detected by the torque sensor 12, and the torque sensor 12 outputs a voltage signal corresponding to the steering torque to the controller 30.
  • the controller 30 calculates the torque output from the electric motor 10 based on the voltage signal from the torque sensor 12, and controls the driving of the electric motor 10 so that the torque is generated.
  • the electric power steering apparatus 100 detects the steering torque applied to the input shaft 2 with the torque sensor 12, and controls the drive of the electric motor 10 with the controller 30 based on the detection result. Assist the steering operation.
  • the torque sensor 12 is connected to the controller 30 through two systems, a main system and a sub system.
  • the input shaft 2 is provided with a steering angle sensor 15 as a steering angle acquisition unit that acquires a steering angle (absolute steering angle) that is a rotation angle of the steering wheel 1. Since the rotation angle of the input shaft 2 is equal to the steering angle of the steering wheel 1, the steering angle of the steering wheel 1 can be obtained by detecting the rotation angle of the input shaft 2 by the steering angle sensor 15. The detection result of the steering angle sensor 15 is output to the controller 30.
  • the steering angle sensor 15 includes a center gear that rotates integrally with the input shaft 2 and two outer gears that mesh with the center gear. Based on the change in magnetic flux accompanying the rotation of the two outer gears, The rotation angle of the center gear, that is, the rotation angle of the input shaft 2 is calculated.
  • the controller 30 is detected by a CPU that controls the operation of the electric motor 10, a ROM that stores control programs and setting values necessary for the processing operation of the CPU, and various sensors such as the torque sensor 12 and the steering angle sensor 15. And a RAM for temporarily storing information.
  • FIG. 2 is a control block diagram of the electric power steering apparatus 100.
  • the controller 30 includes a motor control unit 31 that controls driving of the electric motor 10, a failure determination unit 32 that determines failure of the torque sensor 12, and steering torque applied to the input shaft 2 in accordance with a steering operation by the driver.
  • a steering torque estimation unit 33 for estimation and a correction value setting unit 34 for setting a correction value for the estimated steering torque estimated by the steering torque estimation unit 33 when the torque sensor 12 is normal are provided.
  • the motor control unit 31 controls the driving of the electric motor 10 based on the detection result of the torque sensor 12 when the torque sensor 12 is normal, and the estimated steering estimated by the steering torque estimation unit 33 when the torque sensor 12 fails.
  • the driving of the electric motor 10 is controlled based on the torque and the correction value set by the correction value setting unit 34.
  • a voltage signal output from the main system is used to control the electric motor 10.
  • the voltage signal output from the sub system is not used for controlling the electric motor 10 but is used for determining a failure of the torque sensor 12.
  • the failure determination unit 32 compares the output voltage output from the main system and the output voltage output from the sub system, and determines that the difference is greater than or equal to a predetermined tolerance, the torque sensor 12 Is determined to be malfunctioning.
  • Steering torque estimation unit 33 calculates an estimated steering torque based on the steering angle acquired by steering angle sensor 15 and the motor rotation angle acquired by motor rotation angle sensor 10a.
  • an angle difference is generated between the steering angle and the motor rotation angle due to the torsion bar 4 being twisted, so that the estimated steering torque can be calculated based on the angle difference.
  • the estimated steering torque is calculated based on the spring constant of the torsion bar 4 and the reduction ratio of the speed reducer 11 in addition to the steering angle and the motor rotation angle.
  • the detection accuracy of the steering angle sensor 15 and the motor rotation angle sensor 10a the difference in the cycle in which the detection signals detected by the steering angle sensor 15 and the motor rotation angle sensor 10a are input to the steering torque estimation unit 33, and the speed reducer Therefore, it cannot be said that the estimation accuracy of the estimated steering torque estimated by the steering torque estimation unit 33 is high due to the individual difference of the reduction ratio of 11. Therefore, even when the drive of the electric motor 10 is controlled based on the estimated steering torque estimated by the steering torque estimating unit 33 when the torque sensor 12 is in failure, good steering feeling cannot be obtained.
  • the motor control unit 31 corrects the estimated steering torque estimated by the steering torque estimation unit 33 with the correction value set by the correction value setting unit 34, thereby correcting the estimated steering torque. And the drive of the electric motor 10 is controlled based on the corrected estimated steering torque.
  • the correction value setting unit 34 sets the correction value by comparing the steering torque detected by the torque sensor 12 with the estimated steering torque estimated by the steering torque estimation unit 33 when the torque sensor 12 is normal. This will be specifically described with reference to FIG.
  • FIG. 3 is a diagram showing the relationship between the steering angle and the steering torque, where the solid line indicates the steering torque output from the torque sensor 12, the broken line indicates the estimated steering torque estimated by the steering torque estimation unit 33, and the one-dot chain line indicates the correction value setting. This is the correction value set by the unit 34.
  • the correction value setting unit 34 calculates the steering angle detected by the torque sensor 12 and the estimated steering torque estimated by the steering torque estimation unit 33 when the torque sensor 12 is normal. Sampling according to. In FIG. 3, the torque sensor output value and the estimated steering torque are shown as straight lines for convenience, but the torque sensor output value and the estimated steering torque do not necessarily show linear characteristics.
  • the correction value setting unit 34 sets the correction value of the estimated steering torque so that the estimated steering torque is preferably matched so as to approach the steering torque detected by the torque sensor 12. That is, the correction value is set so that the value obtained by adding / subtracting the correction value to / from the estimated steering torque matches the steering torque detected by the torque sensor 12.
  • the sampling of the torque sensor output value and the estimated steering torque, and the setting of the correction value are always performed when the torque sensor 12 is normal.
  • the correction value can be made closer to a more accurate value.
  • the relationship between the steering angle and the steering torque changes according to the vehicle speed
  • the relationship between the output value of the torque sensor and the estimated steering torque also changes according to the vehicle speed. Therefore, in order to set a correction value with higher accuracy, it is desirable to perform sampling of the torque sensor output value and estimated steering torque, and setting of the correction value for each predetermined vehicle speed range. That is, it is desirable to create the characteristic diagram shown in FIG. 3 for each predetermined vehicle speed range. For example, the characteristic diagram is created by dividing the vehicle speed into a low speed range of 0 to 30 km / h, a medium speed range of 30 to 60 km / h, and a high speed range of 60 km / h or more. Thus, it is desirable to set the correction value according to the vehicle speed.
  • the correction value for the estimated steering torque is set as described above.
  • the motor control unit 31 is estimated by the steering torque estimation unit 33 from the assist control based on the detection result of the torque sensor 12.
  • the control method of the electric motor 10 is switched to assist control based on the estimated steering torque.
  • the motor control unit 31 acquires the estimated steering torque from the steering torque estimation unit 33 and acquires a correction value (see FIG. 3) corresponding to the current steering angle from the correction value setting unit 34. Then, a corrected estimated steering torque is calculated by adding / subtracting a correction value to / from the estimated steering torque, and the drive of the electric motor 10 is controlled based on the corrected estimated steering torque.
  • the motor control unit 31 acquires a correction value corresponding to the current vehicle speed based on the detection result of the vehicle speed sensor (not shown).
  • the corrected estimated steering torque corrected by the correction value is The steering torque substantially matches the steering torque detected by the torque sensor 12. Therefore, even if the torque sensor 12 fails, the steering feeling does not deteriorate.
  • the correction value need not be set according to the steering angle as shown in FIG. Regardless of this, a constant value may be used. In that case, the corrected estimated steering torque is calculated by multiplying the estimated steering torque by a correction value.
  • a correction coefficient corresponding to the steering angular speed is set in advance as shown in FIG. 4, and correction is performed using the correction coefficient. It is desirable to further correct the estimated steering torque.
  • the motor control unit 31 acquires the steering angular speed calculated based on the detection result of the steering angle sensor 15, and acquires the correction coefficient corresponding to the current steering angular speed with reference to the map shown in FIG. To do. Then, the corrected estimated steering torque is further corrected by multiplying the corrected estimated steering torque by the correction coefficient.
  • the correction value setting unit 34 corrects the estimated steering torque based on the comparison between the steering torque detected by the torque sensor 12 and the estimated steering torque estimated by the steering torque estimating unit 33 when the torque sensor 12 is normal. Set.
  • the motor control unit 31 corrects the estimated steering torque estimated by the steering torque estimation unit 33 with the correction value.
  • the drive of the electric motor 10 is controlled based on the corrected estimated steering torque. Therefore, it is possible to improve the steering feeling when the torque sensor fails.
  • the corrected steering torque calculated when the torque sensor 12 fails can be made substantially coincident with the steering torque detected by the torque sensor 12.
  • the estimated steering torque estimated based on the steering angle acquired by the steering angle sensor 15 and the motor rotation angle acquired by the motor rotation angle sensor 10a has a characteristic having hysteresis. Become. That is, hysteresis occurs after the time when the steering direction is changed after the steering wheel 1 is steered from the neutral position (the time of the steering angle X in FIG. 5).
  • the estimated steering torque estimated by the steering torque estimation unit 33 is less accurate than the output value of the torque sensor 12 by the amount of hysteresis. Therefore, in addition to the correction value shown in FIG. 3, the correction value setting unit 34 also sets a hysteresis correction value (see FIG. 6) for correcting the hysteresis of the estimated steering torque.
  • the hysteresis correction value will be described in detail.
  • the hysteresis correction value is set so that the value obtained by adding / subtracting the hysteresis correction value to / from the return-side estimated operation torque matches the cut-side estimated steering torque. More specifically, as shown in FIG. 5, at the steering angle Y, the estimated steering torque Tf on the cut side and the estimated steering torque Tb on the return side have a deviation by a torque value C. Therefore, as shown in FIG. 6, the hysteresis correction value is set to C at the steering angle Y.
  • the sampling of the estimated steering torque and the setting of the hysteresis correction value are always performed when the torque sensor 12 is normal. By always sampling the estimated steering torque when the torque sensor 12 is normal, the hysteresis correction value can be brought closer to a more accurate value.
  • the motor control unit 31 acquires the estimated steering torque from the steering torque estimation unit 33 and corrects the current steering angle.
  • the value (see FIG. 3) and the hysteresis correction value (see FIG. 6) are acquired from the correction value setting unit 34.
  • the correction steering torque is calculated by adding or subtracting the correction value shown in FIG. 3 and the hysteresis correction value shown in FIG. 6 to the estimated steering torque, and the drive of the electric motor 10 is controlled based on the correction steering torque.
  • step 1 the steering angular velocity ⁇ calculated based on the detection result of the steering angle sensor 15 is acquired, and it is determined whether or not the current steering angular velocity ⁇ is within the dead zone. If it is determined that the steering angular velocity ⁇ is not within the dead zone, the steering angle is changing, and the process proceeds to step 2.
  • the dead zone of the steering angular velocity ⁇ is set to a minute velocity that can prevent erroneous determination due to the detection error of the steering angle sensor 15.
  • step 2 it is determined whether or not the steering direction has changed based on the detection result of the steering angle sensor 15. If it is determined that the steering direction has changed, the steering direction change flag is turned on in step 3, and the process proceeds to step 4. If it is determined that the steering direction has not changed, the process proceeds to step 4 without turning on the steering direction change flag in step 3.
  • step 4 it is determined whether or not the steering direction change flag is ON. If it is determined that the steering direction change flag is ON, the process proceeds to step 5 where the estimated steering torque is corrected using the hysteresis correction value. Specifically, the hysteresis correction value corresponding to the current steering angle is obtained with reference to the hysteresis correction value map shown in FIG. When the hysteresis correction value is set according to the vehicle speed, the hysteresis correction value corresponding to the current vehicle speed is acquired based on the detection result of the vehicle speed sensor (not shown).
  • step 4 If it is determined in step 4 that the steering direction change flag is not ON, the steering direction has not changed since the steering wheel 1 has been steered from the neutral position, and in step 5 the estimated steering torque based on the hysteresis correction value. The process is terminated without executing the correction.
  • step 6 based on the detection result of the steering angle sensor 15, it is determined whether or not the current steering angle ⁇ is within the dead zone. When it is determined that the steering angle ⁇ is not within the dead zone, the steering wheel 1 is in a state of being turned at a constant steering angle, and the process proceeds to step 4.
  • the dead zone of the steering angle ⁇ is set to a minute steering angle that can prevent erroneous determination due to detection error of the steering angle sensor 15.
  • step 4 The processing in step 4 is as described above.
  • step 6 When it is determined in step 6 that the steering angle ⁇ is within the dead zone, the steering wheel 1 is in the neutral position, and in step 7, the steering direction change flag is turned OFF, and the process is terminated.
  • the process is terminated without executing the correction of the estimated steering torque by the hysteresis correction value.
  • the above processing is repeatedly executed at predetermined calculation intervals while the ignition switch of the vehicle is ON.
  • the correction value setting unit 34 also sets a hysteresis correction value for correcting the hysteresis of the estimated steering torque estimated by the steering torque estimation unit 33. Therefore, since the corrected steering torque calculated when the torque sensor 12 fails matches the steering torque detected by the torque sensor 12 with high accuracy, the steering feeling when the torque sensor fails can be improved.
  • the correction value setting unit 34 in the second embodiment, the correction value (see FIG. 3) and the hysteresis correction value (see FIG. 6) caused by the detection accuracy of the steering angle sensor 15 and the motor rotation angle sensor 10a are separated from each other.
  • the form to set was demonstrated.
  • the correction value setting unit 34 may set one correction value considering both correction values.
  • the correction value (refer to FIG. 3) resulting from the detection accuracy of the steering angle sensor 15 and the motor rotation angle sensor 10a is calculated when the steering wheel 1 is cut from the neutral position in consideration of the hysteresis of the estimated steering torque. It is desirable to set by comparing the steering torque detected by the sensor 12 with the estimated steering torque estimated by the steering torque estimating unit 33.
  • the electric power steering apparatus includes a steering shaft 7 that rotates in response to a steering operation by a driver, a torsion bar 4 that constitutes a part of the steering shaft 7, and a torque sensor 12 that detects a steering torque that acts on the torsion bar 4.
  • An electric motor 10 that applies steering assist torque for assisting a steering operation by the driver, a motor control unit 31 that controls driving of the electric motor 10, a failure determination unit 32 that determines a failure of the torque sensor 12, and a steering operation Estimated based on the steering angle sensor 15 for acquiring the steering angle associated with the motor, the motor rotation angle sensor 10a for acquiring the rotation angle of the electric motor 10, the acquisition result of the steering angle sensor 15 and the acquisition result of the motor rotation angle sensor 10a.
  • the steering torque estimation unit 33 for calculating the steering torque and the positive of the torque sensor 12 A correction value setting unit that sets a correction value of the estimated steering torque based on a comparison between the steering torque detected by the torque sensor 12 and the estimated steering torque calculated by the steering torque estimating unit 33.
  • the motor control unit 31 controls the drive of the electric motor 10 based on the steering torque detected by the torque sensor 12 when the torque sensor 12 is normal, and the steering torque estimation unit 33 when the torque sensor 12 fails.
  • the calculated estimated steering torque is corrected with a correction value to calculate a corrected estimated steering torque, and the drive of the electric motor 10 is controlled based on the corrected estimated steering torque.
  • a correction value for the estimated steering torque is set based on a comparison between the steering torque detected by the torque sensor 12 and the estimated steering torque estimated by the steering torque estimating unit 33.
  • the driving of the electric motor 10 is controlled based on the corrected estimated steering torque obtained by correcting the estimated steering torque estimated by the steering torque estimating unit 33 with the correction value. Therefore, it is possible to improve the steering feeling when the torque sensor fails.
  • correction value setting unit 34 sets the correction value so that the estimated steering torque estimated by the steering torque estimation unit 33 approaches the steering torque detected by the torque sensor 12.
  • the corrected steering torque calculated when the torque sensor 12 fails can be substantially matched with the steering torque detected by the torque sensor 12.
  • the correction value is set according to the vehicle speed.
  • the correction value includes a hysteresis correction value for correcting the hysteresis of the estimated steering torque.
  • the correction of the estimated steering torque by the hysteresis correction value is executed when the steering direction changes.
  • the corrected steering torque calculated when the torque sensor 12 fails can be matched with the steering torque detected by the torque sensor 12 with high accuracy.
  • the motor control unit 31 corrects the corrected estimated steering torque according to the steering angular speed when the torque sensor 12 fails.
  • the accuracy of the corrected estimated steering torque calculated when the torque sensor 12 fails can be further increased.
  • a pinion shaft that meshes with the rack gear 5a may be provided separately from the output shaft 3, and the output shaft 3 and the pinion shaft may be connected via a universal joint.
  • the driving force of the electric motor 10 may be applied to the rack shaft 5 via a speed reducer having a pulley and a belt (belt drive system), and the driving force of the electric motor 10 may be reduced. It is good also as a structure (direct drive system) provided directly to the rack shaft 5 without going through a machine. As described above, the electric motor 10 imparts torque to the steering system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

電動パワーステアリング装置100であって、操舵角センサ15の取得結果とモータ回転角センサ10aの取得結果に基づいて、推定操舵トルクを演算する操舵トルク推定部33と、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて演算された推定操舵トルクとの比較に基づいて推定操舵トルクの補正値を設定する補正値設定部34と、を備え、モータ制御部31は、トルクセンサ12の故障時には、操舵トルク推定部33にて演算された推定操舵トルクを補正値にて補正して補正推定操舵トルクを演算し、補正推定操舵トルクに基づいて電動モータ10の駆動を制御する。

Description

電動パワーステアリング装置
 本発明は、電動パワーステアリング装置に関するものである。
 従来の電動パワーステアリング装置として、JP2004-224077Aには、トルクセンサの異常検出手段が異常を検出したときに、操舵輪回転角、モータ回転角、連結部材のばね定数、及び減速機構の減速比に基づき操舵トルクを算出することが開示されている。
 トルクセンサの故障時に、JP2004-224077Aに記載の方法で操舵トルクの推定値を算出し、その推定値に基づいて電動モータの駆動を制御することが考えられる。
 しかし、この場合には、操舵輪回転角及びモータ回転角を検出するセンサの精度や減速機構の減速比の固体差等により、操舵トルクの推定精度は高いとは言えない。したがって、トルクセンサの故障時には良好な操舵フィーリングが得られない。
 本発明は、トルクセンサ故障時の操舵フィーリングを向上させることを目的とする。
 本発明のある態様によれば、電動パワーステアリング装置であって、運転者によるステアリング操作に伴って回転するステアリングシャフトと、前記ステアリングシャフトの一部を構成するトーションバーと、前記トーションバーに作用する操舵トルクを検出するトルクセンサと、運転者によるステアリング操作を補助する操舵補助トルクを付与する電動モータと、前記電動モータの駆動を制御するモータ制御部と、前記トルクセンサの故障を判定する故障判定部と、ステアリング操作に伴う操舵角を取得する操舵角取得部と、前記電動モータの回転角を取得するモータ回転角取得部と、前記操舵角取得部の取得結果と前記モータ回転角取得部の取得結果に基づいて、推定操舵トルクを演算する操舵トルク推定部と、前記トルクセンサの正常時に、前記トルクセンサにて検出された前記操舵トルクと前記操舵トルク推定部にて演算された前記推定操舵トルクとの比較に基づいて前記推定操舵トルクの補正値を設定する補正値設定部と、を備え、前記モータ制御部は、前記トルクセンサの正常時には、前記トルクセンサにて検出された前記操舵トルクに基づいて前記電動モータの駆動を制御し、前記トルクセンサの故障時には、前記操舵トルク推定部にて演算された前記推定操舵トルクを前記補正値にて補正して補正推定操舵トルクを演算し、当該補正推定操舵トルクに基づいて前記電動モータの駆動を制御する。
図1は、本発明の第1実施形態に係る電動パワーステアリング装置の構成図である。 図2は、本発明の第1実施形態に係る電動パワーステアリング装置の制御ブロック図である。 図3は、操舵角と操舵トルクの関係を示す図である。 図4は、舵角速度と補正係数の関係を示すマップ図である。 図5は、推定操舵トルクのヒステリシスを示す図である。 図6は、ヒステリシス補正値のマップ図である。 図7は、ヒステリシス補正値による推定操舵トルクの補正を実行するか否かの判定手順を示すフローチャートである。
 図面を参照して、本発明の実施形態について説明する。
 <第1実施形態>
 以下に、本発明の第1実施形態に係る電動パワーステアリング装置100について説明する。
 図1に示すように、電動パワーステアリング装置100は、運転者によるステアリングホイール1の操作(以下、「ステアリング操作」と称する。)に伴って回転する入力シャフト2と、車輪6を転舵するラック軸5に連係する出力シャフト3と、入力シャフト2と出力シャフト3を連結するトーションバー4と、を備える。入力シャフト2、出力シャフト3、及びトーションバー4によってステアリングシャフト7が構成される。
 出力シャフト3の下部には、ラック軸5に形成されたラックギヤ5aと噛み合うピニオンギヤ3aが形成される。ステアリングホイール1が操舵されると、ステアリングシャフト7が回転し、その回転がピニオンギヤ3a及びラックギヤ5aによってラック軸5の直線運動に変換され、ナックルアーム14を介して車輪6が転舵される。
 電動パワーステアリング装置100は、運転者によるステアリングホイール1の操舵を補助するための動力源である電動モータ10と、電動モータ10の回転をステアリングシャフト7に減速して伝達する減速機11と、運転者によるステアリング操作に伴う入力シャフト2と出力シャフト3との相対回転によってトーションバー4に作用する操舵トルクを検出するトルクセンサ12と、電動モータ10を制御するコントローラ30と、をさらに備える。
 電動モータ10には、電動モータ10の回転角度を取得するモータ回転角取得部としてのモータ回転角センサ10aが設けられる。モータ回転角センサ10aは、レゾルバによって構成される。
 減速機11は、電動モータ10の出力軸に連結されるウォームシャフト11aと、出力シャフト3に連結されウォームシャフト11aに噛み合うウォームホイール11bと、からなる。電動モータ10が出力するトルクは、ウォームシャフト11aからウォームホイール11bに伝達されて出力シャフト3に操舵補助トルクとして付与される。
 運転者によるステアリング操作に伴って入力シャフト2に付与される操舵トルクはトルクセンサ12によって検出され、トルクセンサ12はその操舵トルクに対応する電圧信号をコントローラ30に出力する。コントローラ30は、トルクセンサ12からの電圧信号に基づいて、電動モータ10が出力するトルクを演算し、そのトルクが発生するように電動モータ10の駆動を制御する。このように、電動パワーステアリング装置100は、入力シャフト2に付与される操舵トルクをトルクセンサ12にて検出し、その検出結果に基づいて電動モータ10の駆動をコントローラ30にて制御して運転者のステアリング操作を補助する。
 トルクセンサ12は、メイン系統とサブ系統の2つの系統にてコントローラ30に接続される。
 入力シャフト2には、ステアリングホイール1の回転角度である操舵角(絶対操舵角)を取得する操舵角取得部としての操舵角センサ15が設けられる。入力シャフト2の回転角度とステアリングホイール1の操舵角とは等しいため、操舵角センサ15にて入力シャフト2の回転角度を検出することによってステアリングホイール1の操舵角が得られる。操舵角センサ15の検出結果はコントローラ30に出力される。
 操舵角センサ15は、図示しないが、入力シャフト2と一体に回転するセンターギアと、センターギアに噛み合う2つのアウターギアと、を備え、2つのアウターギアの回転に伴う磁束の変化に基づいて、センターギアの回転角度、すなわち入力シャフト2の回転角度を演算するものである。
 コントローラ30は、電動モータ10の動作を制御するCPUと、CPUの処理動作に必要な制御プログラムや設定値等が記憶されたROMと、トルクセンサ12や操舵角センサ15等の各種センサが検出した情報を一時的に記憶するRAMと、を備える。
 次に、図2を参照して、コントローラ30について説明する。図2は、電動パワーステアリング装置100の制御ブロック図である。
 コントローラ30は、電動モータ10の駆動を制御するモータ制御部31と、トルクセンサ12の故障を判定する故障判定部32と、運転者によるステアリング操作に伴って入力シャフト2に付与される操舵トルクを推定する操舵トルク推定部33と、トルクセンサ12の正常時に、操舵トルク推定部33にて推定された推定操舵トルクの補正値を設定する補正値設定部34と、を備える。
 モータ制御部31は、トルクセンサ12の正常時には、トルクセンサ12の検出結果に基づいて電動モータ10の駆動を制御し、トルクセンサ12の故障時には、操舵トルク推定部33にて推定された推定操舵トルクと補正値設定部34にて設定された補正値に基づいて電動モータ10の駆動を制御する。
 トルクセンサ12の正常時には、電動モータ10の制御には、メイン系統から出力される電圧信号が用いられる。サブ系統から出力される電圧信号は、電動モータ10の制御には用いられず、トルクセンサ12の故障を判定するために用いられる。
 故障判定部32は、メイン系統から出力された出力電圧とサブ系統から出力された出力電圧とを比較し、その差が予め定められた許容差以上であると判断した場合には、トルクセンサ12が故障していると判定する。
 操舵トルク推定部33は、操舵角センサ15にて取得された操舵角とモータ回転角センサ10aにて取得されたモータ回転角とに基づいて、推定操舵トルクを演算する。運転者によりステアリングホイール1が操舵されると、トーションバー4の捩れによって操舵角とモータ回転角とに角度差が生じるため、その角度差に基づいて推定操舵トルクを演算することができる。具体的には、操舵角及びモータ回転角に加え、トーションバー4のばね定数及び減速機11の減速比に基づいて推定操舵トルクが演算される。
 しかし、操舵角センサ15及びモータ回転角センサ10aの検出精度、操舵角センサ15及びモータ回転角センサ10aにて検出される検出信号が操舵トルク推定部33へ入力される周期の差、及び減速機11の減速比の固体差等により、操舵トルク推定部33にて推定される推定操舵トルクの推定精度は高いとは言えない。したがって、トルクセンサ12の故障時に、操舵トルク推定部33にて推定された推定操舵トルクに基づいて電動モータ10の駆動を制御しても、良好な操舵フィーリングが得られない。
 そこで、トルクセンサ12の故障時には、モータ制御部31は、操舵トルク推定部33にて推定された推定操舵トルクを、補正値設定部34で設定された補正値にて補正して補正推定操舵トルクを演算し、その補正推定操舵トルクに基づいて電動モータ10の駆動を制御する。
 以下では、補正値設定部34による補正値の設定方法について詳しく説明する。
 補正値設定部34は、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて推定された推定操舵トルクとを比較して補正値を設定する。図3を参照して具体的に説明する。
 図3は、操舵角と操舵トルクの関係を示す図であり、実線がトルクセンサ12が出力する操舵トルク、破線が操舵トルク推定部33にて推定された推定操舵トルク、一点鎖線が補正値設定部34にて設定された補正値である。図3に示すように、補正値設定部34では、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて推定された推定操舵トルクとを、操舵角に応じてサンプリングする。なお、図3では、トルクセンサ出力値及び推定操舵トルクを便宜上、直線で示しているが、トルクセンサ出力値及び推定操舵トルクは、必ずしも直線的な特性を示すとは限らない。
 図3に示すように、操舵トルク推定部33にて推定される推定操舵トルクは、上述した理由により推定精度が高くないため、トルクセンサ12にて検出される操舵トルクに一致しない。そこで、補正値設定部34は、推定操舵トルクがトルクセンサ12にて検出される操舵トルクに近付くように、好ましくは一致するように、推定操舵トルクの補正値を設定する。つまり、推定操舵トルクに補正値を加減算した値が、トルクセンサ12にて検出される操舵トルクに一致するように補正値を設定する。
 トルクセンサ出力値と推定操舵トルクのサンプリング、及び補正値の設定は、トルクセンサ12の正常時に常に行われる。トルクセンサ出力値と推定操舵トルクのサンプリングをトルクセンサ12の正常時に常に行うことによって、補正値をより正確な値に近づけることができる。
 操舵角と操舵トルクの関係は車速に応じて変化するため、車速に応じてトルクセンサの出力値と推定操舵トルクの関係も変化する。そこで、より精度の高い補正値を設定するためには、トルクセンサ出力値と推定操舵トルクのサンプリング、及び補正値の設定は、所定の車速範囲毎に行うのが望ましい。つまり、所定の車速範囲毎に、図3に示す特性図を作成するのが望ましい。例えば、車速が0~30km/hの低速度域、30~60km/hの中速度域、及び60km/h以上の高速度域に分けて特性図を作成する。このように、補正値は、車速に応じて設定するのが望ましい。
 推定操舵トルクの補正値は、以上のようにして設定される。故障判定部32にてトルクセンサ12が故障していると判定された場合には、モータ制御部31は、トルクセンサ12の検出結果に基づくアシスト制御から、操舵トルク推定部33にて推定された推定操舵トルクに基づくアシスト制御へと、電動モータ10の制御方法を切り換える。
 具体的に説明すると、モータ制御部31は、推定操舵トルクを操舵トルク推定部33から取得すると共に、現在の舵角に対応する補正値(図3参照)を補正値設定部34から取得する。そして、推定操舵トルクに補正値を加減算して補正推定操舵トルクを演算し、その補正推定操舵トルクに基づいて電動モータ10の駆動を制御する。車速に応じて補正値が設定されている場合には、モータ制御部31は、車速センサ(図示せず)の検出結果に基づいて、現在の車速に対応する補正値を取得する。
 補正値は、トルクセンサ12の正常時に、推定操舵トルクがトルクセンサ12にて検出される操舵トルクに一致するように演算されたものであるため、補正値にて補正された補正推定操舵トルクは、トルクセンサ12にて検出される操舵トルクと実質的に一致する。したがって、トルクセンサ12が故障したとしても、操舵フィーリングが悪化することがない。
 以上のように、車両走行中にトルクセンサ12が故障した場合であっても、操舵フィーリングを悪化させることなく、車両の走行を継続させることが可能となる。
 なお、トルクセンサ出力値及び推定操舵トルクが図3に示すような直線的な特性となる場合には、補正値は、図3に示すように舵角に応じて設定する必要はなく、舵角によらず一定値としてもよい。その場合には、補正推定操舵トルクは、推定操舵トルクに補正値を乗算することによって演算される。
 トルクセンサ12の出力値と推定操舵トルクの関係は、舵角速度に応じて変化する。そのため、補正推定操舵トルクの精度を高めるため、以上で説明した推定操舵トルクの補正に加えて、図4に示すように舵角速度に応じた補正係数を予め設定し、その補正係数を用いて補正推定操舵トルクをさらに補正するのが望ましい。具体的には、モータ制御部31は、操舵角センサ15の検出結果に基づいて演算される舵角速度を取得し、現在の舵角速度に対応する補正係数を図4に示すマップを参照して取得する。そして、その補正係数を補正推定操舵トルクに乗算して補正推定操舵トルクをさらに補正する。
 以上の第1実施形態によれば、以下に示す効果を奏する。
 補正値設定部34は、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて推定された推定操舵トルクとの比較に基づいて推定操舵トルクの補正値を設定する。故障判定部32にてトルクセンサ12が故障していると判定された場合には、モータ制御部31は、操舵トルク推定部33にて推定された推定操舵トルクを補正値にて補正して得られる補正推定操舵トルクに基づいて、電動モータ10の駆動を制御する。よって、トルクセンサ故障時の操舵フィーリングを向上させることができる。
 また、トルクセンサ出力値と推定操舵トルクのサンプリング、及び補正値の設定は、トルクセンサ12の正常時に常に行われるため、精度の高い補正値を設定することができる。したがって、トルクセンサ12の故障時に演算される補正操舵トルクを、トルクセンサ12にて検出される操舵トルクと実質的に一致させることができる。
 <第2実施形態>
 次に、本発明の第2実施形態に係る電動パワーステアリング装置について説明する。以下では、上記第1実施形態に係る電動パワーステアリング装置100と異なる点について説明し、電動パワーステアリング装置100と同一の構成には、同一の符号を用いて説明を省略する。
 図5に示すように、操舵角センサ15にて取得された操舵角とモータ回転角センサ10aにて取得されたモータ回転角とに基づいて推定される推定操舵トルクは、ヒステリシスを持った特性となる。つまり、ステアリングホイール1が中立位置から操舵されてから操舵方向が変化した時点(図5中操舵角Xの時点)以降では、ヒステリシスが発生する。このように、操舵トルク推定部33にて推定される推定操舵トルクは、ヒステリシスの分だけトルクセンサ12の出力値と比較して精度が悪い。そこで、補正値設定部34では、図3に示す補正値に加えて、推定操舵トルクのヒステリシスを補正するためのヒステリシス補正値(図6参照)も設定する。以下に、ヒステリシス補正値について詳しく説明する。
 図6に示すヒステリシス補正値は、ステアリングホイール1を戻す際の推定操作トルクが、ステアリングホイール1を中立位置から切り込んだ際の推定操舵トルクに一致するように設定される。つまり、戻り側の推定操作トルクにヒステリシス補正値を加減算した値が、切り側の推定操舵トルクに一致するようにヒステリシス補正値を設定する。具体的に説明すると、図5に示すように、操舵角Yでは、切り側の推定操舵トルクTfと戻り側の推定操舵トルクTbとはトルク値Cだけ偏差がある。したがって、図6に示すように、操舵角Yではヒステリシス補正値はCに設定される。
 推定操舵トルクのサンプリング及びヒステリシス補正値の設定は、トルクセンサ12の正常時に常に行われる。推定操舵トルクのサンプリングをトルクセンサ12の正常時に常に行うことによって、ヒステリシス補正値をより正確な値に近づけることができる。
 ヒステリシスの大きさは車速に応じて変化するため、より精度の高いヒステリシス補正値を設定するためには、推定操舵トルクのサンプリング及びヒステリシス補正値の設定は、所定の車速範囲毎に行うのが望ましい。つまり、所定の車速範囲毎に、図6に示すヒステリシス補正値のマップを作成するのが望ましい。
 故障判定部32にてトルクセンサ12が故障していると判定された場合には、モータ制御部31は、推定操舵トルクを操舵トルク推定部33から取得すると共に、現在の舵角に対応する補正値(図3参照)及びヒステリシス補正値(図6参照)を補正値設定部34から取得する。そして、推定操舵トルクに図3に示す補正値と図6に示すヒステリシス補正値を加減算して補正操舵トルクを演算し、その補正操舵トルクに基づいて電動モータ10の駆動を制御する。
 推定操舵トルクのヒステリシスは、操舵方向が変化した時点以降で発生するため、ヒステリシス補正値による推定操舵トルクの補正は、操舵方向が変化した時点以降のみで行われる。そこで、以下では、図7を参照して、ヒステリシス補正値による推定操舵トルクの補正を実行するか否かの判定手順について説明する。図7に示す手順は、モータ制御部31にて実行される。
 ステップ1では、操舵角センサ15の検出結果に基づいて演算される舵角速度Δθを取得し、現在の舵角速度Δθが不感帯内であるか否かを判定する。舵角速度Δθが不感帯内ではないと判定した場合には、操舵角が変化中の状態であり、ステップ2に進む。舵角速度Δθの不感帯は、操舵角センサ15の検出誤差に起因する誤判定を防止できる程度の微小速度に設定される。
 ステップ2では、操舵角センサ15の検出結果に基づいて操舵方向が変化したか否かを判定する。操舵方向が変化したと判定した場合には、ステップ3において操舵方向変化フラグをONした上で、ステップ4へと進む。操舵方向が変化していないと判定した場合には、ステップ3において操舵方向変化フラグをONとすることなく、ステップ4へと進む。
 ステップ4では、操舵方向変化フラグがONであるか否かを判定する。操舵方向変化フラグがONであると判定した場合には、ステップ5に進み、ヒステリシス補正値による推定操舵トルクの補正を実行する。具体的には、図6に示すヒステリシス補正値のマップを参照して、現在の操舵角に対応するヒステリシス補正値を取得する。車速に応じてヒステリシス補正値が設定されている場合には、車速センサ(図示せず)の検出結果に基づいて、現在の車速に対応するヒステリシス補正値を取得する。
 ステップ4において、操舵方向変化フラグがONでないと判定した場合には、ステアリングホイール1が中立位置から操舵されてから操舵方向が変化していない状態であり、ステップ5においてヒステリシス補正値による推定操舵トルクの補正を実行することなく、処理を終了する。
 ステップ1において、舵角速度Δθが不感帯内であると判定した場合には、操舵角が一定の状態であり、ステップ6に進む。ステップ6では、操舵角センサ15の検出結果に基づいて、現在の操舵角θが不感帯内であるか否かを判定する。操舵角θが不感帯内ではないと判定した場合には、ステアリングホイール1が一定舵角で切られている状態であり、ステップ4に進む。操舵角θの不感帯は、操舵角センサ15の検出誤差に起因する誤判定を防止できる程度の微小操舵角に設定される。
 ステップ4での処理は、上述したとおりである。
 ステップ6において、操舵角θが不感帯内であると判定した場合には、ステアリングホイール1が中立位置にある状態であり、ステップ7において操舵方向変化フラグをOFFにし、処理を終了する。このように、舵角速度Δθ及び操舵角θの双方が不感帯内である場合には、ヒステリシス補正値による推定操舵トルクの補正を実行することなく、処理を終了する。
 以上の処理は、車両のイグニッションスイッチがONの間、所定の演算周期毎に繰り返し実行される。
 以上の第2実施形態によれば、以下に示す効果を奏する。
 補正値設定部34は、操舵トルク推定部33にて推定される推定操舵トルクのヒステリシスを補正するヒステリシス補正値も設定する。したがって、トルクセンサ12の故障時に演算される補正操舵トルクは、トルクセンサ12にて検出される操舵トルクに高い精度で一致するため、トルクセンサ故障時の操舵フィーリングを向上させることができる。
 上記第2実施形態では、補正値設定部34において、操舵角センサ15及びモータ回転角センサ10aの検出精度等に起因する補正値(図3参照)とヒステリシス補正値(図6参照)とを別に設定する形態について説明した。これに代わり、補正値設定部34において、両補正値を考慮した1つの補正値を設定するようにしてもよい。
 操舵角センサ15及びモータ回転角センサ10aの検出精度等に起因する補正値(図3参照)は、推定操舵トルクのヒステリシスを考慮して、ステアリングホイール1が中立位置から切り込まれる際において、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて推定された推定操舵トルクとを比較して設定するのが望ましい。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 電動パワーステアリング装置は、運転者によるステアリング操作に伴って回転するステアリングシャフト7と、ステアリングシャフト7の一部を構成するトーションバー4と、トーションバー4に作用する操舵トルクを検出するトルクセンサ12と、運転者によるステアリング操作を補助する操舵補助トルクを付与する電動モータ10と、電動モータ10の駆動を制御するモータ制御部31と、トルクセンサ12の故障を判定する故障判定部32と、ステアリング操作に伴う操舵角を取得する操舵角センサ15と、電動モータ10の回転角を取得するモータ回転角センサ10aと、操舵角センサ15の取得結果とモータ回転角センサ10aの取得結果に基づいて、推定操舵トルクを演算する操舵トルク推定部33と、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて演算された推定操舵トルクとの比較に基づいて推定操舵トルクの補正値を設定する補正値設定部34と、を備え、モータ制御部31は、トルクセンサ12の正常時には、トルクセンサ12にて検出された操舵トルクに基づいて電動モータ10の駆動を制御し、トルクセンサ12の故障時には、操舵トルク推定部33にて演算された推定操舵トルクを補正値にて補正して補正推定操舵トルクを演算し、補正推定操舵トルクに基づいて電動モータ10の駆動を制御する。
 この構成では、トルクセンサ12の正常時に、トルクセンサ12にて検出された操舵トルクと操舵トルク推定部33にて推定された推定操舵トルクとの比較に基づいて推定操舵トルクの補正値が設定され、トルクセンサ12の故障時には、操舵トルク推定部33にて推定された推定操舵トルクを補正値にて補正して得られる補正推定操舵トルクに基づいて電動モータ10の駆動が制御される。よって、トルクセンサ故障時の操舵フィーリングを向上させることができる。
 また、補正値設定部34は、操舵トルク推定部33にて推定された推定操舵トルクがトルクセンサ12にて検出された操舵トルクに近付くように、補正値を設定する。
 この構成では、トルクセンサ12の故障時に演算される補正操舵トルクを、トルクセンサ12にて検出される操舵トルクと実質的に一致させることができる。
 また、補正値は、車速に応じて設定される。
 この構成では、より精度の高い補正値を設定することができる。
 また、補正値は、推定操舵トルクのヒステリシスを補正するためのヒステリシス補正値を含む。
 また、ヒステリシス補正値による推定操舵トルクの補正は、操舵方向が変化した場合に実行される。
 これらの構成では、トルクセンサ12の故障時に演算される補正操舵トルクを、トルクセンサ12にて検出される操舵トルクに高い精度で一致させることができる。
 また、モータ制御部31は、トルクセンサ12の故障時には、舵角速度に応じて補正推定操舵トルクを補正する。
 この構成では、トルクセンサ12の故障時に演算される補正推定操舵トルクの精度を、より高めることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、出力シャフト3の下部に形成されたピニオンギヤ3aがラック軸5に形成されたラックギヤ5aと噛み合う形態について説明した。これに代えて、出力シャフト3とは別にラックギヤ5aに噛み合うピニオンシャフトを設け、出力シャフト3とピニオンシャフトを自在継手を介して連結するように構成してもよい。
 また、上記実施形態では、電動モータ10の駆動力が、減速機11を介して出力シャフト3に付与される形態について説明した。これに代えて、電動モータ10の駆動力を、プーリ及びベルトを有する減速機を介してラック軸5に付与する構成(ベルトドライブ方式)としてもよく、また、電動モータ10の駆動力を、減速機を介さずに直接ラック軸5に付与する構成(ダイレクトドライブ方式)としてもよい。このように、電動モータ10は、ステアリング系にトルクを付与するものである。
 本願は2015年10月21日に日本国特許庁に出願された特願2015-207404に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  電動パワーステアリング装置であって、
     運転者によるステアリング操作に伴って回転するステアリングシャフトと、
     前記ステアリングシャフトの一部を構成するトーションバーと、
     前記トーションバーに作用する操舵トルクを検出するトルクセンサと、
     運転者によるステアリング操作を補助する操舵補助トルクを付与する電動モータと、
     前記電動モータの駆動を制御するモータ制御部と、
     前記トルクセンサの故障を判定する故障判定部と、
     ステアリング操作に伴う操舵角を取得する操舵角取得部と、
     前記電動モータの回転角を取得するモータ回転角取得部と、
     前記操舵角取得部の取得結果と前記モータ回転角取得部の取得結果に基づいて、推定操舵トルクを演算する操舵トルク推定部と、
     前記トルクセンサの正常時に、前記トルクセンサにて検出された前記操舵トルクと前記操舵トルク推定部にて演算された前記推定操舵トルクとの比較に基づいて前記推定操舵トルクの補正値を設定する補正値設定部と、を備え、
     前記モータ制御部は、前記トルクセンサの正常時には、前記トルクセンサにて検出された前記操舵トルクに基づいて前記電動モータの駆動を制御し、前記トルクセンサの故障時には、前記操舵トルク推定部にて演算された前記推定操舵トルクを前記補正値にて補正して補正推定操舵トルクを演算し、当該補正推定操舵トルクに基づいて前記電動モータの駆動を制御する電動パワーステアリング装置。
  2.  請求項1に記載の電動パワーステアリング装置であって、
     前記補正値設定部は、前記操舵トルク推定部にて推定された前記推定操舵トルクが前記トルクセンサにて検出された前記操舵トルクに近付くように、前記補正値を設定する電動パワーステアリング装置。
  3.  請求項1に記載の電動パワーステアリング装置であって、
     前記補正値は、車速に応じて設定される電動パワーステアリング装置。
  4.  請求項1に記載の電動パワーステアリング装置であって、
     前記補正値は、前記推定操舵トルクのヒステリシスを補正するためのヒステリシス補正値を含む電動パワーステアリング装置。
  5.  請求項4に記載の電動パワーステアリング装置であって、
     前記ヒステリシス補正値による前記推定操舵トルクの補正は、操舵方向が変化した場合に実行される電動パワーステアリング装置。
  6.  請求項1に記載の電動パワーステアリング装置であって、
     前記モータ制御部は、前記トルクセンサの故障時には、舵角速度に応じて前記補正推定操舵トルクを補正する電動パワーステアリング装置。
PCT/JP2016/077589 2015-10-21 2016-09-16 電動パワーステアリング装置 WO2017068896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207404 2015-10-21
JP2015207404A JP2017077831A (ja) 2015-10-21 2015-10-21 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2017068896A1 true WO2017068896A1 (ja) 2017-04-27

Family

ID=58557269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077589 WO2017068896A1 (ja) 2015-10-21 2016-09-16 電動パワーステアリング装置

Country Status (2)

Country Link
JP (1) JP2017077831A (ja)
WO (1) WO2017068896A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234737B2 (ja) * 2019-03-28 2023-03-08 株式会社デンソー 検出ユニット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045990A (ja) * 2010-08-25 2012-03-08 Toyota Motor Corp 電動パワーステアリング装置
JP2014240234A (ja) * 2013-06-11 2014-12-25 株式会社日本自動車部品総合研究所 操舵制御装置
WO2015107601A1 (ja) * 2014-01-17 2015-07-23 日本精工株式会社 電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045990A (ja) * 2010-08-25 2012-03-08 Toyota Motor Corp 電動パワーステアリング装置
JP2014240234A (ja) * 2013-06-11 2014-12-25 株式会社日本自動車部品総合研究所 操舵制御装置
WO2015107601A1 (ja) * 2014-01-17 2015-07-23 日本精工株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
JP2017077831A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2017068895A1 (ja) 電動パワーステアリング装置
US9002579B2 (en) Steering assist device
KR101628736B1 (ko) 회전변위 차를 이용한 조향각 센서의 영점 보정 장치 및 방법
US8989966B2 (en) Electric power steering device and sensor abnormality detection device
EP2116443B1 (en) Electric power steering apparatus
EP2792576A1 (en) Electric power steering device
EP1577194A1 (en) Steering apparatus for vehicle and method for controlling the same
US9296415B2 (en) Electronic power steering apparatus
US20170305455A1 (en) Electric power steering apparatus
JP5417300B2 (ja) 電動パワーステアリング装置
US20180257700A1 (en) Electric power steering device
WO2014156266A1 (ja) パワーステアリング装置及びこれに用いる制御装置
US20120299517A1 (en) Electric power steering system
JP5174596B2 (ja) 電動パワーステアリング装置
US11312410B2 (en) Electric power steering apparatus
EP3812243B1 (en) Steering control device
JP5018166B2 (ja) 操舵装置
JP6413589B2 (ja) 車両用操舵装置
WO2017068896A1 (ja) 電動パワーステアリング装置
KR102452643B1 (ko) 전류센서 옵셋 보상 방법
US11897555B2 (en) Steering control device
US11679805B2 (en) Traction steer mitigation through CVR gain scalars
WO2016204072A1 (ja) 電動パワーステアリング装置
JPH1159457A (ja) 車両用操舵装置
JP2019127233A (ja) 操舵制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857214

Country of ref document: EP

Kind code of ref document: A1