WO2017068820A1 - 蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法 - Google Patents

蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法 Download PDF

Info

Publication number
WO2017068820A1
WO2017068820A1 PCT/JP2016/070752 JP2016070752W WO2017068820A1 WO 2017068820 A1 WO2017068820 A1 WO 2017068820A1 JP 2016070752 W JP2016070752 W JP 2016070752W WO 2017068820 A1 WO2017068820 A1 WO 2017068820A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
fiber
fibers
fiber material
electrode
Prior art date
Application number
PCT/JP2016/070752
Other languages
English (en)
French (fr)
Inventor
蓮尾 俊治
Original Assignee
蓮尾 俊治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蓮尾 俊治 filed Critical 蓮尾 俊治
Priority to US15/769,350 priority Critical patent/US10693142B2/en
Priority to CN201680052534.6A priority patent/CN108028389B/zh
Priority to JP2017525991A priority patent/JP6209706B2/ja
Priority to EP16857138.8A priority patent/EP3367486B1/en
Priority to KR1020187014235A priority patent/KR102087957B1/ko
Publication of WO2017068820A1 publication Critical patent/WO2017068820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4234Metal fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an aluminum non-woven fiber material for a current collector of an electricity storage device such as a secondary battery or a capacitor, a manufacturing method thereof, an electrode using the non-woven aluminum fiber material, and a manufacturing method thereof.
  • Capacitors and secondary batteries are used in various fields for the purpose of energy reduction and prevention of global warming. Especially in the automobile industry, technological development using these has been accelerated by adopting electric energy.
  • the electric double layer capacitor is conventionally used for backing up a memory of an electronic circuit to which a low voltage is applied, and has a higher input / output reliability than a secondary battery.
  • the structure of the electric double layer capacitor is composed of positive and negative electrode portions, an electrolyte, and a separator that prevents a short circuit between the opposing positive and negative electrode portions.
  • the electrode part is made by mixing a polarizable electrode (currently mainly activated carbon), a binder for holding the activated carbon, and a conductive additive (mainly carbon fine particles and fine fibers) into an aluminum foil ( It is formed by applying several layers on a thickness of about 20 ⁇ m.
  • a polarizable electrode currently mainly activated carbon
  • a binder for holding the activated carbon a conductive additive (mainly carbon fine particles and fine fibers) into an aluminum foil ( It is formed by applying several layers on a thickness of about 20 ⁇ m.
  • a conductive additive mainly carbon fine particles and fine fibers
  • Charging of the electric double layer capacitor is performed by electrolyte ions moving through the solution and adsorbing and desorbing on the surface of the fine pores of the activated carbon.
  • the electric double layer is formed at the interface between the activated carbon powder and the electrolyte.
  • the particle diameter of normal activated carbon is about 4 to 8 ⁇ m as an example, and the specific surface area is 1600 to 2500 m 3 / g as an example.
  • the electrolytic solution has a cation, an anion, and a solvent. Tetraethylammonium salt is used as a cation, tetrafluoroborate ion is used as an anion, and propylene carbonate, ethylene carbonate, or the like is used as a solvent.
  • the lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, and a separator.
  • a positive electrode is a current collector of 20 ⁇ m thick aluminum foil, and active material powder, usually lithium cobaltate, a conductive additive as an additive, and a binder are kneaded together.
  • the material is applied to a thickness of about 100 ⁇ m, and the negative electrode is obtained by applying a carbon material to a copper foil as a current collector, and these are separated by a separator such as polyethylene and immersed in an electrolytic solution.
  • a lithium ion secondary battery is configured.
  • Such a lithium ion secondary battery is disclosed in Patent Document 2, for example.
  • Charging / discharging is performed by moving lithium ions between the positive electrode and the negative electrode, and during charging, when lithium ions move from the positive electrode to the negative electrode, the lithium ions in the positive electrode disappear or the lithium ions cannot be stored in the negative electrode. Charging is complete. The reverse occurs when discharging.
  • electric double layer capacitors are different from secondary batteries mainly consisting of lithium ion secondary batteries. They do not involve a chemical reaction, and self-discharge results in loss of charge over time, storage time is short, and current is released. The time is short.
  • the lithium battery has several hundred Wh / L
  • the electric double layer capacitor has several tens Wh / L.
  • the electrical double layer capacitors are not being used for power storage, but are being studied for backup power sources for electrical components, starting energy for idling stop systems, brake control, power assist, and the like because of the above-described differences.
  • Secondary batteries mainly lithium batteries
  • problems in performance capacity, charge / discharge speed, life
  • manufacturing cost there are still many problems in performance (capacity, charge / discharge speed, life) and manufacturing cost, and the problems are particularly remarkable in large batteries such as automobiles.
  • the current used in a mobile phone is several mA
  • the current used in a hybrid vehicle is several hundred A, and the difference between the two is 10,000 times or more. Therefore, it is necessary to increase the size in order to increase the capacity.
  • problems in increasing the size such as capacity, charging speed, reliability, and difficulty in manufacturing.
  • the reaction of the lithium ion secondary battery is a reversible chemical reaction, and the volume of the active material expands and contracts when the electrode is charged and discharged. Therefore, the active material peels from the current collector, and the charge / discharge characteristics are deteriorated. That is, the same charging / discharging is not always performed 100%, and the charging / discharging ability is reduced. Since batteries are used for many years in hybrid vehicles and electric vehicles, it is necessary to suppress separation of the current collector and the active material in order to prevent the above deterioration.
  • the internal resistance is the resistance when lithium ions move in the electrolyte between the positive electrode and negative electrode inside the battery, but the main reason why this transfer resistance cannot increase the capacity or increase the charge / discharge speed It is.
  • the capacity increases, but the movement resistance increases. Therefore, there is a limit to the thickness at present.
  • the charge / discharge rate is slowed by the resistance.
  • the coating thickness is reduced, the internal resistance is reduced and the charge / discharge rate is increased, but the capacity is reduced. For this reason, it is necessary to stack current collectors coated with an active material several times or to increase the area of the current collector coated with an active material.
  • the speed of charging and discharging also depends on the amount of lithium ions generated. If many ions are created at one time and can move at once, the charge and discharge rates will increase. Since the chemical reaction of the secondary battery occurs at the interface with the electrolyte, if the contact area between the electrode and the electrolyte can be increased, the charge / discharge rate is also improved.
  • secondary batteries such as electric double layer capacitors and lithium ion secondary batteries, which are power storage devices, have large capacity, high output, and long life for electric vehicles, hybrid vehicles, and high power energy devices. Efforts are being made to reduce costs and costs.
  • the present invention has been made in view of such circumstances, and an aluminum non-woven fiber material for a current collector of a power storage device capable of improving the charge / discharge speed of the power storage device, a manufacturing method thereof,
  • An object of the present invention is to provide an electrode using a woven fiber material and a method for producing the same.
  • the method for producing an aluminum non-woven fiber material for a current collector of an electricity storage device is formed by extruding molten aluminum into a space through fine holes and extruding the aluminum.
  • the method for producing an aluminum non-woven fiber material for a current collector of an electricity storage device was formed by extruding molten aluminum into a space through fine holes and extruding the aluminum.
  • the ratio of the long fibers in the aluminum non-woven fiber material is increased. For this reason, when electrons are exchanged between the adsorbent powder or active material powder and each aluminum fiber, the resistance of the electrons to move to the input / output terminal provided at the end of the aluminum nonwoven fiber material is reduced. Can be small.
  • the wire diameter of each aluminum fiber is small, the electron movement resistance at the contact portion between the aluminum fibers is increased depending on the contact state.
  • the proportion of the long fibers is increased. The amount of aluminum fibers that cannot send electrons to the input / output terminals without other aluminum fibers is reduced.
  • the aluminum short fibers can be removed by applying vibration to the aluminum fiber lump.
  • the short fibers can be efficiently removed from the intertwined aluminum fiber lump.
  • the aluminum fiber formed by the extrusion is dropped into the predetermined support surface by a blower or a force applying mechanism. It is also possible to apply a force in the extrusion direction. As a result, the aluminum passes more smoothly through the fine holes 42a having a small diameter, which is advantageous in efficiently producing long fibers having a small average wire diameter.
  • the pressure reduction process which makes the said space a negative pressure before the said lump formation process.
  • the aluminum passes more smoothly through the fine holes 42a having a small diameter, which is advantageous in efficiently producing long fibers having a small average wire diameter.
  • the aluminum is extruded downward through the fine holes to form the aluminum fibers, and the support surface is moved in a predetermined transport direction.
  • a lump of aluminum fibers is formed on the support surface by dropping the formed aluminum fiber onto the support surface. It is also possible. This increases the number of contacts between adjacent aluminum fibers, which is advantageous in reducing the resistance to movement of electrons between the active material powder or adsorbent powder and the input / output terminals.
  • An aluminum non-woven fiber material for a current collector of an electricity storage device includes an aluminum non-woven fiber material having an average fiber diameter of aluminum fibers of 100 ⁇ m or less, and the aluminum non-woven fiber material The number of ends of aluminum fibers appearing on one and other surfaces in the thickness direction is 5 or less per square centimeter on average.
  • the number of end portions of aluminum fibers appearing on one and other surfaces in the thickness direction is small, and the proportion of long fibers in the aluminum non-woven fiber material is increased accordingly. For this reason, when electrons are exchanged between the adsorbent powder or active material powder and each aluminum fiber, the resistance of the electrons to move to the input / output terminal provided at the end of the aluminum nonwoven fiber material is reduced. Can be small.
  • the aluminum fiber so as to have a portion.
  • the adsorbent powder or the active material powder is disposed in the concave portion of each aluminum fiber, the adsorbent powder or the active material powder is difficult to move with respect to each aluminum fiber in the aluminum non-woven fiber material. This is advantageous in maintaining the contact between the material powder or the active material powder and each aluminum fiber over a long period of time.
  • a method for producing an electrode of an electricity storage device is a liquid or gel slurry containing an adsorbent powder that adsorbs electrolyte ions during charging or an active material powder that chemically reacts during charging and discharging, and a binder.
  • a slurry creating step for creating the slurry an introducing step for introducing the slurry into the aluminum nonwoven fiber material produced by the above production method, and drying for drying the slurry adhering to the aluminum nonwoven fiber material after the introducing step. Process.
  • a slurry creating step for creating a liquid or gel slurry containing adsorbent powder, a binder, a conductive aid, etc., and the slurry is introduced into the aluminum nonwoven fiber material produced by the above production method.
  • a slurry creating step for creating a liquid or gel slurry containing an active material (titanium oxide, etc.), a binder, a conductive auxiliary agent, and the like,
  • the ratio of long fibers in the aluminum nonwoven fiber material is high as in the above aspect. For this reason, by drying the slurry, a large amount of adsorbent powder or active material powder comes into contact with each aluminum fiber of the aluminum nonwoven fiber material, and electrons are transferred between the adsorbent powder or active material powder and each aluminum fiber. When this is performed, the resistance of the electrons to move to the input / output terminal provided at the end of the aluminum nonwoven fabric can be reduced.
  • a plurality of aluminum nonwoven fiber materials into which the slurry has been introduced are laminated, and the slurry introduced into each aluminum nonwoven fiber material in the laminated state is dried, whereby 1 It is also possible to produce one electrode. If it does in this way, since each aluminum nonwoven fiber material can be made thin, it will become possible to introduce slurry into each aluminum nonwoven fiber material easily and reliably.
  • the said 4th aspect WHEREIN It is also possible to further perform the pressurization process which pressurizes the said aluminum nonwoven fabric material after the said introduction process or the said drying process. In this case, the gap between the aluminum fibers in the aluminum nonwoven fiber material is reduced by pressurization. For this reason, it becomes difficult for the adsorbent powder or active material powder introduced into the aluminum non-woven fiber material to come out from the inside of the aluminum non-woven fiber material, and contact between the adsorbent powder or active material powder and each aluminum fiber is prevented. It is advantageous in maintaining for a long time.
  • the slurry containing the adsorbent powder or the active material powder, the binder, and carbon fibers having an average thickness of 0.5 ⁇ m or less may be prepared. Is possible. In this way, for example, even when the adsorbent powder and the aluminum fiber are not in direct contact, the adsorbent powder and the aluminum fiber are electrically connected via the carbon fiber. Further, even when the adsorbent powder and the aluminum fiber are in direct contact, the electrical resistance between the adsorbent powder and the aluminum fiber is further reduced due to the connection by the carbon fiber.
  • the electrode of the electricity storage device comprises the aluminum nonwoven fiber material, an adsorbent powder that is held by the binder on the aluminum nonwoven fiber material and adsorbs electrolyte ions during charging, or a chemical reaction during charging. Active material powder.
  • the ratio of long fibers in the aluminum nonwoven fiber material is high as in the above aspect. For this reason, most of the adsorbent powder or active material powder held by the binder comes into contact with each aluminum fiber of the aluminum non-woven fiber material, and electrons are exchanged between the adsorbent powder or active material powder and each aluminum fiber. When performed, it is possible to reduce the resistance of the electrons moving to the input / output terminals provided at the ends of the aluminum nonwoven fiber material.
  • the said aluminum nonwoven fabric material has at least 1 part which is contacting so that two said aluminum fibers may cross
  • the fifth aspect may further include carbon fibers that are held by the aluminum nonwoven fiber material and that reduce electrical resistance between the adsorbent powder or the active material powder and the aluminum nonwoven fiber material. good. If comprised in this way, the electrical resistance between adsorption material powder or active material powder, and aluminum fiber can be reduced, and it is advantageous when reducing the resistance to which an electron moves to an input-output terminal.
  • an electrode in which a plurality of the aluminum non-woven fiber materials respectively holding the adsorbent powder or the active material powder is laminated may be used. If comprised in this way, since each aluminum non-woven fiber material can be made thin, introduction
  • the charge / discharge speed of the electricity storage device can be improved.
  • FIG. 1 is a schematic plan view of an aluminum fiber lump forming apparatus according to a first embodiment of the present invention. It is principal part sectional drawing of the bending pipe
  • this electrode includes an aluminum nonwoven fiber material 10 having an average fiber diameter of 100 ⁇ m or less and an active material that is held by binder B on the aluminum nonwoven fiber material 10 and chemically reacts during charge and discharge.
  • the material powder 20 is provided, and the conductive auxiliary agent 30 held by the binder B is provided on the aluminum nonwoven fabric material 10 as necessary.
  • the aluminum nonwoven fiber material 10 it is also possible to cause the aluminum nonwoven fiber material 10 to hold an adsorbent powder that adsorbs electrolyte ions during charging, instead of the active material powder 20.
  • molten aluminum is prepared in a sealed container 40 made of ceramic, stainless steel, or the like, into which a rear portion of a bent tube 41 having a bent tip is inserted, and the distal end of the bent tube 41 is sealed container 40.
  • the pressure in the sealed container 40 is increased by injecting air or an inert gas from the gas introduction pipe 40a in a state where it is outside, the molten aluminum rises from the rear part of the bent pipe 41 and the tip part. To reach.
  • the aluminum it is preferable to use a material having a purity of 99.9% or more for easy processing, and it is more preferable to use a material having a purity of 99.99% or more for easy processing. Alloys with other metals are also possible.
  • the space may be filled with air, may be filled with an inert gas such as nitrogen, or may be filled with other gases.
  • the nozzle 42 is arranged so that aluminum blows out in a substantially horizontal direction.
  • the aluminum coming out of the fine holes 42a of the nozzle 42 is cooled while flying laterally in the space to become aluminum fibers.
  • the exit side hole 42b of each micro hole 42a inclines diagonally upward several degrees toward the blowing direction, it is possible to make the air suspension time of the aluminum fiber longer. Can do.
  • the inlet side hole 42c of each micro hole 42a has a tapered shape whose diameter gradually decreases toward the outlet side. For this reason, the molten aluminum flows smoothly into the outlet-side hole 42b, which is advantageous in reducing the tearing of the aluminum fibers after being blown out.
  • the outlet side holes 42b of the respective micro holes 42a of the nozzle 42 are inclined obliquely upward by several degrees toward the blowing direction, so the position where the aluminum fibers fall is the direction of blowing aluminum (FIG. 1). 2 and in the left-right direction in FIG. 2), the aluminum fibers are prevented from being perfectly oriented in the aluminum fiber lump.
  • the aluminum melted as described above is blown out of the nozzle 42 to form a lump of aluminum fibers having an average wire diameter of 50 ⁇ m or less. If the nozzle 42 is replaced with one having fine holes 42a having other hole diameters, a mass of aluminum fibers having other average wire diameters can be formed.
  • the short fiber removal process is performed on the aluminum fiber lump formed as described above as shown in FIG.
  • an aluminum lump formed on the belt conveyor 43 is placed on a plate 44 having a plurality of holes 44a, or is passed through the plate 44.
  • a relatively short fiber in the aluminum fiber lump is dropped from the hole 44 a of the plate 44 by applying a vibration in the vertical direction with a vibration applying device such as 45.
  • the length of the fiber dropped from the hole 44a can be adjusted by adjusting the size and shape of the hole 44a, the direction, size, frequency, etc. of the vibration to be applied. In this embodiment, this is performed to remove short fibers of 5 mm or less, but some short fibers of 5 mm or less may remain in the aluminum fiber lump. On the other hand, short fibers exceeding 5 mm may be removed, and some long fibers may be removed together with the short fibers. However, the object of removing and reducing short fibers having a predetermined length (for example, 5 mm) or less is achieved. At this time, it is possible to remove and reduce aluminum particles formed by dripping aluminum from the fine holes 42a of the nozzle 42 without forming fibers.
  • the length of the short fiber to be removed is preferably 3 cm or less, and more preferably 5 cm or less.
  • short fibers tend to fall from the holes 44a due to the vibration because there are few contacts and engagement with other fibers in the lump of aluminum fibers.
  • an aluminum fiber lump is placed on the net or passed over the net, and the net is vibrated at this time, and relatively short fibers in the aluminum fiber lump are meshed. It is also possible to drop from the hole. It is also possible to remove relatively short fibers in the aluminum fiber mass by blowing air from the compressed air tank to the aluminum fiber mass with or instead of the vibration. It is also possible to remove relatively short fibers in the mass.
  • the aluminum fiber lump subjected to the short fiber removal treatment is used as it is as the aluminum non-woven fiber material for the current collector of the electrode
  • the aluminum fiber lump subjected to the short fiber removal treatment is formed by pressing with a pair of rollers.
  • the applied pressure can be appropriately changed according to the target shape and characteristics of the current collector and the electrode.
  • the number of ends of aluminum fibers appearing on one and other surfaces in the thickness direction is an average value of 5 or less per square centimeter Preferably there is. If comprised in this way, the ratio of the long fiber in an aluminum nonwoven fiber material will become high, and the resistance which an electron will move to the input-output terminal provided in the edge etc. of the aluminum nonwoven fiber material can be made small. .
  • the number of ends of aluminum fibers appearing on one and the other surfaces in the thickness direction of the aluminum non-woven fiber material should be as small as possible, more preferably not more than 3 per square centimeter. Preferably, it is 1 or less.
  • the formed aluminum non-woven fiber material is cut into a predetermined size for an electrode.
  • an aluminum non-woven fiber material is moved in the longitudinal direction by a belt conveyor or the like, and is rotated by a disk-shaped cutter arranged at a predetermined position in the width direction of the aluminum non-woven fiber material.
  • the aluminum nonwoven fiber material is cut in its longitudinal direction.
  • a liquid or gel slurry containing the active material powder 20 that chemically reacts during charging, the conductive additive 30 and the binder B is prepared.
  • the slurry is prepared by kneading a mixture of the active material powder 20, the conductive additive 30, and the binder B.
  • the slurry is introduce
  • the introduction of the slurry into the aluminum non-woven fiber material is not limited to the introduction of the slurry into all the numerous gaps or recesses existing between adjacent aluminum of the aluminum non-woven fiber material. It also means putting the slurry only in a part of the recess.
  • the drying process which dries the aluminum nonwoven fabric material in which the slurry was introduce
  • the binder B in a slurry is hardened and the active material powder 20 and the conductive support agent 30 in a slurry are hold
  • the pressurization process which pressurizes the aluminum nonwoven fabric material after a drying process is performed.
  • the pressurizing process is performed after the drying process, but the pressurizing process may be performed before the drying process.
  • the holding force for holding the active material powder 20 may decrease due to the pressure after drying. For this reason, when using such a binder B, the holding power fall of the binder B can be prevented by performing a pressurization process before a drying process.
  • the aluminum fiber lump subjected to the short fiber removal treatment is used as it is as an aluminum non-woven fiber material for a current collector, when the slurry is introduced into the aluminum non-woven fiber material, the introduction is smoother. Can be done.
  • the purity is 99.9% or more, more preferably, the purity is 99.99% or more.
  • the process is performed, at the portion where the aluminum fibers are in contact with each other so as to cross each other, the two intersecting aluminum fibers are deformed so as to bite each other. In other words, the aluminum fibers are flattened at the contacted portion, so that the two intersecting aluminum fibers seem to bite into each other. In this case, it is possible to reduce the movement resistance of electrons at the contact portion between the aluminum fibers, which is advantageous in reducing the resistance of the electrons moving to the input / output terminals.
  • the slurry containing the carbon fiber CF powder having an average thickness of 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less. It is also possible to use. In this case, as shown in FIG. 15, when the slurry is introduced into the aluminum nonwoven fiber material, a plurality of carbon fibers CF are arranged in the gaps formed in the aluminum nonwoven fiber material. The carbon fiber CF is in contact with the aluminum fiber, the active material powder 20, the conductive additive 30, and another carbon fiber CF. In the present embodiment, carbon fibers CF having an average thickness of about 0.1 to 0.2 ⁇ m and a length of about 20 to 200 ⁇ m are used. Note that the resistivity of the carbon-based conductive additive 30 is 0.1 to 0.3 ⁇ ⁇ cm, whereas the resistivity of the carbon fiber CF is, for example, 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • the active material powder 20 and the aluminum fiber are electrically connected via the carbon fiber CF. Further, even when the active material powder 20 and the aluminum fiber are in direct contact, the electrical resistance between the active material powder 20 and the aluminum fiber is further reduced by the connection by the carbon fiber CF. As described above, the carbon fiber CF having good conductivity can reduce the resistance of electron movement between the active material powder 20 and the aluminum fiber, which is advantageous in reducing the resistance of the electron moving to the input / output terminal. It is.
  • an aluminum non-woven fiber material having a predetermined thickness used for an electrode is cut into a predetermined size and a slurry is introduced.
  • a slurry is introduced into a predetermined size and a slurry is introduced.
  • a plurality of aluminum nonwoven fiber materials 10 having a thickness of 1/2 or less (for example, 10 ⁇ m or less) of the predetermined thickness are formed, and each aluminum nonwoven fiber material is formed.
  • the slurry is introduced into 10 and the slurry is dried, the plurality of aluminum non-woven fiber materials 10 are stacked and cut into a predetermined size, thereby creating one electrode.
  • transducing a slurry may be the thing after performing the pressurization by the said roller etc., and the thing which is not performing the pressurization may be sufficient as it.
  • electrical_connection member which mutually connects several aluminum non-woven fiber materials 10 by the edge part can also be provided.
  • the slurry does not have to be inserted deep into the gaps in the nonwoven fiber material, and the active material slurry is applied to the aluminum fiber foil (aluminum nonwoven fiber material) 10 like a normal aluminum foil. It is possible to apply. Moreover, since the lithium ion can move in the thickness direction of the aluminum fiber foil 10 through the gap between the aluminum fiber foils 10, the electrode can be thickened in the stack of the aluminum fiber foils 10 coated with the slurry. The capacity can be increased. That is, by increasing the number of laminated aluminum fiber foils 10 to which the slurry is applied, it is possible to increase the capacity of the electrode by increasing the thickness of the electrode while improving the charge / discharge rate.
  • the slurry containing the adsorbent powder to which electrolyte ions adsorb at the time of charging instead of the active material powder 20 as the slurry.
  • the adsorbent powder is held in place of the active material powder 20 on each aluminum fiber of the aluminum nonwoven fiber material after the drying step.
  • the average length of the carbon fibers CF is preferably at least half of the average particle diameter of the active material powder 20 or the adsorbent powder, and the average particle diameter is 2 / 3 or more is more preferable.
  • the active material powder or adsorbent powder is introduced into the aluminum nonwoven fiber material, the active material powder 20, the adsorbent powder, the carbon fiber CF, etc. are physically separated by the aluminum fibers in the aluminum nonwoven fiber by the pressurizing process. It is also possible to use a slurry that does not contain the binder B.
  • the active material powder is not particularly limited as long as it can be held by the binder B or the like on the aluminum non-woven fiber material as a current collector, and is preferably excellent in cycle characteristics.
  • Examples of the active material include lithium cobaltate (LiCoO 2 ) and iron phosphate-based active materials.
  • the adsorbent powder used in place of the active material powder is not particularly limited as long as it can be held by the binder B or the like on the aluminum non-woven fiber material, which is a current collector, and is preferably excellent in cycle characteristics.
  • adsorbent powders include polyacene (PAS), polyaniline (PAN), activated carbon, carbon black, graphite, and carbon nanotube.
  • PAS polyacene
  • PAN polyaniline
  • activated carbon carbon black
  • graphite graphite
  • carbon nanotube carbon nanotube
  • Active material powder and adsorbent powder are preferably pulverized using a mortar, ball mill, vibration ball mill, or the like, so that the average particle size is not more than a predetermined value.
  • a predetermined value the value etc. which added 10 micrometers to the average wire diameter of an aluminum nonwoven fabric material etc. can be considered.
  • the average particle diameter of the active material powder and the adsorbent powder is preferably 30 ⁇ m or less.
  • binder a thermoplastic resin, a polysaccharide polymer material, or the like can be used.
  • the material of the binder include polyacrylic resin, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • the conductive auxiliary agent may be a conductive material, and is preferably a material that is not chemically changed by an electrolyte or a solvent.
  • Examples of the conductive aid include graphite and carbon black.
  • the electrode made as described above can be used as an electrode of an electricity storage device such as an electric double layer capacitor, a secondary battery, a hybrid capacitor including a lithium ion capacitor.
  • an electricity storage device such as an electric double layer capacitor, a secondary battery, a hybrid capacitor including a lithium ion capacitor.
  • it can be used for a positive electrode and a negative electrode of an electric double layer capacitor, can be used for a positive electrode of a lithium ion secondary battery as an example of a secondary battery, and can be used for a positive electrode of a lithium ion capacitor. is there.
  • the application example will be described in the following embodiment.
  • FIG. 7 shows an example of a coin-type secondary battery using the electrode of the first embodiment.
  • the coin-type secondary battery includes a case (exterior can) 100 having a case main body 102 and a lid 101, and a power storage unit housed in the case 100.
  • the power storage unit includes the electrode of the first embodiment as the positive electrode 110.
  • the negative electrode 120 facing the positive electrode 110 and the separator 130 disposed between the positive electrode 110 and the negative electrode 120 are included.
  • the positive electrode 110 is in surface contact with the case main body 102
  • the negative electrode 120 is in surface contact with the lid 101, whereby the lid 101 and the case main body 102 function as input / output terminals of the positive electrode 110 and the negative electrode 120.
  • the active material powder 20 is held on the aluminum nonwoven fiber material of the positive electrode 110.
  • the negative electrode 120 only needs to have the structure and material of a known negative electrode of a secondary battery.
  • a carbon material such as graphite is used as an active material, and a copper is used as a current collector.
  • a foil is used.
  • the separator 130 may be any material as long as it electrically insulates the positive electrode 110 and the negative electrode 120, has ion permeability, and has resistance to oxidation / reduction at the contact surface between the positive electrode 110 and the negative electrode 120.
  • a porous polymer, an inorganic material, an organic / inorganic hybrid material, glass fiber, or the like can be used.
  • the case 100 containing the power storage unit is filled with an electrolytic solution.
  • a lithium salt, potassium salt, sodium salt, magnesium salt, or the like can be used as the electrolyte of the electrolytic solution.
  • a lithium salt is used in the case of a lithium ion secondary battery.
  • a non-aqueous solvent is used as a solvent in which the electrolyte dissolves, and ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, carbonate ester, and the like can be used as the non-aqueous solvent.
  • one surface in the thickness direction of the aluminum nonwoven fiber material of the positive electrode 110 is in contact with the case main body 102.
  • the aluminum non-woven fiber material of the positive electrode 110 is filled with the active material powder 20 in the entire range from one surface in the thickness direction to the other surface, and many of the active material powders 20 are made of aluminum non-woven material. It is in contact with each aluminum fiber of the fiber material. For this reason, the distance between the aluminum fiber carrying the electrons to the input / output terminal and the active material powder 20 is reduced, which is advantageous in improving the charge / discharge rate.
  • the ratio of the long fibers in the aluminum non-woven fiber material becomes high.
  • the active material powder and the aluminum fiber are in direct contact with each other, or the aluminum fiber and the active material powder are arranged close to each other and are electrically connected through the conductive auxiliary agent 30 and the like. For this reason, when electrons are exchanged between the active material powder and each aluminum fiber, the resistance of the electrons to move to the input / output terminal provided at the end of the aluminum non-woven fiber material can be reduced. it can.
  • the coin-type secondary battery includes a positive electrode 140 having a current collector 141 made of aluminum foil and an electrode layer 142 applied to one surface in the thickness direction of the current collector 141.
  • the electrode layer 142 contains active material powder, a conductive aid, a binder, and the like. Since the coin-type secondary battery has a limited space, the amount of active material powder in the conventional coin-type secondary battery is limited by the thickness of the current collector 141. Moreover, since the electrons of the active material powder arranged on the separator 130 side move to the current collector 141 via the active material powder and the conductive auxiliary agent arranged between the current collector 141, the charge / discharge speed is increased. It is not preferable for improvement.
  • the electrode structure of the first embodiment can be used for the negative electrode 120.
  • the current collector of the electrode is an aluminum non-woven fiber material, and lithium titanate, titanium oxide, tungsten oxide, tin oxide or the like is used as the active material powder 20 instead of the carbon material.
  • the electrode structure of the first embodiment has only a positive electrode, only a negative electrode, and a positive electrode and a negative electrode, similar to the coin-type secondary battery. It is possible to use both.
  • FIG. 9 shows an example of an electric double layer capacitor using the electrode of the first embodiment.
  • the electric double layer capacitor includes, for example, a container 200 and a power storage unit accommodated in the container 200.
  • the power storage unit includes the electrode of the first embodiment as the positive electrode 210.
  • a negative electrode 220 that opposes the positive electrode 210 and a separator 230 that is disposed between the positive electrode 210 and the negative electrode 220 are provided.
  • a positive electrode input / output terminal 210 a is connected to the positive electrode 210, and a negative electrode input / output terminal 220 a is similarly connected to the negative electrode 220, and each input / output terminal extends to the outside of the container 200.
  • the adsorbent powder is held on the aluminum nonwoven fiber material of the positive electrode 210.
  • the negative electrode 220 only needs to have the structure and material of a negative electrode of a known electric double layer capacitor.
  • the current collector 221 made of aluminum foil and the current collector are coated on one surface in the thickness direction.
  • an electrode layer 222 contains adsorbent powder, a conductive aid, a binder, and the like.
  • the separator 230 may be any material as long as it electrically insulates the positive electrode 210 and the negative electrode 220, has ion permeability, and has resistance to oxidation / reduction at the contact surface between the positive electrode 210 and the negative electrode 220.
  • a porous polymer, an inorganic material, an organic / inorganic hybrid material, glass fiber, or the like can be used.
  • the container 200 containing the power storage unit is filled with an electrolytic solution.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte.
  • the electrolyte and the non-aqueous solvent may be any known substance used for electric double layer capacitors.
  • ammonium salts and phosphonium salts can be used as the electrolyte
  • cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, nitriles, sulfur-containing compounds, etc. can be used as non-aqueous solvents. it can.
  • one end of the aluminum nonwoven fiber material of the positive electrode 210 is connected to the positive electrode input / output terminal 210a. Further, the aluminum non-woven fiber material of the positive electrode 210 is filled with the adsorbent powder in the entire range from one surface in the thickness direction to the other surface, and many adsorbent powders are made of the aluminum non-woven fiber material. In contact with each aluminum fiber. For this reason, the distance between the aluminum fiber carrying the electrons to the positive electrode input / output terminal 210a and the adsorbent powder is reduced, which is advantageous in improving the charge / discharge rate. Since the structure of the conventional positive electrode is the same as that of the negative electrode 220, it is easier to understand the advantages compared to the negative electrode 220.
  • the electrode structure of the first embodiment can be used for the negative electrode 220.
  • the positive electrode of the electricity storage device in which the active material powder and the adsorbent powder are arranged in the vicinity of the high purity aluminum fiber as described above. As a result, it is possible to manufacture an electricity storage device having higher capacity, less deformation resistance, and excellent charge / discharge characteristics.
  • the production of aluminum foil used for ordinary capacitors and secondary batteries is made by forming a very large square column aluminum ingot called a slab, cutting it, heating it, rolling it several times, and surface treatment. Etc. are produced. This requires a great deal of energy and cost.
  • the aluminum fiber used in the first embodiment can be produced by simply melting and blowing out a high-purity aluminum ingot. Further, when aluminum foil into which adsorbent powder, active material powder, conductive additive, etc. are introduced to form a foil, the press pressure can be reduced. For this reason, it becomes possible to manufacture a collector foil and a positive electrode foil easily and at low cost without requiring a large facility.
  • the amount of adsorbent powder or active material powder that can contact the current collector is more linear or meshed as in the positive electrode of FIG. 7 than in the case of using the current collector as a foil as in the positive electrode of FIG. It is possible to make the adsorbent powder and the active material powder exist in a range close to the current collector. Further, when the current collector is a foil, the distance between the adsorbent powder or the active material powder and the foil is increased. Since the thickness of the electrode is often about 100 ⁇ m, in that case, the distance between the adsorbent powder or active material powder and the foil is about 100 ⁇ m. If the adsorbent powder and the active material powder can be evenly placed in the ultrafine aluminum non-woven fiber material, it is advantageous in increasing the electric capacity and decreasing the internal resistance.
  • high-purity aluminum fibers are very flexible and have large voids between the fibers before being compacted.
  • adsorbent powder, active material powder, conductive additive, etc. are introduced into this void and pressed, the adsorbent powder is applied to an aluminum non-woven fiber material (current collector) having a fine mesh (hole or void) of several ⁇ m, It becomes possible to form a foil in which active material powder or the like is confined.
  • aluminum is blown out from the fine hole 42a of the nozzle 42 in a substantially horizontal direction.
  • the nozzle 42 is disposed so as to face downward, and blown downward from the fine hole 42a of the nozzle 42. It is also possible to drop the aluminum fibers on the belt conveyor 43. Even in this case, a lump of aluminum fibers can be formed on the belt conveyor 43.
  • the nozzle 42 when forming a lump of aluminum fibers having a small average wire diameter, it may be preferable to arrange the nozzle 42 so as to face downward.
  • the nozzle 42 is disposed so as to face downward, and the outlet side hole 42b of the fine hole 42a is also disposed so that its axis is parallel to the vertical axis. This makes it difficult for the aluminum fibers to be entangled with each other.
  • the surrounding member 46 which encloses the lower part of the nozzle 42 and the ventilation part 47 which sends the wind which goes down to the aluminum fiber which comes out from the lower part of the surrounding member 46 and falls below are provided, it will descend
  • This is advantageous in efficiently producing long fibers having a small average wire diameter, for example, long fibers having an average wire diameter of several ⁇ m to 50 ⁇ m.
  • the air blower part 47 can also be provided in the circumferential direction several places, and it is also possible to provide the single air blower which has a ring-shaped blower outlet.
  • an enclosing member 48 that encloses each aluminum fiber coming out of the fine hole 42a.
  • the enclosure member 48 is attached to the lower surface of the bent tube 41 or the nozzle 42, and the enclosure member 48 is provided with a plurality of through holes 48a extending in the vertical direction so as to correspond to the fine holes 42a.
  • the aluminum fibers coming out of the fine holes 42a pass through the through holes 48a.
  • the enclosure member 48 includes a first block 48b attached to the lower surface of the bent pipe 41 or the nozzle 42 and a second block 48c attached to the lower surface of the first block 48b.
  • a gap communicating with each through hole 48a is provided between the block 48b and the second block 48c, and an air supply path 48d for supplying air is provided in the gap.
  • the plurality of aluminum fibers exiting from the nozzle 42 are each surrounded by the through holes 48a, and the air from the air supply path 48d passes through the gaps and enters the respective through holes 48a downward (in the extrusion direction of the aluminum fibers). Blow out. Thereby, a downward force is surely applied to each aluminum fiber. That is, the gap functions as a blower that supplies the downward air flow into the through hole 48a. In addition, you may comprise so that the aluminum fiber which exits from the four or less micropores 42a by one through-hole 48a may be enclosed. Even in this case, a downward force is reliably applied to each aluminum fiber.
  • blower 47 it is also possible to provide a force applying mechanism for applying a downward force to the downward aluminum fiber.
  • a force applying mechanism for applying a downward force to the downward aluminum fiber.
  • a pair of rollers can be provided below the nozzle 42, the aluminum fibers can be lightly sandwiched by the rollers, and a downward force can be applied to the aluminum fibers by the rotation of the rollers. It is also possible to apply a downward force to the aluminum fiber by other mechanisms.
  • This is advantageous in efficiently producing long fibers having a wire diameter of several ⁇ m to 50 ⁇ m.
  • it is advantageous to make a negative pressure in a space in which aluminum fibers fly in a substantially horizontal direction in order to efficiently produce long fibers having an average wire diameter of several ⁇ m to 50 ⁇ m.
  • the surface of the aluminum fiber blown out from the nozzle 42 is reduced or prevented by evacuating the container 49 shown in FIG. 12 or filling with an inert gas such as argon gas or nitrogen gas. It is also possible to do.
  • the molded aluminum fiber lump or aluminum non-woven fiber material is immersed in a chemical such as nitric acid at a concentration of about 15% by weight or caustic soda at a concentration of about 10% by weight to remove the oxide film on the surface of the aluminum fiber. It is also possible to do.
  • a belt conveyor 43 as a predetermined support surface may be disposed in the container 49 shown in FIG. 12 so that the aluminum fibers blown from the nozzles 42 fall on the belt of the belt conveyor 43.
  • a vibration applying mechanism 43a that vibrates the belt conveyor 43 in a horizontal direction orthogonal to the conveying direction can be provided.
  • the vibration imparting mechanism 43a applies a vibration having an amplitude of, for example, several mm to several cm to the belt conveyor 43.
  • the aluminum fiber is transported in the transport direction by the belt conveyor 43 in a state where the belt conveyor 43 is vibrating by the vibration applying mechanism 43a.
  • the frequency is preferably about 0.1 Hz to several tens Hz.
  • the number of the contacts of adjacent aluminum fibers increases. This is advantageous in reducing the resistance of electron movement between the active material powder or adsorbent material powder and the input / output terminal.
  • the belt conveyor 43 is reciprocated in the transport direction, the formed aluminum fiber lump becomes thick.
  • the aluminum fibers are blown downward as shown in FIGS. 11 to 12, depending on the conditions, the amount of short fibers in the aluminum non-woven fiber material is reduced without performing the short fiber removing step. It becomes possible.
  • This electrode uses an aluminum non-woven fiber material having a different fiber cross-sectional shape instead of the aluminum non-woven fiber material 10 of the first embodiment, and the other configuration is the same as that of the first embodiment, so that the description is omitted.
  • the aluminum fiber of the aluminum nonwoven fabric material of this embodiment has an average wire diameter of 100 ⁇ m or less, and the cross-sectional shape is not circular as shown in FIGS. In this case, the average wire diameter is measured at a position where the dimension is maximum, as shown in FIGS.
  • the cross-sectional shape of the aluminum fiber is arranged between three or more convex portions having an inner angle of less than 180 ° and two convex portions 180 respectively. And three or more concave portions having an inner angle of not less than °.
  • the interior angle referred to here is an angle formed by two sides forming the convex portion or the concave portion and is an angle existing in the cross section.
  • an electric double layer capacitor and a lithium battery that are more inexpensive, have low internal resistance, and are excellent in charge and discharge by using aluminum fiber as a current collector.
  • aluminum fibers that are current collectors especially those whose cross-sectional shape is as shown in FIGS. 13 and 14, active material powder, adsorbent powder, conductive additive, binder, etc. are in close contact with the fibers by pressing. Therefore, when the electrode is charged and discharged as in the case of a lithium ion secondary battery, the active material powder expands and contracts, etc. It is possible to prevent the phenomenon of deterioration.
  • SYMBOLS 10 Aluminum non-woven fiber material, 20 ... Active material powder, 30 ... Conductive auxiliary agent, 40 ... Sealed container, 41 ... Curved pipe, 42 ... Nozzle, 43 ... Belt conveyor, 44 ... Plate, 45 ... Exciter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 このアルミニウム不織繊維材の製造方法は、溶融したアルミニウムを微細な孔42aを通して空間中に押出すと共に、押出されることにより成形されたアルミニウム繊維を所定の支持面43上に落とすことにより、前記支持面43上にアルミニウム繊維の塊を形成する塊形成工程と、前記アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維を除去するための短繊維除去処理を行う短繊維除去工程と、前記短繊維除去工程後の前記アルミニウム繊維の塊を加圧して前記アルミニウム不織繊維材を成形する加圧工程とを有する。

Description

蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法
 本発明は、二次電池、キャパシタ等の蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法に関する。
 エネルギー削減や地球温暖化防止を目的に様々な分野でキャパシタや二次電池が使用されており、特に自動車産業においては、電気エネルギーを採用したことによりこれらを利用した技術開発が加速されている。
 電気二重層キャパシタは、従来、低電圧が印加される電子回路のメモリのバックアップ用として使用されており、二次電池と比較して高い入出力の信頼性を有する。
 このため、近年では太陽光や風力発電などの自然エネルギーによる発電や、建設機械、瞬低用電源、電車の回生用電源などに利用されている。自動車への用途としても検討されてきたが、特性、コストが要求に合わず、近年までこの分野での使用実現に至らなかった。しかし、現在では、電子制御ブレーキシステム用に電気二重層キャパシタが使用され、自動車の電装品のバックアップ電源やアイドリングストップシステムの始動用エネルギー供給、ブレーキ制御、動力アシストなどへの用途が検討されている。
 電気二重層キャパシタの構造は、正負の電極部と、電解液と、対向する正負の電極部の短絡を防止するセパレータとから構成される。電極部は、分極性電極(現在は主に活性炭)、活性炭を保持するためのバインダー、導電助剤(主にカーボンの微粒子や微細繊維)を混練したものを、集電体であるアルミニウム箔(厚さ約20μm)上に何層も塗布する事で形成されている。このような電気二重層キャパシタは例えば特許文献1に開示されている。
 電気二重層キャパシタの充電は、電解質イオンが溶液内を移動し活性炭の微細孔表面に吸脱着する事で行われる。電気二重層は活性炭粉と電解液が接する界面に形成される。
 因みに、通常の活性炭の粒径は、例として約4~8μm、比表面積は、例として1600~2500m/gである。電解液は陽イオン、陰イオン、および溶媒を有し、陽イオンとしてテトラエチルアンモニウム塩、陰イオンとして四フッ化ホウ酸イオンなどが用いられ、溶媒としてプロピレンカーボネートやエチレンカーボネートなどが使用されている。
 一方、リチウムイオン二次電池は、主に、正極、負極、セパレータから構成されている。例えば図8に示すように、一般的に正極は集電体である厚さ20μmのアルミニウム箔に活物質粉、通常はコバルト酸リチウムと、添加物である導電助剤と、バインダーとを練り合わせたものを100μm程度の厚さに塗布したものであり、負極は集電体である銅箔に炭素材料を塗布したものであり、これらを例えばポリエチレンなどのセパレータで分離し、電解液に浸すことにより、リチウムイオン二次電池が構成されている。このようなリチウムイオン二次電池は例えば特許文献2に開示されている。
 充放電は、リチウムイオンが正極と負極との間を移動することで行われ、充電時はリチウムイオンが正極から負極へ移動し、正極のリチウムイオンがなくなるか負極にリチウムイオンが収蔵できなくなったら充電が完了する。放電時はこの逆となる。
特開2005-086113号公報 特開2007-123156号公報
 近年、電気自動車、エネルギー発電等のパワーデバイス用のキャパシタの開発が進められている。高効率に大容量のエネルギーをキャパシタに出し入れするためには、静電容量を増加させ、電極部の内部抵抗を減らす方法が考えられる。簡単には、活性炭と集電体であるアルミニウム部材の距離を近くし、活性炭を出来る限り多く配置する方法が考えられる。
 一般的に、電気二重層キャパシタがリチウムイオン二次電池を主とする二次電池と違う点は、化学反応を伴わず、自己放電によって時間と共に電荷が失われ、蓄電時間が短く、電流の放出時間が短い点である。また、エネルギー密度において、リチウム電池が数百Wh/Lに対して電気二重層キャパシタは、数十Wh/Lである。電気二重層キャパシタが、蓄電用ではなく、電装品のバックアップ電源やアイドリングストップシステムの始動用エネルギー、ブレーキ制御、動力アシストなどで検討されているのは、前記の相違による。
 リチウム電池を主とする二次電池は、比較的エネルギー密度が高く、長時間使用できるので、携帯機器をはじめ様々な分野で使用され、近年、自動車や重機、エネルギー分野等に利用されるようになってきた。しかしながら、依然として、性能(容量、充放電速度、寿命)や製造コストに課題が多く、特に自動車などの大型電池においてその課題が顕著である。例えば、携帯電話で使用される電流は数mAであるが、ハイブリッド車で使用される電流は数百Aとなり、両者の差は10000倍以上である。そのため容量を増やす為の大型化が必要であるが、大型化には、容量をはじめ充電速度、信頼性、製造の難しさなど多くの課題が存在する。
 リチウムイオン二次電池の反応は可逆的な化学反応であり、電極が充放電する際に、活物質の体積が膨張・収縮する。そのため、活物質が集電体から剥離し、充放電特性が劣化する。即ち、常に100%同じ充放電をすることはなく、充放電の能力低下が起こる。ハイブリッド自動車や電気自動車では電池は何年も使用されるので、上記劣化を防ぐために集電体と活物質の剥離を抑える必要がある。
 また、リチウムイオン電池の最大の課題に内部抵抗がある。内部抵抗とはリチウムイオンが電池内部の正極と負極で電解質の中を移動する際の抵抗といえるが、この移動抵抗が、容量を大きくすることができない、又は充放電速度を速くできない主な理由である。
 大型化の為に集電体に多くの活物質を塗布すると容量は増加するが、移動抵抗が大きくなる。その為、現在、その厚みには限界がある。また、その抵抗により充放電速度が遅くなっている。塗布厚を薄くすると内部抵抗は低減し充放電速度は速くなるが、容量が減少する。その為、何重にも活物質を塗布した集電体を重ねたり、活物質を塗布した集電体の面積を広げたりする必要が生じる。
 充電や放電の速さは、リチウムイオンの発生量にも起因する。一度に多くのイオンが作り出され一度に移動できれば、充電速度や放電速度は速くなる。二次電池の化学反応は電解質との界面で起こるので、電極と電解質との接触面積を増やすことができれば、充放電速度も改善される。
 内部抵抗を減らすために、添加物の改良、導電助剤や活物質の改良、また集電体の上に予めカーボンの微粒子を塗布するなどの工夫が実施されている。また、集電体の形状においても、前述のように出来るだけ薄膜にする改善や、箔に細かい穴等を形成して表面積を大きくする改善が行われている。また、電気二重層キャパシタにおいても同様に活性炭や添加剤の改良、集電体との接触面積を増やすなどの研究開発が行われている。
 前述のように、蓄電デバイスである電気二重層キャパシタやリチウムイオン二次電池などの二次電池においては、電気自動車、ハイブリッド車、ハイパワーエネルギーデバイス用に、大容量化、高出力化、長寿命化、コスト低減に向けた取組みが行われている。
 本発明はこのような事情に鑑みてなされたものであって、蓄電デバイスの充放電速度を向上することができる蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明の第1の態様に係る蓄電デバイスの集電体用のアルミニウム不織繊維材の製造方法は、溶融したアルミニウムを微細な孔を通して空間中に押出すと共に、押出されることにより成形されたアルミニウム繊維を所定の支持面上に落とすことにより、前記支持面上にアルミニウム繊維の塊を形成する塊形成工程と、前記アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維を除去するための除去処理を行う短繊維除去工程と、前記短繊維除去工程後の前記アルミニウム繊維の塊を加圧して前記アルミニウム不織繊維材を成形する加圧工程とを有する。
 本発明の第2の態様に係る蓄電デバイスの集電体用のアルミニウム不織繊維材の製造方法は、溶融したアルミニウムを微細な孔を通して空間中に押出すと共に、押出されることにより成形されたアルミニウム繊維を所定の支持面上に落とすことにより、前記支持面上にアルミニウム繊維の塊を形成する塊形成工程と、前記アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維を除去するための除去処理を行うことにより、前記アルミニウム繊維の塊を前記集電体用のアルミニウム不織繊維材にする短繊維除去工程とを有する。
 上記第1および第2の態様では、アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維が除去されるので、アルミニウム不織繊維材内の長繊維の比率が高くなる。このため、吸着物質粉又は活物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。
 各アルミニウム繊維の線径は小さいので、アルミニウム繊維同士の接触部における電子の移動抵抗が接触状態により大きくなるが、上記第1および第2の態様では、長繊維の比率が高くなっている分だけ、他のアルミニウム繊維を介さなければ入出力端子に電子を送ることができないアルミニウム繊維の量が低減されている。
 上記第1又は第2の態様の前記短繊維除去処理において、前記アルミニウム繊維の塊に振動を加えることにより前記アルミニウム短繊維を除去することもできる。
 この場合、複雑に絡み合ったアルミニウム繊維の塊から短繊維を効率良く除去することができる。
 上記第1又は第2の態様の塊形成工程において、前記押出されることにより成形されたアルミニウム繊維に、送風機又は力付与機構により、前記所定の支持面上に落ちるまでの間に当該アルミニウム繊維の押出方向に力を付与することも可能である。
 これにより、径の小さい微細孔42aをアルミニウムがより円滑に通過するようになり、平均線径が小さな長繊維を効率的に作成する上で有利である。
 また、上記第1又は第2の態様において、前記塊形成工程の前に前記空間を負圧とする圧低減工程を行うことも可能である。
 これにより、径の小さい微細孔42aをアルミニウムがより円滑に通過するようになり、平均線径が小さな長繊維を効率的に作成する上で有利である。
 また、上記第1又は第2の態様の塊形成工程において、前記アルミニウムを前記微細な孔を通して下方に向かって押出して前記アルミニウム繊維を成形し、また、前記支持面を所定の搬送方向に移動させながら、前記支持面に前記搬送方向と直交する方向に振動を加えている状態で、前記成形されたアルミニウム繊維を前記支持面上に落とすことにより、前記支持面上にアルミニウム繊維の塊を形成することも可能である。
 これにより、隣接するアルミニウム繊維同士の接点の数が多くなり、活物質粉や吸着物質粉と入出力端子との間の電子の移動抵抗を小さくする上で有利である。
 本発明の第3の態様に係る蓄電デバイスの集電体用のアルミニウム不織繊維材は、アルミニウム繊維の平均線径が100μm以下であるアルミニウム不織繊維材を備え、前記アルミニウム不織繊維材の厚さ方向一方および他方の面にあらわれるアルミニウム繊維の端部の数が、平均値で、1平方センチメートル当り5以下である。
 上記第3の態様では、厚さ方向一方および他方の面にあらわれるアルミニウム繊維の端部の数が少なく、その分だけアルミニウム不織繊維材内の長繊維の比率が高くなっている。このため、吸着物質粉又は活物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。
 上記第3の態様において、断面形状が180°未満の内角を有する3つ以上の凸形状部と、各々2つの凸形状部の間に配置され180°以上の内角を有する3つ以上の凹形状部とを有するように、前記アルミニウム繊維を形成することも可能である。
 この場合、吸着物質粉又は活物質粉が各アルミニウム繊維の凹形状部内に配置されると、アルミニウム不織繊維材内で各アルミニウム繊維に対し吸着物質粉又は活物質粉が移動し難くなり、吸着物質粉又は活物質粉と各アルミニウム繊維との接触を長期に亘って維持する上で有利である。
 本発明の第4の態様に係る蓄電デバイスの電極の製造方法は、充電時に電解質イオンが吸着する吸着物質粉又は充放電時に化学反応する活物質粉と、バインダーとを含む液状又はゲル状のスラリーを作成するスラリー作成工程と、前記スラリーを上記製造方法で製造したアルミニウム不織繊維材内に導入する導入工程と、前記導入工程の後に前記アルミニウム不織繊維材に付着した前記スラリーを乾燥させる乾燥工程とを有する。
 例えば、キャパシタに関しては、吸着物質粉、バインダー、導電助剤等を含む液状又はゲル状のスラリーを作成するスラリー作成工程と、前記スラリーを上記製造方法で製造したアルミニウム不織繊維材内に導入する導入工程と、前記導入工程の後に前記アルミニウム不織繊維材に付着した前記スラリーを乾燥させる乾燥工程とを有する。また、リチウムイオン二次電池に関しては、キャパシタの時と同様に活物質(チタン酸化物等)、バインダー、導電助剤等を含む液状又はゲル状のスラリーを作成するスラリー作成工程と、前記スラリーを上記製造方法で製造したアルミニウム不織繊維材内に導入する導入工程と、前記導入工程の後に前記アルミニウム不織繊維材に付着した前記スラリーを乾燥させる乾燥工程とを有する。
 上記第4の態様では、アルミニウム不織繊維材内において長繊維の比率が上記の態様のように高くなっている。このため、スラリーを乾燥させることにより多くの吸着物質粉又は活物質粉がアルミニウム不織繊維材の各アルミニウム繊維に接触し、吸着物質粉又は活物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。
 上記第4の態様において、乾燥工程の前に、スラリーを導入した複数のアルミニウム不織繊維材を積層し、積層した状態で各アルミニウム不織繊維材に導入されたスラリーを乾燥させ、これにより1つの電極を製造することも可能である。
 このようにすると、各アルミニウム不織繊維材を薄くすることができるので、各アルミニウム不織繊維材へのスラリーの導入を容易且つ確実に行うことが可能となる。
 上記第4の態様において、前記導入工程又は前記乾燥工程の後に前記アルミニウム不織繊維材を加圧する加圧工程をさらに行うことも可能である。
 この場合、加圧によりアルミニウム不織繊維材内においてアルミニウム繊維間の隙間が小さくなる。このため、アルミニウム不織繊維材内に導入された吸着物質粉又は活物質粉がアルミニウム不織繊維材の内部から外部に出難くなり、吸着物質粉又は活物質粉と各アルミニウム繊維との接触を長期に亘って維持する上で有利である。
 上記第4の態様において、前記スラリー作成工程で、前記吸着物質粉又は前記活物質粉と、前記バインダーと、平均太さが0.5μm以下であるカーボン繊維とを含む前記スラリーを作成することも可能である。
 このようにすると、例えば、吸着物質粉とアルミニウム繊維とが直接接触していない場合でも、当該吸着物質粉とアルミニウム繊維とがカーボン繊維を介して電気的に接続される。また、吸着物質粉とアルミニウム繊維とが直接接触している場合でも、カーボン繊維による接続があることによって、当該吸着物質粉とアルミニウム繊維との間の電気抵抗が更に低減される。
 本発明の第5の態様に係る蓄電デバイスの電極は、前記アルミニウム不織繊維材と、前記アルミニウム不織繊維材にバインダーにより保持され、充電時に電解質イオンが吸着する吸着物質粉又は充電時に化学反応する活物質粉とを備えている。
 上記第5の態様では、アルミニウム不織繊維材内において長繊維の比率が上記の態様のように高くなっている。このため、バインダーにより保持された吸着物質粉又は活物質粉の多くがアルミニウム不織繊維材の各アルミニウム繊維に接触し、吸着物質粉又は活物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。
 上記第5の態様において、前記アルミニウム不織繊維材が2本の前記アルミニウム繊維が交差するように接触している部分を少なくとも1箇所有し、アルミニウム不織繊維材を加圧することにより、該交差部分において前記2本のアルミニウム繊維が互いに食い込むように構成することも可能である。
 この場合、アルミニウム繊維同士の接触部における電子の移動抵抗を低減することができ、電子が入出力端子に移動する抵抗を小さくする上で有利である。
 上記第5の態様において、前記アルミニウム不織繊維材に保持され、前記吸着物質粉又は前記活物質粉と前記アルミニウム不織繊維材との間の電気抵抗を低減するカーボン繊維をさらに備えていても良い。
 このように構成すると、吸着物質粉又は活物質粉とアルミニウム繊維との間の電気抵抗を低減することができ、電子が入出力端子に移動する抵抗を小さくする上で有利である。
 上記第5の態様において、前記吸着物質粉又は前記活物質粉をそれぞれ保持する前記アルミニウム不織繊維材が複数積層された電極とすることも可能である。
 このように構成すると、各アルミニウム不織繊維材を薄くすることができるので、各アルミニウム不織繊維材へのスラリーの導入が容易且つ確実に行われるようになる。
 本発明によれば、蓄電デバイスの充放電速度を向上することが可能となる。
本発明の第1実施形態に係るアルミニウム繊維の塊の成形装置の概略正面図である。 本発明の第1実施形態に係るアルミニウム繊維の塊の成形装置の概略平面図である。 図1における曲がり管の要部断面図である。 本発明の第1実施形態に係る短繊維除去装置の概略正面図である。 本発明の第1実施形態に係る加圧装置の概略正面図である。 本発明の第1実施形態に係る電極の断面イメージ図である。 本発明の第1実施形態に係る電極を用いたコイン型二次電池の断面図である。 従来のコイン型二次電池の断面図である。 本発明の第1の実施形態に係る電極を用いた電気二重層キャパシタの断面図である。 第1実施形態の第1変形例における曲がり管、囲い部材、および送風部の要部断面図である。 第1実施形態の第2変形例における曲がり管、囲い部材、および送風部の要部断面図である。 第1実施形態の第3変形例における曲がり管および容器の要部断面図である。 本発明の第2実施形態に係るアルミニウム繊維の断面図である。 本発明の第2実施形態の変形例に係るアルミニウム繊維の断面図である。 本発明の第1実施形態の第4変形例における電極の断面イメージ図である。 本発明の第1実施形態の第5変形例における電極の断面イメージ図である。 本発明の第1実施形態の第6変形例における電極の断面イメージ図である。 第1実施形態の第7変形例におけるアルミニウム繊維の塊の成形方法を示す図である。
 本発明の第1実施形態に係る電極について図面を参照して以下に説明する。
 この電極は、図6に示すように、アルミニウム繊維の平均線径が100μm以下であるアルミニウム不織繊維材10と、アルミニウム不織繊維材10にバインダーBにより保持されて充放電時に化学反応する活物質粉20とを備え、必要に応じてアルミニウム不織繊維材10にバインダーBにより保持された導電助剤30を備えている。図6においてアルミニウム不織繊維材10に、活物質粉20の代わりに、充電時に電解質イオンが吸着する吸着物質粉を保持させることも可能である。
[集電体としてのアルミニウム不織繊維材の成形]
 例えば図1に示すように、セラミック、ステンレス等から成り先端が曲がった曲がり管41の後方部が挿入された密閉容器40内に溶融したアルミニウムを準備し、曲がり管41の先端部が密閉容器40の外に出ている状態で、空気もしくは不活性ガスなどをガス導入管40aから注入して密閉容器内40の圧力を上げると、溶けたアルミニウムが曲がり管41の後方部から上昇して先端部に到達する。曲がり管41の先端の開口部41aに数μm~数mmの孔径、好ましくは数μm~数十μmの孔径の複数の微細孔42aを有するノズル42をセットしておくと、溶けたアルミニウムが微細孔42aから空間中に吹き出す。このアルミニウムとして、純度が99.9%以上のものを用いることが加工を容易にする上で好ましく、純度が99.99%以上のものを用いることが加工を容易にする上でより好ましいが、その他の金属との合金とすることも可能である。前記空間は空気で満たされていても良く、窒素等の不活性ガスで満たされていても良く、その他のガスで満たされていても良い。
 本実施形態では、略水平方向に向かってアルミニウムが吹き出すようにノズル42が配置されている。これにより、ノズル42の微細孔42aから出たアルミニウムは空間中を横方向に飛びながら冷却されてアルミニウム繊維となる。なお、図3に示すように、本実施形態では各微細孔42aの出口側孔42bが吹き出し方向に向かって斜め上方に数度だけ傾斜しているので、アルミニウム繊維の滞空時間をより長くすることができる。また、各微細孔42aの入口側孔42cは出口側に向かって徐々に径が小さくなるテーパー形状を有する。このため、溶融したアルミニウムが出口側孔42bに円滑に流入し、吹き出した後のアルミニウム繊維の断裂を低減する上で有利である。
 吹き出したアルミニウムが空間中で冷却されて成形されたアルミニウム繊維を所定の支持面上、例えばベルトコンベア43上に落とすことにより、ベルトコンベア43上にアルミニウム繊維の塊が形成される。
 ここで、本実施形態ではノズル42の各微細孔42aの出口側孔42bが吹き出し方向に向かって斜め上方に数度だけ傾斜しているので、アルミニウム繊維が落ちる位置がアルミニウムの吹き出し方向(図1および図2の左右方向)にランダムに変化し、アルミニウム繊維の塊中でアルミニウムの繊維が完全に配向することが防がれる。
 本実施形態では、前述のように溶融したアルミニウムをノズル42から吹き出すことにより、平均線径が50μmやそれ以下であるアルミニウム繊維の塊を形成する。なお、ノズル42を他の孔径の微細孔42aを有するものに交換すると、他の平均線径のアルミニウム繊維の塊を成形することができる。
 続いて、上記のように成形されたアルミニウム繊維の塊に対して図4のように短繊維除去処理を行う。この処理は、ベルトコンベア43上に形成されたアルミニウムの塊を複数の孔44aが空けられたプレート44上に載置し、又は当該プレート44上を通過させ、その際にプレート44に加振機45等の振動付与装置で例えば上下方向の振動を加えることにより、アルミニウム繊維の塊中の比較的短い繊維をプレート44の孔44aから落とす処理である。
 孔44aから落とされる繊維の長さは、孔44aの大きさや形状の調整、加える振動の方向、大きさ、周波数等によって調整可能である。本実施形態では5mm以下の短繊維を除去するために行うが、何本かの5mm以下の短繊維がアルミニウム繊維の塊中に残ることもある。一方、5mmを超える短繊維が除去されることもあり、何本かの長繊維が短繊維と共に除去されることもある。しかし、所定の長さ(例えば5mm)以下の短繊維を除去し低減するという目的は達成される。この際に、ノズル42の各微細孔42aからアルミニウムが繊維にならずに垂れて形成されたアルミニウムの粒を除去し低減することもできる。なお、除去しようとする短繊維の長さが3cm以下であることが好ましく、5cm以下であることがより好ましい。
 なお、短い繊維はアルミニウム繊維の塊の中で他の繊維との接触や係合が少ないので、前記振動によって孔44aから落ちる傾向がある。また、プレート44の代わりに網の上にアルミニウム繊維の塊を載置し、又は当該網の上を通過させ、その際に網に振動を加え、アルミニウム繊維の塊中の比較的短い繊維を網の孔から落とすことも可能である。また、振動と共に、又は振動の代わりに、アルミニウム繊維の塊に圧縮空気タンクからの空気を吹きかけることにより、アルミニウム繊維の塊中の比較的短い繊維を除去することも可能であり、その他の処理で当該塊中の比較的短い繊維を除去することも可能である。
 短繊維除去処理を行ったアルミニウム繊維の塊をそのまま電極の集電体用のアルミニウム不織繊維材とすることも可能であるが、本実施形態では、短繊維除去処理を行ったアルミニウム繊維の塊を図5のように一対のローラで加圧して前記アルミニウム不織繊維材を成形する。加圧力は集電体や電極の狙いとする形状や特性に応じて適宜変更可能である。また、ローラによる加圧だけではなく、一対の平面の間にアルミニウム繊維の塊を挟んで加圧することも可能であり、型によってアルミニウム繊維の塊を加圧することも可能であり、その他の方法でアルミニウム繊維の塊を加圧することも可能である。
 上記のように成形されたアルミニウム不織繊維材や、下記の電極において、その厚さ方向一方および他方の面にあらわれるアルミニウム繊維の端部の数が、平均値で、1平方センチメートル当り5個以下であることが好ましい。このように構成されると、アルミニウム不織繊維材内の長繊維の比率が高くなり、電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。なお、アルミニウム不織繊維材の厚さ方向一方および他方の面にあらわれるアルミニウム繊維の端部の数は、可能な限り少ない方が良く、平均値で、1平方センチメートル当り3個以下であることがより好ましく、1個以下であることがさらに好ましい。
[電極の成形]
 先ず、成形したアルミニウム不織繊維材を電極用に所定の大きさに切断する。例えば、切断工程の一部において、アルミニウム不織繊維材をその長手方向にベルトコンベア等で移動させながら、アルミニウム不織繊維材の幅方向の所定位置に配置され回転している円盤状のカッターにより、アルミニウム不織繊維材をその長手方向に切断する。
 一方、充電時に化学反応する活物質粉20と、導電助剤30と、バインダーBとを含む液状又はゲル状のスラリーを作成する。当該スラリーは活物質粉20と、導電助剤30と、バインダーBとを混ぜた混合物を混練等することにより作成される。
 そして、所定の大きさに切断されたアルミニウム不織繊維材をスラリーに浸漬することにより、アルミニウム不織繊維材内にスラリーを導入する。スラリーをアルミニウム不織繊維材に塗布することによりアルミニウム不織繊維材内にスラリーを導入することも可能である。なお、アルミニウム不織繊維材内にスラリーを導入するとは、アルミニウム不織繊維材の隣り合うアルミニウムの間に存在する多数の隙間や凹部の全てにスラリーを入れることだけではなく、該多数の隙間又は凹部の一部にだけスラリーを入れることも意味する。
 続いて、スラリーが導入されたアルミニウム不織繊維材を真空乾燥等により乾燥させる乾燥工程を行う。これにより、スラリー中のバインダーBを硬化させ、バインダーBによりスラリー中の活物質粉20と導電助剤30をアルミニウム不織繊維材の各アルミニウム繊維に保持する。
 続いて、乾燥工程後のアルミニウム不織繊維材を加圧する加圧工程を行う。加圧工程としては、アルミニウム不織繊維材を一対のローラ間に通す処理、アルミニウム不織繊維材を一対の平面で挟む処理、又は型によってアルミニウム不織繊維材を加圧する処理等を行うことが可能である。
 前述の方法では、乾燥工程の後に加圧工程を行っているが、乾燥工程の前に加圧工程を行うことも可能である。バインダーBの種類によっては乾燥後の加圧により活物質粉20を保持する保持力が低下する場合もある。このため、このようなバインダーBを用いる場合、乾燥工程の前に加圧工程を行うことによりバインダーBの保持力低下を防止することができる。
 一方、短繊維除去処理を行ったアルミニウム繊維の塊をそのまま集電体用のアルミニウム不織繊維材として用いる場合、前記スラリーをアルミニウム不織繊維材内に導入する際に、その導入をより円滑に行うことが可能となる。
 アルミニウムを用いることにより、特に好ましくは純度が99.9%以上、より好ましくは純度が99.99%以上のアルミニウムを用いることにより、図5の加圧を行った際に、又は、前記加圧工程を行った際に、アルミニウム繊維同士が交差するように接触している部分において、交差している2本のアルミニウム繊維が互いに食い込むように変形する。つまり、前記接触している部分でアルミニウム繊維が偏平し、これにより、交差している2本のアルミニウム繊維が互いに食い込んでいるように見える。この場合、アルミニウム繊維同士の接触部における電子の移動抵抗を低減することができ、電子が入出力端子に移動する抵抗を小さくする上で有利である。
 また、前記スラリーとして、活物質粉20と、導電助剤30と、バインダーBに加えて、平均太さが0.5μm以下、好ましくは0.3μm以下であるカーボン繊維CFの粉末とを含むスラリーを用いることも可能である。この場合、図15に示すように、アルミニウム不織繊維材にスラリーを導入すると、アルミニウム不織繊維材内に形成されている隙間に複数のカーボン繊維CFが配置される。カーボン繊維CFは、アルミニウム繊維や、活物質粉20や、導電助剤30や、他のカーボン繊維CFに接触する。本実施形態では、平均太さが0.1~0.2μm、長さ20~200μm程度のカーボン繊維CFを用いる。なお、カーボン系導電助剤30の抵抗率は0.1~0.3Ω・cmであるのに対し、カーボン繊維CFの抵抗率は例えば5×10-5Ω・cmである。
 例えば、活物質粉20とアルミニウム繊維とが直接接触していない場合でも、当該活物質粉20とアルミニウム繊維とがカーボン繊維CFを介して電気的に接続される。また、活物質粉20とアルミニウム繊維とが直接接触している場合でも、カーボン繊維CFによる接続があることによって、当該活物質粉20とアルミニウム繊維との間の電気抵抗が更に低減される。
 このように、導電性が良いカーボン繊維CFにより、活物質粉20とアルミニウム繊維との間の電子の移動抵抗を低減することができ、電子が入出力端子に移動する抵抗を小さくする上で有利である。
 なお、図16のように、導電助剤30を含まずカーボン繊維CFを含むスラリーを用いることも可能である。この場合でも、アルミニウム不織繊維材にスラリーを導入すると、アルミニウム不織繊維材内に形成されている隙間に複数のカーボン繊維CFが配置され、活物質粉20とアルミニウム繊維との間の電気抵抗を低減する上で有利である。
 また、前述の方法では、電極に用いられる所定の厚さを有するアルミニウム不織繊維材を所定の大きさに切断し、スラリーを導入するものを示した。これに対し、図17に示すように、例えば前記所定の厚さの1/2以下(例えば10μm以下)の厚さを有する複数のアルミニウム不織繊維材10を形成し、各アルミニウム不織繊維材10にスラリーを導入すると共にスラリーを乾燥させた後に、当該複数のアルミニウム不織繊維材10を重ねると共に所定の大きさに切断し、これにより1つの電極を作成することも可能である。なお、スラリーを導入する前の前記アルミニウム不織繊維材10は、前記ローラ等による加圧を行った後のものでもよく、加圧を行っていないものでもよい。また、重ねられた複数のアルミニウム不織繊維材10同士をその端部で互いに接続する導通部材を設けることもできる。
 このようにすると、不織繊維材中の隙間の奥深くまでスラリーを入れ込まなければならないということは無くなり、通常のアルミ箔のようにアルミニウム繊維箔(アルミニウム不織繊維材)10に活物質スラリーを塗布することが可能である。また、スラリーが塗布されたアルミニウム繊維箔10を重ねたものは、リチウムイオンがアルミニウム繊維箔10の隙間を介してアルミニウム繊維箔10の厚さ方向に移動が可能であるため、電極を厚くでき、容量を増やすことが可能となる。つまり、スラリーが塗布されたアルミニウム繊維箔10を積層の数を増やすことにより、充放電速度の向上を図りながら、電極を厚くして電極の容量を大きくすることが可能となる。
 なお、前記スラリーとして、活物質粉20の代わりに充電時に電解質イオンが吸着する吸着物質粉を含むスラリーを作成することも可能である。この場合、前記乾燥工程の後にアルミニウム不織繊維材の各アルミニウム繊維に活物質粉20の代わりに吸着物質粉が保持される。
 なお、電気抵抗の低減を効率的に行うために、カーボン繊維CFの平均長さは、活物質粉20や吸着物質粉の平均粒径の半分以上であることが好ましく、当該平均粒径の2/3以上であることがより好ましい。
 また、活物質粉や吸着物質粉をアルミニウム不織繊維材内に導入した後に、加圧工程によってアルミニウム不織繊維内のアルミニウム繊維によって活物質粉20、吸着物質粉、カーボン繊維CF等が物理的に保持される場合、バインダーBを入れないスラリーを用いることも可能である。
[活物質粉]
 上記活物質粉としては、バインダーB等によって集電体であるアルミニウム不織繊維材に保持できるものであれば良く、サイクル特性に優れたものが好ましい。活物質の例としては、コバルト酸リチウム(LiCoO)やリン酸鉄系の活物質が挙げられる。なお、二次電池の電極、特に正極に用いられる公知の活物質を使用することが可能である。
[吸着物質粉]
 活物質粉の代わりに用いる上記吸着物質粉としては、バインダーB等によって集電体であるアルミニウム不織繊維材に保持できるものであれば良く、サイクル特性に優れたものが好ましい。吸着物質粉の例としてはポリアセン(PAS)、ポリアニリン(PAN)、活性炭、カーボンブラック、グラファイト、カーボンナノチューブ等が挙げられる。なお、電気二重層キャパシタの電極、特に正極に用いられる公知の物質を用いることが可能である。
 活物質粉や吸着物質粉は乳鉢、ボールミル、振動ボールミル等を用いて粉砕し、平均粒径を所定値以下にすることが好ましい。所定値としては、アルミニウム不織繊維材の平均線径に10μmを加えた値などが考えられる。例えば、アルミニウム不織繊維材の平均線径が20μmの場合は、活物質粉や吸着物質粉の平均粒径は30μm以下にすることが好ましい。これにより、アルミニウム不織繊維材の各アルミニウム繊維と活物質粉又は吸着物質粉との接触面積が増加し、充放電速度の向上に貢献し得る。
[バインダー]
 上記バインダーとしては、熱可塑性樹脂や多糖類高分子材料等を用いることが可能である。バインダーの材質の例としては、ポリアクリル系樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン(VdF)とヘキサフルオロプロピレン(HFP)との共重合体等が挙げられる。なお、二次電池や電気二重層キャパシタの電極に用いられる公知のバインダーを用いることが可能である。
[導電助剤]
 上記導電助剤としては、導電性を有する材質であれば良く、電解質や溶媒によって化学変化しない材質であることが好ましい。導電助剤の例としては、黒鉛やカーボンブラックが挙げられる。なお、二次電池や電気二重層キャパシタの電極に用いられる公知の導電助剤を用いることが可能である。
 上記のように作られた電極は、電気二重層キャパシタ、二次電池、リチウムイオンキャパシタを含むハイブリットキャパシタ等の蓄電デバイスの電極として用いることが可能である。例えば、電気二重層キャパシタの正極および負極に用いることが可能であり、二次電池の例としてリチウムイオン二次電池の正極に用いることが可能であり、リチウムイオンキャパシタの正極に用いることが可能である。その用途例を下記実施形態で説明する。
[コイン型二次電池への適用]
 図7に前記第1実施形態の電極を用いたコイン型二次電池の一例を示す。このコイン型二次電池は、ケース本体102と蓋101とを有するケース(外装缶)100と、ケース100に収容された蓄電部とを備えている。蓄電部は、正極110として前記第1実施形態の電極を備えている。また、正極110と対抗する負極120と、正極110と負極120との間に配置されたセパレータ130とを有する。正極110がケース本体102に面接触し、負極120が蓋101に面接触し、これにより、蓋101およびケース本体102が正極110および負極120の入出力端子として機能する。
 この場合、正極110のアルミニウム不織繊維材には活物質粉20が保持されている。また、負極120は公知の二次電池の負極の構造および材質を有していれば良く、リチウムイオン二次電池の場合は活物質として例えばグラファイト等の炭素材が用いられ、集電体として銅箔が用いられる。セパレータ130は正極110と負極120とを電気的に絶縁し、イオン透過性があり、正極110および負極120との接触面で酸化・還元に対する耐性を有するものであれば良い。例えば、多孔質のポリマーや無機材料、有機と無機のハイブリット材料、ガラス繊維等を用いることが可能である。なお、二次電池に用いられる公知のセパレータを用いることが可能である。
 前記蓄電部を収容したケース100内には電解液が満たされている。電解液の電解質としてリチウム塩、カリウム塩、ナトリウム塩、マグネシウム塩等を使用可能であり、リチウムイオン二次電池の場合はリチウム塩が用いられる。電解質が溶解する溶媒としては非水系溶媒が用いられ、非水系溶媒としては、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エステル等を用いることが可能である。なお、二次電池に用いられる公知の電解質および溶媒を用いることが可能である。充放電が行われる際に、正極110の活物質粉20からリチウムイオン等のイオンが電解液中に放出される化学反応や、活物質粉20にリチウムイオン等のイオンが取り込まれる化学反応が起きる。
 このように構成されたコイン型二次電池において、正極110のアルミニウム不織繊維材の厚さ方向一方の面がケース本体102に接触している。また、正極110のアルミニウム不織繊維材には、その厚さ方向一方の面から他方の面までの全ての範囲に活物質粉20が充填されており、多くの活物質粉20がアルミニウム不織繊維材の各アルミニウム繊維に接触している。このため、入出力端子に電子を運ぶアルミニウム繊維と活物質粉20との距離が近くなり、充放電速度を向上する上で有利である。
 また、アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維が除去されているので、アルミニウム不織繊維材内の長繊維の比率が高くなる。また、活物質粉とアルミニウム繊維とが直接接触し、又は、アルミニウム繊維と活物質粉とが近接して配置されると共に導電助剤30等を介して導通している。このため、活物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端等に設けられた入出力端子に移動する抵抗を小さくすることができる。
 なお、従来のコイン型二次電池の一例を図8に示す。このコイン型二次電池は、アルミニウム箔の集電体141と、集電体141の厚さ方向一方の面に塗布された電極層142とを有する正極140を備えている。電極層142には、活物質粉、導電助剤、バインダー等が含まれている。コイン型二次電池はスペースが限られているので、従来のコイン型二次電池は集電体141の厚さ分だけ活物質粉の量が制限される。また、セパレータ130側に配置された活物質粉の電子は、集電体141との間に配置された活物質粉や導電助剤を介して集電体141に移動するので、充放電速度を向上する上で好ましくない。
 なお、前記コイン型二次電池において、負極120に前記第1実施形態の電極の構造を用いることも可能である。この場合、この電極の集電体はアルミニウム不織繊維材となり、活物質粉20として、炭素材の代わりに、チタン酸リチウム、チタン酸化物、タングステン酸化物、スズ酸化物等が用いられる。
[積層型二次電池への適用]
 正極、負極およびセパレータから成る蓄電部を複数層に積層する二次電池の場合も、前記コイン型二次電池と同様に前記第1実施形態の電極構造を正極のみ、負極のみ、および正極と負極の両方に用いることが可能である。
[電気二重層キャパシタへの適用]
 図9に前記第1実施形態の電極を用いた電気二重層キャパシタの一例を示す。この電気二重層キャパシタは、例えば容器200と、容器200に収容された蓄電部とを備えている。蓄電部は、正極210として前記第1実施形態の電極を備えている。また、正極210と対抗する負極220と、正極210と負極220との間に配置されたセパレータ230とを有する。正極210には正極入出力端子210aが接続され、負極220にも同様に負極入出力端子220aが接続され、各入出力端子は容器200の外まで延びている。
 この場合、正極210のアルミニウム不織繊維材には吸着物質粉が保持されている。また、負極220は公知の電気二重層キャパシタの負極の構造および材質を有していれば良く、例えばアルミニウム箔から成る集電体221と、集電体の厚さ方向一方の面に塗布された電極層222とを有する。電極層222には吸着物質粉、導電助剤、バインダー等が含まれている。
 セパレータ230は正極210と負極220とを電気的に絶縁し、イオン透過性があり、正極210および負極220との接触面で酸化・還元に対する耐性を有するものであれば良い。例えば、多孔質のポリマーや無機材料、有機と無機のハイブリット材料、ガラス繊維等を用いることが可能である。なお、電気二重層キャパシタに用いられる公知のセパレータを用いることが可能である。
 前記蓄電部を収容した容器200内には電解液が満たされている。電解液は非水系溶媒及び電解質を含有している。電解質や非水系溶媒は電気二重層キャパシタに用いられる公知の物質であれば良い。電解質として例えばアンモニウム塩、ホスホニウム塩等を使用でき、非水系溶媒として例えば環状炭酸エステル、鎖状炭酸エステル、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、ニトリル類、含イオウ化合物等を使用できる。
 この電気二重層キャパシタは、正極210のアルミニウム不織繊維材の一端が正極入出力端子210aに接続されている。また、正極210のアルミニウム不織繊維材には、その厚さ方向一方の面から他方の面までの全ての範囲に吸着物質粉が充填されており、多くの吸着物質粉がアルミニウム不織繊維材の各アルミニウム繊維に接触している。このため、正極入出力端子210aに電子を運ぶアルミニウム繊維と吸着物質粉との距離が近くなり、充放電速度を向上する上で有利である。従来の正極の構造は負極220と同じであるため、負極220と比べると上記利点を理解し易い。
 また、アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維が除去されているので、アルミニウム不織繊維材内の長繊維の比率が高くなる。このため、充電時に電解質イオンが吸着物質粉の表面に吸着し、吸着物質粉と各アルミニウム繊維との間で電子の授受が行われる際に、その電子がアルミニウム不織繊維材の端に設けられた入出力端子210aに移動する抵抗を小さくすることができる。
 なお、前記電気二重層キャパシタにおいて、負極220に前記第1実施形態の電極の構造を用いることも可能である。
 上記第1実施形態によれば、上述のように高純度のアルミニウム繊維の近傍に活物質粉や吸着物質粉を配した蓄電デバイスの正極を形成することが可能である。これにより、より容量が高く、変形抵抗の少ない、充放電性に優れた蓄電デバイスの製造が可能となる。
 また、通常のキャパシタや二次電池などに使用されるアルミニウム箔の製造は、スラブと呼ばれる非常に大型の四角柱のアルミ鋳塊を造り、切断、加熱して何回も圧延し、更に表面処理等を施して製作される。このため、非常に多くのエネルギーとコストを要する。一方、上記第1実施形態に使用するアルミニウム繊維は、単純に高純度アルミ鋳塊を溶解し吹出すことで製造することが可能である。また吸着物質粉、活物質粉、導電助剤などを導入したアルミニウム繊維を圧延し箔を形成する際に、プレス圧も小さくすることができる。このため、大型の設備を必要とせず、容易にかつ低コストで集電体箔や正極箔を製造することが可能となる。
 また、集電体に接触できる吸着物質粉や活物質粉の量は、集電体を図8の正極のように箔にするよりも、図7の正極のように線状、若しくは網目状にする方が多くなり、また集電体に近い範囲に吸着物質粉及び活物質粉を存在させる事が可能である。また、集電体が箔の場合、吸着物質粉や活物質粉と箔との距離は遠くなる。電極の厚さが100μm程度の場合もよくあるので、その場合は吸着物質粉や活物質粉と箔との距離が100μm程度となる。極細のアルミ不織繊維材の中に吸着物質粉や活物質粉を均等に入れることが可能であれば、電気容量を増やすと共に内部抵抗を減少させる上で有利である。
 また、純度の高いアルミニウム繊維は非常にフレキシブルで、押し固める前の繊維間に大きな空隙を有している。この空隙に吸着物質粉、活物質粉、導電助剤等を導入し、プレスすると、数μmの微細な網目(孔又は空隙)を有するアルミニウム不織繊維材(集電体)に吸着物質粉、活物質粉等を閉じ込めた箔を形成することが可能となる。
 尚、前記実施形態では、アルミニウムがノズル42の微細孔42aから略水平方向に吹き出すものを示したが、ノズル42を下方を臨むように配置し、ノズル42の微細孔42aから下方に向かって吹き出すアルミニウム繊維をベルトコンベア43上に落とすことも可能であり、この場合でもベルトコンベア43上にアルミニウム繊維の塊を形成することができる。
 なお、平均線径が小さいアルミニウム繊維の塊を形成する場合、ノズル42を下方を臨むように配置する方が好ましい場合がある。例えば図10に示すように、ノズル42を下方を臨むように配置し、また、微細孔42aの出口側孔42bもその軸が鉛直軸と平行になるように配置する。これにより、アルミニウム繊維同士が絡み難くなる。そして、ノズル42の下方を囲う囲い部材46と、囲い部材46の下方から出て下方に向かって落ちるアルミニウム繊維に下方に向かう風を送る送風部47とを設けると、当該風によりアルミニウム繊維に下方に向かう力が加わり、アルミニウム繊維に引張方向の力が加わる。これは、平均線径が小さい長繊維、例えば平均線径が数μmから50μmの長繊維を効率的に作成する上で有利である。尚、囲い部材46がなくても同じ作用効果を奏し得る。また、送風部47は周方向複数個所に設けることも可能であり、リング形状の吹き出し口を有する単一の送風機を設けることも可能である。
 また、図11に示すように、囲い部材46の代わりに、微細孔42aから出るアルミニウム繊維を1本1本囲う囲い部材48を設けることも可能である。例えば、図11に示すように、囲い部材48を曲り管41又はノズル42の下面に取付け、囲い部材48に各微細孔42aに対応するように鉛直方向に延びる複数の貫通孔48aを設け、各微細孔42aから出るアルミニウム繊維が各貫通孔48aを通過するようにする。また、囲い部材48を、囲い部材48を曲がり管41又はノズル42の下面に取付けられた第1ブロック48bと、第1ブロック48bの下面に取付けられた第2ブロック48cとから構成し、第1ブロック48bと第2ブロック48cとの間に各貫通孔48aに連通する隙間を設け、当該隙間に空気を供給する空気供給経路48dを設ける。
 この場合、ノズル42から出る複数のアルミニウム繊維が各々貫通孔48aによって囲まれ、また、空気供給経路48dからの空気が前記隙間を通って各貫通孔48a内に下方(アルミニウム繊維の押出方向)に向かって吹き出す。これにより、各アルミニウム繊維に対して確実に下方に向かう力が加わる。つまり、前記隙間が貫通孔48a内に下方に向かう風を供給する送風部として機能する。
 尚、1つの貫通孔48aによって4つ以下の微細孔42aから出るアルミニウム繊維が囲われるように構成しても良い。この場合であっても、各アルミニウム繊維に対して確実に下方に向かう力が加わる。
 また、送風機47の代わりに、下方に向かうアルミニウム繊維に下方に向かう力を付与するための力付与機構を設けることも可能である。例えば、ノズル42の下方に一対のローラを設け、当該ローラによってアルミニウム繊維を軽く挟むと共に、当該ローラの回転によってアルミニウム繊維に下方に向かう力を付与することができる。その他の機構によってアルミニウム繊維に下方に向かう力を付与することも可能である。
 一方、平均線径が小さい長繊維、例えば平均線径が数μmから50μmの長繊維を効率的に作成するために、図12に示すように、容器49によってノズル42の下方を密閉し、容器49内を真空引き装置49aで負圧にすることも可能である。この場合、アルミニウム繊維の塊は容器49の底面上に形成される。さらに、容器49内にアルミニウム繊維に下方に向かう力を加える送風機47や力付与機構を設けることも可能である。
 尚、図1のようにアルミニウム繊維が略水平方向に向かって飛ぶ場合でも、当該略水平方向に向かって飛ぶアルミニウム繊維に水平方向の引張力を付与する送風機や力付与機構を設けることは、平均線径が数μmから50μmの長繊維を効率的に作成する上で有利である。また、アルミニウム繊維が略水平方向に向かって飛ぶ空間を負圧とすることも、平均線径が数μmから50μmの長繊維を効率的に作成する上で有利である。
 さらに、図12に示す容器49の中を真空引きすることにより、又は、アルゴンガスや窒素ガス等の不活性ガスで満たすことにより、ノズル42から吹き出されるアルミ繊維の表面の酸化を低減又は防止することも可能である。または、成形されたアルミニウム繊維の塊やアルミニウム不織繊維材を、約15重量%の濃度の硝酸や約10重量%の濃度の苛性ソーダなどの薬品に浸漬し、アルミニウム繊維の表面の酸化膜を除去することも可能である。
 また、図12に示す容器49の中に、所定の支持面としてのベルトコンベア43を配置し、ノズル42から吹き出されたアルミニウム繊維がベルトコンベア43のベルト上に落ちるように構成してもよい。また、図18に示すように、ベルトコンベア43をその搬送方向と直交する水平方向に振動させる振動付与機構43aを設けることができる。振動付与機構43aはベルトコンベア43に例えば数mmから数cmの振幅の振動を加えるものである。この場合、振動付与機構43aによりベルトコンベア43が振動している状態で、ベルトコンベア43によりその搬送方向にアルミニウム繊維が搬送される。振動数は0.1Hz~数十Hz程度であることが好ましい。これにより、図18に示すように、隣接するアルミニウム繊維同士の接点の数が多くなる。これは、活物質粉や吸着物質粉と入出力端子との間の電子の移動抵抗を小さくする上で有利である。ベルトコンベア43を搬送方向に往復動させると、形成されるアルミニウム繊維の塊が厚くなる。なお、図11~図12のようにアルミニウム繊維を下方に向かって吹き出す場合は、条件によっては、短繊維除去工程を行わなくても、アルミニウム不織繊維材の中の短繊維の量を低減することが可能となる。
 本発明の第2実施形態に係る電極について図面を参照して以下に説明する。
 この電極は、第1実施形態のアルミニウム不織繊維材10の代わりに繊維断面形状が異なるアルミニウム不織繊維材を用いるものであり、その他の構成は第1実施形態と同じであるため説明を割愛する。
 本実施形態のアルミニウム不織繊維材のアルミニウム繊維は、平均線径が100μm以下であり、図13、図14等に示すように断面形状が円形状ではない。この場合の平均線径は、図13および図14に示すように、寸法が最大となる位置で測定されるものである。
 本実施形態では、図13および図14に示すように、アルミニウム繊維の断面形状が、180°未満の内角を有する3つ以上の凸形状部と、各々2つの凸形状部の間に配置され180°以上の内角を有する3つ以上の凹形状部とを有する。ここで言う内角とは、凸形状部又は凹形状部を形成する2つの辺がなす角度であって、断面内に存在する角度である。
 この場合、吸着物質粉又は活物質粉が各アルミニウム繊維の凹形状部内に配置されると、アルミニウム不織繊維材内で各アルミニウム繊維に対し吸着物質粉又は活物質粉が移動し難くなり、吸着物質粉又は活物質粉と各アルミニウム繊維との接触を長期に亘って維持する上で有利である。
 上記の様に、アルミニウム繊維を集電体として、より安価で内部抵抗の低い、充放電に優れた電気二重層キャパシタやリチウム電池の製作が可能となる。また、集電体であるアルミニウム繊維中に、特に繊維の断面形状が図13、図14等のようなものは活物質粉、吸着物質粉、導電助剤、バインダーなどが、プレスで繊維に密着して欠落しにくい状況になるので、リチウムイオン二次電池の場合のように電極が充放電する際に、活物質粉の体積が膨張・収縮する等により、集電体から剥離するなどで特性が劣化する現象を防止することが可能となる。
 10…アルミニウム不織繊維材、20…活物質粉、30…導電助剤、40…密閉容器、41…曲がり管、42…ノズル、43…ベルトコンベア、44…プレート、45…加振機

Claims (18)

  1.  蓄電デバイスの集電体用のアルミニウム不織繊維材の製造方法であって、
     溶融したアルミニウムを微細な孔を通して空間中に押出すと共に、押出されることにより成形されたアルミニウム繊維を所定の支持面上に落とすことにより、前記支持面上にアルミニウム繊維の塊を形成する塊形成工程と、
     前記アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維を除去するための除去処理を行う短繊維除去工程と、
     前記短繊維除去工程後の前記アルミニウム繊維の塊を加圧して前記アルミニウム不織繊維材を成形する加圧工程と
    を有する集電体用のアルミニウム不織繊維材の製造方法。
  2.  蓄電デバイスの集電体用のアルミニウム不織繊維材の製造方法であって、
     溶融したアルミニウムを微細な孔を通して空間中に押出すと共に、押出されることにより成形されたアルミニウム繊維を所定の支持面上に落とすことにより、前記支持面上にアルミニウム繊維の塊を形成する塊形成工程と、
     前記アルミニウム繊維の塊から所定の長さ以下のアルミニウム短繊維を除去するための除去処理を行うことにより、前記アルミニウム繊維の塊を前記集電体用のアルミニウム不織繊維材にする短繊維除去工程と
    を有する集電体用のアルミニウム不織繊維材の製造方法。
  3.  前記除去処理では、前記アルミニウム繊維の塊に振動を加えることにより前記アルミニウム短繊維を除去する請求項1又は2記載のアルミニウム不織繊維材の製造方法。
  4.  前記塊形成工程では、前記押出されることにより成形されたアルミニウム繊維に、送風機又は力付与機構により、前記所定の支持面上に落ちるまでの間に当該アルミニウム繊維の押出方向に力を付与する請求項1~3の何れかに記載のアルミニウム不織繊維材の製造方法。
  5.  前記塊形成工程の前に前記空間を負圧とする圧低減工程を有する請求項1~4の何れかに記載のアルミニウム不織繊維材の製造方法。
  6.  前記塊形成工程では、前記アルミニウムを前記微細な孔を通して下方に向かって押出して前記アルミニウム繊維を成形し、また、前記支持面を所定の搬送方向に移動させながら、前記支持面に前記搬送方向と直交する方向に振動を加えている状態で、前記成形されたアルミニウム繊維を前記支持面上に落とすことにより、前記支持面上に前記アルミニウム繊維の塊を形成する請求項1~5の何れかに記載のアルミニウム不織繊維材の製造方法。
  7.  前記アルミニウムとして純度が99.9%以上のアルミニウムを用いる請求項1~6の何れかに記載のアルミニウム不織繊維材の製造方法。
  8.  アルミニウム繊維の平均線径が100μm以下であるアルミニウム不織繊維材を備え、
     前記アルミニウム不織繊維材の厚さ方向一方および他方の面にあらわれるアルミニウム繊維の端部の数が、平均値で、1平方センチメートル当り5以下である蓄電デバイスの集電体用のアルミニウム不織繊維材。
  9.  前記アルミニウム繊維の断面形状が、3つ以上の凸形状部と、各々2つの前記凸形状部の間に配置された3つ以上の凹形状部とを有する請求項8に記載のアルミニウム不織繊維材。
  10.  前記アルミニウム繊維は純度が99.9%以上のアルミニウムから成る請求項8又は9記載のアルミニウム不織繊維材。
  11.  充電時に電解質イオンが吸着する吸着物質粉又は充電時に化学反応する活物質粉と、バインダーとを含む液状又はゲル状のスラリーを作成するスラリー作成工程と、
     前記スラリーを請求項1~7記載の製造方法で製造したアルミニウム不織繊維材内に導入する導入工程と、
     前記導入工程の後に前記アルミニウム不織繊維材に付着した前記スラリーを乾燥させる乾燥工程とを有する蓄電デバイスの電極の製造方法。
  12.  充電時に電解質イオンが吸着する吸着物質粉又は充電時に化学反応する活物質粉と、バインダーとを含む液状又はゲル状のスラリーを作成するスラリー作成工程と、
     前記スラリーを請求項1~7記載の製造方法で製造したアルミニウム不織繊維材内に導入する導入工程と、
     前記導入工程で前記スラリーを導入した複数のアルミニウム不織繊維材を積層する積層工程と、
     前記各アルミニウム不織繊維材に付着した前記スラリーを乾燥させる乾燥工程とを有する蓄電デバイスの電極の製造方法。
  13.  前記導入工程又は前記乾燥工程の後に前記アルミニウム不織繊維材を加圧する加圧工程をさらに有する請求項11又は12に記載の電極の製造方法。
  14.  前記スラリー作成工程では、前記吸着物質粉又は前記活物質粉と、前記バインダーと、平均太さが0.5μm以下であるカーボン繊維とを含む前記スラリーを作成する請求項11~13の何れかに記載の電極の製造方法。
  15.  請求項8~10の何れかに記載のアルミニウム不織繊維材と、
     前記アルミニウム不織繊維材に保持され、充電時に電解質イオンが吸着する吸着物質粉又は充電時に化学反応する活物質粉とを備えた蓄電デバイスの電極。
  16.  前記アルミニウム不織繊維材が、2本の前記アルミニウム繊維が交差するように接触している部分を少なくとも1箇所有し、該交差部分において前記2本のアルミニウム繊維が互いに食い込んでいる請求項15に記載の電極。
  17.  前記アルミニウム不織繊維材に保持され、前記吸着物質粉又は前記活物質粉と前記アルミニウム不織繊維材との間の電気抵抗を低減するカーボン繊維をさらに備えた請求項15又は16に記載の電極。
  18.  前記吸着物質粉又は前記活物質粉をそれぞれ保持する前記アルミニウム不織繊維材が複数積層されている請求項15又は16に記載の電極。
PCT/JP2016/070752 2015-10-20 2016-07-13 蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法 WO2017068820A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/769,350 US10693142B2 (en) 2015-10-20 2016-07-13 Aluminum nonwoven fiber material for current collector of electric power storage equipment, manufacturing method thereof, electrode utilizing aluminum nonwoven fiber material and manufacturing method thereof
CN201680052534.6A CN108028389B (zh) 2015-10-20 2016-07-13 蓄电设备的集电体用铝非织造纤维材料及其制造方法、利用所述铝非织造纤维材料的电极及其制造方法
JP2017525991A JP6209706B2 (ja) 2015-10-20 2016-07-13 蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法
EP16857138.8A EP3367486B1 (en) 2015-10-20 2016-07-13 Aluminum nonwoven fiber member for collector of power storage device, method for manufacturing same, electrode in which aforementioned aluminum nonwoven fiber member is used, and method for manufacturing same
KR1020187014235A KR102087957B1 (ko) 2015-10-20 2016-07-13 축전기기의 집전체용 알루미늄 부직 섬유 재료 및 그 제조 방법, 상기 알루미늄 부직 섬유 재료를 이용한 전극 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015206617 2015-10-20
JP2015-206617 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017068820A1 true WO2017068820A1 (ja) 2017-04-27

Family

ID=58556801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070752 WO2017068820A1 (ja) 2015-10-20 2016-07-13 蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法

Country Status (6)

Country Link
US (1) US10693142B2 (ja)
EP (1) EP3367486B1 (ja)
JP (1) JP6209706B2 (ja)
KR (1) KR102087957B1 (ja)
CN (1) CN108028389B (ja)
WO (1) WO2017068820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019480A1 (ja) * 2019-07-31 2021-02-04 深圳智科微铝科技有限公司 蓄電デバイスの電極の製造方法および蓄電デバイスの電極
JP2021530631A (ja) * 2018-07-17 2021-11-11 マックス−プランク−ゲゼルシャフト ツア フェーデルンク デア ヴィッセンシャフテン エー.ファオ. 金属繊維ネットワーク、金属繊維ネットワークを製造するための方法、電極、及び電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283919B2 (ja) * 2019-02-20 2023-05-30 I&Tニューマテリアルズ株式会社 固体電解質を用いた蓄電デバイスの電極、蓄電デバイス、および蓄電デバイスの正極層又は負極層の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982411A (ja) * 1982-10-28 1984-05-12 Mitsui Alum Kogyo Kk 金属繊維の製造方法及びその装置
JPH06196170A (ja) * 1992-06-30 1994-07-15 Japan Storage Battery Co Ltd 非水電解液二次電池
WO2003008690A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Unix Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method
JP2009224623A (ja) * 2008-03-17 2009-10-01 Nippon Zeon Co Ltd ハイブリッドキャパシタ用電極シートおよびその製造方法
JP2014510386A (ja) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド 金属繊維を含む電極構造体を有する電池、及び前記電極構造体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294104A (ja) * 1986-06-13 1987-12-21 Mitsui Alum Kogyo Kk 多孔質金属体の製造方法
DE68925580T2 (de) * 1989-04-14 1996-09-19 Katayama Tokushu Kogyo Kk Verfahren zur Herstellung einer porösen metallischen Folie
CN1198113A (zh) * 1996-07-29 1998-11-04 松下电器产业株式会社 金属多孔体及其制造方法
JP2001155739A (ja) * 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
KR101193525B1 (ko) * 2008-04-18 2012-10-22 가부시키가이샤 도요다 지도숏키 2차 전지용 전극 및 비수계 2차 전지
WO2011135967A1 (ja) * 2010-04-27 2011-11-03 住友電気工業株式会社 溶融塩電池の電極、溶融塩電池、および電極の製造方法
JP2012089303A (ja) * 2010-10-18 2012-05-10 Sanyo Electric Co Ltd リチウム二次電池用電極、及びその電極を用いたリチウム二次電池
JP6716288B2 (ja) * 2015-03-27 2020-07-01 三洋化成工業株式会社 リチウムイオン電池用電極、リチウムイオン電池及びリチウムイオン電池用電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982411A (ja) * 1982-10-28 1984-05-12 Mitsui Alum Kogyo Kk 金属繊維の製造方法及びその装置
JPH06196170A (ja) * 1992-06-30 1994-07-15 Japan Storage Battery Co Ltd 非水電解液二次電池
WO2003008690A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Unix Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method
JP2009224623A (ja) * 2008-03-17 2009-10-01 Nippon Zeon Co Ltd ハイブリッドキャパシタ用電極シートおよびその製造方法
JP2014510386A (ja) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド 金属繊維を含む電極構造体を有する電池、及び前記電極構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367486A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530631A (ja) * 2018-07-17 2021-11-11 マックス−プランク−ゲゼルシャフト ツア フェーデルンク デア ヴィッセンシャフテン エー.ファオ. 金属繊維ネットワーク、金属繊維ネットワークを製造するための方法、電極、及び電池
WO2021019480A1 (ja) * 2019-07-31 2021-02-04 深圳智科微铝科技有限公司 蓄電デバイスの電極の製造方法および蓄電デバイスの電極
JP2021026822A (ja) * 2019-07-31 2021-02-22 I&Tニューマテリアルズ株式会社 蓄電デバイスの電極の製造方法および蓄電デバイスの電極

Also Published As

Publication number Publication date
EP3367486A1 (en) 2018-08-29
CN108028389A (zh) 2018-05-11
JP6209706B2 (ja) 2017-10-04
US20180316019A1 (en) 2018-11-01
CN108028389B (zh) 2021-06-01
EP3367486A4 (en) 2019-07-24
EP3367486B1 (en) 2020-08-19
KR102087957B1 (ko) 2020-03-11
KR20180074731A (ko) 2018-07-03
US10693142B2 (en) 2020-06-23
JPWO2017068820A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
Zhang et al. 3D printed micro‐electrochemical energy storage devices: From design to integration
US9711784B2 (en) Electrode fabrication methods and associated systems and articles
JP4173870B2 (ja) 電気化学デバイス用電極の製造方法
JP2020510961A (ja) プレリチオ化されたハイブリッドエネルギー貯蔵装置
US11367576B2 (en) Electrode for power storage devices and method of manufacturing the same
WO2014181809A1 (ja) 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP6209706B2 (ja) 蓄電デバイスの集電体用のアルミニウム不織繊維材、その製造方法、前記アルミニウム不織繊維材を用いた電極、およびその製造方法
JP2015230850A (ja) リチウム硫黄2次電池
WO2009113592A1 (ja) ハイブリッドキャパシタ用電極
JP7030766B2 (ja) 蓄電デバイスの電極およびその製造方法
WO2021019480A1 (ja) 蓄電デバイスの電極の製造方法および蓄電デバイスの電極
JP7538946B2 (ja) フィルム型正極製造装置、この製造方法、及びこれを含むリチウム二次電池、電池モジュール及び電池パック
JP7283919B2 (ja) 固体電解質を用いた蓄電デバイスの電極、蓄電デバイス、および蓄電デバイスの正極層又は負極層の製造方法
JP7497527B2 (ja) リチウム二次電池用正極、この製造方法及びこれを含むリチウム二次電池
Desai et al. 3D-Printed Nanocomposites for Batteries
Desai et al. 13 3D-Printed Nanocomposites
JP2006164689A (ja) 電極構造体、二次電池及びキャパシタ
JP2016111245A (ja) 蓄電デバイス用電極およびこれを用いた蓄電デバイス
Gan et al. Modification strategy of silicon-based anode for lithium-ion battery
KR20210061764A (ko) 고분산 및 고밀도 전극의 제조방법 및 이에 의해 제조되는 전극, 이를 포함하는 에너지 저장 디바이스
JP2017097985A (ja) 電極材料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525991

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15769350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014235

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016857138

Country of ref document: EP