WO2017068757A1 - ホットプレス部材およびその製造方法 - Google Patents
ホットプレス部材およびその製造方法 Download PDFInfo
- Publication number
- WO2017068757A1 WO2017068757A1 PCT/JP2016/004459 JP2016004459W WO2017068757A1 WO 2017068757 A1 WO2017068757 A1 WO 2017068757A1 JP 2016004459 W JP2016004459 W JP 2016004459W WO 2017068757 A1 WO2017068757 A1 WO 2017068757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot press
- region
- phase
- press member
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D24/00—Special deep-drawing arrangements in, or in connection with, presses
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
Definitions
- the present invention relates to a member formed by hot-pressing a thin steel plate, that is, a hot-pressed member and a manufacturing method thereof.
- the hot press method the steel sheet is heated to the austenite region, and then conveyed to the press machine.
- the press machine the steel sheet is formed into a member having a desired shape and rapidly cooled.
- the cooling process rapid cooling
- the structure of the member undergoes phase transformation from the austenite phase to the martensite phase, thereby obtaining a high-strength member having a desired shape.
- Patent Document 1 proposes a hot press-formed product obtained by forming a thin steel plate by a hot press forming method.
- the hot press-molded product described in Patent Document 1 is in mass%, C: 0.15-0.35%, Si: 0.5-3%, Mn: 0.5-2%, P: 0.05% or less, S: 0.05% or less , Al: 0.01 to 0.1%, Cr: 0.01 to 1%, B: 0.0002 to 0.01%, Ti: (N content) x 4 to 0.1%, N: 0.001 to 0.01%, the balance being Fe and inevitable It has a component composition consisting of mechanical impurities and a ratio of martensite: 80 to 97%, retained austenite: 3 to 20%, and remaining structure: 5% or less. According to the technique described in Patent Document 1, it is described that a metal structure in which an appropriate amount of retained austenite is left can be obtained, and a hot-pressed part with higher ductility inherent in a molded product can be realized. Yes.
- Patent Document 2 proposes a hot press member having excellent ductility.
- the hot press member described in Patent Document 2 is in mass%, C: 0.20 to 0.40%, Si: 0.05 to 3.0%, Mn: 1.0 to 4.0%, P: 0.05% or less, S: 0.05% or less, Al : 0.005 to 0.1%, N: 0.01% or less, with the balance consisting of Fe and inevitable impurities, the area ratio of the ferrite phase occupying the entire structure is 5 to 55%, and the area ratio of the martensite phase is It is a hot-pressed member that has a microstructure of 45 to 95% and an average grain size of ferrite phase and martensite phase of 7 ⁇ m or less, high tensile strength TS: 1470 to 1750 MPa, and total elongation El: High ductility of 8% or more.
- the component composition is, by mass, C: 0.1 to 0.3%, Si: 0.5 to 3%, Mn: 0.5 to 2%, P: 0.05% or less, S: 0.05% or less, Al: 0.01 -0.1%, N: 0.001-0.01%, with the balance consisting of Fe and inevitable impurities, and the metal structure contains martensite: 80-97 area% and retained austenite: 3-20 area%
- the remaining structure the first region consisting of 5 area% or less, and the metal structure is ferrite: 30-80 area%, bainitic ferrite: less than 30 area%, martensite: 30% or less, retained austenite 3-20
- a hot press-formed product having a second region of area% is described.
- Patent Document 3 has a problem that the robustness with respect to the molding start temperature at the time of hot pressing is limited in order to form two parts having different mechanical characteristics.
- the hot press member is generally baked after the member is manufactured, and the yield stress YS is increased by the heat treatment during the baked coating.
- the yield stress YS is increased by the heat treatment during the baked coating.
- the techniques described in Patent Documents 1, 2, and 3 do not consider such heat treatment curability at all.
- the present invention has a tensile strength TS: 1500 MPa or more and a uniform elongation uEl: 6.0% or more, and an excellent yield stress YS increases by 150 MPa or more when heat treatment (baking coating) is performed.
- Providing a hot press member having a first region having a heat treatment curability and a second region having a tensile strength TS: 780 MPa or more and a uniform elongation uEl: 15.0% or more Furthermore, it aims at providing the manufacturing method of the hot press member which can manufacture the hot press member which has the said characteristic on the conditions where the robustness with respect to the shaping
- excellent heat treatment curability means that when a hot pressed member is heat treated, the difference between the yield stress YS after heat treatment and the yield stress YS before heat treatment (hereinafter referred to as “ ⁇ YS”) is 150 MPa. These are the characteristics that are above. In the martensite phase, since many mobile dislocations are generated, YS is low. Therefore, increasing YS in the first region with martensite as the main phase is considered to be very effective in solving the above problems.
- the present inventors have a hot press having a first region having a tensile strength TS of 1500 MPa or higher and a second region having a tensile strength TS of 780 MPa or higher.
- the steel sheet Before hot-pressing a steel sheet containing 3.5% or more of Mn, the steel sheet is preheated to a ferrite-austenite two-phase temperature range, and at a predetermined temperature within the temperature range for 1 hour to 48 hours.
- An appropriate amount of retained austenite can be generated by concentrating Mn in the austenite by performing the heat treatment to be held.
- the summary structure is as follows. (1) In mass%, C: 0.090% or more and less than 0.30%, Mn: 3.5% or more and less than 11.0%, Si: 0.01-2.5%, P: 0.05% or less, S: 0.05% or less, Al: 0.005-0.1%, N: including 0.01% or less, Component composition of the balance consisting of Fe and inevitable impurities, A structure containing a martensite phase with a volume ratio of 80.0% or more and a retained austenite phase with a volume ratio of 3.0% or more and 20.0% or less, and a tensile strength TS: 1500 MPa or more and uniform elongation uEl: 6.0% or more And a first region having a dislocation density of 1.0 ⁇ 10 16 / m 2 or more, A structure containing a ferrite phase with a volume ratio of 30.0% to 60.0%, a retained austenite phase with a volume ratio of 10.0% to 70.0%, and a marten
- the average particle size of the ferrite phase is 10 ⁇ m or less
- the average particle size of the second phase is 10 ⁇ m or less
- the Mn concentration in the second phase is Mns
- the Mn in the ferrite phase The hot press member according to (1), wherein Mns / Mn ⁇ is 1.5 or more when the concentration is Mn ⁇ .
- a steel plate having a component composition consisting of Fe and inevitable impurities is heated to a first temperature not lower than Ac1 point and not higher than Ac3 point, maintained at the first temperature for not less than 1 hour and not more than 48 hours, and then cooled, Obtaining The material steel sheet is divided into a first region for heating to a second temperature of Ac3 point to 1000 ° C and a second region for heating to a third temperature of Ac1 point to (Ac3 point – 20 ° C). Heating process for sorting, Thereafter, the raw steel plate is subjected to press molding and quenching simultaneously using a molding die to obtain a hot press member, and a hot press molding step, The manufacturing method of the hot press member characterized by having.
- the component composition further comprises 1% by mass or one or more groups selected from the following groups A to E.
- Group A Ni: 0.01% to 5.0%, Cu: 0.01% to 5.0%, Cr: 0.01% to 5.0%, Mo: 0.01% to 3.0% or more
- Group D Sb: 0.002 to 0.03%
- Group E B: 0.0005-0.05%
- the hot-pressed member of the present invention has a tensile strength of TS: 1500 MPa or more and a uniform elongation uEl: 6.0% or more, and an excellent heat treatment that increases the yield stress YS by 150 MPa or more when subjected to heat treatment (baking coating).
- a hot press member having the above characteristics can be manufactured under the condition that the robustness with respect to the molding start temperature during hot pressing is high.
- a hot pressed member has a tensile strength TS: 1500 MPa or more, preferably less than 2300 MPa, and a uniform elongation uEl: 6.0% or more and substantially 20% or less.
- the first region (high strength / high ductility part) is a collision-resistant characteristic part that has a certain level of impact energy absorption capability at the time of collision but does not allow deformation.
- the second region (low strength / high ductility)
- the part is an energy absorbing part that allows deformation at the time of a collision but has a very high collision energy absorbing ability.
- the hot press member needs high impact energy absorption ability such as automobile impact beam, center pillar, bumper, etc. It can use suitably for the structural member to make.
- the positional relationship between the first region and the second region in the hot press member is not particularly limited, and may be determined according to the use of the member.
- the member when the member is used for the center pillar, it can be exemplified that the upper portion is used as the first region and the lower portion is used as the second region.
- Component composition The component composition of the hot press member according to one embodiment of the present invention will be described. Hereinafter, unless otherwise specified, “mass%” is simply referred to as “%”.
- C 0.090% or more and less than 0.30% C is an element that increases the strength of steel.
- the yield stress increases due to the dislocation fixation of the solid solution C in the heat treatment for the hot press member.
- the C content is set to 0.090% or more.
- the amount of solid solution strengthening due to C increases, and it becomes difficult to adjust the tensile strength TS of the hot press member to less than 2300 MPa.
- Mn 3.5% or more and less than 11.0%
- Mn is an element that increases the strength of steel and concentrates in austenite to improve the stability of austenite, and is the most important element in the present invention.
- the Mn content is 3.5% or more.
- the solid solution strengthening amount due to Mn becomes large, and it becomes difficult to adjust the tensile strength TS of the hot press member to less than 2300 MPa.
- the tensile strength TS in the first region is 1500 MPa or more, preferably within the range of less than 2300 MPa, and the tensile strength is stable and uniform elongation is 6.0% or more.
- a hot press member having characteristics can be obtained.
- C 0.090% or more and less than 0.12% and Mn: 6.5% or more and less than 8.5%, or C : 0.12% or more and less than 0.18% and Mn: 5.5% or more and less than 7.5% are preferable.
- C 0.18% or more and less than 0.30% and Mn: 3.5% or more and less than 4.5%.
- C 0.090% or more and less than 0.12% and Mn: 8.5% or more and less than 11.0%, or C: It is preferably 0.12% or more and less than 0.18% and Mn: 7.5% or more and less than 11.0%, or C: 0.18% or more and less than 0.30% and Mn: 4.5% or more and less than 6.5%.
- C and Mn affect the mechanical properties of the region.
- C 0.090% to less than 0.30% and Mn: 3.5% to less than 11.0%
- the desired tensile strength TS: 780 MPa or more and uniform elongation uEl: 15.0% or more are ensured. That is, the mechanical characteristics in the second region are strongly influenced by the heating temperature T1 of the Mn concentration heat treatment described later or the heating temperature T3 immediately before the hot pressing step.
- Si 0.01-2.5%
- Si is an element that increases the strength of steel by solid solution strengthening. In order to obtain such an effect, the Si content is set to 0.01% or more. On the other hand, when the Si content exceeds 2.5%, surface defects called red scales are remarkably generated during hot rolling, and the rolling load increases. Therefore, Si content shall be 0.01% or more and 2.5% or less.
- the Si content is preferably 0.02% or more.
- the Si content is preferably 1.5% or less.
- P 0.05% or less
- P is an element that is unavoidable in steel, segregates at grain boundaries, and has an adverse effect such as lowering the toughness of the member. Up to 0.05% is acceptable. Therefore, the P content is 0.05% or less, more preferably 0.02% or less. Further, excessive P removal treatment leads to an increase in refining costs, so the P content is preferably 0.0005% or more.
- S 0.05% or less S is inevitably contained, and exists in the steel as sulfide inclusions, and lowers the ductility, toughness, and the like of the hot pressed member. For this reason, it is desirable to reduce S as much as possible, but 0.05% is acceptable. For these reasons, the S content is 0.05% or less, more preferably 0.005% or less. Moreover, since excessive de-S treatment causes an increase in refining costs, the S content is preferably 0.0005% or more.
- Al 0.005-0.1%
- Al is an element that acts as a deoxidizer, and in order to exhibit such an effect, the Al content is set to 0.005% or more.
- Al content shall be 0.005% or more and 0.1% or less.
- the Al content is preferably 0.02% or more.
- the Al content is preferably 0.05% or less.
- N 0.01% or less N is usually inevitably contained in steel, but when the N content exceeds 0.01%, a nitride such as AlN is formed during hot rolling or hot press heating, Blanking workability and hardenability of the steel sheet used as a raw material are reduced. For this reason, N content shall be 0.01% or less.
- the N content is more preferably 0.0030% or more.
- the N content is more preferably 0.0050% or less.
- the N content is about 0.0025% or less.
- the refining cost increases the N content is preferably set to 0.0025% or more.
- composition may further include the following optional components.
- Group B Ti: 0.005 to 3.0%, Nb: 0.005 to 3.0%, V: 0.005 to 3.0%, W: 0.005 to 3.0%, one or more selected from Ti, Nb, V, W All are elements that contribute to the increase in strength of steel by precipitation strengthening and contribute to the improvement of toughness by refining crystal grains, and one or more elements can be selected and contained as necessary.
- TiTi has the effect of increasing the strength and toughness, forming nitrides in preference to B, and improving the hardenability by solid solution B.
- the Ti content is set to 0.005% or more.
- the content shall be 0.005% or more and 3.0% or less.
- it is 0.01% or more.
- it is 1.0% or less.
- the Nb content is 0.005% or more.
- the content shall be 0.005% or more and 3.0% or less.
- it is 0.01% or more.
- it is 0.05%.
- V has the effect of improving hydrogen embrittlement resistance as a hydrogen trap site by being precipitated as precipitates and crystallized substances in addition to the effects of increasing strength and improving toughness.
- the V content is set to 0.005% or more.
- the content shall be 0.005% or more and 3.0% or less.
- it is 0.01% or more.
- it is 2.0% or less.
- W has the effect of improving hydrogen embrittlement resistance in addition to the effects of increasing strength and improving toughness.
- the W content is set to 0.005% or more.
- the content shall be 0.005% or more and 3.0% or less.
- it is 0.01% or more.
- it is 2.0% or less.
- Group C REM: 0.0005-0.01%, Ca: 0.0005-0.01%, Mg: One or more selected from 0.0005-0.01% REM, Ca, and Mg are all controlled by the form control of inclusions It is an element that improves ductility and hydrogen embrittlement resistance, and can be selected as necessary and can contain one or more. In order to obtain this effect, the content of each element is set to 0.0005% or more. On the other hand, from the viewpoint of not deteriorating hot workability, both the REM content and the Ca content are set to 0.01% or less. From the viewpoint of not reducing ductility due to the formation of coarse oxides and sulfides, the Mg content is 0.01% or less. A preferable content of each element is 0.0006 to 0.01%.
- Sb 0.002-0.03%
- Sb can be contained as necessary in order to suppress the formation of a decarburized layer in the steel sheet surface layer during heating and cooling of the steel sheet.
- the Sb content is set to 0.002% or more.
- the content shall be 0.002% or more and 0.03% or less, preferably 0.002% or more and 0.02% or less.
- Group E: B: 0.0005-0.05% B contributes to improving the hardenability during hot pressing and toughness after hot pressing, and can be contained as necessary.
- the B content is set to 0.0005% or more.
- the content is 0.0005% or more and 0.05% or less, preferably 0.0005% or more and 0.01% or less.
- the balance other than the above components is composed of Fe and inevitable impurities.
- O oxygen
- Martensite phase in the first region 80.0% or more by volume ratio
- TS tensile strength
- Residual austenite phase in the first region 3.0-20.0% by volume
- the retained austenite phase is the most important structure in the present invention that enhances uniform elongation by the TRIP effect (transformation-induced plasticity) during deformation.
- a residual austenite phase having a volume ratio of 3.0% or more is contained.
- the volume ratio of the retained austenite phase is set to 3.0% or more and 20.0% or less.
- the volume ratio of the retained austenite phase is preferably 5.0 or more.
- the volume ratio of the retained austenite phase is preferably 18.0% or less.
- the remainder other than the martensite phase and the retained austenite phase can accept a bainite phase, a ferrite phase, cementite, and pearlite in a total volume ratio of 10% or less (including 0%).
- the ferrite phase in the second region 30.0% or more and 60.0% or less by volume ratio
- the ferrite phase is soft and functions to increase the ductility of the hot pressed member. If the volume fraction of the ferrite phase is less than 30.0%, uniform elongation cannot be secured at 15.0% or more. On the other hand, if the volume fraction of the ferrite phase exceeds 60.0%, the tensile strength TS cannot be increased to 780 MPa or more. Therefore, the volume fraction of the ferrite phase is 30.0% or more and 60.0% or less, preferably 35.0% or more and 55.0% or less.
- Residual austenite phase in the second region 10.0% or more and 70.0% or less in volume ratio
- the retained austenite phase is the most important structure in the second region, which increases uniform elongation by the TRIP effect (transformation-induced plasticity) during deformation. is there. If the volume fraction of retained austenite is less than 10.0%, a uniform elongation uEl of 15.0% or more cannot be secured. On the other hand, when the volume ratio of the retained austenite phase exceeds 70.0%, the hard martensite phase transformed after the TRIP effect is manifested increases, and the toughness decreases. Therefore, the volume ratio of the retained austenite phase is set to 10.0% or more and 70.0% or less.
- the volume ratio of the retained austenite phase is preferably 15.0% or more.
- the volume fraction of residual austenite phase is preferably 65.0% or less
- Martensite phase in the second region 30.0% or less in volume ratio
- the martensite phase is hard and has the function of increasing strength. From the viewpoint of setting the tensile strength TS to 780 MPa or more, a martensite phase having a volume ratio of 30.0% or less (including 0%) is contained. However, when the volume ratio of martensite exceeds 30.0%, uniform elongation uEl: 15.0% or more cannot be secured. Therefore, the volume ratio of the martensite phase is 30.0% or less (including 0%).
- the balance other than the ferrite phase, the retained austenite phase, and the martensite phase can accept a bainite phase, cementite, and pearlite with a total volume ratio of 10% or less (including 0%).
- a steel sheet containing an appropriate amount of Mn is used, and the steel sheet is subjected to a predetermined heat treatment before hot pressing.
- Mn in austenite and to optimize the heating process during hot pressing.
- the volume ratio of each phase is determined as follows.
- the volume ratio of retained austenite is obtained by the following method. Cut out a specimen for X-ray diffraction from the first region or the second region of the hot-pressed member, perform mechanical polishing and chemical polishing so that the 1/4 thickness surface becomes the measurement surface, and then X-ray diffraction I do. CoK ⁇ rays are used as incident X-rays, and the integrated intensity of peaks of residual austenite ( ⁇ ) on the ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, ⁇ 311 ⁇ plane, the ⁇ 200 ⁇ plane of ferrite ( ⁇ ), ⁇ 211 ⁇ Measure the integrated intensity of the peak of the surface.
- the residual ⁇ volume ratio obtained from the integral intensity ratio is calculated for a total of six types of ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 200 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 220 ⁇ , ⁇ ⁇ 200 ⁇ - ⁇ ⁇ 311 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 200 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 220 ⁇ ,
- the residual ⁇ volume ratio obtained from the integral intensity ratio is calculated for a total of six types of ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 311 ⁇ . These average values are defined as “volume ratio of residual austenite phase”.
- the volume ratio of the ferrite phase and the remaining structure is obtained by the following method.
- a structure observation specimen is collected so that the surface parallel to the rolling direction and perpendicular to the rolling surface becomes the observation surface.
- the observation surface is polished and corroded with 3 vol.% Nital solution to reveal the structure, and the structure at the position where the thickness becomes 1/4 is observed with a scanning electron microscope (magnification: 1500 times) and imaged.
- the tissue identification and the tissue fraction are obtained by image analysis.
- the phase that is observed as black on a relatively smooth surface is the ferrite phase
- the phase that is observed as white in the form of a film or a lump at the grain boundary is cementite
- the phase in which the ferrite phase and cementite are formed in layers is pearlite
- the phase formed by carbides and the phase composed of bainitic ferrite without carbides in the grains are identified as the bainite phase.
- the occupied area ratio of each phase in the structure photograph was obtained, the structure was regarded as being three-dimensionally homogeneous, and the area ratio was defined as the volume ratio.
- the “volume ratio of the martensite phase” was a value obtained by subtracting the volume ratio of the remaining structure and the volume ratio of the retained austenite phase from 100%.
- Average grain size of ferrite phase in the second region 10 ⁇ m or less
- the average particle size of the ferrite phase is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
- the lower limit value of the average particle diameter of ferrite is not particularly limited, but is preferably about 0.2 ⁇ m industrially.
- the average particle size of the second phase 10 ⁇ m or less
- the coarsening of the second phase causes a decrease in ductility. Therefore, the average particle size of the second phase is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
- the lower limit of the average particle size of the second phase is not particularly limited, but is preferably about 0.2 ⁇ m industrially.
- the “second phase” is a remaining structure other than ferrite, which is mainly retained austenite and martensite, but also includes martensite, pearlite, and bainite.
- the “average ferrite particle size” and the “second phase average particle size” were determined by the following methods. From the structure photograph of the second region obtained by the above-described method, the structure is identified by the above-described method, and the average particle diameters of ferrite and second phase are obtained by the line segment method described in JIS G 0551 (2005). It was.
- Mns / Mn ⁇ is 1.5 or more.
- Mn concentration in the second phase is Mns and the Mn concentration in the ferrite phase is Mn ⁇ , it is preferable that Mns / Mn ⁇ is 1.5 or more.
- the second phase in the second region is mainly retained austenite, and the state where the Mn concentration is high, that is, the state where Mn is concentrated, indicates that the stability of retained austenite is high. Residual austenite with high stability has a high TRIP effect (transformation-induced strain) during deformation and increases uniform elongation.
- Mns / Mn ⁇ which is a state in which the Mn concentration of the second phase is high, needs to be 1.5 or more. Preferably it is 1.6 or more.
- the upper limit value is not particularly limited, but is substantially 10.0 or less.
- Mns / Mn ⁇ in the second phase was determined by the following method. After collecting the specimen for tissue observation, the observation surface is polished and corroded with 3vol.% Nital solution to reveal the structure, and the tissue at the position where the thickness becomes 1/4 is changed to EPMA (Electron Probe Micro Analyzer). Mn was quantitatively analyzed for 30 particles of each of ferrite and second phase. Regarding the Mn quantitative analysis results, the average value of ferrite was Mn ⁇ , the average value of the second phase was Mns, and the average value Mns of the second phase was divided by the average value Mn ⁇ of ferrite was Mns / Mn ⁇ .
- the dislocation density of the hot press member is the most important index in the present invention that affects ⁇ YS. It is considered that when heat treatment (baking coating) is performed on the hot press member, the solid solution C is fixed to the movable dislocation, and the yield stress YS is increased. In order to realize ⁇ YS: 150 MPa or more, the dislocation density of the hot press member needs to be 1.0 ⁇ 10 16 / m 2 or more. The upper limit of the dislocation density is substantially 5.0 ⁇ 10 16 / m 2 .
- the dislocation density of the hot press member is preferably 1.2 ⁇ 10 16 / m 2 or more.
- the dislocation density of the hot press member is preferably 4.5 ⁇ 10 16 / m 2 or less.
- martensite in the first region generally has a low YS due to the generation of mobile dislocations. Therefore, it is considered that improving the YS of the first region works effectively as an effect of the component characteristics.
- the dislocation density is determined by the following method.
- a test piece for X-ray diffraction is cut out from the first region of the hot-pressed member, subjected to mechanical polishing and chemical polishing so that the 1/4 thickness surface becomes the measurement surface, and then X-ray diffraction is performed.
- the incident X-rays using a 1-wire CoK ⁇ , ⁇ ⁇ 110 ⁇ , ⁇ ⁇ 211 ⁇ , actually measuring the half-value width of the peak of alpha ⁇ 220 ⁇ .
- standard specimens without strain (Si) and correcting the half-value width of the measured ⁇ ⁇ 110 ⁇ , ⁇ ⁇ 211 ⁇ , ⁇ ⁇ 220 ⁇ to the true half-value width the Williamson-Hall method was applied. Based on this, the strain ( ⁇ ) is obtained.
- the hot press member according to one embodiment of the present invention preferably has a plating layer.
- the steel plate used as the material for the hot press member is a plated steel plate
- the plating layer remains on the surface layer of the obtained hot press member.
- scale generation is suppressed during heating in the hot press. Therefore, the hot press member can be used for use without removing the scale from the surface, and the productivity is improved.
- the plating layer is preferably a Zn-based plating layer or an Al-based plating layer.
- the Zn-based plating layer is superior to the Al-based plating layer. This is because the corrosion rate of the base iron can be reduced by the sacrificial anticorrosive action of zinc.
- a zinc oxide film is formed at the initial stage of heating in the hot pressing step, and Zn can be prevented from evaporating in the subsequent processing of the hot pressing member.
- examples of the Zn-based plating include general hot dip galvanizing (GI), alloyed hot dip galvanizing (GA), and Zn—Ni based plating.
- GI general hot dip galvanizing
- GA alloyed hot dip galvanizing
- Zn—Ni based plating is preferable.
- the Zn—Ni-based plated layer can prevent liquid metal embrittlement cracking in addition to remarkably suppressing scale formation during hot press heating. From the viewpoint of obtaining this effect, the Zn—Ni-based plating layer preferably contains 10 to 25% by mass of Ni. This effect is saturated even if Ni is contained in excess of 25%.
- Al-based plating layer is Al-10 mass% Si plating.
- the manufacturing method of the hot press member in one Embodiment of this invention is demonstrated. First, a slab having the above component composition is heated and hot-rolled to obtain a hot-rolled steel sheet. Thereafter, the hot-rolled steel sheet is subjected to a predetermined heat treatment (Mn concentration heat treatment) described later to obtain a first material steel sheet. Thereafter, the first material steel plate is optionally cold-rolled to obtain a cold-rolled steel plate, and subsequently, the cold-rolled steel plate is subjected to predetermined annealing to obtain a second material steel plate.
- Mn concentration heat treatment Mn concentration heat treatment
- a predetermined heating step and a hot press forming step are performed on the first material steel plate or the second material steel plate thus obtained to obtain a hot press member.
- ⁇ Step of obtaining steel plate> The process of obtaining a steel plate is not specifically limited, What is necessary is just to follow a regular method.
- the molten steel having the above composition is melted in a converter or the like, and is preferably made into a slab by a continuous casting method.
- an ingot casting method or a thin slab continuous casting method may be used.
- the obtained slab is once cooled to room temperature and then charged into a heating furnace for reheating.
- an energy saving process such as a process of charging a heating furnace with a hot piece without cooling the slab to a room temperature or a process of hot rolling immediately after the slab is kept warm can be applied.
- the obtained slab is heated to a predetermined heating temperature and then hot-rolled to obtain a hot-rolled steel sheet.
- the heating temperature include 1000 to 1300 ° C.
- the heated slab is usually hot-rolled at a finish rolling entry temperature of 1100 ° C or less and a finish rolling exit temperature of 800 to 950 ° C, and cooled at an average cooling rate of 5 ° C / s or more. Then, it is wound in a coil shape at a winding temperature of 300 to 750 ° C. to obtain a hot rolled steel sheet.
- the hot-rolled steel sheet is easy to be thinned and has good thickness accuracy.
- the rolling reduction during cold rolling is preferably 30% or more, and more preferably 50% or more, in order to prevent abnormal grain growth during the subsequent annealing or heating process immediately before hot pressing.
- the rolling reduction is preferably 85% or less. If the rolling load is significantly increased, the hot-rolled steel sheet may be softened and annealed before cold rolling.
- the softening annealing is preferably performed in a batch annealing furnace or a continuous annealing furnace.
- the hot-rolled steel sheet or preferably the cold-rolled steel sheet is heated to a first temperature not lower than Ac1 point and not higher than Ac3 point, maintained at the first temperature for 1 hour to 48 hours, and then cooled to obtain a raw steel sheet.
- This treatment concentrates Mn in austenite, has a proper amount of retained austenite in the first region, achieves uniform elongation uEl: 6.0% or more, and has a dislocation density of 1.0 ⁇ 10 16 / m. This is the most important process for manufacturing a hot press member that achieves ⁇ YS: 150 MPa or more as 2 or more.
- Heating temperature Ac1 point or more and Ac3 point or less Hot-rolled steel sheet or preferably cold-rolled steel sheet is heated to a ferrite-austenite two-phase temperature range to concentrate Mn in austenite.
- austenite enriched with Mn the end temperature of martensite transformation is not higher than room temperature, and retained austenite is easily generated.
- the heating temperature is less than the Ac1 point, austenite is not generated and Mn cannot be concentrated to austenite.
- the heating temperature exceeds the Ac3 point, the austenite single phase temperature range is reached, and Mn concentration to austenite is not performed.
- the dislocation density in the first region of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more in both cases where the heating temperature is lower than the Ac1 point and higher than the Ac3 point. Therefore, the heating temperature is set to Ac1 point or more and Ac3 point or less.
- the heating temperature is preferably (Ac1 point + 20 ° C.) or higher.
- the heating temperature is preferably (Ac3 point-20 ° C) or lower.
- the Ac1 point (° C.) and Ac3 point (° C.) are values calculated using the following formula.
- Ac1 point (°C) 751-16C + 11Si-28Mn-5.5Cu-16Ni + 13Cr + 3.4Mo
- Ac3 point (°C) 910-203C 1/2 + 44.7Si-4Mn + 11Cr
- C, Si, Mn, Ni, Cu, Cr, and Mo in the formula are the content (mass%) of each element, and when the above element is not contained, the content of the element is Calculate as zero.
- Heating and holding time 1 hour to 48 hours or less Concentration of Mn to austenite proceeds as the heating and holding time elapses. If the heating and holding time is less than 1 hour, the concentration of Mn to austenite is insufficient, and the desired uniform elongation cannot be obtained in the first region. Also, when the heating and holding time is less than 1 hour, Mn concentration is insufficient, the Ms point in the hot press process does not decrease, and the dislocation density in the first region of the hot press member is 1.0 ⁇ 10 16 / m Cannot be 2 or more. On the other hand, when the heating and holding time exceeds 48 hours, pearlite is generated, and a desired uniform elongation cannot be obtained in the first region.
- the dislocation density in the first region of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more. Therefore, the heating and holding time is 1 hour or more and 48 hours or less. The heating and holding time is preferably 1.5 hours or longer. The heating and holding time is preferably 24 hours or less.
- the Ms point (° C.) is a value calculated using the following formula.
- Ms point (°C) 539-423C-30.4Mn-17.7Ni-12.1Cr-7.5Mo
- C, Mn, Ni, Cr, and Mo in the formula are the contents (mass%) of each element, and when the element is not contained, the content of the element is calculated as zero. .
- the cooling after the heating and holding is not particularly limited, and it is preferable that the cooling is appropriately performed (gradual cooling) or controlled cooling depending on the heating furnace to be used.
- This Mn concentration heat treatment is preferably performed in a batch annealing furnace or a continuous annealing furnace.
- the processing conditions in the batch annealing furnace are not particularly limited except the above-mentioned conditions.
- the heating rate is 40 ° C./hr or more
- the cooling rate after heating and holding is 40 ° C./hr or more. It is preferable from the viewpoint of thickening.
- the treatment conditions in the continuous annealing furnace are not particularly limited except as described above.
- the hot-rolled steel sheet or the cold-rolled steel sheet is heated at an average cooling rate of 10 ° C./s or more. It is preferable from the viewpoint of manufacturability to cool to a cooling stop temperature in a temperature range of 350 to 600 ° C., and then continue to stay in the temperature range for 10 to 300 seconds, and then cool and wind.
- the material steel plate produced in this way can be used as a hot press steel plate.
- ⁇ Plating process> When a plating layer is not formed on the surface of the material steel plate, it is necessary to perform a scale peeling treatment such as shot blasting on the hot pressed member after the hot pressing step. On the other hand, when a plating layer is formed on the surface of the material steel plate, scale generation is suppressed during heating in the hot press, so that the scale peeling treatment after the hot pressing step is unnecessary, and the productivity is improved.
- a scale peeling treatment such as shot blasting on the hot pressed member after the hot pressing step.
- the adhesion amount of the plating layer is preferably 10 to 90 g / m 2 per side, more preferably 30 to 70 g / m 2 . This is because if the adhesion amount is 10 g / m 2 or more, the effect of suppressing scale formation during heating is sufficiently obtained, and if the adhesion amount is 90 g / m 2 or less, productivity is not hindered.
- the components of the plating layer are as described above.
- the first steel plate is heated to a second temperature of Ac3 point or higher and 1000 ° C or lower, and the second region is heated to a third temperature of Ac1 point or higher (Ac3 point – 20 ° C) or lower.
- a heating process for heating and sorting is performed.
- Heating temperature in the first region (second temperature T2): Ac3 point to 1000 ° C.
- the material steel plate is heated to the Ac3 point that is the austenite single phase region. If the heating temperature is lower than the Ac3 point, austenitization becomes insufficient, the desired martensite amount cannot be secured in the first region of the hot pressed member, and the desired tensile strength cannot be obtained. Further, the dislocation density in the first region of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more, and ⁇ YS: 150 MPa or more cannot be realized.
- the heating temperature is set to Ac3 point or higher and 1000 ° C or lower.
- the heating temperature is preferably (Ac3 point + 20 ° C.) or higher.
- the heating temperature is preferably 950 ° C. or lower.
- Heating temperature in the second region (third temperature T3): Ac1 point or more (Ac3 point –20 ° C) or less If the heating temperature in the second region exceeds (Ac3 point –20 ° C), the desired amount of ferrite phase and A retained austenite phase cannot be obtained, and uniform elongation uEl of 15.0% or more cannot be realized. Moreover, when the heating temperature of the second region is lower than the Ac1 point, the ferrite volume fraction increases and the strength decreases. Therefore, the heating temperature of the second region is set to Ac1 point or more (Ac3 point ⁇ 20 ° C.). The heating temperature in the second region is preferably (Ac1 point + 10 ° C.) or higher. The heating temperature in the second region is preferably (Ac3 point-30 ° C.) or lower.
- the mechanical characteristics of the second region are arranged as follows according to the heating temperature T3 of the heating step and the heating temperature T1 of the Mn concentration heat treatment described above.
- T3 exceeds T1 and is less than Ac3 point -20
- the mechanical properties of the second region are strongly influenced by T3.
- T3 is T1 or less
- the mechanical characteristics of the second region are strongly influenced by T1. This is because the volume ratio of the second phase does not change when T3 is T1 or less for the structure formed by the Mn-concentration heat treatment, while the volume ratio of the second phase when T3 exceeds T1. This is because of the rise.
- the rate of temperature rise to the heating temperature is not particularly limited, but is preferably 1 to 400 ° C./s, and more preferably 10 to 150 ° C./s. If the rate of temperature increase is 1 ° C./s or more, productivity is not impaired, and if it is 400 ° C./s or less, temperature control does not become unstable.
- Holding time 900 seconds or less (including 0 seconds)
- the holding time at the heating temperature (second temperature and third temperature) elapses, the concentrated Mn diffuses around and becomes uniform. Therefore, if the holding time exceeds 900 seconds, a desired retained austenite amount cannot be ensured and a desired uniform elongation cannot be obtained.
- the Ms uniformity makes it impossible to lower the Ms point, and the dislocation density in the first region of the hot press member cannot be made 1.0 ⁇ 10 16 / m 2 or more, and ⁇ YS: 150 MPa or more. Cannot be realized. Therefore, the holding time is 900 seconds or less.
- the holding time is 0 second, that is, heating may be terminated immediately after the second temperature is reached.
- the heating method is not particularly limited, and any of general heating methods such as an electric furnace, a gas furnace, infrared heating, high-frequency heating, and direct current heating can be applied.
- the atmosphere is not particularly limited, and any of atmospheric conditions, inert gas atmospheres, and the like can be applied.
- the method of heating and sorting the first and second regions there is no particular limitation on the method of heating and sorting the first and second regions, a method of covering the cover on a part of the material steel plate, a method of partially blowing a cooling medium such as gas, and removing a part of the steel plate from the heating zone. Any of the methods (for example, a method of removing a part of the material steel plate from the high-frequency coil or a method of adjusting the clamp position of the electrode for direct current heating) can be applied.
- Hot press molding process In the hot press forming step, the raw steel plate that has undergone the heating step is simultaneously subjected to press forming and quenching using a forming die to obtain a hot press member having a predetermined shape.
- Hot press forming is a method in which a heated thin steel plate is press-formed with a die and rapidly cooled, and is also referred to as “hot forming”, “hot stamp”, “die quench”, and the like.
- the molding start temperature in the press is not particularly limited.
- the austenite generated in the heating process immediately before the hot press forming process for the raw steel plate causes new ferrite transformation at a cooling rate higher than air cooling in the cooling process following the heating process.
- Mn has the effect of delaying the ferrite transformation of austenite in the cooling process.
- the press molding start temperature in the first region is preferably 500 ° C. or higher.
- the upper limit of the molding start temperature is the heating temperature in the immediately preceding heating step in the manufacturing process.
- a heat retaining jig such as a heat retaining box.
- the cooling rate in the mold is not particularly limited, but from the viewpoint of productivity, the average cooling rate up to 200 ° C. is preferably 20 ° C./s or more, more preferably 40 ° C./s or more.
- the time for taking out from the mold and the cooling rate after taking out there are no particular limitations on the time for taking out from the mold and the cooling rate after taking out.
- a cooling method for example, the punch die is held at the bottom dead center for 1 to 60 seconds, and the hot press member is cooled using the die die and the punch die. Thereafter, the hot press member is taken out from the mold and cooled.
- the cooling in the mold and after taking out from the mold can be combined with a cooling method using a refrigerant such as gas or liquid, thereby improving the productivity.
- Molten steel having the composition shown in Tables 1 and 4 (the balance being Fe and inevitable impurities) was melted in a small vacuum melting furnace to obtain a slab.
- the slab was heated to 1250 ° C. and further hot rolled including rough rolling and finish rolling to obtain a hot rolled steel sheet.
- the finish rolling entry temperature was 1100 ° C
- the finish rolling exit temperature was 850 ° C.
- the cooling rate after the hot rolling was 15 ° C./s on average at 800 to 600 ° C., and the winding temperature was 650 ° C.
- the obtained hot-rolled steel sheet was pickled and cold-rolled at a reduction ratio of 54% to obtain a cold-rolled steel sheet (sheet thickness: 1.6 mm).
- the obtained cold-rolled steel sheet was heated to the heating temperature T1 (first temperature) shown in Table 2 and Table 5, held at the temperature for the time shown in Table 2 and Table 5, and then cooled to obtain a raw steel sheet.
- the steel plate was plated.
- “GI” is a hot-dip galvanized layer
- “GA” is an alloyed hot-dip galvanized layer
- “Zn-Ni” is a Zn-12 mass% Ni-plated layer
- “Al-Si” is Al-10 mass. % Si plating layer, and the coating amount of each plating layer was 60 g / m 2 per side.
- the material steel plate thus obtained was subjected to a heating step and a hot press forming step under the conditions shown in Table 3 and Table 6 to obtain a hat-shaped hot press member.
- the hot pressing was performed using a punch die having a width of 70 mm and a shoulder radius R of 6 mm and a die die having a shoulder radius R of 7.6 mm and a forming depth of 30 mm.
- the heating step before the hot press molding step was performed in the air using an electric heating furnace, and the heating rate was 7.5 ° C./s on average from room temperature to 750 ° C. in the first region.
- the second area was covered with a heat-resistant cover with a thickness of 10 mm.
- the heating temperature T2 of the first region and the heating temperature T3 of the second region were as shown in Tables 3 and 6.
- Tables 3 and 6 also show the holding times in the heating step.
- the molding start temperatures in the first region are shown in Tables 3 and 6. Cooling is held at a bottom dead center for 15 s, and the combination of sandwiching with a die mold and a punch mold and air cooling on the die released from the sandwiching is 150 ° C or less. Until cooled.
- the average cooling rate from the molding start temperature to 200 ° C was 100 ° C / s.
- the volume ratio of the martensite phase in the first region, the volume ratio of the retained austenite phase, and the volume ratio of the remaining structure, and the volume ratio of the ferrite phase in the second region, the retained austenite The volume ratio of the phase, the volume ratio of the martensite phase, the volume ratio of the remaining structure, the average particle diameter of the ferrite phase, the average particle diameter of the second phase, and Mns / Mn ⁇ were measured by the above-described methods. And in Table 6.
- the obtained hot press member was subjected to a heat treatment (low temperature heat treatment) at 170 ° C. for 20 minutes. This corresponds to baking coating conditions in the manufacturing process of a normal automobile member.
- JIS Z 2241 A tensile test was performed in accordance with the yield stress YS, tensile strength TS, total elongation tEl, and uniform elongation uEl. The results are shown in Table 3 and Table 6.
- the tensile strength TS in the first region is 1500 MPa or more
- the uniform elongation uEl is 6.0% or more
- the tensile strength TS in the second region is 780 MPa or more
- the uniform elongation uEl Achieved over 15.0%.
- the comparative example did not satisfy any of the characteristics.
- the hot press member of the present invention can be suitably used as a structural member that requires high collision energy absorption capability, such as an impact beam, a center pillar, and a bumper of an automobile.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
(1)質量%で、
C:0.090%以上0.30%未満、
Mn:3.5%以上11.0%未満、
Si:0.01~2.5%、
P:0.05%以下、
S:0.05%以下、
Al:0.005~0.1%、
N:0.01%以下を含み、
残部がFeおよび不可避的不純物からなる成分組成と、
体積率で80.0%以上のマルテンサイト相と、体積率で3.0%以上20.0%以下の残留オーステナイト相とを含む組織と、引張強さTS:1500MPa以上でかつ均一伸びuEl:6.0%以上である引張特性と、を有し、転位密度が1.0×1016/m2以上である第一の領域と、
体積率で30.0%以上60.0%以下のフェライト相と、体積率で10.0%以上70.0%以下の残留オーステナイト相と、体積率で30.0%以下のマルテンサイト相とを含む組織と、引張強さTS:780MPa以上でかつ均一伸びuEl:15.0%以上である引張特性と、を有する第二の領域と、
を有することを特徴とするホットプレス部材。
記
A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
D群:Sb:0.002~0.03%
E群:B:0.0005~0.05%
C:0.090%以上0.30%未満、
Mn:3.5%以上11.0%未満、
Si:0.01~2.5%、
P:0.05%以下、
S:0.05%以下、
Al:0.005~0.1%、
N:0.01%以下を含み、
残部がFeおよび不可避的不純物からなる成分組成を有する鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、素材鋼板を得る工程と、
前記素材鋼板を、Ac3点以上1000℃以下の第2温度に加熱する第一の領域と、Ac1点以上(Ac3点-20℃)以下の第3温度に加熱する第二の領域とに分けて、加熱仕分ける加熱工程と、
その後、前記素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、ホットプレス部材を得るホットプレス成形工程と、
を有することを特徴とするホットプレス部材の製造方法。
記
A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
D群:Sb:0.002~0.03%
E群:B:0.0005~0.05%
本発明の一実施形態によるホットプレス部材の成分組成について説明する。以下、特に断わらないかぎり、「質量%」は単に「%」と記す。
Cは、鋼の強度を増加させる元素である。また、ホットプレス部材に対する熱処理で、固溶Cの転位固着により降伏応力が高まる。このような効果を得て、引張強さTS:1500MPa以上を確保するためには、C含有量は0.090%以上とする。一方、C含有量が0.30%以上の場合、Cによる固溶強化量が大きくなるため、ホットプレス部材の引張強さTSを2300MPa未満に調整することが困難となる。
Mnは、鋼の強度を増加させるとともに、オーステナイト中に濃化し、オーステナイトの安定性を向上させる元素であり、本発明で最も重要な元素である。このような効果を得て、第一の領域において引張強さTS:1500MPa以上と、均一伸びuEl:6.0%以上を確保するためには、Mn含有量は3.5%以上とする。一方、Mn含有量が11.0%以上の場合、Mnによる固溶強化量が大きくなり、ホットプレス部材の引張強さTSを2300MPa未満に調整することが困難となる。
Siは、固溶強化により、鋼の強度を増加させる元素であり、このような効果を得るためには、Si含有量は0.01%以上とする。一方、Si含有量が2.5%を超える場合、熱間圧延時に赤スケールと呼ばれる表面欠陥が著しく発生するとともに、圧延荷重が増大する。よって、Si含有量は0.01%以上2.5%以下とする。なお、Si含有量は、好ましくは0.02%以上である。Si含有量は、好ましくは1.5%以下である。
Pは、鋼中では不可避的不純物として存在し、結晶粒界等に偏析して、部材の靭性を低下させるなどの悪影響を及ぼす元素であり、できるだけ低減することが望ましいが、0.05%までは許容できる。よって、P含有量は0.05%以下とし、より好ましくは0.02%以下とする。また、過度の脱P処理は精錬コストの高騰を招くため、P含有量は0.0005%以上とすることが望ましい。
Sは、不可避的に含有され、鋼中では硫化物系介在物として存在し、ホットプレス部材の延性、靭性等を低下させる。このため、Sはできるだけ低減することが望ましいが、0.05%までは許容できる。このようなことから、S含有量は0.05%以下とし、より好ましくは0.005%以下とする。また、過度の脱S処理は精錬コストの高騰を招くため、S含有量は0.0005%以上とすることが望ましい。
Alは、脱酸剤として作用する元素であり、このような効果を発現させるためには、Al含有量は0.005%以上とする。一方、Al含有量が0.1%を超える場合、窒素と結合し多量の窒化物が生成し、素材とする鋼板のブランキング加工性や焼入れ性が低下する。このため、Al含有量は0.005%以上0.1%以下とする。なお、Al含有量は、好ましくは0.02%以上である。Al含有量は、好ましくは0.05%以下である。
Nは、通常は、鋼中に不可避的に含有されるが、N含有量が0.01%を超える場合、熱間圧延やホットプレスの加熱時にAlN等の窒化物が形成し、素材とする鋼板のブランキング加工性や焼入れ性が低下する。このため、N含有量は0.01%以下とする。なお、N含有量は、より好ましくは0.0030%以上である。N含有量は、より好ましくは0.0050%以下である。また、とくに調整せず、不可避的に含有される場合には、N含有量は0.0025%未満程度である。また、精錬コストが増加するため、N含有量は0.0025%以上とすることが望ましい。
Ni、Cu、Cr、Moはいずれも、鋼の強度を増加させるとともに、焼入れ性向上に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、各元素の含有量を0.01%以上とする。一方、材料コストを高騰させない観点から、Ni、Cu、Cr含有量は5.0%以下、Mo含有量は3.0%以下とする。各元素の好ましい含有量は、0.01%以上1.0%以下である。
Ti、Nb、V、Wはいずれも、析出強化によって鋼の強度増加に寄与するとともに、結晶粒の微細化によって靭性向上にも寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。
REM、Ca、Mgは、いずれも介在物の形態制御によって、延性や耐水素脆性を向上させる元素であり、必要に応じて選択して1種または2種以上を含有できる。この効果を得るためには、各元素の含有量は0.0005%以上とする。一方、熱間加工性を低下させない観点から、REM含有量、Ca含有量はともに0.01%以下とする。また、粗大な酸化物や硫化物の生成により延性を低下させない観点から、Mg含有量は0.01%以下とする。各元素の好ましい含有量は、0.0006~0.01%である。
Sbは、鋼板の加熱、冷却に際し、鋼板表層における脱炭層の形成を抑制するため、必要に応じて含有できる。この効果を得るためには、Sb含有量は0.002%以上とする。一方、Sb含有量が0.03%を超える場合、圧延荷重の増大を招き、生産性を低下させる。このため、Sbを含有する場合、その含有量は0.002%以上0.03%以下とし、好ましくは0.002%以上0.02%以下とする。
Bは、ホットプレス時の焼入れ性向上やホットプレス後の靭性向上に寄与するため、必要に応じて含有できる。この効果を得るためには、B含有量は0.0005%以上とする。一方、B含有量が0.05%を超える場合、熱間圧延時の圧延荷重の増加や、熱間圧延後にマルテンサイト相やベイナイト相が生じて鋼板の割れが生じる場合がある。よって、Bを含有する場合、その含有量は0.0005%以上0.05%以下とし、好ましくは0.0005%以上0.01%以下とする。
本発明の一実施形態によるホットプレス部材の組織について説明する。
第一の領域において引張強さTS:1500MPa以上を確保するためには、体積率で80.0%以上のマルテンサイト相を主相とする必要がある。なお、マルテンサイト相は、所望量の残留オーステナイト相を含有するために、多くても97%以下とすることが好ましい。
残留オーステナイト相は、変形時のTRIP効果(変態誘起塑性)により均一伸びを高める、本発明で最も重要な組織である。本実施形態では、第一の領域において均一伸びuEl:6.0%以上を実現するために、体積率で3.0%以上の残留オーステナイト相を含有させる。一方、残留オーステナイト相の体積率が20.0%を超えると、TRIP効果を発現した後に変態した硬質なマルテンサイト相が多くなりすぎて、靭性が低下する。よって、残留オーステナイト相の体積率は、3.0%以上20.0%以下とする。残留オーステナイト相の体積率は、好ましくは5.0以上とする。残留オーステナイト相の体積率は、好ましくは18.0%以下とする。
フェライト相は軟質であり、ホットプレス部材の延性を高める働きがある。フェライト相の体積率が30.0%未満であると、均一伸びが15.0%以上を確保できない。一方、フェライト相の体積率が60.0%を超えると、引張強度TSを780MPa以上とすることができない。よって、フェライト相の体積率は、30.0%以上60.0%以下とし、好ましくは35.0%以上55.0%以下とする。
残留オーステナイト相は、変形時のTRIP効果(変態誘起塑性)により均一伸びを高める、第二の領域においても最も重要な組織である。残留オーステナイトの体積率が10.0%未満であると、15.0%以上の均一伸びuElを確保することができない。一方、残留オーステナイト相の体積率が70.0%を超えると、TRIP効果を発現した後に変態した硬質なマルテンサイト相が多くなりすぎて、靭性が低下する。よって、残留オーステナイト相の体積率は10.0%以上70.0%以下とする。残留オーステナイト相の体積率は、好ましくは15.0%以上とする。残留オーステナイト相の体積率は、好ましくは65.0%以下とする
マルテンサイト相は硬質であり、強度を高める働きがある。引張強度TSを780MPa以上とする観点から、体積率で30.0%以下(0%含む)のマルテンサイト相を含有させる。しかし、マルテンサイトの体積率が30.0%を超えると、均一伸びuEl:15.0%以上が確保されない。よって、マルテンサイト相の体積率は30.0%以下(0%を含む)とする。
第二の領域においてフェライトの結晶粒径の微細化は、TSの向上に寄与する。所望のTSを確保するためには、フェライト相の平均粒径は10μm以下にすることが好ましく、5μm以下がより好ましい。なお、フェライトの平均粒径の下限値は特に限定されるものではないが、工業的には0.2μm程度とすることが好ましい。
第二の領域において第二相の粗大化は、延性の低下を招く。よって、第二相の平均粒径は10μm以下であることが好ましく、5μm以下がより好ましい。なお、第二相の平均粒径の下限値は特に限定されるものではないが、工業的には0.2μm程度とすることが好ましい。なお、第二の領域において「第二相」とは、フェライト以外の残部組織で、主に残留オーステナイトとマルテンサイトであるが、マルテンサイト、パーライトおよびベイナイトも含まれる。
第二相中のMn濃度をMns、フェライト相中のMn濃度をMnαとした時、Mns/Mnαが1.5以上であることが好ましい。第二の領域における第二相は主に残留オーステナイトであり、Mn濃度が高い状態、つまりMnが濃化した状態は残留オーステナイトの安定性が高いことを示す。高い安定性を有する残留オーステナイトは、変形時のTRIP効果(変態誘起歪)が高く、均一伸びを高める。つまり、良好な延性を確保するためには、第二相のMn濃度が高い状態であるMns/Mnαが1.5以上である必要がある。好ましくは1.6以上である。なお、上限値は特に限定されるものではないが、実質的に10.0以下である。
第一の領域において転位密度:1.0×1016/m2以上
ホットプレス部材の転位密度は、ΔYSに影響する本発明において最も重要な指標である。ホットプレス部材に熱処理(焼付け塗装)を施した際に、可動転位に固溶Cが固着して、降伏応力YSが上昇するものと考えられる。ΔYS:150MPa以上を実現するためには、ホットプレス部材の転位密度が1.0×1016/m2以上である必要がある。転位密度の上限は実質的に5.0×1016/m2である。ホットプレス部材の転位密度は、好ましくは1.2×1016/m2以上である。ホットプレス部材の転位密度は、好ましくは4.5×1016/m2以下である。特に、第一の領域におけるマルテンサイトは、可動転位が生成するために、一般的にYSが低い。よって、第一の領域のYSを向上させることは、部品特性の効果として有効に働くと考えられる。
ρ=14.4×ε2/b2
本発明の一実施形態によるホットプレス部材は、めっき層を有することが好ましい。
本発明の一実施形態におけるホットプレス部材の製造方法を説明する。まず、上記の成分組成を有するスラブを加熱し、熱間圧延して、熱延鋼板を得る。その後、この熱延鋼板に後述する所定の熱処理(Mn濃化熱処理)を施して、第1素材鋼板を得る。その後、任意に、前記第1素材鋼板を冷間圧延して、冷延鋼板を得て、引き続き、この冷延鋼板に所定の焼鈍を行って、第2素材鋼板を得る。
鋼板を得る工程は特に限定されず、定法に従えばよい。上記の成分組成を有する溶鋼を、転炉等で溶製し、マクロ偏析を防止するために連続鋳造法でスラブとすることが好ましい。なお、連続鋳造法に代えて、造塊法、あるいは薄スラブ連鋳法を用いてもよい。
続いて、熱延鋼板または好ましくは冷延鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、素材鋼板を得る。この処理は、オーステナイトにMnを濃化させるものであり、第一の領域において残留オーステナイトを適正量有して均一伸びuEl:6.0%以上を実現し、かつ、転位密度が1.0×1016/m2以上としてΔYS:150MPa以上を実現するホットプレス部材を製造するために最も重要なプロセスとなる。
熱延鋼板または好ましくは冷延鋼板をフェライト-オーステナイト二相温度域に加熱し、オーステナイトにMnを濃化させる。Mnが濃化したオーステナイトでは、マルテンサイト変態終了温度が室温以下となり、残留オーステナイトが生成しやすくなる。加熱温度がAc1点未満では、オーステナイトが生成せず、Mnをオーステナイトへ濃化させることができない。一方、加熱温度がAc3点を超えると、オーステナイト単相温度域となり、オーステナイトへのMn濃化が行われない。また、加熱温度がAc1点未満の場合とAc3点を超える場合のいずれも、ホットプレス部材の第一の領域における転位密度を1.0×1016/m2以上とすることができない。よって、加熱温度はAc1点以上Ac3点以下とする。加熱温度は好ましくは(Ac1点+20℃)以上とする。加熱温度は好ましくは(Ac3点-20℃)以下とする。
Ac1点(℃)=751-16C+11Si-28Mn-5.5Cu-16Ni+13Cr+3.4Mo
Ac3点(℃)=910-203C1/2+44.7Si-4Mn+11Cr
ここで、式中のC、Si、Mn、Ni、Cu、Cr、Moは、各元素の含有量(質量%)であり、上記元素が含有されていない場合には、当該元素の含有量を零として算出する。
オーステナイトへのMnの濃化は、加熱保持時間の経過に伴い進行する。加熱保持時間が1時間未満では、Mnのオーステナイトへの濃化が不十分で、第一の領域において所望の均一伸びが得られない。また、加熱保持時間が1時間未満の場合、Mn濃化が不十分で、ホットプレス工程でのMs点が低下せず、ホットプレス部材の第一の領域における転位密度を1.0×1016/m2以上とすることができない。一方、加熱保持時間が48時間を超えると、パーライトが生成し、第一の領域において所望の均一伸びが得られない。また、ホットプレス部材の第一の領域における転位密度を1.0×1016/m2以上とすることができない。よって、加熱保持時間は1時間以上48時間以下とする。加熱保持時間は、好ましくは1.5時間以上とする。加熱保持時間は、好ましくは24時間以下とする。
Ms点(℃)=539-423C-30.4Mn-17.7Ni-12.1Cr-7.5Mo
ここで、式中のC、Mn、Ni、Cr、Moは、各元素の含有量(質量%)であり、上記元素が含有されていない場合には、当該元素の含有量を零として算出する。
素材鋼板の表面にめっき層を形成しない場合、ホットプレス工程後に、ホットプレス部材にショットブラストなどのスケール剥離処理を行う必要がある。これに対し、素材鋼板の表面にめっき層を形成する場合、ホットプレスの加熱時にスケール生成が抑制されるため、ホットプレス工程後のスケール剥離処理が不要となり、生産性が向上する。
続いて、素材鋼板を、Ac3点以上1000℃以下の第2温度に加熱する第一の領域と、Ac1点以上(Ac3点-20℃)以下の第3温度に加熱する第二の領域とに分けて、加熱仕分ける加熱工程を行う。
第一の領域では、素材鋼板をオーステナイト単相域であるAc3点以上に加熱する。加熱温度がAc3点よりも低いと、オーステナイト化が不十分となり、ホットプレス部材の第一の領域に所望のマルテンサイト量を確保できず、所望の引張強さを得られない。また、ホットプレス部材の第一の領域における転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。一方、加熱温度が1000℃を超えると、オーステナイトに濃化したMnが均一化され、第一の領域に所望の残留オーステナイト量を確保できず、所望の均一伸びが得られない。また、Mnの均一化により、Ms点を低下させることができなくなり、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。よって、加熱温度はAc3点以上1000℃以下とする。加熱温度は、好ましくは、(Ac3点+20℃)以上とする。加熱温度は、好ましくは、950℃以下とする。
第二の領域の加熱温度が(Ac3点-20℃)を超えると、所望量のフェライト相および残留オーステナイト相が得られず、均一伸びuEl15.0%以上を実現できない。また、第二の領域の加熱温度Ac1点未満の場合、フェライト体積率が上昇し、強度が低下する。よって、第二の領域の加熱温度は、Ac1点以上(Ac3点-20℃)以下とする。第二の領域の加熱温度は、好ましくは、(Ac1点+10℃)以上とする。第二の領域の加熱温度は、好ましくは、(Ac3点-30℃)以下とする。
加熱温度(第2温度および第3温度)での保持時間の経過に伴い、濃化されたMnが周囲に拡散し均一化される。そのため、保持時間が900秒を超えると、所望の残留オーステナイト量を確保できず、所望の均一伸びが得られない。また、Mnの均一化により、Ms点を低下させることができなくなり、ホットプレス部材の第一の領域における転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。よって、保持時間は900秒以下とする。保持時間は0秒、すなわち、第2温度の到達後に、直ちに、加熱を終了してもよい。
ホットプレス成形工程では、加熱工程を経た素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、所定形状のホットプレス部材を得る。「ホットプレス成形」は、加熱された薄鋼板を金型でプレス成形すると同時に急冷する工法であり、「熱間成形」、「ホットスタンプ」、「ダイクエンチ」などとも称される。
Claims (12)
- 質量%で、
C:0.090%以上0.30%未満、
Mn:3.5%以上11.0%未満、
Si:0.01~2.5%、
P:0.05%以下、
S:0.05%以下、
Al:0.005~0.1%、
N:0.01%以下を含み、
残部がFeおよび不可避的不純物からなる成分組成と、
体積率で80.0%以上のマルテンサイト相と、体積率で3.0%以上20.0%以下の残留オーステナイト相と、を含む組織と、引張強さTS:1500MPa以上でかつ均一伸びuEl:6.0%以上である引張特性と、を有し、転位密度が1.0×1016/m2以上である第一の領域と、
体積率で30.0%以上60.0%以下のフェライト相と、体積率で10.0%以上70.0%以下の残留オーステナイト相と、体積率で30.0%以下のマルテンサイト相とを含む組織と、引張強さTS:780MPa以上でかつ均一伸びuEl:15.0%以上である引張特性と、を有する第二の領域と、
を有することを特徴とするホットプレス部材。 - 前記第二の領域の組織において、フェライト相の平均粒径が10μm以下、第二相の平均粒径が10μm以下であり、第二相中のMn濃度をMns、フェライト相中のMn濃度をMnαとした時、Mns/Mnαが1.5以上である、請求項1に記載のホットプレス部材。
- 前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する請求項1または2に記載のホットプレス部材。
記
A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
D群:Sb:0.002~0.03%
E群:B:0.0005~0.05% - 表面にめっき層を有する請求項1~3のいずれか一項に記載のホットプレス部材。
- 前記めっき層が、Zn系めっき層またはAl系めっき層である請求項4に記載のホットプレス部材。
- 前記Zn系めっき層が、Ni:10~25質量%を含む請求項5に記載のホットプレス部材。
- 質量%で、
C:0.090%以上0.30%未満、
Mn:3.5%以上11.0%未満、
Si:0.01~2.5%、
P:0.05%以下、
S:0.05%以下、
Al:0.005~0.1%、
N:0.01%以下を含み、
残部がFeおよび不可避的不純物からなる成分組成を有する鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、素材鋼板を得る工程と、
前記素材鋼板を、Ac3点以上1000℃以下の第2温度に加熱する第一の領域と、Ac1点以上(Ac3点-20℃)以下の第3温度に加熱する第二の領域とに分けて、加熱仕分ける加熱工程と、
その後、前記素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、ホットプレス部材を得るホットプレス成形工程と、
を有することを特徴とするホットプレス部材の製造方法。 - 前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する請求項7に記載のホットプレス部材の製造方法。
記
A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
D群:Sb:0.002~0.03%
E群:B:0.0005~0.05% - 前記加熱工程の前に、前記素材鋼板の表面にめっき層を形成する工程をさらに有する請求項7または8に記載のホットプレス部材の製造方法。
- 前記めっき層が、Zn系めっき層またはAl系めっき層である請求項9に記載のホットプレス部材の製造方法。
- 前記Zn系めっき層が、Ni:10~25質量%を含む請求項10に記載のホットプレス部材の製造方法。
- 前記めっき層の付着量が、片面あたりで10~90g/m2である請求項9~11のいずれか一項に記載のホットプレス部材の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187013033A KR20180063304A (ko) | 2015-10-19 | 2016-10-03 | 핫 프레스 부재 및 그의 제조 방법 |
US15/768,905 US20180305785A1 (en) | 2015-10-19 | 2016-10-03 | Hot pressed member and method of manufacturing same |
MX2018004771A MX2018004771A (es) | 2015-10-19 | 2016-10-03 | Miembro prensado en caliente y metodo de fabricacion del mismo. |
CN201680061023.0A CN108138290A (zh) | 2015-10-19 | 2016-10-03 | 热冲压构件及其制造方法 |
EP16857080.2A EP3366798B1 (en) | 2015-10-19 | 2016-10-03 | Hot press member and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015205752A JP6168118B2 (ja) | 2015-10-19 | 2015-10-19 | ホットプレス部材およびその製造方法 |
JP2015-205752 | 2015-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017068757A1 true WO2017068757A1 (ja) | 2017-04-27 |
Family
ID=58556834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004459 WO2017068757A1 (ja) | 2015-10-19 | 2016-10-03 | ホットプレス部材およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180305785A1 (ja) |
EP (1) | EP3366798B1 (ja) |
JP (1) | JP6168118B2 (ja) |
KR (1) | KR20180063304A (ja) |
CN (1) | CN108138290A (ja) |
MX (1) | MX2018004771A (ja) |
WO (1) | WO2017068757A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020262652A1 (ja) * | 2019-06-28 | 2020-12-30 | 日本製鉄株式会社 | 鋼板 |
EP3704282A4 (en) * | 2017-11-02 | 2021-08-25 | Easyforming Steel Technology Co., Ltd. | STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND SHAPED COMPONENT |
JP7541124B2 (ja) | 2020-07-24 | 2024-08-27 | アルセロールミタル | 冷間圧延焼鈍され、分配処理された鋼板及びその製造方法 |
JP7541123B2 (ja) | 2020-07-24 | 2024-08-27 | アルセロールミタル | 冷間圧延焼鈍され、焼戻された鋼板及びその製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6260676B2 (ja) | 2016-03-29 | 2018-01-17 | Jfeスチール株式会社 | ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法 |
EP3438316B1 (en) * | 2016-03-29 | 2022-03-09 | JFE Steel Corporation | Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor |
CN106244918B (zh) * | 2016-07-27 | 2018-04-27 | 宝山钢铁股份有限公司 | 一种1500MPa级高强塑积汽车用钢及其制造方法 |
KR101999028B1 (ko) * | 2017-12-26 | 2019-09-27 | 주식회사 포스코 | 연성이 우수한 열간 프레스 성형 부재, 열간 프레스 성형 부재용 강판 및 이들의 제조방법 |
KR102604593B1 (ko) * | 2019-05-31 | 2023-11-22 | 닛폰세이테츠 가부시키가이샤 | 핫 스탬프용 강판 |
CN113906151B (zh) * | 2019-05-31 | 2022-11-11 | 日本制铁株式会社 | 热压成型体 |
KR102604220B1 (ko) | 2019-05-31 | 2023-11-21 | 닛폰세이테츠 가부시키가이샤 | 핫 스탬프 성형체 |
KR102606157B1 (ko) * | 2019-05-31 | 2023-11-29 | 닛폰세이테츠 가부시키가이샤 | 핫 스탬프용 강판 |
EP4116003A4 (en) * | 2020-03-11 | 2023-06-21 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | PROCESS FOR MANUFACTURING A STEEL COMPONENT WITH LOCALLY SOFTENED SECTION |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217125A (ja) * | 1985-07-15 | 1987-01-26 | Nippon Steel Corp | 高強度高延性鋼材の製造方法 |
JP2004211147A (ja) * | 2002-12-27 | 2004-07-29 | Kobe Steel Ltd | 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材 |
JP2008144233A (ja) * | 2006-12-11 | 2008-06-26 | Kobe Steel Ltd | 焼付硬化用高強度鋼板およびその製造方法 |
WO2013038637A1 (ja) * | 2011-09-16 | 2013-03-21 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板およびその製造方法 |
WO2013047821A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
WO2013137453A1 (ja) * | 2012-03-15 | 2013-09-19 | 株式会社神戸製鋼所 | 熱間プレス成形品およびその製造方法 |
JP2015503023A (ja) * | 2011-11-07 | 2015-01-29 | ポスコ | 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法 |
WO2015182596A1 (ja) * | 2014-05-29 | 2015-12-03 | 新日鐵住金株式会社 | 熱処理鋼材及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20014361U1 (de) * | 2000-08-19 | 2000-10-12 | Benteler Ag, 33104 Paderborn | B-Säule für ein Kraftfahrzeug |
JP5347393B2 (ja) | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP5884151B2 (ja) * | 2010-11-25 | 2016-03-15 | Jfeスチール株式会社 | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP5856002B2 (ja) * | 2011-05-12 | 2016-02-09 | Jfeスチール株式会社 | 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法 |
EP2719788B1 (en) | 2011-06-10 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho | Hot press molded article, method for producing same, and thin steel sheet for hot press molding |
EP2728027B1 (en) * | 2011-06-30 | 2019-01-16 | Hyundai Steel Company | Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same |
WO2013061545A1 (ja) * | 2011-10-24 | 2013-05-02 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板の製造方法 |
-
2015
- 2015-10-19 JP JP2015205752A patent/JP6168118B2/ja active Active
-
2016
- 2016-10-03 CN CN201680061023.0A patent/CN108138290A/zh active Pending
- 2016-10-03 WO PCT/JP2016/004459 patent/WO2017068757A1/ja active Application Filing
- 2016-10-03 EP EP16857080.2A patent/EP3366798B1/en active Active
- 2016-10-03 KR KR1020187013033A patent/KR20180063304A/ko not_active Application Discontinuation
- 2016-10-03 US US15/768,905 patent/US20180305785A1/en not_active Abandoned
- 2016-10-03 MX MX2018004771A patent/MX2018004771A/es unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6217125A (ja) * | 1985-07-15 | 1987-01-26 | Nippon Steel Corp | 高強度高延性鋼材の製造方法 |
JP2004211147A (ja) * | 2002-12-27 | 2004-07-29 | Kobe Steel Ltd | 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材 |
JP2008144233A (ja) * | 2006-12-11 | 2008-06-26 | Kobe Steel Ltd | 焼付硬化用高強度鋼板およびその製造方法 |
WO2013038637A1 (ja) * | 2011-09-16 | 2013-03-21 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板およびその製造方法 |
WO2013047821A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
JP2015503023A (ja) * | 2011-11-07 | 2015-01-29 | ポスコ | 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法 |
WO2013137453A1 (ja) * | 2012-03-15 | 2013-09-19 | 株式会社神戸製鋼所 | 熱間プレス成形品およびその製造方法 |
WO2015182596A1 (ja) * | 2014-05-29 | 2015-12-03 | 新日鐵住金株式会社 | 熱処理鋼材及びその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3704282A4 (en) * | 2017-11-02 | 2021-08-25 | Easyforming Steel Technology Co., Ltd. | STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND SHAPED COMPONENT |
WO2020262652A1 (ja) * | 2019-06-28 | 2020-12-30 | 日本製鉄株式会社 | 鋼板 |
JP7541124B2 (ja) | 2020-07-24 | 2024-08-27 | アルセロールミタル | 冷間圧延焼鈍され、分配処理された鋼板及びその製造方法 |
JP7541123B2 (ja) | 2020-07-24 | 2024-08-27 | アルセロールミタル | 冷間圧延焼鈍され、焼戻された鋼板及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108138290A (zh) | 2018-06-08 |
US20180305785A1 (en) | 2018-10-25 |
EP3366798A4 (en) | 2018-08-29 |
JP6168118B2 (ja) | 2017-07-26 |
EP3366798B1 (en) | 2020-11-25 |
EP3366798A1 (en) | 2018-08-29 |
MX2018004771A (es) | 2018-05-30 |
KR20180063304A (ko) | 2018-06-11 |
JP2017078189A (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6222198B2 (ja) | ホットプレス部材およびその製造方法 | |
JP6428970B1 (ja) | ホットプレス部材およびその製造方法 | |
JP6168118B2 (ja) | ホットプレス部材およびその製造方法 | |
JP6004138B2 (ja) | 高強度ホットプレス部材およびその製造方法 | |
JP6260676B2 (ja) | ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法 | |
US11293075B2 (en) | Hot-press forming part and method of manufacturing same | |
JP6508176B2 (ja) | ホットプレス部材およびその製造方法 | |
JPWO2020203979A1 (ja) | 被覆鋼部材、被覆鋼板およびそれらの製造方法 | |
JP6443375B2 (ja) | ホットプレス部材およびその製造方法 | |
CN115151673B (zh) | 钢板、构件和它们的制造方法 | |
CN115210398B (zh) | 钢板、构件和它们的制造方法 | |
WO2020204037A1 (ja) | ホットスタンプ成形品およびホットスタンプ用鋼板、並びにそれらの製造方法 | |
JP6589928B2 (ja) | ホットプレス部材およびその製造方法 | |
WO2020204027A1 (ja) | ホットスタンプ成形品およびその製造方法 | |
JP2021134389A (ja) | 高強度鋼板およびその製造方法ならびに部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16857080 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15768905 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/004771 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187013033 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016857080 Country of ref document: EP |