WO2017067517A1 - 包括球囊阻断型导引导管的射频消融设备及其消融方法 - Google Patents

包括球囊阻断型导引导管的射频消融设备及其消融方法 Download PDF

Info

Publication number
WO2017067517A1
WO2017067517A1 PCT/CN2016/102980 CN2016102980W WO2017067517A1 WO 2017067517 A1 WO2017067517 A1 WO 2017067517A1 CN 2016102980 W CN2016102980 W CN 2016102980W WO 2017067517 A1 WO2017067517 A1 WO 2017067517A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
catheter
ablation
electrode
balloon
Prior art date
Application number
PCT/CN2016/102980
Other languages
English (en)
French (fr)
Inventor
董永华
施政民
沈美君
郭久林
Original Assignee
上海魅丽纬叶医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520821938.XU external-priority patent/CN205163235U/zh
Priority claimed from CN201510689867.7A external-priority patent/CN105147389B/zh
Application filed by 上海魅丽纬叶医疗科技有限公司 filed Critical 上海魅丽纬叶医疗科技有限公司
Priority to EP16856948.1A priority Critical patent/EP3366246B1/en
Priority to ES16856948T priority patent/ES2951175T3/es
Priority to US16/064,934 priority patent/US20190008585A1/en
Publication of WO2017067517A1 publication Critical patent/WO2017067517A1/zh
Priority to US17/929,592 priority patent/US20230181245A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00166Multiple lumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop

Definitions

  • the present invention relates to a radio frequency ablation device, and more particularly to a radio frequency ablation device including a balloon-blocking guiding catheter, and to a radio frequency ablation method using the radio frequency ablation device described above, and belongs to the field of neuro-ablation technology.
  • the radiofrequency ablation catheter is the main device for performing radiofrequency ablation.
  • the guiding catheter is a tube body disposed outside the radiofrequency ablation catheter.
  • the radiofrequency ablation catheter generally needs to establish a passage from the outside to the heart or renal artery with the aid of the guiding catheter. Most of the ablation catheter remains within the guiding catheter during the ablation procedure.
  • the radio frequency ablation device includes a radio frequency ablation device provided with an RF generator, a radio frequency ablation catheter, and an RF electrode connected to the output end of the RF generator through a wire disposed inside the RF ablation catheter, and further includes an RF The return electrode connected to the loop end of the generator.
  • the loop electrode of the radiofrequency ablation device is usually set as a body surface patch electrode, which is disposed outside the human body.
  • the specific structure of such a radio frequency ablation device can be found in the Chinese patent (Patent Application No.: CN200880126859.X) entitled "System and Method for Impedance Measurement Using a Catheter, Such as an Ablation Catheter”.
  • a patented catheter and patch electrode system is disclosed in which the positive pole of radio frequency ablation generator 16 is electrically coupled to tip electrode 28T through source lead 46, and the positive pole of sense connector 32 passes through the sense lead 48 is electrically coupled to tip electrode 28T, and source loop 56 1 and sense loop 56 2 are electrically coupled to the negative pole of radio frequency ablation generator 16 and the negative pole of the sense connector, respectively.
  • the source circuit 56 1 and the sensing circuit 56 2 are disposed outside the human body, and the excitation signal from the tip electrode 28T located inside the lumen needs to pass from the inside of the human body, traverse the entire human tissue, and then returns to the radio frequency ablation generator 16 through the source circuit 56 1 . .
  • the RF current needs to enter the body tissue from the lumen of the blood vessel, through the wall of the tube, and after passing through the entire body circuit, return to the RF ablation generator from the outside of the body. In short, the RF current needs to pass through the entire body tissue.
  • the RF direction of the RF electrode is shown in Figure 2.
  • This kind of nerve ablation method that constitutes the radio frequency circuit through the whole human body needs to overcome a large body impedance in the radio frequency process. Therefore, it is necessary to use a large voltage, current, and radio frequency power, thereby inevitably causing damage to human blood vessels. .
  • the multi-function radio frequency cooling blade includes a first branch 10, a second branch 20, a connecting end 30, and an operating handle 40, wherein two are disposed on the first branch 10 and the second branch 20, respectively.
  • the bipolar RF electrode, the RF signal between the two bipolar RF electrodes disposed on each branch, through the human tissue constitutes a local RF loop that enters the interior of the tissue from outside the tissue and returns to the outside of the tissue for RF ablation.
  • the radio frequency electrode and the return electrode are both disposed inside the human body but outside the ablated tissue.
  • the ablation catheter with the RF electrode and the return electrode simultaneously on the same support is directly transplanted into the lumen to ablate the nerve plexus around the blood vessel, the conductivity of the blood will be due to the flow of blood in the lumen.
  • the formation of the circuit has an effect, so that it is difficult to form a circuit between the two electrodes through the blood vessel wall or the external tissue of the blood vessel. At this time, it is difficult to achieve a desired effect on ablation of the nerve around the lumen.
  • the primary technical problem to be solved by the present invention is to provide a radio frequency ablation device including a balloon-blocking guiding catheter.
  • Another technical problem to be solved by the present invention is to provide a radio frequency ablation method implemented using the above radio frequency ablation device.
  • a radiofrequency ablation device comprising a balloon-blocking guiding catheter, the balloon-blocking guiding catheter comprising a double-chamber or multi-lumen catheter, and a shielding layer disposed on an outer wall of the distal end of the guiding catheter
  • An inflatable closed balloon that ruptures local blood flow in the blood vessel;
  • a proximal end of the guiding catheter is provided with a first catheter branch in communication with the first lumen inside the guiding catheter, the closed balloon Internally communicating with a first lumen inside the guiding catheter, the first guide a tube branch for providing inflation to the closed balloon through the first lumen;
  • a second catheter communicating with a second lumen inside the guiding catheter at a proximal end of the guiding catheter a branch, a distal end of the second lumen is provided with a perfusion port, and the second catheter branch is configured to infuse a blood/gas into the blood vessel through the perfusion port;
  • a radio frequency ablation catheter disposed in a lumen inside the balloon-blocking guiding catheter, an electrode holder is disposed at a distal end of the radiofrequency ablation catheter, and two electrode holders are disposed on the electrode stent Or more than two electrodes, wherein at least one of the electrodes is connected to an output end of the radio frequency generator to form a radio frequency electrode, and at least one of the electrodes is connected to a loop end of the radio frequency generator to form a loop electrode;
  • a localized blood flow within the blood vessel is blocked by inflation of a closed balloon disposed at a distal end of the balloon-blocking guiding catheter; intravascular perfusion through the second catheter branch to the ablation site a liquid/gas; and forming a loop between the RF electrode and the return electrode.
  • the electrode holder is expandable and contractible.
  • the radio frequency ablation catheter is disposed in a second lumen inside the balloon-blocking guiding catheter.
  • the distal end of the radiofrequency ablation catheter is provided with one or more through-wall electrodes that are hollow and communicate with the channel inside the radiofrequency ablation catheter for injecting liquid into the vessel wall/ gas.
  • the through-wall electrode is disposed at an attachment position in a middle portion of the petal electrode holder; or the through-wall electrode is disposed at a front portion of the elongated puncture needle.
  • the through-wall electrode is a radio frequency electrode or a return electrode at the same time.
  • the liquid/gas is a liquid/gas for reducing the electrical conductivity in the blood vessel at the ablation site.
  • injection into the vessel wall for altering the vessel wall The resistance of the liquid / gas.
  • the liquid/gas is a liquid/gas for reducing the resistance of the blood vessel wall.
  • the radiofrequency ablation device comprises a balloon-blocking guiding catheter, which can block the local blood flow during radiofrequency ablation through the closed balloon of the distal end of the inflation-blocking guiding catheter. Internal perfusion of liquid/gas can alter the temperature environment and/or the conductive environment within the blood vessel.
  • the radiofrequency ablation device can perform radiofrequency ablation through the blood vessel wall forming circuit between the radio frequency electrode and the return electrode disposed on the electrode holder without using the body surface electrode. Because the vessel wall is closer to the nerve, the lumen is not conductive, has less RF loss, and has the best RF ablation effect.
  • a hollow through-wall electrode can be injected into the blood vessel wall to reduce the local resistance of the liquid/gas, for increasing the degree of conduction between the electrodes through the blood vessel wall and the probability of conduction, and at the same time reducing the radiofrequency ablation between the electrodes The degree of conduction and conduction probability in the lumen of the blood vessel.
  • local blood vessels can be protected by infusing the fluid in the lumen of the blood vessel as well as in the wall of the blood vessel.
  • FIG. 1 is a schematic structural view of a radio frequency ablation system using a body surface patch electrode as a return electrode in the prior art
  • FIG. 2 is a schematic diagram of the radio frequency direction of the radio frequency ablation system of FIG. 1 when radio frequency is released in the lumen;
  • FIG. 3 is a schematic view showing the structure of an RF cooling knife for shearing or ablating it from outside the patient's tissue in another prior art
  • FIG. 4 is a schematic view showing the basic structure of a balloon-blocking guiding catheter provided by the present invention.
  • Figure 5 is a schematic view showing the working state of the radiofrequency ablation catheter passing through the balloon-blocking guiding catheter shown in Figure 4;
  • FIG. 6 is a schematic diagram of radio frequency ablation after using a radiofrequency ablation device provided by the present invention and injecting a non-conductive liquid into a lumen of an ablation site;
  • Figure 7 is a schematic view of the radiofrequency ablation principle shown in Figure 6 in a cross section of a blood vessel;
  • Figure 8 is a schematic diagram of radio frequency ablation using a radiofrequency ablation device provided by the present invention and infusing a conductive liquid into the lumen of the ablation site.
  • the end that is close to the operator is referred to as the proximal end and will be remote from the operator (near One end of the ablation site is called the distal end.
  • a radiofrequency ablation device 300 including a balloon-blocking guiding catheter, a radio frequency ablation catheter, and a radio frequency generator (not shown) as shown in FIGS. 4 and 5, and simultaneously providing a lumen for using the above-described radiofrequency ablation device Radiofrequency ablation of peripheral nerves for ablation.
  • the above radiofrequency ablation device and radiofrequency ablation method can be used for radiofrequency ablation treatment of cavity tissue, such as venous blood vessel, endometrium and ablation of the esophageal wall.
  • the balloon-blocking guiding catheter 310 is a dual or multi-lumen catheter.
  • An inflatable closed balloon 311 is disposed on the outer wall of the distal end of the guiding catheter 310 (i.e., the end that enters the body).
  • a first catheter branch 312 communicating with the first lumen inside the guiding catheter 310 is disposed at a proximal end of the guiding catheter 310 (ie, an end remote from the human body), and the inside of the balloon 311 is closed and the inside of the guiding catheter 310 is A lumen is communicated and a first catheter branch 312 is used to provide inflation to the closed balloon 311 through the first lumen.
  • the inflation effect of closing the balloon 311 is achieved by feeding a gas or a liquid into the closed balloon 311 by an inflation device (not shown) connected to the end of the first catheter branch 312.
  • a second catheter branch 313 communicating with a second lumen (ie, a perfusion lumen) inside the guiding catheter 310 is further disposed at a proximal end of the guiding catheter 310, and a perfusion port is provided at a distal end of the perfusion lumen.
  • the lumen is used to perfuse the fluid/gas into the blood vessel through the perfusion port.
  • a perfusion device (not shown) is connected to the end of the second catheter branch 313 for injecting a liquid into the blood vessel of the ablation site through the second catheter branch 313, the perfusion lumen and the perfusion port, such as a contrast agent, etc., and the perfusion direction can be Referring to the arrow inside the blood vessel in Fig. 4, in addition, it is also possible to infuse a blood into the blood vessel of the ablation site, for example, injecting CO 2 or the like.
  • the closed balloon 311 and the distal infusion port of the guiding catheter 1 may be flush, and the closing balloon 311 may also be disposed at a distance from the distal infusion port of the guiding catheter 1 to facilitate blocking blood flow in the blood vessel.
  • the balloon-blocking guiding catheter 310 can block the local blood flow in the blood vessel of the ablation site by inflating the distal closed balloon 311, and injecting a liquid (for example, a non-conductive liquid)/gas into the blood vessel of the ablation site.
  • a liquid for example, a non-conductive liquid
  • the temperature environment or conductive environment within the blood vessel of the ablation site can be changed.
  • the radiofrequency ablation catheter 320 is disposed in a lumen inside the balloon-blocking guiding catheter 310, for example, in the second lumen, so that radiofrequency ablation can be performed.
  • the gap between the catheter 320 and the second lumen is filled with a liquid/gas into the blood vessel of the ablation site; the radiofrequency ablation catheter 320 may also be disposed inside the balloon-blocking guiding catheter 310 to remove the first lumen and the second lumen. In other lumens outside.
  • An electrode holder 321 is disposed at a distal end of the radio frequency ablation catheter 320, and two or more electrodes 322 are disposed on the electrode holder 321; the electrode holder 321 can be expanded and contracted, and when the electrode holder 321 is expanded, the plurality of electrodes 322 Some or all of them are attached.
  • the electrode 322 is connected to a radio frequency generator disposed inside the radio frequency ablation device through a corresponding wire disposed inside the radio frequency ablation catheter; wherein, among the plurality of electrodes 322, at least one of the electrodes is a radio frequency electrode 325, and the radio frequency electrode 325 is connected to the radio frequency
  • the output of the generator, and at least one of the electrodes is a return electrode 326, and the return electrode 326 is connected to the loop end of the RF generator; the plurality of RF electrodes 325 can share the same return electrode 326 to form a loop.
  • the different electrodes 322 disposed at the distal end of the radio frequency ablation catheter 320 are controlled to be turned on by the radio frequency ablation device, and a radio wave passing through the blood vessel wall may be formed between the corresponding radio frequency electrode and the return electrode. Therefore, it is not necessary to use a body surface mount electrode to form a loop in the above radio frequency ablation device.
  • one or more through-wall electrodes may be provided at the distal end of the radiofrequency ablation catheter 320.
  • the through-wall electrode may be disposed on the electrode holder, and the through-wall electrode may also be directly disposed on the elongated connecting tube of the radiofrequency ablation catheter.
  • the through-wall electrode is hollow and communicates with a channel inside the radiofrequency ablation catheter for injecting a liquid/gas into the vessel wall.
  • the through-wall electrode may be disposed at the attachment position in the middle of the petal electrode holder; for example, when the shape of the electrode holder is a long puncture needle shape, the through-wall electrode may be directly disposed at a long length.
  • the front section of the needle When the through-wall electrode is disposed on the electrode holder, the through-wall electrode may be independently disposed, and the through-wall electrode may also be a radio frequency electrode or a return electrode.
  • radio frequency ablation device and its radio frequency ablation principle provided by the present invention will be described below with reference to FIGS. 6 to 8.
  • the radiofrequency ablation device includes a guiding catheter 310, a radio frequency ablation catheter 320, and a radio frequency ablation instrument (not shown) for controlling a radio frequency process, the radio frequency ablation catheter 320 being coupled to the radio frequency ablation instrument.
  • the radiofrequency ablation catheter 320 includes an elongated connecting catheter, an electrode holder 321 disposed at a distal end of the connecting catheter, and a control handle disposed at a proximal end of the connecting catheter.
  • the control handle is connected to the radiofrequency ablator through an integrated cable, and a plurality of wires for connecting different electrodes and the RF generator are arranged in the integrated cable.
  • the frame 321 is provided with a plurality of electrodes 322.
  • the radiofrequency ablation device can separately control the setting.
  • the different electrodes 322 at the front end of the radiofrequency ablation catheter 320 are subjected to radio frequency release.
  • the radiofrequency ablation can be formed by relying on the blood vessel wall between the different electrodes during the radiofrequency release process. No body surface mount electrodes are required in the radiofrequency ablation device.
  • the second catheter branch 313 is infused with a contrast agent or other non-conductive liquid into the lumen of the ablation site.
  • the RF electrode is attached to the wall, the RF electrode 325 and the return electrode 326 can form a circuit through the blood vessel wall to perform radio frequency.
  • part of the radio frequency current can enter the blood vessel wall 400 from the radio frequency electrode 325 inside the lumen, and flow back from the blood vessel wall 400 between the inner surface 401 and the outer surface 402 of the blood vessel wall, and then return to the lumen.
  • the inner return electrode 326 at the same time, a portion of the radio frequency current can enter from the inner surface 401 of the vessel wall and pass through the vessel wall 400 and then through the vessel wall outer surface 402 and from the exterior of the vessel wall outer surface 402 into the vessel wall 400. Then, it flows through the blood vessel wall 400 and returns to the return electrode 326.
  • the ratio of the portion of the radiofrequency current flowing between the inner surface 401 and the outer surface 402 of the blood vessel wall and the portion of the radiofrequency current that passes through the wall of the blood vessel and then enters the wall of the blood vessel is organized by the blood vessel wall and the periphery of the blood vessel wall. The difference in conductivity is determined.
  • the contrast agent is a poor conductor, the resistance is high, the cavity is in a non-conducting environment, and the cavity is not conductive. At this time, it is not necessary to use the body surface electrode, and the electrodes can realize mutual electron motion for radio frequency through the blood vessel wall.
  • the order of radio frequencies between different electrodes the direction of radio frequency emission between electrodes can be controlled, and radiofrequency ablation of nerve tissue in different parts of the blood vessel wall can be realized.
  • the blood vessel wall is a conductor, and since the blood vessel wall is close to the nerve and has less radio frequency loss, the radiofrequency ablation nerve effect is an ideal state.
  • the same goal can also be achieved by infusing a blood vessel into a blood vessel that blocks blood flow.
  • the first balloon branch 312 can be filled with liquid or gas into the closed balloon 311 to achieve the inflation effect of the closed balloon 311, thereby blocking blood flow in the blood vessel.
  • the saline can be infused into the blood vessel of the ablation site by the second catheter branch 313.
  • the second catheter branch 313 injects physiological saline or other conductive liquid into the blood vessel of the ablation site, when the radio frequency electrode is attached to the radio frequency, the physiological saline is electrically conductive, and the cavity is a conductive environment, which belongs to the intracavity, and the electrons in the electrode are in the blood vessel. Free movement inside, forming an inner loop.
  • physiological saline needs to be infused into the lumen of the blood vessel.
  • the fluid/gas which reduces the local resistance of the blood vessel wall can be injected into the blood vessel wall, so that the blood vessel wall has better conductivity in the cavity.
  • An ablation circuit similar to that shown in Figures 6 and 7 can be formed in the vessel wall and its external tissue to achieve the effect of ablating the nerve tissue.
  • the structure of the radiofrequency ablation device is substantially the same as that of the first embodiment, including the balloon-blocking guide catheter, the radiofrequency ablation catheter, and the radiofrequency ablation device coupled to the radiofrequency ablation catheter.
  • the second embodiment differs from the first embodiment in that the distal end of the radiofrequency ablation catheter is further provided with a hollow through-wall electrode that is hollow and communicates with the internal passage of the radiofrequency ablation catheter for injection into the vessel wall for
  • the liquid that changes the electrical resistance of the blood vessel wall may be, for example, a physiological saline that lowers the electrical resistance.
  • the through-wall electrode may be an RF electrode or a return electrode provided on the electrode holder, or may be an electrode specially provided for injection.
  • the through-wall electrode is provided with an outlet at its distal end, the through-wall electrode is provided with an inlet at its proximal end, and the inlet communicates with the internal passage of the radiofrequency ablation catheter.
  • a perfusion tube is provided at the rear end of the radiofrequency ablation catheter in communication with its internal passageway for connection to the perfusion apparatus.
  • the perfusion device can directly inject a substance such as physiological saline or the like for reducing the local resistance of the blood vessel wall into the wall tissue near the radiofrequency ablation point for increasing the conduction between the electrodes through the blood vessel wall.
  • Degree and conduction probability and at the same time reduce the degree of conduction and conduction probability between the electrodes in the lumen of the blood vessel during radiofrequency ablation.
  • the closed blood balloon disposed at the distal end of the guiding catheter is inflated to block local blood flow in the blood vessel; the guiding catheter is used to infuse the blood vessel to reduce the conductivity of the cavity/ Gas; at the same time, through the hollow through-wall electrode, the liquid for reducing the local resistance is injected into the tissue of the blood vessel wall, and then by controlling the different electrodes of the radiofrequency ablation catheter, a loop through the blood vessel wall can be formed between the RF electrode and the return electrode.
  • the ablation, nerve ablation effect is superior to the first embodiment.
  • the through-wall electrode disposed at the distal end of the radiofrequency ablation catheter 2 may be disposed at the attachment position in the middle of the petal RF electrode, or may be disposed in the front portion of the RF electrode of the long puncture needle.
  • the front end of the through-wall electrode is set to a sharp acute angle, which can be edged and has a round shape.
  • the length of the through-wall electrode of the taper, the rhombus or the like is preferably 0.01 to 20 mm, and the diameter of the through-wall electrode is preferably 0.01 to 2.0 mm.
  • a hollow puncture needle is provided at the front end of the radiofrequency ablation catheter for replacing the hollow through-wall electrode of the second embodiment.
  • Injection function The through-wall electrode or the common electrode provided in this embodiment has only a function of radio frequency ablation, or the through-wall electrode can have a hollow structure at the same time and has an injection function.
  • the remaining structure of the radiofrequency ablation device is substantially the same as that of the second embodiment, including the balloon blocking type guiding catheter, the radio frequency ablation catheter, and the radio frequency ablation instrument connected to the radio frequency ablation catheter.
  • a liquid cavity communicating with the puncture needle is disposed, and is connected to the external perfusion device through the catheter branch.
  • the perfusion device can directly inject the substance such as physiological saline to reduce the local resistance of the blood vessel wall into the wall tissue near the radiofrequency ablation point, and increase the conduction degree and conduction between the electrodes through the blood vessel wall. Probability, and at the same time reduce the degree of conduction and conduction probability between the electrodes in the lumen of the blood vessel during radiofrequency ablation.
  • the closed blood balloon disposed at the distal end of the guiding catheter is inflated to block local blood flow in the blood vessel; the guiding catheter is used to infuse the blood vessel with a fluid for changing intravascular conductivity/
  • the gas preferably the liquid/gas that reduces conductivity, changes the conductive environment and temperature environment in the blood vessel at the ablation site; and simultaneously injects a liquid for reducing the local resistance of the blood vessel wall into the blood vessel wall tissue through the puncture needle, and then controls the radiofrequency ablation catheter
  • Different electrodes can form a radiofrequency ablation through the circuit of the blood vessel wall between the RF electrode and the return electrode, and the nerve ablation effect is also superior to the first embodiment.
  • the radiofrequency ablation device including the balloon-blocking guiding catheter can block the blood vessel in the ablation site by inflating the closed balloon at the distal end of the balloon-blocking guiding catheter.
  • Local blood flow by intravascular perfusion of a fluid/gas for changing the conductive environment or temperature environment of the blood vessel to the ablation site, and by controlling the difference in the radiofrequency ablation catheter
  • the electrode can be used to form a loop between the RF electrode and the return electrode through the vessel wall or its peripheral tissue for radio frequency.
  • the radiofrequency ablation device using the above guiding catheter can perform radio frequency ablation through a blood vessel wall forming circuit by controlling the direction of radio frequency emission between the electrodes without the surface electrode.
  • Such a loop formed between the RF electrode and the return electrode through the blood vessel wall is a loop formed in a partial region with respect to a loop formed through the entire human body, and it is necessary to overcome the human body's impedance. Moreover, since the blood vessel wall is closer to the nerve, the cavity is not conductive, and the RF loss is small, and the ideal nerve ablation effect can be obtained.
  • a hollow through-wall electrode or a puncture needle can be used to infuse the blood vessel wall with a liquid which can reduce the local resistance, for increasing the conduction degree and conduction probability between the electrodes through the blood vessel wall, and at the same time reducing the electrode at the time of radiofrequency ablation.
  • the degree of conduction and conduction probability between the lumens of the blood vessels can be reduced.
  • by injecting a liquid into the lumen of the blood vessel and injecting a liquid into the wall tissue of the blood vessel wall it is also possible to reduce the local temperature and protect the local blood vessel.
  • the radiofrequency ablation instrument used in the invention has a multi-channel radio frequency output function, and can realize a loop through a blood vessel wall between a plurality of electrodes, and the radio frequency ablation device loads the radio frequency energy into the blood vessel and muscle attached thereto through various morphological electrodes of the ablation catheter.
  • the RF current passes through the vessel wall and returns to the RF ablation device through the return electrode to form an RF loading circuit.
  • the RF current generates high-speed ion vibrations in the tissue to which it is attached, and produces a temperature rise for ablation purposes.
  • the radio frequency ablation device can realize a local RF current loop between the two electrodes through the blood vessel wall, and only release RF energy between the two electrodes constituting the loop, and generate temperature, which is greatly reduced. More RF energy for body impedance loss.
  • radio frequency ablation device including the balloon-blocking guiding catheter and the ablation method thereof provided by the present invention are described in detail above. Any obvious changes made to the present invention without departing from the spirit of the invention will constitute an infringement of the patent right of the present invention and will bear corresponding legal liabilities.

Abstract

一种包括球囊阻断型导引导管的射频消融设备(300)。其中,射频消融设备(300)包括双腔或多腔的球囊阻断型导引导管(310),还包括射频消融导管(320),在射频消融导管(320)的远端设置有电极支架(321),在电极支架(321)上设置有两个或两个以上的电极(322,325,326),电极(322,325,326)分别通过设置在射频消融导管(320)内部的对应导线连接至射频发生器。当使用上述射频消融设备(300)对管腔周围神经进行消融时,通过充胀设置在导引导管(310)的远端的闭合球囊(311)阻断血管内的局部血流;然后通过导引导管(310)前端的灌注口向消融部位血管内灌注液体/气体,改变其导电环境和/或温度环境,并通过控制射频消融导管(320)的不同电极(322,325,326),在射频电极(325)和回路电极(326)间形成经过血管壁(400)的回路进行射频消融,具有理想的神经消融效果。

Description

包括球囊阻断型导引导管的射频消融设备及其消融方法 技术领域
本发明涉及一种射频消融设备,尤其涉及一种包括球囊阻断型导引导管的射频消融设备,同时涉及使用上述射频消融设备实现的射频消融方法,属于神经消融技术领域。
背景技术
植物神经的异常在许多疾病的发生、演变和发展中起着非常重要的作用。近年来,随着微创介入技术的发展,使用神经消融术治疗高血压、糖尿病、心脏病、癌症肿瘤等症状在临床上开始逐渐应用,并取得了较好的效果。
射频消融导管是实施射频消融术的主要设备,导引导管是设置在射频消融导管外部的管体,射频消融导管一般都需要在导引导管的协助下建立从体外到心脏或肾动脉的通道。在消融手术过程中,消融导管的大部分保留在导引导管内。
现有技术中,射频消融设备包括设置有射频发生器的射频消融仪、射频消融导管,以及通过设置在射频消融导管内部的导线与射频发生器的输出端连接的射频电极,此外还包括与射频发生器的回路端连接的回路电极。在现有针对管腔周围神经的神经消融手术中,射频消融设备的回路电极通常设置为体表贴片电极,设置在人体外部。这种射频消融设备的具体结构可以参见名称为“用于使用导管比如消融导管进行阻抗测量的系统和方法”的中国专利(专利申请号:CN200880126859.X)。如图1所示,该专利中公开了导管和贴片电极系统,其中,射频消融发生器16的正极通过源引线46电气地耦合到尖端电极28T,感测连接器32的正极通过感测引线48电气地耦合到尖端电极28T,源回路561和感测回路562分别电连接到射频消融发生器16的负极以及感测连接器的负极。源回路561和感测回路562设置在人体外部,位于管腔内部的尖端电极28T发出的激励信号需要从人体内部,穿越整个人体组织,然后经过源回路561回到射频消融发生器16。即,射频电流需要从血管等管腔中,经过管壁进入人体组织,并经过 整个人体回路后,从人体外部回到射频消融发生器,简言之射频电流需要穿过整个人体组织。在这种射频消融过程中,射频电极的射频方向如图2所示。这种通过整个人体构成射频回路的神经消融方式,在射频过程中,需要克服较大的人体阻抗,因此,需要采用较大的电压、电流及射频功率,从而不可避免地会对人体血管造成损伤。
此外,现有技术中,还存在将射频电极和回路电极设置在同一支撑体上从外部对病患组织进行消融的设备,例如名称为“一种多功能射频冷却刀”的中国专利(专利申请号:CN201210128849.8)所提供的一种剪刀式的射频消融装置。如图8所示,该多功能射频冷却刀包括第一分支10、第二分支20、连接端部30和操作手柄40,其中,在第一分支10和第二分支20上分别设置有两个双极射频电极,设置在每个分支上的两个双极射频电极之间的射频信号通过人体组织构成从组织外部进入组织内部并回到组织外部的局部射频回路进行射频消融。在上述射频消融设备中,射频电极和回路电极均设置在人体内部但处于消融组织的外部,在消融过程中,在消融组织周围不存在对射频回路存在影响的流动血液。当将在同一支撑体上同时设置有射频电极和回路电极的消融导管直接移植于管腔内部对血管周围的神经丛进行消融时,由于管腔内存在流动的血液,血液的导电性会对射频回路的形成造成影响,从而不易在两个电极之间形成经过血管壁或血管外部组织的回路,此时对管腔周围神经进行消融很难达到理想的效果。
发明内容
本发明所要解决的首要技术问题在于提供一种包括球囊阻断型导引导管的射频消融设备。
本发明所要解决的又一技术问题在于提供一种使用上述射频消融设备实现的射频消融方法。
为了实现上述发明目的,本发明采用下述技术方案:
一种射频消融设备,包括球囊阻断型导引导管,所述球囊阻断型导引导管包括双腔或多腔导管,在所述导引导管的远端的外壁上设置有用于阻断血管内局部血流的可充胀的闭合球囊;在所述导引导管的近端设置有与所述导引导管内部的第一管腔相通的第一导管分支,所述闭合球囊的内部与所述导引导管内部的第一管腔相通,所述第一导 管分支用于通过所述第一管腔向所述闭合球囊提供充胀物;在所述导引导管的近端设置有与所述导引导管内部的第二管腔相通的第二导管分支,所述第二管腔的远端设置有灌注口,所述第二导管分支用于通过所述灌注口向消融部位血管内灌注液体/气体;
还包括设置在所述球囊阻断型导引导管内部的某一管腔中的射频消融导管,在所述射频消融导管的远端设置有电极支架,在所述电极支架上设置有两个或两个以上的电极,其中,至少有一个所述电极连接至射频发生器的输出端,构成射频电极,并至少有一个所述电极连接至射频发生器的回路端,构成回路电极;
在射频消融过程中,通过充胀设置在所述球囊阻断型导引导管的远端的闭合球囊阻断血管内的局部血流;通过所述第二导管分支向消融部位血管内灌注液体/气体;并在所述射频电极和所述回路电极间形成回路。
其中较优地,所述电极支架可扩张和收缩。
其中较优地,所述射频消融导管设置在所述球囊阻断型导引导管内部的第二管腔中。
其中较优地,所述射频消融导管的远端设置有一个或多个穿壁电极,所述穿壁电极中空并与所述射频消融导管内部的通道相通,用于向血管壁内注射液体/气体。
其中较优地,所述穿壁电极设置在瓣状电极支架中部的贴壁位置;或者,所述穿壁电极设置在长条穿刺针的前段。
其中较优地,所述穿壁电极同时是射频电极或者回路电极。
一种射频消融方法,使用上述射频消融设备对管腔外围神经进行消融,通过充胀设置在所述球囊阻断型导引导管的远端的闭合球囊阻断消融部位血管内的局部血流;通过所述导引导管向消融部位血管内灌注液体/气体,改变消融部位血管内的导电环境和/或温度环境;并通过控制所述射频消融导管的不同电极,在射频电极和回路电极间形成经过血管壁的回路进行射频消融。
其中较优地,所述液体/气体是用于降低消融部位血管内的导电性的液体/气体。
其中较优地,在射频消融之前,向血管壁内注射用于改变血管壁 的电阻的液体/气体。
其中较优地,所述液体/气体是用于降低血管壁电阻的液体/气体。
本发明所提供的射频消融设备,包括球囊阻断型导引导管,通过充胀阻断型导引导管的远端的闭合球囊,可以阻断射频消融时的局部血流,通过向血管内灌注液体/气体,可以改变血管内的温度环境和/或导电环境。该射频消融设备,不需要使用体表电极,即可在设置在电极支架上的射频电极和回路电极间通过血管壁形成回路进行射频消融。由于血管壁离神经较近,腔内不导通,少射频损耗,并具有最佳的射频消融效果。此外,还可以通过中空的穿壁电极向血管壁注射可以降低局部电阻的液体/气体,用于增加电极之间通过血管壁的导通程度和导通概率,并同时减少射频消融时电极之间在血管腔内的导通程度和导通概率。而且,通过在血管管腔内以及在血管壁内灌注液体还可以降低局部的温度,保护局部血管。
附图说明
图1是现有技术中,使用体表贴片电极作为回路电极的射频消融系统的结构示意图;
图2是图1所示射频消融系统,在管腔内释放射频时的射频方向示意;
图3是另一现有技术中,用于从病患组织外部对其进行剪切或消融的射频冷却刀的结构示意图;
图4是本发明所提供的球囊阻断型导引导管的基本结构示意图;
图5是射频消融导管穿过图4所示球囊阻断型导引导管的工作状态示意图;
图6是使用本发明提供的射频消融设备,并在消融部位的管腔内灌注非导电液体后的射频消融原理图;
图7是图6所示射频消融原理在血管截面的示意图;
图8是使用本发明提供的射频消融设备,并在消融部位的管腔内灌注导电液体后的射频消融原理图。
具体实施方式
下面结合附图和具体实施例进行详细说明。为便于说明,以下将靠近操作者(远离消融部位)的一端称为近端,将远离操作者(靠近 消融部位)的一端称为远端。
为了改变现有技术中,对管腔外围神经消融时,需要在体外设置体表贴片电极作为回路电极,依靠体表贴片电极和射频电极构成人体回路进行射频消融的消融模式,本发明提供了如图4和图5所示的包括球囊阻断型导引导管、射频消融导管和射频发生器(未图示)的射频消融设备300,并同时提供了使用上述射频消融设备对管腔外围神经进行消融的射频消融方法。上述射频消融设备和射频消融方法,可用于腔体组织的射频消融治疗,如静脉血管、子宫内膜及食道内壁消融的治疗。
如图4所示,球囊阻断型导引导管310是双腔或多腔导管。在导引导管310的远端(即进入人体的一端)的外壁上设置有可充胀的闭合球囊311。在导引导管310的近端(即远离人体的一端)设置有与导引导管310内部的第一管腔相通的第一导管分支312,闭合球囊311的内部与导引导管310内部的第一管腔相通,第一导管分支312用于通过第一管腔向闭合球囊311提供充胀物。具体由连接在第一导管分支312末端的充胀设备(未图示)向闭合球囊311内送入气体或液体实现闭合球囊311的充胀效果。在导引导管310的近端还设置有与导引导管310内部的第二管腔(即灌注管腔)相通的第二导管分支313,在灌注管腔的远端设置有灌注口,灌注管腔用于通过灌注口向消融部位血管内灌注液体/气体。在第二导管分支313的末端连接有灌注设备(未图示),用于通过第二导管分支313、灌注管腔和灌注口向消融部位血管内灌注液体,如:造影剂等,灌注方向可以参见图4中血管内部的箭头,此外,也可以向消融部位血管内灌注气体,例如灌注CO2等。闭合球囊311与导引导管1的远端灌注口可以平齐,闭合球囊311也可以与导引导管1的远端灌注口之间保持一段距离设置,从而便于阻断血管内血流,并便于向血管内灌注液体/气体。上述球囊阻断型导引导管310,通过充胀远端的闭合球囊311可以阻断消融部位血管内的局部血流,通过向消融部位血管内灌注液体(例如,非导电液体)/气体可以改变消融部位血管内的温度环境或导电环境。
如图5所示,射频消融导管320设置在球囊阻断型导引导管310内部的某一管腔中,例如设置于第二管腔中,从而可以通过射频消融 导管320与第二管腔之间的间隙向消融部位血管内灌注液体/气体;射频消融导管320也可以设置在球囊阻断型导引导管310内部的除去第一管腔和第二管腔之外的其他管腔中。在射频消融导管320的远端设置有电极支架321,在电极支架321上设置有两个或两个以上的电极322;电极支架321可扩张和收缩,当电极支架321扩张后,多个电极322中的部分或全部贴壁。电极322通过设置在射频消融导管内部的对应导线连接至设置在射频消融仪内部的射频发生器上;其中,在多个电极322中,至少有一个电极是射频电极325,射频电极325连接至射频发生器的输出端,并至少有一个电极是回路电极326,回路电极326连接至射频发生器的回路端;多个射频电极325可以共用同一回路电极326形成回路。当血管内部导电环境改变后,通过射频消融仪控制设置在射频消融导管320远端的不同电极322导通,可以在相应的射频电极和回路电极间形成通过血管壁的回路进行射频。因此,在上述射频消融设备中不需要使用体表贴片电极构成回路。
此外,在射频消融导管320的远端还可以设置一个或多个穿壁电极。穿壁电极可以设置在电极支架上,穿壁电极也可以直接设置在射频消融导管的长条形连接导管上。穿壁电极中空并与射频消融导管内部的通道相通,用于向血管壁内注射液体/气体。例如,当电极支架的形状为瓣状,穿壁电极可以设置在瓣状电极支架中部的贴壁位置;又如,当电极支架的形状为长条穿刺针形,穿壁电极可以直接设置在长条穿刺针的前段。当穿壁电极设置在电极支架上时,穿壁电极可以独立设置,穿壁电极还可以同时是射频电极或者回路电极。
下面结合图6至图8对本发明提供的射频消融设备及其射频消融原理进行描述。
第一实施例
如图6所示,该射频消融设备包括导引导管310、射频消融导管320,还包括用于控制射频过程的射频消融仪(未图示),射频消融导管320与射频消融仪连接。射频消融导管320包括长条形的连接导管、设置在连接导管远端的电极支架321,以及设置在连接导管近端的控制手柄。使用时,控制手柄通过综合电缆与射频消融仪连接,在综合电缆中设置有用于连接不同电极和射频发生器的多条导线。在电极支 架321上设置有多个电极322,当射频消融导管320的前端从导引导管310中伸出,并且多个电极322在控制手柄的作用下贴壁后,通过射频消融仪可以分别控制设置在射频消融导管320前端的不同电极322进行射频释放。当改变消融部位血管内的导电环境后,在射频释放过程中,依靠不同电极之间的血管壁即可构成回路进行射频消融。在该射频消融设备中不需要使用体表贴片电极。
如图6和图7所示,当充胀的闭合球囊311阻断消融部位血管内的局部血流之后,通过第二导管分支313向消融部位管腔内灌注造影剂或其他非导电液体后,控制射频电极贴壁,则射频电极325和回路电极326可以经过血管壁形成回路进行射频。此时,如图7所示,部分射频电流可以从管腔内部的射频电极325进入血管壁400,并从血管壁内表面401和外表面402之间流经血管壁400后,回到管腔内部的回路电极326;同时,部分射频电流可以从血管壁的内表面401进入并穿过血管壁400后穿过血管壁外表面402,并从血管壁外表面402的外部再进入血管壁400内,然后流经血管壁400回到回路电极326。在这个过程中,射频电流从血管壁内表面401和外表面402之间流过的部分和射频电流穿过血管壁后再进入血管壁的部分之间的比例由血管壁和血管壁外围组织的导电性差异决定。
此时,由于造影剂为不良导体,电阻很高,腔内属于不导电环境,腔内不导通,此时不需要借助体表电极,电极间通过血管壁即可实现互相电子运动进行射频。通过控制不同电极间相互射频的顺序,即可控制电极间射频的发射方向,实现血管壁外不同部位的神经组织的射频消融。当采用上述方案时,血管壁为导体,由于血管壁离神经较近,少射频损耗,射频消融神经效果为理想状态。因此,通过向阻断血流的血管内灌注降低腔内导电性的液体,例如非导电液体进行消融是合适的,可以有较好的神经消融效果。并且,灌注在血管管腔内的非导电液体还可以降低局部管腔的温度,保护局部血管。当然,也可以通过向阻断血流的血管内灌注气体实现相同的目的。
如图8所示,通过第一导管分支312可以向闭合球囊311内充入液体或气体,实现闭合球囊311的充胀效果,从而阻断血管内的血流。通过第二导管分支313可以向消融部位血管内灌注生理盐水。当通过 第二导管分支313向消融部位血管内灌注生理盐水或其他导电性液体后,射频电极贴壁射频时,由于生理盐水具有导电性,腔内为导电环境,属于腔内相通,电极内电子在血管内自由活动,形成管内回路。在部分神经消融手术中,需要向血管腔内灌注生理盐水,此时,可以通过向血管壁中注射降低血管壁局部电阻的液体/气体,使得血管壁具有相对腔内较好的导电性,从而可以在血管壁及其外部组织中形成类似于图6和图7所示的消融回路,达到消融神经组织的效果。
第二实施例
在该实施例中,射频消融设备的结构与第一实施例基本相同,包括上述球囊阻断型导引导管,射频消融导管以及与射频消融导管连接的射频消融仪。第二实施例与第一实施例的区别在于:射频消融导管的远端还设置有空心穿壁电极,穿壁电极中空并与射频消融导管的内部通道相通,用于向血管壁内注射用于改变血管壁的电阻的液体,例如可以是降低电阻的生理盐水。穿壁电极可以是设置在电极支架上的射频电极或者回路电极,也可以是另外设置的专门用于注射的电极。
穿壁电极在其远端设置有出口,穿壁电极在其近端设置有进口,进口与射频消融导管的内部通道相通。在射频消融导管的后端设置有与其内部通道相通的灌注管,灌注管用于与灌注设备连接。通过中空穿壁电极和灌注管,灌注设备可以将生理盐水等用于降低血管壁局部电阻的物质直接注射到射频消融点附近的管壁组织中,用于增加电极之间通过血管壁的导通程度和导通概率,并同时减少射频消融时电极之间在血管腔内的导通程度和导通概率。
因此,在射频消融过程中,通过充胀设置在导引导管的远端的闭合球囊阻断血管内的局部血流;通过导引导管向血管内灌注用于降低腔内导电性的液体/气体;并同时通过空心穿壁电极向血管管壁组织中注射用于降低局部电阻的液体,然后通过控制射频消融导管的不同电极,可以在射频电极和回路电极间形成经过血管壁的回路进行射频消融,神经消融效果要优于第一实施例。
具体来说,设置在射频消融导管2远端的穿壁电极,可以设置在瓣状射频电极中部的贴壁位置,也可以设置在长条穿刺针射频电极的前段。而且,穿壁电极前端设置为锐利的锐角,可以有刃,外形为圆 锥形,菱形等,穿壁电极的长度范围,优选为:0.01~20mm,穿壁电极的直径范围,优选为0.01~2.0mm。
第三实施例
在该实施例中,为了实现向消融部位的血管壁中注射用于降低局部电阻的液体,在射频消融导管的前端设置有中空的穿刺针,用于取代第二实施例中中空穿壁电极的注射功能。在该实施例中设置的穿壁电极或普通电极仅具有射频消融的功能,或者穿壁电极也可以同时具有中空的结构具有注射功能。其中,穿壁电极穿入或穿过血管壁后,可以直接向血管壁附近的神经丛释放能量,从而减小射频过程对血管壁的损伤,关于穿壁电极的介绍可以参见本申请人的在先专利申请“经腔穿壁神经消融导管、设备及其方法”(专利申请号:CN201310049148.X)中的介绍。在该实施例中,射频消融设备的其余结构与第二实施例基本相同,包括上述球囊阻断型导引导管,射频消融导管以及与射频消融导管连接的射频消融仪。
在本实施例提供的射频消融导管中,设置有与穿刺针连通的液体空腔,并通过导管分支与外部的灌注设备连接。通过导管分支和穿刺针,灌注设备可以将生理盐水等降低血管壁局部电阻的物质直接注射到射频消融点附近的管壁组织中,用于增加电极之间通过血管壁的导通程度和导通概率,并同时减少射频消融时电极之间在血管腔内的导通程度和导通概率。
因此,在射频消融过程中,通过充胀设置在导引导管的远端的闭合球囊阻断血管内的局部血流;通过导引导管向血管内灌注用于改变血管内导电性的液体/气体,优选降低导电性的液体/气体,改变消融部位血管内的导电环境和温度环境;并同时通过穿刺针向血管壁组织中注射用于降低血管壁局部电阻的液体,然后通过控制射频消融导管的不同电极,可以在射频电极和回路电极间形成经过血管壁的回路进行射频消融,神经消融效果同样优于第一实施例。
综上所述,本发明所提供的包括球囊阻断型导引导管的射频消融设备,通过充胀球囊阻断型导引导管的远端的闭合球囊,可以阻断消融部位血管内的局部血流,通过向消融部位血管内灌注用于改变血管内导电环境或温度环境的液体/气体,并通过控制射频消融导管的不同 电极,可以在射频电极和回路电极间通过血管壁或其外围组织形成回路进行射频。采用上述导引导管的射频消融设备,不需要体表电极,即可通过控制电极间射频的发射方向,在不同的电极之间通过血管壁形成回路进行射频消融。这种在射频电极和回路电极间形成的经过血管壁的回路相对于经过整个人体形成的回路来说,属于在局部区域内形成的回路,需要克服人体阻抗少。而且由于血管壁离神经较近,腔内不导通,少射频损耗,可以具有理想的神经消融效果。
此外,还可以通过中空的穿壁电极或穿刺针向血管壁灌注可以降低局部电阻的液体,用于增加电极之间通过血管壁的导通程度和导通概率,并同时减少射频消融时电极之间在血管腔内的导通程度和导通概率。而且,通过在血管管腔内灌注液体以及在血管壁管壁组织中注射液体,同时还可以降低局部的温度,保护局部血管。
本发明使用的射频消融仪具备多路射频输出功能,可实现多个电极间经过血管壁构成回路,射频消融仪通过消融导管的各种形态电极将射频能量加载到与之贴合的血管、肌肉、神经上,然后射频电流经过血管壁并通过回路电极回到射频消融仪,构成射频加载回路。射频电流在与之贴合的组织中产生离子高速震动,并产生温升以达到消融目的。
在本发明提供的技术方案中,上述射频消融仪可实现两两电极之间经过血管壁构成局部射频电流回路,仅在构成回路的两电极之间释放射频能量,并产生温度,极大的减少了人体阻抗损耗的更多射频能量。
在本申请人在先提交的两件专利申请:“用于神经消融的射频消融方法和射频消融系统”(专利申请号:CN201410035836.5)和“兼具测温功能和测阻抗功能的射频电极和消融仪”(专利申请号:CN201310530007.X)中已经详细阐明射频消融仪的工作原理,在此不再赘述。
以上对本发明所提供的包括球囊阻断型导引导管的射频消融设备及其消融方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (10)

  1. 一种射频消融设备,其特征在于包括球囊阻断型导引导管,所述球囊阻断型导引导管包括双腔或多腔导管,在所述导引导管的远端的外壁上设置有用于阻断血管内局部血流的可充胀的闭合球囊;在所述导引导管的近端设置有与所述导引导管内部的第一管腔相通的第一导管分支,所述闭合球囊的内部与所述导引导管内部的第一管腔相通,所述第一导管分支用于通过所述第一管腔向所述闭合球囊提供充胀物;在所述导引导管的近端设置有与所述导引导管内部的第二管腔相通的第二导管分支,所述第二管腔的远端设置有灌注口,所述第二导管分支用于通过所述灌注口向消融部位血管内灌注液体/气体;
    还包括设置在所述球囊阻断型导引导管内部的某一管腔中的射频消融导管,在所述射频消融导管的远端设置有电极支架,在所述电极支架上设置有两个或两个以上的电极,其中,至少有一个所述电极连接至射频发生器的输出端,构成射频电极,并至少有一个所述电极连接至射频发生器的回路端,构成回路电极;
    在射频消融过程中,通过充胀设置在所述球囊阻断型导引导管的远端的闭合球囊阻断血管内的局部血流;通过所述第二导管分支向消融部位血管内灌注液体/气体;并在所述射频电极和所述回路电极间形成回路。
  2. 如权利要求1所述的射频消融设备,其特征在于:
    所述电极支架可扩张和收缩。
  3. 如权利要求1所述的射频消融设备,其特征在于:
    所述射频消融导管设置在所述球囊阻断型导引导管内部的第二管腔中。
  4. 如权利要求1所述的射频消融设备,其特征在于:
    所述射频消融导管的远端设置有一个或多个穿壁电极,所述穿壁电极中空并与所述射频消融导管内部的通道相通,用于向血管壁内注射液体/气体。
  5. 如权利要求4所述的射频消融设备,其特征在于:
    所述穿壁电极设置在瓣状电极支架中部的贴壁位置;或者,所述 穿壁电极设置在长条穿刺针的前段。
  6. 如权利要求4所述的射频消融设备,其特征在于:
    所述穿壁电极同时是射频电极或者回路电极。
  7. 一种射频消融方法,使用权利要求1~6中任意一项所述的射频消融设备对管腔外围神经进行消融,其特征在于:
    通过充胀设置在所述球囊阻断型导引导管的远端的闭合球囊阻断消融部位血管内的局部血流;通过所述球囊阻断型导引导管向消融部位血管内灌注液体/气体,改变消融部位血管内的导电环境和/或温度环境;并通过控制所述射频消融导管的不同电极,在所述射频电极和所述回路电极间形成经过血管壁的回路进行射频消融。
  8. 如权利要求7所述的射频消融方法,其特征在于:
    所述液体/气体是用于降低消融部位血管内的导电性的液体/气体。
  9. 如权利要求7所述的射频消融方法,其特征在于:
    在射频消融之前,向血管壁内注射用于改变血管壁的电阻的液体/气体。
  10. 如权利要求9所述的射频消融方法,其特征在于:
    所述液体/气体是用于降低血管壁的电阻的液体/气体。
PCT/CN2016/102980 2015-10-22 2016-10-22 包括球囊阻断型导引导管的射频消融设备及其消融方法 WO2017067517A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16856948.1A EP3366246B1 (en) 2015-10-22 2016-10-22 Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor
ES16856948T ES2951175T3 (es) 2015-10-22 2016-10-22 Dispositivo de ablación por radiofrecuencia que comprende un catéter de bloqueo de balón y un método de ablación para el mismo
US16/064,934 US20190008585A1 (en) 2015-10-22 2016-10-22 Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor
US17/929,592 US20230181245A1 (en) 2015-10-22 2022-09-02 Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520821938.XU CN205163235U (zh) 2015-10-22 2015-10-22 包括球囊阻断型导引导管的射频消融设备
CN201520821938.X 2015-10-22
CN201510689867.7A CN105147389B (zh) 2015-10-22 2015-10-22 包括球囊阻断型导引导管的射频消融设备及其消融方法
CN201510689867.7 2015-10-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/064,934 A-371-Of-International US20190008585A1 (en) 2015-10-22 2016-10-22 Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor
US17/929,592 Continuation-In-Part US20230181245A1 (en) 2015-10-22 2022-09-02 Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor

Publications (1)

Publication Number Publication Date
WO2017067517A1 true WO2017067517A1 (zh) 2017-04-27

Family

ID=58556677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102980 WO2017067517A1 (zh) 2015-10-22 2016-10-22 包括球囊阻断型导引导管的射频消融设备及其消融方法

Country Status (4)

Country Link
US (1) US20190008585A1 (zh)
EP (1) EP3366246B1 (zh)
ES (1) ES2951175T3 (zh)
WO (1) WO2017067517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164650A1 (en) * 2018-02-21 2019-08-29 Medtronic, Inc. Focal pulsed field ablation devices and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109793568B (zh) * 2019-01-30 2020-12-01 苏州信迈医疗器械有限公司 一种多极消融装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097897A1 (en) * 2000-06-20 2001-12-27 Starion Instruments, Inc. Devices and methods for repair of valves in the human body
WO2002056772A2 (en) * 2001-01-16 2002-07-25 Novacept Apparatus and method for treating venous reflux
CN203524766U (zh) * 2013-02-07 2014-04-09 上海魅丽纬叶医疗科技有限公司 经腔穿壁神经消融导管及其设备
CN103917184A (zh) * 2011-10-27 2014-07-09 美敦力 带有射频末梢的低温气囊器械
CN103987336A (zh) * 2011-09-14 2014-08-13 波士顿科学西美德公司 具有多种消融模式的消融装置
CN105147389A (zh) * 2015-10-22 2015-12-16 上海魅丽纬叶医疗科技有限公司 包括球囊阻断型导引导管的射频消融设备及其消融方法
CN205163235U (zh) * 2015-10-22 2016-04-20 上海魅丽纬叶医疗科技有限公司 包括球囊阻断型导引导管的射频消融设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401719B1 (en) * 1997-09-11 2002-06-11 Vnus Medical Technologies, Inc. Method of ligating hollow anatomical structures
US9474571B2 (en) * 2007-10-15 2016-10-25 Boston Scientific Scimed, Inc. Percutaneous tissue ablation probe with occlusive bodies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097897A1 (en) * 2000-06-20 2001-12-27 Starion Instruments, Inc. Devices and methods for repair of valves in the human body
WO2002056772A2 (en) * 2001-01-16 2002-07-25 Novacept Apparatus and method for treating venous reflux
CN103987336A (zh) * 2011-09-14 2014-08-13 波士顿科学西美德公司 具有多种消融模式的消融装置
CN103917184A (zh) * 2011-10-27 2014-07-09 美敦力 带有射频末梢的低温气囊器械
CN203524766U (zh) * 2013-02-07 2014-04-09 上海魅丽纬叶医疗科技有限公司 经腔穿壁神经消融导管及其设备
CN105147389A (zh) * 2015-10-22 2015-12-16 上海魅丽纬叶医疗科技有限公司 包括球囊阻断型导引导管的射频消融设备及其消融方法
CN205163235U (zh) * 2015-10-22 2016-04-20 上海魅丽纬叶医疗科技有限公司 包括球囊阻断型导引导管的射频消融设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164650A1 (en) * 2018-02-21 2019-08-29 Medtronic, Inc. Focal pulsed field ablation devices and methods
CN111801062A (zh) * 2018-02-21 2020-10-20 美敦力公司 局灶脉冲场消融设备和方法

Also Published As

Publication number Publication date
EP3366246C0 (en) 2023-06-28
EP3366246A1 (en) 2018-08-29
US20190008585A1 (en) 2019-01-10
EP3366246A4 (en) 2019-07-10
EP3366246B1 (en) 2023-06-28
ES2951175T3 (es) 2023-10-18

Similar Documents

Publication Publication Date Title
US9474571B2 (en) Percutaneous tissue ablation probe with occlusive bodies
JP7191694B2 (ja) 組織を電磁アブレーションするデバイス
CN201356648Y (zh) 盐水灌注射频消融导管
CN111202581B (zh) 肥厚型心肌病手术用射频消融导管
CN203280485U (zh) 多电极消融导管
PT2869778T (pt) Instrumento de ressecção eletrocirúrgico
CN105147389B (zh) 包括球囊阻断型导引导管的射频消融设备及其消融方法
WO2012122157A1 (en) Radiofrequency ablation catheter device
CN106974722A (zh) 具有穿孔端部的导管
WO2012135703A2 (en) Radio frequency ablation catheter device
CN205163235U (zh) 包括球囊阻断型导引导管的射频消融设备
CN109717942A (zh) 一种冷冻消融导管
WO2017067517A1 (zh) 包括球囊阻断型导引导管的射频消融设备及其消融方法
AU2014201284A1 (en) Catheter with spray irrigation
JP2013163019A (ja) 高周波手術用電極チップ及びそれを備える高周波手術用電極
CN106109006B (zh) 经冠状静脉系统的射频消融导管
CN113520585B (zh) 一种隔离灌注件、消融电极头以及肿瘤射频消融治疗装置
CN107440785B (zh) 一种吸附式消融导管及消融装置
US20230181245A1 (en) Radio frequency ablation device comprising balloon blocking catheter and ablation method therefor
CN105310766B (zh) 具有灌注液体功能的消融导管末端电极
CN102138825A (zh) 注水微波天线
CN114073577A (zh) 医疗导管
CN117481790B (zh) 一种双环高密度标测消融导管
CN219048803U (zh) 一种多球囊消融系统
CN218338516U (zh) 用于治疗肥厚型心肌病的消融仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016856948

Country of ref document: EP