WO2017067176A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2017067176A1
WO2017067176A1 PCT/CN2016/084310 CN2016084310W WO2017067176A1 WO 2017067176 A1 WO2017067176 A1 WO 2017067176A1 CN 2016084310 W CN2016084310 W CN 2016084310W WO 2017067176 A1 WO2017067176 A1 WO 2017067176A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
spatial multiplexing
link
signaling
access point
Prior art date
Application number
PCT/CN2016/084310
Other languages
English (en)
French (fr)
Inventor
朱俊
林英沛
罗俊
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3002694A priority Critical patent/CA3002694C/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2016343378A priority patent/AU2016343378B2/en
Priority to BR112018008030-6A priority patent/BR112018008030A2/zh
Priority to MX2018004955A priority patent/MX2018004955A/es
Priority to KR1020187013701A priority patent/KR102103308B1/ko
Priority to RU2018118165A priority patent/RU2686852C1/ru
Priority to EP22170437.2A priority patent/EP4096138B1/en
Priority to ES16856617T priority patent/ES2917323T3/es
Priority to JP2018520076A priority patent/JP6559891B2/ja
Priority to EP16856617.2A priority patent/EP3358776B1/en
Publication of WO2017067176A1 publication Critical patent/WO2017067176A1/zh
Priority to US15/956,952 priority patent/US11122578B2/en
Priority to ZA2018/02799A priority patent/ZA201802799B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for transmitting data.
  • CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
  • STA stations
  • the interframe space depends on the type of frame to be sent by the station.
  • the interframe space of the high priority frame is shorter, and the interframe interval of the low priority frame is longer. Therefore, the transmission waiting time of the high priority frame is shorter.
  • the waiting time of the low priority frame is longer, so that the high priority frame can obtain the transmission right preferentially compared to the lower priority frame, that is, if the low priority frame has not been transmitted and the high priority frame has started to be sent, that is, If the channel state is in a busy state, the transmission of the low priority frame is prohibited, and the transmission of the high priority frame is completed, that is, the channel state is in an empty state, allowing the transmission of the low priority frame, so that the channel is within a certain period of time. Only one STA is transmitting to avoid collisions.
  • STA5 uses all or part of the time-frequency resources of the original link to transmit data with the access point AP2 (hereinafter, the link between AP2 and STA5 is called null). Inter-multiplexed link). Since the spatial multiplexing link uses all or part of the time-frequency resources of the original link when transmitting data, it cannot be ensured that only one STA in the channel is transmitting data in a certain period of time, thus introducing a spatial complex It will increase the mutual interference between links and affect the transmission quality.
  • an effective interference control mechanism is needed to reduce interference between the primary link and the spatial multiplexing link and improve transmission quality.
  • the present invention provides a method and apparatus for transmitting data to reduce mutual interference when transmitting data on an original link and a spatial multiplexing link, and to improve transmission quality.
  • a method of transmitting data is provided, the method being applied to a communication system including transmission data of an originating link and a spatial multiplexing link, the primary link being set at an original access point and an originating site
  • the method includes: the originating access point performs a determination process according to the determining parameter, where the determining process is used to determine whether the multiplex transmitting device of the spatial multiplexing link is allowed to use part or all of the original transmitting link
  • the time-frequency resource transmits data; the originating access point generates spatial multiplexing transmission signaling according to the determination result of the determining process; the original access point transmits the spatial multiplexing transmission signaling to facilitate the multiplexing transmitting device
  • Data transmission processing based on the spatial multiplexing link is performed according to the spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes a first space for indicating that the multiplexing transmitting device is prohibited from using all or part of the time-frequency resources of the primary transmission link.
  • the multiplexed transmission signaling, or the spatial multiplexed transmission signaling includes second spatial multiplexed transmission signaling for indicating that the multiplexed transmitting device is allowed to use all or part of the time-frequency resources of the primary transmission link.
  • the primary access point performs a determining process according to the determining parameter, including: the primary access point according to the N determining parameters Performing a determination process, the N determination parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each determination parameter is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmission device, N ⁇ 2:
  • the primary access point generates spatial multiplexing transmission signaling according to the determination result of the determining process
  • the method includes: the primary access point generates N spatial multiplexing transmission signaling according to the determination result of the determining process,
  • the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths.
  • the primary access point performs a determining process according to the determining parameter, including: the primary access point is based on N Determining a parameter, performing a determination process, wherein the N determination parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each determination parameter is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmission device, N ⁇ 2; the primary access point generates spatial multiplexing transmission signaling according to the determination result of the determination process, including: the primary access point generates N spatial multiplexing transmission signals according to the determination result of the determination processing Therefore, the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths.
  • the primary access point sends the spatial multiplexing transmission signaling, including: the primary access point multiplexing the space
  • the transmission signaling is sent to the original sending station, so that the original transmitting station carries the spatial multiplexing transmission signaling when transmitting the uplink data frame, so that the multiplexing transmitting device obtains the spatial multiplexing transmission from the uplink data frame. Signaling.
  • the spatial multiplexing transmission signaling includes power indication information for the multiplexing transmission device to determine a maximum transmission power that can be used when all or part of the time-frequency resource transmission data of the primary transmission link is used.
  • the method before the determining, by the primary access point, the method further includes: the primary access point according to the The decision parameters are determined by the transmission parameters used by the originating station, and the transmission parameters include transmission power, modulation and coding strategy MCS, and transmission bandwidth.
  • the determining parameter is a maximum interference power allowed when the primary access point receives the uplink data frame sent by the original sending station.
  • the communications system includes at least two originating sites, and the originating access point is determined according to a transmission parameter used by the originating site.
  • the maximum interference power includes: the primary access point determines, when receiving the uplink data frame sent by each of the at least two originating stations, according to transmission parameters used by each of the at least two originating stations Maximum interference power density; the primary access point determines a minimum of the maximum interference power density; the primary access point determines the maximum interference power based on the minimum value.
  • the primary access point determines, according to a transmission parameter used by each of the at least two original sites The maximum interference power density allowed when receiving uplink data frames sent by each of the at least two originating sites, including:
  • the original access point according to the formula Determining a maximum interference power density allowed when receiving an uplink data frame sent by the station k in the at least two originating stations, where isd STAk indicates that the primary access point receives the maximum allowed when the station k sends an uplink data frame Interference power density, Indicates the transmission power when the station k sends an uplink data frame. Indicates the minimum signal to interference plus noise ratio when the primary access point receives the uplink data frame sent by the station k.
  • the BW STAk indicates the transmission bandwidth used by the station k to transmit the uplink data frame.
  • the primary access point determines the maximum interference power according to the minimum value, including:
  • I max_level represents the maximum interference power
  • BW total represents the transmission bandwidth of the primary link
  • Redundancy represents the redundancy reserved by the system.
  • BW m denotes the m-th bandwidth of the N sub transmission bandwidth, N ⁇ 2,1 ⁇ m ⁇ N.
  • the original access point sends the spatial multiplexing transmission signaling to the original sending station, including: the original sending The in-point sends a trigger frame, and the spatial multiplexing transmission signaling is carried in the signaling A field or the load information of the trigger frame.
  • a method of transmitting data is provided, the method being applied to a communication system for transmitting data between an originating link and a spatial multiplexing link, the originating link being set at an original access point and an originating site
  • the method includes: receiving, by the originating station, spatial multiplexing transmission signaling sent by the primary access point, where the spatial multiplexing transmission signaling is used by the multiplexing sending device of the spatial multiplexing link to determine whether to use All or part of the time-frequency resources of the primary link are subjected to data transmission processing based on the spatial multiplexing link; the original station sends an uplink data frame to the original access point, and the uplink data frame carries the spatial complex Use transmission signaling.
  • the spatial multiplexing transmission signaling includes a first part for indicating that the multiplexing transmission device is prohibited from using all or part of the time-frequency resources of the primary transmission link.
  • the spatial multiplexing transmission signaling, or the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is allowed to use all or part of the time-frequency resources of the primary link.
  • the spatial multiplexing transmission signaling includes a determining parameter, where the determining parameter is a transmission of the primary access point according to the primary transmitting station.
  • the transmission parameters include transmission power, modulation and coding strategy MCS, and transmission bandwidth.
  • the determining parameter has N, and the N determining parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link.
  • the determining parameter is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; the originating station sends an uplink data frame to the original access point, and the uplink data frame carries the spatial complex Transmitting signaling, comprising: the signaling station A field of the uplink data frame of each of the N sub-transmission bandwidths of the primary station carrying the N determining parameters, N ⁇ 2; or in the N sub-transmissions
  • the signaling A field of the uplink data frame of the mth sub-transmission bandwidth in the bandwidth carries the mth decision parameter corresponding to the mth sub-transmission bandwidth, m ⁇ 1.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information is used by the multiplexing sending device to determine that the original The maximum transmit power that can be used when all or part of the time-frequency resources of the link are transmitting data.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the determining parameter, where the determining parameter is the original sending The maximum interference power allowed when the ingress receives the uplink data frame sent by the originating station.
  • a method for transmitting data is provided, the method being applied to a communication system for transmitting data between an originating link and a spatial multiplexing link, the originating link being set at an original access point and an originating station
  • the method includes: the multiplexing transmitting device receives the first spatial multiplexing transmission signaling, where the first spatial multiplexing transmission signaling is used by the multiplexing transmitting device of the spatial multiplexing link to determine whether to use the primary chain All or part of the time-frequency resource of the path performs data transmission processing based on the spatial multiplexing link; and the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling And including second spatial multiplexing transmission signaling for prohibiting the multiplexing transmitting device from using all or part of the time-frequency domain resource transmission data of the primary transmission link, and the multiplexing transmitting device transmitting signaling according to the spatial multiplexing includes: the multiplexing transmitting device abandons transmitting data using all or part of the time-frequency resources of the primary link according to the second spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes all or part of a time frequency for allowing the multiplexing transmitting device to use the primary transmission link.
  • the third spatial multiplexing transmission signaling of the domain resource transmission data, and the multiplexing transmission device performing data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including: the multiplexing transmission device according to the The third spatial multiplexing transmission signaling performs data transmission processing based on the spatial multiplexing link.
  • the spatial multiplexing transmission signaling has N, and the N spatial multiplexing transmission signaling is the original access point according to the The N first decision parameters are subjected to a determination process, and the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each spatial multiplexing transmission signaling is used to determine the corresponding Whether the sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including: the multiplexing transmission The device performs data transmission processing based on the spatial multiplexing link according to the N spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes power indication information
  • the multiplexing transmission device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including: The multiplex transmitting device determines, according to the power indication information, a maximum transmit power that can be used when transmitting data using all or part of the time-frequency resources of the primary link, and transmits the transmit power at a transmit power not higher than the maximum transmit power. data.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to a first determining parameter, where the first determining parameter is The originating access point is determined according to transmission parameters used by the originating station, and the transmission parameters include transmission power, modulation and coding strategy MCS, and transmission bandwidth.
  • the multiplexed transmitting device and the original access point belong to different basic service sets BSS.
  • the multiplexed transmitting device and the original access point belong to a same basic service set BSS, where the spatial multiplexing link is used.
  • the site within the BSS is transmitted with the site D2D.
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including And the D2D transmission indication information is used to prohibit the D2D station in the BSS from using the D2D transmission opportunity except the multiplexing transmission device.
  • the first determining parameter is a maximum interference allowed when the primary access point receives the uplink data frame sent by the original sending station. power.
  • the multiplexing transmitting device determines, according to the first determining parameter, that data is transmitted by using all or part of the frequency domain resource of the primary link.
  • the maximum transmit power that can be used, including: according to the formula Determining the first maximum transmit power, wherein Indicates the maximum transmit power, Indicates the maximum interference power, and L SR represents the transmission loss between the multiplexed transmitting device and the original access point.
  • the communications system further includes a third-party device
  • the method further includes: the multiplexing transmitting device generates a fourth spatial multiplexing transmission signal The fourth spatial multiplexing transmission signaling is used to prohibit the third-party device from using the multiplexing transmission opportunity; the multiplexing transmitting device carries the fourth spatial multiplexing transmission signaling in the data frame of the data transmission, so that When the third-party device receives the fourth spatial multiplexing transmission signaling, the third-party device discards the use of the multiplexing transmission opportunity to transmit data.
  • a fourth aspect provides an apparatus for transmitting data, the apparatus being applied to a communication system including transmission data of an originating link and a spatial multiplexing link, the originating link being disposed between the apparatus and the originating station,
  • the apparatus includes: a determining module, configured to perform, according to the determining parameter, a determining process for determining whether the multiplex transmitting device of the spatial multiplexing link is allowed to use all or part of the time-frequency resource transmission of the primary link a data generating module, configured to generate spatial multiplexing transmission signaling according to the determination result obtained by the determining module, and a sending module, configured to send spatial multiplexing transmission signaling generated by the generating module, to facilitate multiplexing transmission
  • the device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the generating module is further configured to generate, by using the first, to instruct the multiplexing transmitting device to use all or part of the time-frequency resource to transmit data of the primary transmission link.
  • the spatial multiplexing transmits signaling, or generates second spatial multiplexing transmission signaling for instructing the multiplexing transmitting device to transmit data using all or part of the time-frequency resource of the primary transmitting link.
  • the determining module is further configured to perform a determining process according to the N determining parameters, where the N determining parameters are related to the primary link
  • the N determining parameters are related to the primary link
  • the generating module is further configured to determine, according to the determination result of the determination processing, N spatial multiplexing transmission signalings are generated, and the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths.
  • the sending module is further configured to send the spatial multiplexing transmission signaling to the original sending site, so that the original sending site is The spatial multiplexing transmission signaling is carried when the uplink data frame is sent, so that the multiplexing transmitting device acquires the spatial multiplexing transmission signaling from the uplink data frame.
  • the generating module is further configured to: when the result of the determining process is to allow the multiplexing transmitting device to use all or part of the primary link When the time-frequency resource transmits data, generating spatial multiplexing transmission signaling including power indication information, where the power indication information is used by the multiplexing transmitting device to determine that when all or part of the time-frequency resources of the primary link are used to transmit data, The maximum transmit power used.
  • the apparatus further includes: a determining module, configured to use, according to the original site, before the determining module performs the determining process
  • the transmission parameter determines the decision parameter
  • the transmission parameter includes a transmission power, a modulation and coding strategy MCS, and a transmission bandwidth.
  • the determining parameter is a maximum interference power allowed when the apparatus receives the uplink data frame sent by the original station.
  • the communications system includes at least two originating sites, the determining module is further configured to: determine that the device receives the at least two origins The maximum interference power density allowed in the uplink data frame transmitted by each station in the station; determining the minimum value of the maximum interference power density; determining the maximum interference power according to the minimum value.
  • the determining module is further used according to the formula Determining a maximum interference power density allowed when receiving an uplink data frame sent by the station k in the at least two originating stations, where isd STAk indicates that the apparatus receives the maximum interference power density allowed when the station k sends the uplink data frame, Indicates the transmission power when the station k sends an uplink data frame. Indicates the minimum signal to interference plus noise ratio when the device receives the uplink data frame sent by the station k.
  • the BW STAk indicates the transmission bandwidth used by the station k to transmit the uplink data frame.
  • the determining module is further used according to the formula Determining the maximum interference power over the transmission bandwidth of the primary link;
  • I max_level represents the maximum interference power
  • BW total represents the transmission bandwidth of the primary link
  • Redundancy represents the redundancy reserved by the system.
  • BW m represents the mth sub-bandwidth of the N sub-transmission bandwidths
  • N ⁇ 2, 1 ⁇ m ⁇ N, and m and N are both positive integers.
  • the sending module is further configured to send a trigger frame to the original sending station, where the signaling A field or the load information of the trigger frame is carried This spatial multiplexing transmits signaling.
  • an apparatus for transmitting data is provided, the apparatus being applied to a communication system including an original link and a spatial multiplexing link for transmitting data, the primary link being set in the device and the primary Between the access points, the apparatus includes: a receiving module, configured to receive spatial multiplexing transmission signaling sent by the primary access point, where the spatial multiplexing transmission signaling is used for the multiplexing and transmitting device of the spatial multiplexing link Determining whether to use all or part of the time-frequency resources of the primary link to perform data transmission processing based on the spatial multiplexing link; and the sending module, configured to send an uplink data frame to the original access point, where the uplink data frame is sent Carrying the spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes: for indicating that the multiplexing transmitting device is prohibited from transmitting data by using all or part of the time-frequency resources of the primary transmission link.
  • First spatial multiplexing transmission signaling, or the spatial multiplexing transmission signaling includes The multiplexed transmitting device uses the second spatial multiplexing transmission signaling of all or part of the time-frequency resource transmission data of the original transmission link.
  • the N spatial multiplexing transmission signaling and the primary transmission link The N sub-transmission bandwidths are in one-to-one correspondence, and each spatial multiplexing transmission signaling is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; and each of the N sub-transmission bandwidths
  • the signaling A field of the uplink data frame of one sub-transmission bandwidth carries the N spatial multiplexing transmission signaling, N ⁇ 2; or the signaling A of the uplink data frame of the mth sub-transmission bandwidth in the N sub-transmission bandwidths
  • the field carries the mth spatial multiplexing transmission signaling corresponding to the mth sub-transmission bandwidth, m ⁇ 1.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information is used by the multiplexing transmitting device to determine that the primary transmission is used.
  • the maximum transmit power that can be used when all or part of the time-frequency resources of the link transmit data.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the determining parameter, where the determining parameter is the original sending The maximum interference power allowed when the ingress receives the uplink data frame sent by the originating station.
  • an apparatus for transmitting data is provided, the apparatus being applied to a communication system including transmission data of an originating link and a spatial multiplexing link, the primary link being set at an original access point
  • the device includes: a receiving module, configured to receive first spatial multiplexing transmission signaling, where the first spatial multiplexing transmission signaling is used by the multiplexing transmitting device of the spatial multiplexing link to determine whether Performing data transmission processing based on the spatial multiplexing link by using all or part of the time-frequency resources of the primary link; and processing module, configured to perform spatial multiplexing based on the spatial multiplexing transmission signaling received by the receiving module Data processing with links.
  • the processing module is further configured to, according to the second spatial multiplexing transmission signaling, abandon the use of all or part of the time-frequency resources of the primary link to transmit data.
  • the processing module is further configured to use the The three spatial multiplexing transmission signaling performs data transmission processing based on the spatial multiplexing link.
  • the spatial multiplexing transmission signaling has N, the N spatial multiplexing transmission signaling and the N of the primary transmission link.
  • Each of the sub-transmission transmission signals is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the device, N ⁇ 2; and the processing module is further configured to transmit according to the N spatial multiplexing transmissions. Signaling, performing data transmission processing based on the spatial multiplexing link.
  • the apparatus further includes: a determining module, configured to: when the spatial multiplexing transmission signaling includes power indication information, according to the power indication Information determining a maximum transmit power that can be used when transmitting data using all or part of the time-frequency resources of the primary link; and the transmission module is further configured to transmit data at a transmit power not higher than the maximum transmit power.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the first determining parameter, where the first determining parameter is The originating access point is determined according to transmission parameters used by the originating station, and the transmission parameters include transmission power, modulation and coding strategy MCS, and transmission bandwidth.
  • the device and the primary access point belong to different basic service sets BSS.
  • the device belongs to the same basic service set BSS as the original access point, and the spatial multiplexing link is used in the BSS.
  • Site with site D2D transport is used in the BSS.
  • the processing module is further configured to: carry the D2D transmission indication information in the data frame of the D2D transmission, where the D2D transmission indication information is used to prohibit the The D2D site in the BSS other than the device uses this D2D transmission opportunity.
  • the first determining parameter is a maximum interference power allowed when the apparatus receives the uplink data frame sent by the original station.
  • the determining module is further used according to the formula Determine the maximum transmit power
  • L SR represents the transmission loss between the device and the primary access point.
  • the communications system further includes a third-party device, and the device further includes a generating module, where the generating module is configured to generate a fourth spatial complex Transmitting signaling, the fourth spatial multiplexing transmission signaling is used to prohibit the third-party device from using the multiplexing transmission opportunity; the processing module is further configured to carry the fourth spatial multiplexing transmission in the data frame of the data transmission Signaling, so that the third-party device abandons the use of the multiplex transmission opportunity when receiving the fourth spatial multiplexing transmission signaling.
  • the primary access point determines whether to allow the multiplexed transmitting device of the spatial multiplexing link to use all or part of the time-frequency of the primary link by using the determining parameter. Transmitting data, and generating spatial multiplexing transmission signaling corresponding to the determination result of the determination process, so that the multiplex transmission device acquires the spatial multiplexing transmission signaling, and performs data transmission based on the spatial multiplexing link.
  • the processing can reduce the mutual interference when the original link and the spatial multiplexing link transmit data, and improve the transmission quality.
  • FIG. 1 is a schematic diagram of a method communication system to which data is transmitted in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of bandwidth allocation in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of bandwidth allocation in accordance with another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a format of spatial multiplexing transmission signaling according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an apparatus for transmitting data according to still another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting data according to still another embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems including transmission data of an original link and a spatial multiplexing link, for example, a wireless local area network (Wireless Local Area Network, WLAN) system, with 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, such as Wireless Fidelity (Wi-Fi), can also be applied to next-generation Wi-Fi systems and next-generation wireless LAN systems.
  • WLAN Wireless Local Area Network
  • Wi-Fi Wireless Fidelity
  • the multiplexed transmitting device may be a user site in the WLAN (English: Station, abbreviated as STA), and the user site may also be referred to as a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, and a remote station.
  • a terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a user device (English: User Equipment, UE for short).
  • the STA can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (English: Personal) Digital Assistant (abbreviation: PDA), a handheld device with wireless LAN (eg Wi-Fi) communication capabilities, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the multiplexed transmitting device may also be an AP in the WLAN, and the AP may be used to communicate with the UE through the wireless local area network, and transmit data of the UE to the network side, or transmit data from the network side to the UE.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • STA1 and STA2 transmit uplink data to the access point AP1 (hereinafter, the link between AP1 and STA1 and STA2 is collectively referred to as an original link), and STA5 uses all or both of the original links.
  • Part of the time-frequency resource performs data transmission with the access point AP2 (hereinafter, the link between AP2 and STA5 is referred to as a spatial multiplexing link).
  • the receiving site may be multiple sites in the basic service set (BSS) of the primary link, because the location of the multiple sites is for the site of the spatial multiplexing link. It is said that if some stations are closer to the site of the spatial multiplexing link, the mutual interference between the links will be increased. If the transmission quality of the original link is not affected, the spatial multiplexing chain The interference of the road to the receiving station of the primary link cannot exceed the maximum interference that the primary link can withstand.
  • BSS basic service set
  • the primary link is an uplink
  • the receiving station can only be the AP1
  • the spatial multiplexing link may only cause interference to the AP1. More suitable for spatial multiplexing transmission.
  • a method of transmitting data according to an embodiment of the present invention is also applicable.
  • the embodiment of the present invention is only described by using the application scenario in FIG. 1 as an example, but the embodiment of the present invention is not limited thereto.
  • the basic service set BSS2 where the AP2 is located may include more sites, and the BSS1 also includes There can be only one site.
  • the originating link of the communication system may include more BSSs in addition to BSS1.
  • the spatial multiplexing link is not limited to uplink transmission, and may also be downlink transmission.
  • a channel between two communication nodes is referred to as a link.
  • a link that is performing uplink transmission is collectively referred to as an original link, and therefore, the primary The link may be one or multiple; in contrast, the link that is spatially multiplexed with the original link is collectively referred to as a spatial multiplexing link. Therefore, the spatial multiplexing link may be one. Can be multiple.
  • the access point and the site of the primary link are respectively referred to as the primary access point and the original site.
  • the spatial multiplexing link may be an uplink or a downlink, that is, the spatial multiplexing link may be used to transmit data using the spatial multiplexing link.
  • the access point can also be a site. Therefore, in the embodiment of the present invention, the access point and the station of the spatial multiplexing link are collectively referred to as a multiplexed transmitting device.
  • FIG. 2 shows a schematic flow diagram of a method 100 of transmitting data in accordance with an embodiment of the present invention as described from the perspective of an originating access point. As shown in FIG. 2, the method 100 includes:
  • the primary access point performs a determination process according to the determination parameter, and the determination process is used to determine Determining whether the multiplexed transmitting device of the spatial multiplexing link is allowed to transmit data using part or all of the time-frequency resources of the primary link;
  • the primary access point generates spatial multiplexing transmission signaling according to the determination result of the determining process.
  • the primary access point sends the spatial multiplexing transmission signaling, so that the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the primary access point first performs a determination process according to the determination parameter to determine whether the multiplexed transmission device of the spatial multiplexing link can be allowed to use all or part of the time-frequency resource transmission of the primary link.
  • the data, and the interference caused by the primary access point receiving the uplink data is within the allowable range.
  • the originating access point generates spatial multiplexing transmission signaling corresponding to the determination result based on the determination result of the determination process.
  • the primary access point sends the spatial multiplexing transmission signaling, so that after the multiplexing transmitting device obtains the spatial multiplexing transmission signaling, performing data transmission processing based on the spatial multiplexing link to avoid The data transmission of the outgoing link causes interference.
  • the primary access point performs the determination process according to the determination parameter, and the original access point may directly determine according to the historical information (ie, mode 1), or the original access point may be based on the original
  • the link related information determines the determination parameter, and then performs determination processing according to the determined determination parameter (ie, mode 2).
  • the primary access point collects the interference power of the surrounding BSS transmitted by the original access point for a period of time (such as T seconds before the current time), and then the maximum value (or average value, or less than a certain probability) of the interference power obtained according to the statistics.
  • the interference power value, etc. is compared with a certain threshold (or range). If it is greater than the threshold or outside the range, the multiplexing transmission is not allowed this time, otherwise it is allowed.
  • the transmission bandwidth of the primary link is 20 MHz as an example, and is not limited thereto.
  • the primary access point can count the interference power transmitted by the surrounding BSS on the 20 MHz transmission bandwidth for a period of time (such as T seconds before the current time), and then the maximum interference power obtained according to statistics. The value (or average value, or interference power value less than a certain probability, etc.) is compared with a certain threshold (or range). If it is greater than the threshold or outside the range, the current data transmission does not allow multiplexing transmission, otherwise it is allowed.
  • the originating access point determines the determination parameter according to the transmission parameter used by the original transmitting station of the uplink transmission when transmitting the uplink data frame, and then performs determination processing according to the determination parameter.
  • the original access point can obtain relevant parameters used by the original site when transmitting the uplink data frame, for example, the sending power of the original site, and the sending.
  • the transmission bandwidth used in the uplink data frame and the modulation and coding scheme (English: Modulation and Coding Scheme, MCS for short), etc.
  • the original access point can calculate the uplink data frame sent by the original station according to these transmission parameters.
  • the maximum interference power allowed, and the maximum interference power is used as a determination parameter to determine whether the multiplexing transmission of the multiplexed transmission device can be allowed. For example, when the maximum interference power is greater than a certain preset threshold, multiplexing transmission is allowed, and when the maximum interference power is less than the preset threshold, multiplexing transmission is prohibited.
  • the primary access point may determine, according to the transmission parameter used by the original station that is scheduled to send the uplink data frame on the 20 MHz transmission bandwidth, to receive the maximum interference allowed when the primary station sends the uplink data frame on the 20 MHz bandwidth. power.
  • the primary access point AP1 schedules the primary stations STA1, STA6, STA7, and STA8 for uplink transmission, and the transmission bandwidth used by the station STA1 is BW STAk1 , and the transmission bandwidth used by the station STA7 is BW STAk7 , the station STA6 and the station STA8 use the same transmission bandwidth BW STAk6 / BW STAk8 .
  • the original access point AP1 can be based on the transmission parameters used by the original stations STA1, STA6, STA7 and STA8, based on the 20MHz. Calculate the maximum interference power.
  • the original access point can also directly perform the determination process according to the MCS used by the original site.
  • the multiplexed transmission of the multiplexed transmitting device is allowed, and if the index of the MCS used by the originating station is less than 5, the multiplexed transmission of the multiplexed transmitting device is prohibited.
  • the index of the above MCS is only described by taking 5 as an example, and the embodiment of the present invention is not limited thereto.
  • the index of the MCS may also be compared with a predetermined threshold.
  • the primary access point performs a determination process according to the determining parameter, including:
  • the primary access point performs a determination process according to the N determination parameters, and the N determination parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each determination parameter is used to determine whether the corresponding sub-transmission bandwidth is It is allowed to use the multiplexing device, N ⁇ 2.
  • the original access point generates N spatial multiplexing transmission signaling, and the specific process is described in detail in S120 below.
  • the primary access point when it performs the determination process, it can be based on the entire transmission belt of the original link.
  • the decision process is performed based on the width, and the entire transmission bandwidth can be divided into a plurality of sub-transmission bandwidths, and the determination process is performed separately. On each sub-transmission bandwidth, the sub-transmission bandwidth can be further divided into smaller sub-bandwidths for decision processing.
  • the transmission bandwidth of the primary link is 40 MHz as an example.
  • the primary access point may divide the 40 MHz into two 20 MHz sub-bandwidths, and then the original access point may separately count for a period of time (eg, T seconds before the current time) on the two 20 MHz sub-bandwidths.
  • the multiplexed transmitting device receives two spatial multiplexing transmission signaling, for example, where the first spatial multiplexing transmission signaling indicates that multiplexing transmission is prohibited on the first 20 MHz sub-bandwidth, and the second space
  • the multiplexed transmission signaling indicates that the multiplexed transmission is allowed on the second 20 MHz sub-bandwidth, and if the multiplexed transmitting device multiplexes the transmission using the bandwidth of the first 20 MHz sub-bandwidth, at this time, the multiplexed transmitting device The opportunity for this multiplexed transmission cannot be used. However, if the bandwidth used by the multiplexed transmitting device to multiplex the transmission is the second 20 MHz sub-bandwidth or a part thereof, the multiplex transmitting device can use the multiplex transmission opportunity at this time.
  • the primary access point first determines N determination parameters, and then performs determination processing based on the N determination parameters. For example, as shown in FIG. 4, the primary access point first divides the 40 MHz transmission bandwidth into two 20 MHz sub-bandwidths, and then the primary access point calculates the decision parameters on the two 20 MHz sub-bandwidths, respectively.
  • the first Determining the decision parameter on the first 20 MHz based on the sub-bandwidth of 20 MHz; when calculating the parameter on the second 20 MHz bandwidth, according to the original station 4 and station 5 transmitting the uplink data on the second 20 MHz bandwidth.
  • the original access point performs the determination process according to the determination parameters calculated on the first 20 MHz and the second 20 MHz, respectively.
  • the primary access point may divide the 40 MHz into two 20 MHz sub-bandwidths, and then determine the processing according to the historical information on the first 20 MHz sub-bandwidth to determine whether the first 20 MHz sub-bandwidth is allowed to be complex. Multiplexed transmission with the transmitting device; and at the second 20MHz On the sub-bandwidth, the original access point first determines the decision parameter on the second 20MHz sub-band according to the transmission parameter of the original station that transmits the uplink data on the second 20MHz sub-bandwidth, and then performs the determination parameter according to the determination parameter. Determining a process to determine whether to allow multiplexing transmission on the second 20 MHz sub-bandwidth
  • the originating access point can also separately calculate the decision parameters according to the actual occupied bandwidth allocated to the original site.
  • the transmission bandwidth allocated to Site 1 is 7 MHz
  • the transmission bandwidth allocated to Site 2 is 5 MHz
  • the transmission bandwidth allocated to Site 3 is 7.5 MHz.
  • the original access point may also determine the decision parameters on the corresponding bandwidth according to the 7 MHz, 5 MHz, and 7.5 MHz, respectively.
  • the transmission bandwidth of the primary link is only described by taking 40 MHz as an example.
  • the present invention is not limited thereto, and the transmission bandwidth of the primary link may be larger, for example, 80 MHz. 160MHz, the method for determining the determination parameters is similar, and for brevity, it will not be described here.
  • the sub-bandwidth of the primary link is also illustrated by taking only 20 MHz as an example, and the present invention is not limited thereto.
  • the sub-bandwidth of the primary link may also be 10 MHz.
  • the sub-bandwidth of the primary link may also be 40 MHz. .
  • the multiplexed transmitting device receives multiple spatial multiplexing transmission signaling.
  • the multiplexed transmitting device should perform data transmission according to spatial multiplexing transmission signaling corresponding to its own transmission bandwidth. deal with. For example, the first 20MHz sub-bandwidth of the original link allows multiplexing transmission, and the second 20MHz sub-bandwidth prohibits multiplexing transmission, and the 20MHz corresponding to the transmission bandwidth used by the multiplexing transmitting device is the second of the original link.
  • the multiplexed transmitting device cannot use the second 20MHz sub-bandwidth to transmit data; if the multiplexed transmitting device uses a transmission bandwidth corresponding to 20MHz, the first 20MHz sub-bandwidth of the original link Then, the multiplexed transmitting device can multiplex the transmission. For another example, if the transmission bandwidth used by the multiplexing transmitting device corresponds to the second 20 MHz sub-bandwidth of the primary link, and the received spatial multiplexing transmission signaling corresponding to the second 20 MHz sub-bandwidth not only indicates that the multiplexing is allowed. The multiplexed transmission of the transmitting device is used, and the maximum interference power allowed by the primary link is indicated.
  • the multiplexed transmission should be calculated according to the maximum interference power.
  • the maximum transmit power that can be used by itself. Further, when transmitting data, the transmit power used should not exceed the maximum transmit power. Low interference to the original link.
  • the method for transmitting data in the embodiment of the present invention can reduce mutual interference when transmitting data on the primary link and the spatial multiplexing link, and improve transmission quality.
  • the determining parameter is a maximum interference power allowed when the original access point receives the uplink data frame sent by the original station.
  • the maximum interference power that can be allowed when the original station transmits the uplink data frame can also be used as the determination parameter.
  • the primary access point determines the determination parameters according to the transmission parameters used by the primary site, including:
  • the originating access point determines, according to an uplink transmission parameter used by each of the at least two originating stations, a maximum interference power density allowed when receiving an uplink data frame sent by each of the at least two originating stations;
  • the primary access point determines a minimum of the maximum interference power density
  • the primary access point determines the maximum interference power based on the minimum value.
  • the primary access point may calculate the maximum interference power density allowed when receiving the uplink data frame sent by the station according to the uplink transmission parameter of each station, such that There may be multiple maximum interference power densities.
  • the space should be satisfied when receiving the uplink data frame sent by each original station.
  • the interference caused by the multiplexed link should not exceed the interference limit that the original access point can withstand. Therefore, the originating access point should select a minimum value from the plurality of maximum interference densities, and determine the maximum interference power based on the minimum value.
  • the originating access point determines, according to transmission parameters used by each of the at least two originating stations, a maximum interference allowed when receiving an uplink data frame sent by each of the at least two originating stations.
  • Power density including:
  • the original access point according to the formula Determining a maximum interference power density allowed when receiving an uplink data frame sent by the station k in the at least two originating stations,
  • the isd STAk indicates that the primary access point receives the maximum interference power density allowed when the station k sends the uplink data frame. Indicates the transmission power when the station k sends an uplink data frame. Indicates the minimum signal to interference plus noise ratio when the primary access point receives the uplink data frame sent by the station k.
  • the BW STAk indicates the transmission bandwidth used by the station k to transmit the uplink data frame.
  • the originating station refers to a station that is scheduled to send an uplink data frame by the original access point.
  • site k can be Site 1, Site 6, Site 7, and Site 8.
  • site k of the first 20 MHz sub-bandwidth can be Site 1, Site 2, Site 3, and Site 6.
  • the second 20MHz sub-bandwidth site k can be Site 4, Site 5, Site 7 and Site 8.
  • the transmission power of the original station is divided by the transmission loss between the original station and the AP, and the received power at AP1 can be obtained. Dividing by the required minimum SINR can obtain the maximum interference power allowed by the AP1 to receive the original station. The transmission bandwidth used by the original station can obtain the maximum interference power density allowed when the AP receives the data frame sent by the original station.
  • AP1 since the above-mentioned original station is scheduled by AP1, AP1 knows the transmission power of the original station, the allocated transmission bandwidth, the MCS and the like. The minimum SINR required to receive the data frame can be obtained by the assigned MCS. At the same time, the AP1 can obtain the transmission loss of the original station to the AP1 according to the historical information. For example, when the original station uses the random access to send the uplink request, the AP1 generally sends the maximum transmission power according to the standard, so that the AP1 can be based on The received power of the uplink request frame and the specified maximum transmit power are received to calculate a transmission loss.
  • the primary access point determines the maximum interference power according to the minimum value, including:
  • the I max_level is the maximum interference power allowed when the primary access point AP1 receives the uplink data frame sent by the at least one uplink station. Indicates that the primary access point determines the minimum of the maximum interference power density, BW total represents the transmission bandwidth of the primary link, and Redundancy represents the redundancy reserved by the system. Represents the maximum interference power on the m-th subbands, BW m denotes the m-th bandwidth of the N sub transmission bandwidth.
  • the above maximum interference power may also be other logical variants thereof, for example, among them, Indicates the transmission power of the primary access point AP1.
  • the original access point when determining the maximum interference power, may be calculated according to the total transmission bandwidth of the primary link, or may be calculated based on the sub-bandwidth smaller than the total transmission bandwidth.
  • the total transmission bandwidth of the primary link is 40 MHz, and spatial multiplexing transmission parameters are calculated on two 20 MHz sub-bandwidths respectively.
  • analogy can be performed according to this method. From The minimum value of at least one of the maximum interference power densities belonging to the first 20 MHz sub-bandwidth is multiplied by the bandwidth value of the first sub-bandwidth (ie, 20 MHz), and then the system redundancy factor is subtracted to obtain the AP1 in the first
  • the maximum interference power allowed when an uplink data frame is transmitted by at least one uplink station on one basic sub-bandwidth.
  • the site k may be Site 1, Site 6, Site 7, and Site 8.
  • Site k may be Site 4, Site 5, Site 7, and Site 8. .
  • the margin may be a pre-agreed fixed value, and may be a value calculated according to a predetermined method, and the margin may also be zero.
  • the above formula when calculating the maximum interference power according to the above formula, if the calculation is performed in decibels, the above formula can also be expressed as After the minimum interference power density value is multiplied by the total transmission bandwidth of the primary link, the maximum interference power allowed when receiving the uplink data frame sent by the at least one uplink station is obtained by subtracting the redundancy reserved by the system. . Therefore, the logical deformation of the calculation formula is changed only because the unit used in the calculation is different, and it should be considered that it still belongs to the protection scope of the embodiment of the present invention.
  • the originating access point generates spatial multiplexing transmission signaling according to the determination result of the determination process.
  • the spatial multiplexing transmission signaling includes a first spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is prohibited from using all or part of the time-frequency resources of the primary transmission link,
  • the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is allowed to use all or part of the time-frequency resources of the primary transmission link.
  • the original access point undergoes a determination process to generate spatial multiplexing transmission signaling corresponding to the determination result.
  • the originating access point may use 1 bit of spatial multiplexing transmission signaling to indicate whether to permit or disable multiplexing transmission of the multiplexed transmitting device.
  • the originating access point may also use 4 bits to indicate the decision parameter. For example, according to a preset rule, "0000" is used to indicate that the maximum allowed interference power is -80 dBm, and "0001" indicates that the maximum allowed interference power is -75 dBm. , "1111" means The maximum allowable interference power is -5dBm and so on.
  • the primary access point may also use the 1 bit to indicate whether to allow the transmitting end device to multiplex the transmission in the spatial multiplexing transmission signaling, and then use 4 bits to indicate the determination parameter.
  • the originating access point uses the all "0" combination of 4 bits to indicate that the multiplexed transmission of the multiplexed transmitting device is prohibited, the remaining bits indicate the decision parameter; or use the all "1" combination of the 4 bits to indicate the allowable complex With the multiplex transmission of the transmitting device, the remaining bits indicate the decision parameters; or use the all "1" combination of 4 bits to indicate the permission without any condition, or the all "0" combination to indicate the unconditional prohibition.
  • the primary access point generates spatial multiplexing transmission signaling according to the determination result of the determining process, including:
  • the originating access point performs a determination process based on the N determination parameters and generates N spatial multiplexing transmission signaling.
  • the primary access point first divides the 40 MHz transmission bandwidth into two 20 MHz sub-bandwidths, and then the primary access point calculates the decision parameters and the second on the first 20 MHz sub-band respectively. Decision parameters on a 20MHz subband. Then, the original access point performs the determination process according to the determination parameters calculated on the first 20 MHz and the second 20 MHz, that is, a spatial multiplexing transmission signaling is generated on each 20 MHz sub-bandwidth.
  • the primary access point may also perform a decision process based on the historical information on the first 20 MHz sub-band to generate spatial multiplexing transmission signaling on the first 20 MHz sub-bandwidth, and then the primary access point is in the first
  • the two 20MHz sub-bands first determine the decision parameters according to the transmission parameters used by the original station, and then generate spatial multiplexing transmission signaling on the second 20MHz sub-band according to the determined decision parameters.
  • b0 to b3 are used to indicate spatial multiplexing transmission signaling on the first sub-bandwidth
  • b4 to b7 are used to indicate spatial multiplexing transmission signaling on the second sub-bandwidth.
  • the primary access point may also perform decision processing according to historical information on the first 20 MHz sub-bandwidth and the second 20 MHz sub-bandwidth, so that a spatial multiplexing transmission signaling is generated on each 20 MHz sub-bandwidth. .
  • the original access point can use 2 bits to indicate whether multiplexing transmission of the multiplexed transmitting device is allowed respectively on the two 20 MHz sub-bandwidths.
  • an original access point may be a primary chain.
  • the transmission bandwidth of the path generates spatial multiplexing transmission signaling, and may also generate spatial multiplexing transmission signaling based on the sub-bandwidth smaller than the transmission bandwidth of the original link.
  • the multiplexing transmitting device may transmit according to the received spatial multiplexing. Signaling, in combination with the transmission bandwidth used in the multiplex transmission and the transmission bandwidth of the primary link, whether to use all or part of the time-frequency resource transmission data of the original link to process, thereby reducing the multiplexing transmission The interference to the original link improves the transmission quality.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information
  • the multiplexing transmitting device is configured to determine a maximum transmit power that can be used when all or part of the time-frequency resources of the primary link are used to transmit data.
  • the power indication information may be the maximum interference power allowed when the original access point receives the uplink data frame sent by the original station, or may be other parameters, for example, may be other logical variants of the maximum interference power. .
  • the primary access point undergoes a determination process to generate spatial multiplexing transmission signaling, which can not only indicate whether the multiplexed transmitting device can use all or part of the time-frequency resource transmission of the primary link.
  • Data, and the power indication information may be carried in the spatial multiplexing transmission signaling, so that after receiving the spatial multiplexing transmission signaling, the multiplexing transmitting device not only knows that the multiplexing transmission can be performed, and knows that the multiplexing transmission is available.
  • the maximum transmit power is such that it does not interfere with the data transmission of the original link.
  • the primary access point may use 1 bit to indicate that the multiplexed transmission of the multiplexed transmitting device is allowed, and at the same time, 4 bits are used to indicate the maximum interference power; or the original access point may use a special set of 4 bits. The value indicates that the multiplexed transmission is allowed or disabled, and the remaining value is used to indicate the maximum interference power.
  • the multiplexed transmitting device can determine the maximum transmit power that can be used in the multiplex transmission, and transmit the data at a power not higher than the maximum transmit power to reduce the primary transmission. Interference between link and spatial multiplexing links.
  • the method for transmitting data in the embodiment of the present invention can reduce mutual interference when transmitting data on the primary link and the spatial multiplexing link, and improve transmission quality.
  • the originating access point transmits the spatial multiplexing transmission signaling, so that the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the primary access point sends the spatial multiplexing transmission signaling to the primary sending station, so that the primary transmitting station carries the spatial multiplexing transmission signaling when sending an uplink data frame, so that the And acquiring, by the sending device, the spatial multiplexing transmission signaling from the uplink data frame.
  • the original access point sends a trigger frame to the original station, and the original station sends the uplink data, and the spatial multiplexing transmission signaling is carried in the signaling A field or the load information of the trigger frame.
  • the originating station receives the spatial multiplexing transmission signaling sent by the original access point, and carries the spatial multiplexing transmission signaling in the subsequently transmitted uplink data frame, so as to facilitate the spatial multiplexing link.
  • the multiplexed transmitting device acquires the spatial multiplexed transmission signaling from the uplink data frame, and performs data transmission processing based on the spatial multiplexed link according to the spatial multiplexed transmission signaling.
  • the multiplexed transmitting device receives the spatial multiplexing transmission parameter, which may be obtained from a trigger frame sent by the original access point to the original sending station, or may be sent from the original sending station to the uplink data of the original access point. Get in the frame. Then, the multiplex transmitting device can perform data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the multiplex transmitting device receives the spatial multiplexing transmission signaling A (ie, an example of the first spatial multiplexing transmission signaling) for prohibiting the use of all or part of the time-frequency domain resource transmission data of the original link.
  • the multiplex transmitting device cannot transmit data according to the spatial multiplexing transmission signaling, and cannot use all or part of the time-frequency resources of the primary link to transmit data.
  • the multiplex transmitting device receives the spatial multiplexing transmission signaling B (that is, the second spatial multiplexing transmission signal) for allowing the multiplex transmitting device to use all or part of the time-frequency domain resource transmission data of the original transmission link.
  • the multiplex transmitting device can transmit data according to the spatial multiplexing transmission signaling B.
  • the multiplex transmitting device can select the opportunity to abandon the multiplex transmission, etc., even if it receives the spatial multiplexing transmission signaling that allows the multiplexed transmission.
  • the spatial multiplexing transmission signaling sent by the primary access point is multiple
  • the spatial multiplexing transmission signaling received by the primary site is also multiple
  • the primary site is When the spatial multiplexing transmission signaling is carried in the uplink data frame, the multiple spatial multiplexing transmission signaling should also be carried.
  • the specific carrying manner is shown in FIG. 6 and FIG. 6A and FIG. 6B.
  • the baseband bandwidth of the primary link is 20 MHz
  • the SIGA field on each 20 MHz bandwidth carries respective corresponding spatial multiplexing transmission signaling, that is, the SIGA field on each 20 MHz bandwidth.
  • the spatial multiplexing transmission signaling of the bearers may be different. For another example, as shown in FIG.
  • the basic sub-bandwidth of the primary link is 20 MHz
  • the SIGA field on each 20 MHz bandwidth carries all spatial multiplexing transmission signaling, that is, SIGA on each 20 MHz bandwidth.
  • the spatial multiplexing transmission signaling carried by the field may be the same.
  • the multiplex transmitting device should perform data transmission based on the spatial multiplexing link according to the N spatial multiplexing transmission signaling. deal with.
  • the multiplex transmitting device selects spatial multiplexing transmission parameters corresponding to the own transmission bandwidth from the N spatial multiplexing transmission signalings to perform data transmission processing.
  • the spatial multiplexing transmission parameters corresponding to the b4 to b7 bits are selected to obtain the corresponding maximum interference. power.
  • the multiplexed transmitting device receives two spatial multiplexing transmission signaling, wherein the multiplexed transmission is prohibited on the first 20 MHz sub-transmission bandwidth, and the multiplex transmission is allowed on the second 20-MHz sub-transmission bandwidth, if multiplexing
  • the transmission bandwidth used by the transmitting device corresponds to the second 20 MHz sub-bandwidth of the primary link, and the multiplexed transmitting device can use the second 20 MHz sub-bandwidth to transmit data; if, the transmission bandwidth used by the multiplexed transmitting device corresponds to the original The first 20MHz sub-transmission bandwidth of the link is transmitted.
  • the multiplexed transmitting device can only give up the multiplex transmission opportunity.
  • the multiplexed transmitting device can determine the maximum transmit power that can be used by the multiplexed transmission, according to the formula Determining the maximum transmit power, wherein Indicates the maximum transmit power, Indicates the maximum interference power, and L SR represents the transmission loss between the multiplexed transmitting device and the original access point.
  • the multiplexed transmitting device is not a 20 MHz bandwidth, but a certain subchannel of the occupied 20 MHz bandwidth, for example, the multiplexed transmitting device is an uplink station scheduled by the AP2, and the AP2 is allocated to the complex.
  • the transmission bandwidth of the transmitting device is BW SR , which is less than 20 MHz.
  • a more strict way to calculate the maximum transmit power is:
  • the BW SR is the bandwidth used by the sending end, and the BW total is the total transmission bandwidth of the original link where the transmitting end uses the bandwidth or the bandwidth value of a certain sub-bandwidth.
  • the multiplexed transmitting device should correspond to the set of sub-bandwidths of the primary link included in the transmission bandwidth used by itself.
  • the minimum value is selected to determine the maximum transmit power that can be used by its multiplexed transmission.
  • the transmission bandwidth used by the multiplexed transmitting device is 40 MHz
  • the sub-bandwidth of the primary link is 20 MHz, 10 MHz, and 10 MHz, respectively
  • the multiplexed transmitting device should correspond to the maximum of the basic sub-bandwidth set composed of the 20 MHz, 10 MHz, and 10 MHz.
  • the multiplexed transmitting device may generate spatial multiplexed transmission signaling C (ie, fourth spatial multiplexing).
  • the spatial multiplexing transmission signaling C is used to prohibit a third-party device in the communication system system from giving up the opportunity to use the multiplexing transmission when receiving the spatial multiplexing transmission signaling C.
  • the multiplexed transmitting device does not want a third-party device to use the multiplexed transmission opportunity.
  • the data frame transmitted carries the fourth.
  • Spatial multiplexing transmits signaling, so that if there is a third-party device in the communication system, the third-party device is relatively close to the original access point and the SR site, then the third-party device may hear the original connection.
  • the spatial multiplexing of the ingress transmits signaling, and the fourth spatial multiplexing transmission signaling sent by the SR station is heard.
  • the fourth spatial multiplexing transmission signaling prohibits the simultaneous restoration of the third-party device and the multiplexed transmitting device. With transmission, third-party devices cannot use this multiplexed transmission opportunity.
  • the multiplexed transmitting device since the multiplexed transmitting device does not want the third-party device to multiplex the transmission with itself at the same time, the fourth spatial multiplexed transmission signaling can be directly generated without performing any determination processing.
  • the multiplex transmission device may perform the determination process according to the second determination parameter, and then generate the fourth spatial multiplex transmission signaling according to the determination result of the determination process.
  • the second determining parameter is a related parameter of the spatial multiplexing link
  • the multiplexing transmitting device may determine, according to the second determining parameter, whether the spatial multiplexing link allows the third-party device to perform multiplexing transmission, and correspondingly, Generating spatial multiplexing transmission signaling (or fourth spatial multiplexing transmission signaling) of the spatial multiplexing link.
  • the multiplexing transmitting device performs a process of determining processing according to the second determining parameter, and generates a fourth spatial multiplexing transmission signaling according to the determination result, performs a determination process with the original access point, and generates spatial multiplexing.
  • the method of transmitting signaling is similar, and for brevity, it will not be described here.
  • the fourth spatial multiplexing transmission signaling is used to prohibit multiplexing transmission of the third-party device, but obviously, the fourth spatial multiplexing transmission signaling may also indicate that the third-party device is allowed to be allowed.
  • the multiplexed transmission may also indicate the second decision parameter or the maximum transmit power that the third-party device can use while indicating that the multiplexed transmission is allowed, that is, the multiplex transmitting device generates the spatial multiplexed link.
  • Spatial multiplexing transmission signaling ie, an example of fourth spatial multiplexing transmission signaling
  • the function is similar to the function of the spatial multiplexing transmission signaling of the primary access point to generate the primary link, and the generated process and method are similar. For brevity, no further details are provided herein.
  • the multiplexed sending device and the original access point in the embodiment of the present invention may belong to different BSSs, and may also belong to the same BSS.
  • the method for transmitting data according to the embodiment of the present invention is described in the case where the multiplexed transmitting device and the original access point belong to different BSSs. The following is the same for the transmitting device and the original access point. The description of the BSS is described.
  • the primary link is equivalent to the uplink multi-user UL MU transmission in the BSS
  • the spatial multiplexing link is equivalent to the D2D transmission in the same BSS.
  • the multiplexed transmitting device may also be referred to as a D2D transmitting station
  • the SR transmission is a D2D transmission.
  • the D2D transmitting station receives the trigger frame or the uplink data frame, and determines whether it is the transmission frame of the BSS. If yes, the maximum transmit power allowed for D2D transmission is calculated according to the spatial multiplexing transmission signaling carried in the trigger frame or the uplink data frame; if not, the method may be performed according to an existing standard process, or may be implemented according to the foregoing The process of the example is executed, and the invention is not limited.
  • the D2D transmitting station may use 1-bit indication information in the SIGA field in the preamble of the transmission frame to indicate whether the current transmission is a D2D transmission. For example, "1" is represented as a D2D data frame, and "0" is represented as a normal data frame.
  • the multiplexing transmission opportunity is abandoned until the The D2D data frame transmission ends; if it is judged that the 1-bit indication information is "0", the multiplexing process is continued.
  • the primary access point determines, according to the determination parameter, whether the multiplexed transmitting device of the spatial multiplexing link is allowed to transmit data using all or part of the time-frequency resources of the original link, and Generating spatial multiplexing transmission signaling corresponding to the determination result of the determination process, so that the multiplex transmission device acquires the spatial multiplexing transmission signaling, and performs data transmission processing based on the spatial multiplexing link, thereby enabling Reduce interference between the primary link and the spatial multiplexing link and improve transmission quality.
  • the method for transmitting data according to the embodiment of the present invention is described from the perspective of the primary access point, and the following describes the embodiment according to the present invention from the perspective of the primary site in conjunction with FIG. 5 and FIG. 6 in conjunction with FIG. 2 to FIG.
  • the method of transferring data is described from the perspective of the primary access point, and the following describes the embodiment according to the present invention from the perspective of the primary site in conjunction with FIG. 5 and FIG. 6 in conjunction with FIG. 2 to FIG.
  • the method of transferring data is described from the perspective of the primary access point, and the following describes the embodiment according to the present invention from the perspective of the primary site in conjunction with FIG. 5 and FIG. 6 in conjunction with FIG. 2 to FIG.
  • the method of transferring data is described from the perspective of the primary access point, and the following describes the embodiment according to the present invention from the perspective of the primary site in conjunction with FIG. 5 and FIG. 6 in conjunction with FIG. 2 to FIG.
  • the method of transferring data is described from the perspective of the primary access point, and the following describes the
  • FIG. 5 shows a schematic flow diagram of a method 200 of transmitting data in accordance with an embodiment of the present invention as described from the perspective of a primary site. As shown in FIG. 2, the method 200 includes:
  • the originating station receives spatial multiplexing transmission signaling sent by the primary access point, where the spatial multiplexing transmission signaling is used by the multiplexing transmitting device of the spatial multiplexing link to determine whether to use the primary link. All or part of the time-frequency resource, performing data transmission processing based on the spatial multiplexing link;
  • the original sending station sends an uplink data frame to the original access point, where the uplink data frame carries the spatial multiplexing transmission signaling.
  • the originating station receives the spatial multiplexing transmission signaling sent by the primary access point, and carries the spatial multiplexing transmission signaling in the subsequently transmitted uplink data frame, and the spatial multiplexing transmission signaling and the determination
  • the determination result is obtained by the primary access point performing a determination process according to the determination parameter, and the determination process is for determining whether the multiplex transmission device of the spatial multiplexing link is allowed to use all of the original transmission link. Or part of the time-frequency resource to transfer data.
  • the spatial multiplexing transmission signaling may be located in a signaling A field in a preamble of the uplink data frame.
  • the spatial multiplexing transmission signaling includes first spatial multiplexing transmission signaling for indicating that the multiplexing transmission device is prohibited to use all or part of time-frequency resources of the primary transmission link, or the spatial multiplexing transmission
  • the signaling includes second spatial multiplexing transmission signaling for indicating that the multiplex transmitting device is allowed to use all or part of the time-frequency resources of the original transmission link.
  • the spatial multiplexing transmission signaling has N, and the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each spatial multiplexing transmission signaling is used for determining. Whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2;
  • the originating station sends an uplink data frame to the original access point, where the uplink data frame carries the spatial multiplexing transmission signaling, including:
  • the originating station carries the N spatial multiplexing transmission signalings in a signaling A field of an uplink data frame of each of the N sub-transmission bandwidths, N ⁇ 2; or
  • the signaling A field of the uplink data frame of the mth sub-transmission bandwidth of the N sub-transmission bandwidths carries the mth spatial multiplexing transmission signaling corresponding to the m-th sub-transmission bandwidth, m ⁇ 1.
  • the original station since the originating station receives multiple spatial multiplexing transmission signaling, the original station carries the multiple spatial multiplexing transmission signaling in the signaling A field of the preamble of the transmitted uplink data frame, specifically
  • the carrying manner is as shown in 6A and 6B in FIG. 6.
  • the baseband bandwidth of the primary link is 20 MHz
  • the SIGA field on each 20 MHz bandwidth carries its own corresponding Spatial multiplexing transmission signaling, that is, spatial multiplexing transmission signaling carried by the SIGA field on each 20 MHz bandwidth may be different.
  • FIG. 6A the baseband bandwidth of the primary link is 20 MHz
  • the SIGA field on each 20 MHz bandwidth carries its own corresponding Spatial multiplexing transmission signaling, that is, spatial multiplexing transmission signaling carried by the SIGA field on each 20 MHz bandwidth may be different.
  • the basic sub-bandwidth of the primary link is 20 MHz
  • the SIGA field on each 20 MHz bandwidth carries all spatial multiplexing transmission signaling, that is, SIGA on each 20 MHz bandwidth.
  • the spatial multiplexing transmission signaling carried by the field may be the same.
  • the multiplexed transmission signaling corresponding to the own transmission bandwidth is used for the data transmission processing.
  • the multiplexed transmitting device multiplexes the second sub- 20 MHz bandwidth of the original uplink used in the 20 MHz transmission, and selects the spatially multiplexed transmission signaling corresponding to the b4 to b7 bits to obtain the maximum allowed.
  • the interference power is then further calculated for the maximum transmit power that can be used when multiplexing the transmission.
  • the multiplexing transmitting device should select a plurality of spatial multiplexing transmission parameters corresponding to the sub-bandwidth set including the transmission bandwidth used by itself. In the middle, the minimum value is selected to calculate the maximum transmit power that can be used when multiplexing transmission. For example, as shown in FIG. 6, the transmission bandwidth used by the multiplexed transmitting device is 40 MHz, which is greater than the sub-bandwidth of 20 MHz, and the multiplexed transmitting device should calculate the minimum value of the spatial multiplexing transmission parameters corresponding to the b0 to b7 bits to calculate itself. The maximum transmit power that can be used.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information is used to indicate a maximum transmission that the multiplexing sending device can use when transmitting data using all or part of the time-frequency resources of the primary link. power.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the determining parameter, where the determining parameter is the maximum interference power allowed when the primary access point receives the uplink data frame sent by the original station.
  • the primary station sends an uplink data frame according to the scheduling of the primary access point, and carries the spatial multiplexing transmission signaling in the sent uplink data frame, so that the multiplexed transmitting device of the spatial multiplexing link acquires the uplink.
  • data transmission processing based on the spatial multiplexing link is performed according to the spatial multiplexing transmission signaling to reduce interference to the primary link.
  • the method for transmitting data in the embodiment of the present invention can reduce mutual interference when transmitting data on the primary link and the spatial multiplexing link, and improve transmission quality.
  • FIG. 7 shows a schematic flowchart 300 of a method for transmitting data according to an embodiment of the present invention, which is described from the perspective of a multiplex transmitting device. As shown in FIG. 7, the method 300 includes:
  • the multiplexing transmitting device receives the first spatial multiplexing transmission signaling, where the first spatial multiplexing transmission Signaling a multiplexing transmitting device for the spatial multiplexing link to determine whether to transmit data using all or part of the time-frequency resources of the primary link;
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the first spatial multiplexing transmission signaling corresponds to a determination result obtained by the primary access point according to the first determination parameter, and the determining process is used to determine whether to permit multiplexing of the spatial multiplexing link.
  • the transmitting device transmits data using all or part of the time-frequency resources of the original link.
  • the multiplexed transmitting device receives the first spatial multiplexed transmission parameter, for example, may be obtained from a trigger frame sent by the original access point to the original site, or may be sent from the original site to the original access. Obtained in the upstream data frame of the point. Then, the multiplex transmitting device can perform data transmission processing based on the spatial multiplexing link according to the first spatial multiplexing transmission signaling. For example, the multiplexed transmitting device can learn from the first spatial multiplexed transmission signaling that the multiplexed transmission on the spatial multiplexed link is prohibited while the primary link data is transmitted, or the multiplexed transmitting device is multiplexed from the space. It is known in the transmission signaling that the original access point allows the multiplex transmitting device to transmit data using all or part of the time-frequency resources of the original link.
  • the method for transmitting data in the embodiment of the present invention can reduce mutual interference when transmitting data on the primary link and the spatial multiplexing link, and improve transmission quality.
  • the first spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for prohibiting the multiplexing transmitting device from using all or part of the time-frequency domain resource transmission data of the primary transmission link, and
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including:
  • the multiplexing transmitting device discards all or part of the time-frequency resource transmission data using the primary link according to the second spatial multiplexing transmission signaling.
  • the first spatial multiplexing transmission signaling includes third spatial multiplexing transmission signaling for allowing the multiplexing transmitting device to transmit data using all or part of the time-frequency domain resource of the primary link, and
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including:
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the third spatial multiplexing transmission signaling.
  • the multiplex transmitting device can transmit the signaling according to the spatial multiplexing.
  • the spatial multiplexing transmission parameter transmission data indicated in the medium may also be combined with other information of the link to choose to give up the opportunity of the concurrent transmission.
  • the spatial multiplexing transmission signaling has N, and the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each spatial multiplexing transmission signaling is used to determine the location. Whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2;
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the first spatial multiplexing transmission signaling, including:
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the N first spatial multiplexing transmission signalings.
  • the multiplexed transmitting device receives the trigger frame or the uplink data frame that carries the spatial multiplexing transmission signaling, and determines whether it is the transmission frame of the BSS. If not, the corresponding data processing is performed according to the spatial multiplexing transmission signaling carried in the trigger frame or the uplink data frame. For example, if the multiplexed transmitting device receives the signaling carrying the spatial multiplexing transmission parameter, the maximum transmit power allowed for the spatial multiplexing transmission may be calculated according to the spatial multiplexing transmission parameter. In the formula, It is the maximum allowable interference power determined according to the spatial multiplexing transmission parameter corresponding to its own transmission bandwidth.
  • the spatial multiplexing transmission parameters corresponding to the b4 to b7 bits are selected to obtain the corresponding maximum interference. power.
  • the multiplexed transmitting device performs an idle channel assessment (English: Clear Channel Assessment, CSA for short) before transmitting the data. If the CCA test passes, it can be used after the random backoff is over. The transmit power is sent to the data packet.
  • the method for detecting the above CCA may be an existing standard, for example, the CCA detection method in 11n, 11ac, or other new detection methods, which are not limited in the present invention.
  • the multiplexed transmitting device may set the CCA threshold according to the RSSI (Received Signal Strength Indication Received Signal Strength Indication) value of the received primary link signal.
  • the multiplexed sending device sets the RSSI value corresponding to the SGI field end time or the S seconds before the end time in the received uplink data frame of the original link to a CCA detection threshold.
  • the multiplexed transmitting device receives two spatial multiplexing transmission signaling, wherein the first 20 MHz sub-transmission bandwidth prohibits concurrent transmission, and the second 20 MHz sub-transmission bandwidth allows concurrent transmission, and then the multiplex transmission device The multiplex transmission can be performed on the second 20 MHz sub-transmission bandwidth of the original link.
  • the bandwidth of the multiplexed transmission device for multiplexing transmission is 40 MHz, and the transmission of the original link
  • the transmission bandwidth is divided into sub-bandwidths of 20 MHz, 10 MHz, and 10 MHz, and the multiplexed transmitting device should select the minimum value from the maximum interference power corresponding to the basic sub-band bandwidth set of 20 MHz, 10 MHz, and 10 MHz to calculate the concurrent transmission.
  • Maximum transmit power is the maximum transmit power.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the first determining parameter, where the first determining parameter is determined by the primary access point according to the uplink transmission parameter used by the primary site, and is uplinked.
  • Transmission parameters include transmit power, modulation and coding strategy MCS, and transmission bandwidth.
  • the first determination parameter herein may also be considered as a relevant parameter according to the original access point for performing the determination process, for example, may be the transmission power of the original station, the modulation and coding strategy MCS, and the transmission bandwidth. Is the received power of the MCS and the original access point.
  • the spatial multiplexing transmission signaling includes a power indication.
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the first spatial multiplexing transmission signaling, including:
  • the multiplex transmitting device determines, according to the power indication information, a maximum transmit power that can be used when transmitting data using all or part of the time-frequency resources of the primary link, and transmits the transmit power at a transmit power not higher than the maximum transmit power. data.
  • the first spatial multiplexing transmission signaling received by the multiplexing transmitting device may carry power indication information, where power is used.
  • the indication information may be the maximum interference power allowed when the primary access point receives the uplink data frame.
  • the multiplexed transmitting device can determine the maximum transmit power that can be used when multiplexing the transmission according to the maximum interference power, so as to avoid mutual interference when the primary link and the spatial multiplexing link transmit data.
  • the multiplexed transmitting device and the original access point belong to different basic service sets BSS.
  • the multiplexed transmitting device and the original access point may belong to different BSSs, and may also belong to the same BSS.
  • the foregoing description is based on the multiplexed transmitting device.
  • the description of the starting point is the case where the original access point belongs to a different BSS.
  • the multiplexed transmitting device and the original access point belong to the same BSS will be described in detail.
  • the multiplexed transmitting device and the original access point belong to the same basic service set BSS, and the spatial multiplexed link is used for site and site D2D transmission in the BSS.
  • the primary link is equivalent to the uplink multi-user UL MU transmission in the BSS, and the spatial multiplexing link is equivalent to the same
  • the sites and sites in the BSS are transmitted (English: Direct STA-to-STA, D2D for short).
  • the multiplexed transmitting device may also be referred to as a D2D transmitting station, and the SR transmission is a D2D transmission.
  • the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling, including:
  • the multiplex transmission device carries D2D transmission indication information in the data frame of the D2D transmission, and the D2D transmission indication information is used to prohibit the D2D station in the BSS from using the D2D transmission opportunity except the multiplex transmission device.
  • the D2D transmitting station receives the trigger frame or the uplink data frame that carries the spatial multiplexing transmission signaling, and determines whether it is the transmission frame of the BSS. If yes, the maximum transmit power allowed for D2D transmission is calculated according to the spatial multiplexing transmission signaling carried in the trigger frame or the uplink data frame; if not, the method may be performed according to an existing standard process, or may be implemented according to the foregoing The process of the example is executed, and the invention is not limited.
  • the D2D transmitting station may use 1-bit indication information in the signaling A field in the preamble of the transmission frame to indicate whether the current transmission is a D2D transmission.
  • “1” is represented as a D2D data frame
  • "0" is represented as a normal data frame.
  • other D2D transmitting stations in the BSS receive the trigger frame of the BSS, calculate the maximum transmit power allowed by the D2D transmission according to the foregoing procedure, and then perform CCA detection. If the CSA detection is passed, and the data frame of the BSS is received in the process of performing the random backoff, if it is determined that the 1-bit indication information in the data frame is "1", the multiplexing transmission opportunity is abandoned until the The D2D data frame transmission ends; if it is judged that the 1-bit indication information is "0", the multiplexing process is continued.
  • the multiplexing transmitting device determines, according to the first determining parameter, a maximum transmit power that can be used when transmitting data using all or part of the time-frequency resources of the primary link, including:
  • the communication system further includes a third-party device, the method further includes:
  • the multiplexing transmitting device generates fourth spatial multiplexing transmission signaling
  • the multiplexing transmitting device carries the fourth spatial multiplexing transmission signaling in the data frame of the data transmission, so that the third-party device abandons the use of the multiplexing transmission when receiving the fourth spatial multiplexing transmission signaling. chance.
  • the multiplexed transmitting device does not want to have the third-party device use the multiplexed transmission opportunity. Therefore, the multiplexed transmitting device carries the fourth spatial multiplexed transmission signaling in the transmitted data frame. In this way, if there is a third-party device in the communication system, and the third-party device is relatively close to the original access point and the multiplexed transmitting device, the third-party device may hear the space of the original access point. The multiplexed transmission signaling is heard, and the fourth spatial multiplexed transmission signaling sent by the multiplexed transmitting device is heard.
  • the fourth spatial multiplexing transmission signaling prohibits the simultaneous restoration of the third-party device and the multiplexed transmitting device. With transmission, third-party devices cannot use this multiplexed transmission opportunity.
  • the method for transmitting data according to the embodiment of the present invention is a method for transmitting data according to an embodiment of the present invention, where the primary link is an uplink, and the primary link is a downlink. Similar to the method when the original link is uplink, for the sake of brevity, it will be briefly described below.
  • the primary access point performs a determination process according to the historical information of the primary link or the transmission parameter used by the primary access point when transmitting the downlink frame, and determines whether multiplexing transmission of the multiplexed transmitting device is allowed.
  • the primary access point performs a determination process according to the MCS used when transmitting the downlink data frame. If the MCS is greater than or equal to 5, the multiplexed transmission of the multiplexed transmitting device is allowed. If the MCS is less than 5, the multiplexing of the multiplexed transmitting device is prohibited. Use transmission.
  • the index of the foregoing MCS is only described by taking 5 as an example, and the embodiment of the present invention is not limited thereto.
  • the index of the MCS may also be compared with a predetermined threshold.
  • the primary access point generates spatial multiplexing transmission signaling according to the determination result of the determination process, and carries the spatial multiplexing transmission signaling in the downlink frame for transmission, so that the multiplexing transmission device is from the lower
  • the spatial multiplexing transmission signaling is obtained in a row frame, and data transmission processing based on the spatial multiplexing link is performed according to the spatial multiplexing transmission signaling.
  • the process of generating the spatial multiplexing transmission signaling is similar to that when the primary link is an uplink. Therefore, the spatial multiplexing transmission signaling may be one or multiple.
  • the multiplexed transmitting device of the spatial multiplexing link when the primary link is the downlink, the multiplexed transmitting device can also be sent from the original access point to the original transmitting station.
  • the spatial multiplexing transmission signaling is obtained in the downlink frame.
  • a method for transmitting data according to an embodiment of the present invention when the primary link is an uplink, that is, for the multiplexed transmitting device of the spatial multiplexing link, acquiring spatial multiplexing transmission signaling includes at least the following three
  • the method is obtained from the trigger frame sent by the original access point to the original sending station, or obtained from the uplink data frame sent by the original sending station to the original access point, or sent from the original access point. Obtained in the downlink data frame of the original site.
  • the multiplexed transmitting device obtains the spatial multiplexing transmission parameter from the downlink frame sent by the primary access point, and then multiplexes and transmits according to the spatial multiplexing transmission parameter. If the device transmits data using all or part of the time-frequency resources of the original link, the multiplexed transmitting device may also generate spatial multiplexing transmission signaling (or fourth spatial multiplexing transmission signaling) of the spatial multiplexing link, The spatial multiplexing transmission signaling is used to prohibit third-party devices in the communication system from giving up the opportunity to use the multiplexing transmission when receiving the spatial multiplexing transmission signaling.
  • the fourth spatial multiplexed transmission signaling may be directly generated without any determination processing.
  • the multiplex transmission device may also generate the fourth spatial multiplex transmission signaling by the determination result of the determination process. The method for determining the processing and the process for generating the fourth spatial multiplexing transmission signaling are similar to the case where the primary link is an uplink, and details are not described herein again.
  • the multiplexed transmitting device sets the RSSI value corresponding to the end time of the SIGA field or the S seconds before the end time in the received downlink frame of the original link to CCA detection threshold.
  • the multiplex transmitting device performs spatial multiplexing link-based data transmission processing by acquiring spatial multiplexing transmission signaling of the primary link, so that the spatial multiplexing link Does not cause interference to the data transmission of the original link, or the interference caused by the original link is allowed to transmit data. Therefore, interference between the primary link and the spatial multiplexing link can be reduced, and the transmission quality can be improved.
  • FIG. 8 shows a schematic block diagram of an apparatus 400 for transmitting data in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the determining module 410 is configured to perform, according to the determining parameter, a determining process, where the determining process is used to determine whether the multiplex transmitting device of the spatial multiplexing link is allowed to use all or part of the time-frequency resource transmission of the primary link. data;
  • a generating module 420 configured to generate spatial multiplexing transmission signaling according to the determination result obtained by the determining module performing the determining process
  • the sending module 430 is configured to send the spatial multiplexing transmission signaling generated by the generating module, so that the multiplexing transmitting device performs data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the generating module is further configured to generate first spatial multiplexing transmission signaling for instructing the multiplexing transmitting device to use all or part of the time-frequency resource transmission data of the primary link, or
  • the determining module is further configured to perform a determining process according to the N determining parameters, where the N determining parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each determining parameter is used for determining Whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2;
  • the generating module is further configured to generate N spatial multiplexing transmission signalings according to the determination result of the determining process, where the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths.
  • the sending module is further configured to send the spatial multiplexing transmission signaling to the original sending station, so that the original sending station carries the spatial multiplexing transmission signaling when sending an uplink data frame. So that the multiplexed transmitting device acquires the spatial multiplexed transmission signaling from the uplink data frame.
  • the generating module is further configured to: when the result of the determining process is to allow the multiplexing sending device to use all or part of the time-frequency resource to transmit data by using the primary link, generating a space including power indication information Multiplexing transmission signaling, the power indication information being used by the multiplexing transmitting device to determine a maximum transmit power that can be used when all or part of the time-frequency resource transmission data of the primary link is used.
  • the determining module is configured to determine, according to a transmission parameter used by the primary site, the determination parameter, where the determination parameter includes a transmission power, a modulation and coding policy, and a transmission bandwidth, before the determining module performs the determination process.
  • the determining module is further configured to determine a maximum interference power allowed when the apparatus receives the uplink data frame sent by the originating station.
  • the communication system includes at least two original sites, and the determining module is further configured to:
  • the maximum interference power is determined based on the minimum value.
  • the determining module is further configured to
  • the isd STAk indicates that the device receives the maximum interference power density allowed when the station k sends the uplink data frame, Indicates the transmission power when the station k sends an uplink data frame. Indicates the minimum signal to interference plus noise ratio when the device receives the uplink data frame sent by the station k.
  • the BW STAk indicates the transmission bandwidth used by the station k to transmit the uplink data frame.
  • the determining module is further used to
  • I max_level represents the maximum interference power
  • BW total represents a transmission bandwidth of the primary link
  • Redundancy represents a redundancy reserved by the system
  • BW m denotes the m-th bandwidth of the N sub transmission bandwidth, N ⁇ 2,1 ⁇ m ⁇ N.
  • the sending module is further configured to send a trigger frame to the original sending station, where the signaling A field or the load information of the trigger frame carries the spatial multiplexing transmission signaling.
  • the device 400 for transmitting data according to an embodiment of the present invention may correspond to the transmission of the embodiment of the present invention.
  • the original access point in the method of the data, and the above-mentioned operations and/or functions of the respective modules in the device 400 are respectively omitted in order to implement the corresponding processes of the method in FIG. 2 for brevity.
  • the apparatus for transmitting data determines whether to allow the multiplex transmitting device of the spatial multiplexing link to transmit data using all or part of the time-frequency resources of the primary link by performing a determining process according to the determining parameter, and Spatial multiplex transmission signaling corresponding to the determination result is generated. Finally, the apparatus sends the spatial multiplexing transmission signaling, so that after the multiplexing transmitting device acquires the spatial multiplexing transmission signaling, performing data transmission processing based on the spatial multiplexing link. Therefore, the method and apparatus for transmitting data in the embodiments of the present invention can reduce mutual interference when transmitting data on the primary link and the spatial multiplexing link, and improve transmission quality.
  • FIG. 9 shows a schematic block diagram of an apparatus 500 for transmitting data according to an embodiment of the present invention.
  • the apparatus 500 includes:
  • the receiving module 510 is configured to receive spatial multiplexing transmission signaling sent by the primary access point, where the spatial multiplexing transmission signaling corresponds to a determination result obtained by the primary access point according to the determination parameter, and the determination is performed. Processing, by the multiplex transmitting device, for determining whether the spatial multiplexing link is allowed to transmit data using all or part of the time-frequency resources of the primary link;
  • the sending module 520 is configured to send an uplink data frame to the original access point, where the uplink data frame carries the spatial multiplexing transmission signaling, so that the multiplexed transmitting device of the spatial multiplexing link is in the uplink data frame. Acquiring the spatial multiplexing transmission signaling, and performing data transmission processing based on the spatial multiplexing link according to the spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes first spatial multiplexing transmission signaling for instructing the multiplexing transmitting device to use all or part of the time-frequency resource transmission data of the primary transmission link, or
  • the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is allowed to transmit data using all or part of the time-frequency resources of the primary transmission link.
  • the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths of the primary transmission link, and each spatial multiplexing transmission signaling is used. Determining whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; and the transmitting module is further used for
  • the signaling A field of the uplink data frame of each of the N sub-transmission bandwidths carries the N spatial multiplexing transmission signaling, N ⁇ 2; or
  • the signaling A field of the uplink data frame of the mth sub-transmission bandwidth of the N sub-transmission bandwidths carries the mth spatial multiplexing transmission signaling corresponding to the m-th sub-transmission bandwidth, m ⁇ 1.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information is used to indicate that the multiplexing transmitting device can use the maximum when all or part of the time-frequency resources of the primary transmission link are used to transmit data. Transmit power.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the determining parameter, where the determining parameter is the maximum interference power allowed when the primary access point receives the uplink data frame sent by the device.
  • the device 500 for transmitting data according to the embodiment of the present invention may correspond to the original site in the method for transmitting data according to the embodiment of the present invention, and the foregoing operations and/or functions of the modules in the device 500 are respectively implemented to implement FIG. 5.
  • the corresponding processes of each method are not repeated here for the sake of brevity.
  • the device 500 for transmitting data in the embodiment of the present invention can enable the multiplex transmitting device to obtain the spatial complex from the uplink data frame by carrying the spatial multiplexing transmission signaling in the uplink data frame sent to the original access point.
  • the data transmission processing based on the spatial multiplexing link is performed by using transmission signaling. Therefore, mutual interference when transmitting data between the primary link and the spatial multiplexing link can be reduced, and the transmission quality is improved.
  • FIG. 10 shows a schematic block diagram of an apparatus 600 for transmitting data according to an embodiment of the present invention. As shown in FIG. 10, the apparatus 600 includes:
  • the receiving module 610 is configured to receive first spatial multiplexing transmission signaling, where the first spatial multiplexing transmission signaling corresponds to a determination result obtained by the primary access point according to the first determination parameter, and the determining process is used for Determining whether the device that allows the spatial multiplexing link transmits data using all or part of the time-frequency resources of the primary link;
  • the processing module 620 is configured to perform data transmission processing based on the spatial multiplexing link according to the first spatial multiplexing transmission signaling.
  • the processing module when the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for prohibiting the apparatus to use all or part of the time-frequency domain resource transmission data of the primary link, the processing module further uses And transmitting data according to all or part of the time-frequency resources of the primary link according to the second spatial multiplexing transmission signaling.
  • the processing module when the spatial multiplexing transmission signaling includes third spatial multiplexing transmission signaling for allowing the apparatus to use all or part of the time-frequency domain resource transmission data of the primary link, the processing module further uses Data transmission processing based on the spatial multiplexing link is performed according to the third spatial multiplexing transmission signaling.
  • the first spatial multiplexing transmission signaling has N, and the N first spatial multiplexing transmissions The signaling is in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each spatial multiplexing transmission signaling is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the device, N ⁇ 2;
  • the processing module is further configured to perform data transmission processing based on the spatial multiplexing link according to the N spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the first determining parameter, where the first determining parameter is determined by the primary access point according to the transmission parameter used by the primary site, and the transmission is performed.
  • Parameters include transmit power, modulation and coding strategy MCS, and transmission bandwidth.
  • the device 600 further includes:
  • a determining module configured to determine, according to the first determining parameter, when the spatial multiplexing transmission signaling includes the first determining parameter, when the data is transmitted using all or part of the time-frequency resources of the primary link Maximum transmit power;
  • the apparatus also includes a transmission module that is further configured to transmit data at a transmission power no higher than the maximum transmission power.
  • the device belongs to a different basic service set BSS from the original access point.
  • the device belongs to the same basic service set BSS as the original access point, and the spatial multiplexing link is used for site and site D2D transmission in the BSS.
  • the processing module is further configured to carry D2D transmission indication information in the data frame of the D2D transmission, where the D2D transmission indication information is used to prohibit the D2D station in the BSS from using the D2D transmission opportunity.
  • the first determining parameter is a maximum interference power allowed when the original access point receives the uplink data frame sent by the original sending station.
  • the determining module is further configured to Determine the maximum transmit power
  • L SR represents the transmission loss between the device and the primary access point.
  • the communication system further includes a third-party device, the device 600 further includes a generating module, where the generating module is configured to generate fourth spatial multiplexing transmission signaling;
  • the processing module is further configured to carry the fourth spatial multiplexing transmission signaling in the data frame of the data transmission, so that the third-party device relinquishes the multiplexing when receiving the fourth spatial multiplexing transmission signaling Transmission opportunity.
  • the device 600 for transmitting data may correspond to the transmission in the embodiment of the present invention.
  • the above-mentioned operations and/or functions of the modules in the device 600 are used to implement the corresponding processes of the method in FIG. 7, respectively, and are not described herein again for brevity.
  • the apparatus 600 for transmitting data according to the embodiment of the present invention can receive the spatial multiplexing transmission signaling according to the spatial multiplexing transmission transmission signaling by receiving the spatial multiplexing transmission signaling sent by the original access point or the original sending station. Data transfer processing. Therefore, mutual interference when transmitting data between the primary link and the spatial multiplexing link can be reduced, and the transmission quality is improved.
  • FIG. 11 shows an apparatus 700 for transmitting data according to an embodiment of the present invention. As shown in FIG. 11, the apparatus 700 includes:
  • processor 720 connected to the bus 710;
  • a memory 730 connected to the bus 710;
  • transceiver 740 connected to the bus 710;
  • the processor 720 calls the program stored in the memory 730 through the bus 710, and performs whether to allow the multiplex transmitting device of the spatial multiplexing link to use all or part of the time-frequency resources of the original link according to the determining parameter.
  • the determination process of the transmission data is performed, and spatial multiplexing transmission signaling is generated according to the result of the determination process, and the spatial multiplexing transmission signaling is transmitted through the transceiver 740.
  • the spatial multiplexing transmission signaling includes first spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is prohibited from using all or part of the time-frequency resource transmission data of the primary link, or
  • the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is allowed to transmit data using all or part of the time-frequency resources of the primary link.
  • the processor 720 is specifically configured to perform a determining process according to the N determining parameters, where the N determining parameters are in one-to-one correspondence with the N sub-transmission bandwidths of the primary link, and each determining parameter is used to determine the corresponding Whether the sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; and the processor 720 generates N spatial multiplexing transmission signaling according to the determination result of the determination processing, the N spatial multiplexing transmission signaling One-to-one correspondence with the N sub-transmission bandwidths.
  • the transceiver 740 is configured to send the spatial multiplexing transmission signaling to the original sending station, so that the original transmitting station carries the spatial multiplexing transmission signaling when sending an uplink data frame, so that the The multiplexed transmitting device acquires the spatial multiplexed transmission signaling from the uplink data frame.
  • the spatial multiplexing transmission signaling includes power indication information, where the power is The indication information is used to indicate that the multiplex transmitting device is using the entire original link.
  • the maximum transmit power that can be used when part or part of the time-frequency resource transmits data.
  • the processor 720 is specifically configured to determine, according to a transmission parameter used by the primary site, the determination parameter, where the transmission parameter includes a transmission power, a modulation and coding policy, and a transmission bandwidth, before performing the determination process according to the determination parameter.
  • the determining parameter is a maximum interference power allowed when the device 700 receives the uplink data frame sent by the original station.
  • the processor 720 is specifically configured to:
  • the maximum interference power is determined based on the minimum value.
  • the processor 720 is specifically configured according to a formula Determining a maximum interference power density allowed when receiving an uplink data frame sent by the station k in the at least two originating stations, where isd STAk indicates that the device receives the maximum interference power density allowed when the station k sends the uplink data frame, Indicates the transmission power when the station k sends an uplink data frame. Indicates the minimum signal to interference plus noise ratio when the device receives the uplink data frame sent by the station k.
  • the BW STAk indicates the transmission bandwidth used by the station k to transmit the uplink data frame.
  • the processor 720 is specifically configured to Determining the maximum interference power over the transmission bandwidth of the primary link.
  • I max_level represents the maximum interference power
  • BW total represents the transmission bandwidth of the primary link
  • Redundancy represents the redundancy reserved by the system.
  • BW m represents the mth sub-bandwidth of the N sub-transmission bandwidths
  • N is a positive integer greater than or equal to 2
  • m is a positive integer greater than or equal to 1 and less than N.
  • the transceiver 740 is configured to send a trigger frame to the original sending station, where the signaling A field or the load information of the trigger frame carries the spatial multiplexing transmission signaling.
  • the device 700 for transmitting data according to the embodiment of the present invention may correspond to the primary access point in the method for transmitting data according to the embodiment of the present invention, and the modules in the device 700 for transmitting data and the other operations described above and/or For the sake of brevity, the functions of the method 100 in FIG. 2 are not described here.
  • FIG. 12 shows an apparatus 800 for transmitting data according to an embodiment of the present invention. As shown in FIG. 12, the apparatus 800 includes:
  • processor 820 connected to the bus 810;
  • a memory 830 connected to the bus 810;
  • transceiver 840 connected to the bus 810;
  • the processor 820 calls the program stored in the memory 830 through the bus 810, and receives the spatial multiplexing transmission signaling sent by the original access point through the transceiver 840, and the spatial multiplexing transmission signaling and the
  • the primary access point corresponds to a determination result obtained by performing a determination process for determining whether to allow the multiplex transmitting device of the spatial multiplexing link to use all or part of the time-frequency of the primary link.
  • the spatial multiplexing transmission signaling includes first spatial multiplexing transmission signaling for instructing the multiplexing transmitting device to use all or part of the time-frequency resource transmission data of the primary transmission link, or
  • the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for indicating that the multiplexing transmitting device is allowed to transmit data using all or part of the time-frequency resources of the primary transmission link.
  • the N spatial multiplexing transmission signalings are in one-to-one correspondence with the N sub-transmission bandwidths of the primary transmission link, and each spatial multiplexing transmission signaling is used. And determining whether the corresponding sub-transmission bandwidth is allowed to be used by the multiplexing transmitting device, N ⁇ 2; the transceiver 840 is specifically configured to:
  • the signaling A field of the uplink data frame of each of the N sub-transmission bandwidths carries the N spatial multiplexing transmission signaling, N ⁇ 2; or
  • the signaling A field of the uplink data frame of the mth sub-transmission bandwidth of the N sub-transmission bandwidths carries the mth spatial multiplexing transmission signaling corresponding to the m-th sub-transmission bandwidth, m ⁇ 1.
  • the spatial multiplexing transmission signaling includes power indication information, where the power indication information is used. Indicates the maximum transmit power that the multiplexed transmitting device can use when transmitting data using all or part of the time-frequency resources of the primary link.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the determining parameter, where the determining parameter is the maximum interference power allowed when the primary access point receives the uplink data frame sent by the device 800.
  • the device 800 for transmitting data according to an embodiment of the present invention may correspond to a primary site in a method of transmitting data according to an embodiment of the present invention, and each module in the device 800 for transmitting data and the other operations and/or functions described above In order to implement the corresponding process of the method 200 in FIG. 5, for brevity, no further details are provided herein.
  • FIG. 13 shows an apparatus 900 for transmitting data according to an embodiment of the present invention.
  • the apparatus 900 includes:
  • processor 920 connected to the bus 910;
  • a memory 930 connected to the bus 910;
  • transceiver 940 connected to the bus 910;
  • the processor 920 calls the program stored in the memory 930 through the bus 910, and receives the first spatial multiplexing transmission signaling through the transceiver 940, and the spatial multiplexing transmission signaling and the original access point.
  • the determination processing is used to determine whether the device 900 of the spatial multiplexing link is allowed to use all or part of the time-frequency resource transmission data of the original transmission link;
  • the processor 920 calls the program stored in the memory 930 through the bus 910, and performs data transmission processing based on the spatial multiplexing link according to the first spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes second spatial multiplexing transmission signaling for prohibiting the device 900 from using all or part of the time-frequency domain resource transmission data of the primary link, and the processor 920 is specifically configured.
  • the second spatial multiplexing transmission signaling is used to abandon the use of all or part of the time-frequency resources of the primary link to transmit data.
  • the spatial multiplexing transmission signaling includes third spatial multiplexing transmission signaling for allowing the device 900 to transmit data using all or part of the time-frequency domain resource of the primary link, and the The processor 920 is specifically configured to perform the third spatial multiplexing transmission signaling, and perform data transmission processing based on the spatial multiplexing link.
  • N spatial multiplexing transmission signaling there are N spatial multiplexing transmission signaling, and the N spatial multiplexing transmission signaling and the The N sub-transmission bandwidths of the primary link are in one-to-one correspondence, and each spatial multiplexing transmission signaling is used to determine whether the corresponding sub-transmission bandwidth is allowed to be used by the device 900, N ⁇ 2; and the processor 920 is specifically used for Data transmission processing based on the spatial multiplexing link is performed according to the N first spatial multiplexing transmission signaling.
  • the spatial multiplexing transmission signaling includes power indication information, as well as
  • the processor 920 is specifically configured to determine, according to the power indication information, a maximum transmit power that can be used when transmitting data using all or part of the time-frequency resources of the primary link, and the transceiver 940 is not higher than the maximum.
  • the transmit power of the transmit power transmits data.
  • the spatial multiplexing transmission signaling is determined by the primary access point according to the first determining parameter, where the first determining parameter is determined by the primary access point according to the transmission parameter used by the primary site, Transmission parameters include transmit power, modulation and coding strategy MCS, and transmission bandwidth.
  • the device 900 and the original access point belong to different basic service sets BSS.
  • the device 900 and the original access point belong to the same basic service set BSS, and the spatial multiplexing link is used for site and site D2D transmission in the BSS.
  • the transceiver 940 is configured to carry D2D transmission indication information in the data frame of the D2D transmission, where the D2D transmission indication information is used to prohibit the D2D station in the BSS from using the D2D transmission except the device 900. opportunity.
  • the first determining parameter is a maximum interference power allowed when the original access point receives the uplink data frame sent by the original sending station.
  • the processor 920 is specifically configured according to a formula Determining the maximum transmit power, wherein Indicates the maximum transmit power, Indicates the maximum interference power, and L SR represents the transmission loss between the device and the original access point.
  • the processor 920 is specifically configured to generate fourth spatial multiplexing transmission signaling
  • the transceiver 940 is specifically configured to carry the fourth spatial multiplexing transmission signaling in the data frame of the data transmission, so that the third-party device abandons the use of the multiplexing when receiving the fourth spatial multiplexing transmission signaling. Transmission opportunity.
  • the processing unit may also be referred to as a CPU.
  • Memory can include read-only memory
  • the memory and random access memory provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the device for transmitting data may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting data are coupled together by a bus system, wherein the bus system includes a data bus. In addition, it includes a power bus, a control bus, and a status signal bus.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the above method in combination with the hardware thereof.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 900 for transmitting data according to an embodiment of the present invention may correspond to a multiplex transmitting device in a method of transmitting data according to an embodiment of the present invention, and each module in the device 900 for transmitting data and the above other operations and/or The functions are respectively implemented in order to implement the corresponding processes of the method 300 in FIG. 7, and are not described herein for brevity.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be The implementation process of the embodiments of the present invention constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method in accordance with various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本发明公开了一种传输数据的方法和装置。该方法包括:该原发接入点根据判定参数,进行判定处理,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据;该原发接入点根据该判定处理的判定结果,生成空间复用传输信令;该原发接入点发送该空间复用传输信令,以便于该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。本发明实施例的传输数据的方法和装置,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。

Description

传输数据的方法和装置
本申请要求于2015年10月20日提交中国专利局、申请号为201510680806.4、发明名称为“传输数据的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及传输数据的方法和装置。
背景技术
在某些网络,例如,无线局域网(Wireless Local Area Network,简称:WLAN)中,为了避免传输数据时发生碰撞而造成干扰,采用载波监听多址接入/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance,简称:CSMA/CA)的信道接入机制。根据CSMA/CA机制,所有的站点(英文:Station,简称:STA)在完成一个帧的发送后,必须等待一段很短的时间才能发送下一帧,这段时间叫做帧间间隔。帧间间隔的长短取决于站点要发送的帧的类型,高优先级帧的帧间间隔较短,,低优先级帧的帧间间隔较长,因此,高优先级帧的发送等待时间较短,低优先级帧的等待时间较长,从而,高优先级帧较低优先级帧相比,可以优先获得发送权,即,如果低优先级帧尚未发送而高优先级帧已开始发送,即,信道状态处于忙状态,则禁止低优先级帧的发送,并等待高优先级帧发送完毕,即,信道状态处于空状态,允许低优先级帧的发送,使得在某一个时段内,信道内仅有一个STA在发送,以避免碰撞的发生。
随着通信技术的发展,为了提高密集场景下的系统吞吐量,引入了空间复用(英文:Spatial Reuse,简称:SR)概念,在一定的场景或者条件下允许两个或者两个以上的站点使用相同的时频资源(即,在同一时段内使用同一信道)进行传输。例如,如图1所示,STA1和STA2向接入点(英文:Access Point,简称:AP)AP1发送上行数据(以下,将AP1与STA1、STA2之间的链路统称为原发链路)的同时,STA5使用原发链路的全部或部分时频资源与接入点AP2进行数据传输(以下,将AP2与STA5之间的链路称为空 间复用链路)。由于,空间复用链路传输数据时占用的是原发链路的全部或部分时频资源,因此,无法确保在某一时段内,信道内仅有一个STA在发送数据,因而,引入空间复用会增大链路之间的相互干扰,影响传输质量。
因此,需要一种有效的干扰控制机制,以降低原发链路和空间复用链路之间的干扰,提高传输质量。
发明内容
本发明提供了一种传输数据的方法和装置,以降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
第一方面,提供了一种传输数据的方法,该方法应用于包括原发链路和空间复用链路传输数据的通信系统,该原发链路设置在原发接入点和原发站点之间,该方法包括:该原发接入点根据判定参数,进行判定处理,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的部分或全部时频资源传输数据;该原发接入点根据该判定处理的判定结果,生成空间复用传输信令;该原发接入点发送该空间复用传输信令,以便于该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第一方面,在第一方面的第一种实现方式中,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路全部或部分时频资源的第一空间复用传输信令,或该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路全部或部分时频资源的第二空间复用传输信令。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该原发接入点根据该判定参数,进行判定处理,包括:该原发接入点根据N个判定参数,进行判定处理,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;该原发接入点根据该判定处理的判定结果,生成空间复用传输信令,包括:该原发接入点根据该判定处理的判定结果,生成N个空间复用传输信令,该N个空间复用传输信令与该N个子传输带宽一一对应。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该原发接入点根据该判定参数,进行判定处理,包括:该原发接入点根据N个 判定参数,进行判定处理,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;该原发接入点根据该判定处理的判定结果,生成空间复用传输信令,包括:该原发接入点根据该判定处理的判定结果,生成N个空间复用传输信令,该N个空间复用传输信令与该N个子传输带宽一一对应。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该原发接入点发送该空间复用传输信令,包括:该原发接入点将该空间复用传输信令发送给该原发站点,以便于该原发站点在发送上行数据帧时携带该空间复用传输信令,以使得该复用发送设备从该上行数据帧中获取该空间复用传输信令。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,当该判定处理的结果为允许该复用发送设备使用该原发链路全部或部分时频资源时,该空间复用传输信令包括功率指示信息,其中,该功率指示信息用于该复用发送设备确定在使用该原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,该原发接入点根据判定参数,进行判定处理之前,该方法还包括:该原发接入点根据该原发站点使用的传输参数,确定该判定参数,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,该判定参数为该原发接入点接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,该通信系统包括至少两个原发站点,该原发接入点根据该原发站点使用的传输参数,确定该最大干扰功率,包括:该原发接入点根据该至少两个原发站点中每一个站点使用的传输参数,确定接收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;该原发接入点确定该最大干扰功率密度中的最小值;该原发接入点根据该最小值确定该最大干扰功率。
结合第一方面及其上述实现方式,在第一方面的第九种实现方式中,该原发接入点根据该至少两个原发站点中每一个站点使用的传输参数,确定接 收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度,包括:
该原发接入点根据公式
Figure PCTCN2016084310-appb-000001
确定接收该至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,其中,isdSTAk表示该原发接入点接收该站点k发送上行数据帧时所允许的最大干扰功率密度,
Figure PCTCN2016084310-appb-000002
表示该站点k发送上行数据帧时的发送功率,
Figure PCTCN2016084310-appb-000003
表示该原发接入点接收该站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示该站点k发送上行数据帧时使用的传输带宽。
结合第一方面及其上述实现方式,在第一方面的第十种实现方式中,该原发接入点根据该最小值确定该最大干扰功率,包括:
根据公式
Figure PCTCN2016084310-appb-000004
确定该原发链路的传输带宽上的最大干扰功率;或
根据公式
Figure PCTCN2016084310-appb-000005
确定N个子传输带宽中第m个子带宽上的最大干扰功率,其中,Imax_level表示最大干扰功率,
Figure PCTCN2016084310-appb-000006
表示该原发接入点确定该最大干扰功率密度中的最小值,BWtotal表示该原发链路的传输带宽,Redundancy表示系统预留的冗余量,
Figure PCTCN2016084310-appb-000007
表示该第m个子带宽上的最大干扰功率,BWm表示该N个子传输带宽中的第m个子带宽,N≥2,1≤m≤N。
结合第一方面及其上述实现方式,在第一方面的第十一种实现方式中,该原发接入点将该空间复用传输信令发送给该原发站点,包括:该原发接入点发送触发帧,该触发帧的信令A字段或负载信息中携带该空间复用传输信令。
第二方面,提供了一种传输数据的方法,该方法应用于使原发链路和空间复用链路传输数据的通信系统,该原发链路设置在原发接入点和原发站点之间,该方法包括:该原发站点接收该原发接入点发送的空间复用传输信令,该空间复用传输信令用于该空间复用链路的复用发送设备确定是否使用该原发链路的全部或部分时频资源,进行基于该空间复用链路的数据传输处理;该原发站点向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令。
结合第二方面,在第二方面的第一种实现方式中,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路的全部或部分时频资源的第一空间复用传输信令,或该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路的全部或部分时频资源的第二空间复用传输信令。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该空间复用传输信令包括判定参数,该判定参数是该原发接入点根据该原发站点的传输参数确定的,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,该判定参数有N个,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;该原发站点向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令,包括:该原发站点在该N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带该N个判定参数,N≥2;或在该N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与该第m个子传输带宽对应的第m个判定参数,m≥1。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,该空间复用传输信令包括功率指示信息,该功率指示信息用于复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,该空间复用传输信令是该原发接入点根据判定参数确定的,该判定参数为该原发接入点接收原发站点发送的上行数据帧时所允许的最大干扰功率。
第三方面,提供了一种传输数据的方法,该方法应用于使原发链路和空间复用链路传输数据的通信系统,该原发链路设置在原发接入点和原发站点之间,该方法包括:复用发送设备接收第一空间复用传输信令,该第一空间复用传输信令用于该空间复用链路的复用发送设备确定是否使用该原发链路的全部或部分时频资源,进行基于该空间复用链路的数据传输处理;该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第三方面,在第三方面的第一种实现方式中,该空间复用传输信令 包括用于禁止该复用发送设备使用该原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令,以及该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:该复用发送设备根据该第二空间复用传输信令,放弃使用该原发链路的全部或部分时频资源传输数据。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,该空间复用传输信令包括用于允许该复用发送设备使用该原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令,以及复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:该复用发送设备根据该第三空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,该空间复用传输信令有N个,该N个空间复用传输信令是该原发接入点根据N个第一判定参数进行判定处理得到的,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:该复用发送设备根据该N个空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,当该判定处理的结果为允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据时,该空间复用传输信令包括功率指示信息,以及该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:该复用发送设备根据该功率指示信息,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,并以不高于该最大发射功率的发射功率传输数据。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,该空间复用传输信令是该原发接入点根据第一判定参数确定的,该第一判定参数是该原发接入点根据该原发站点使用的传输参数确定的,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,该 复用发送设备与该原发接入点属于不同的基本服务集BSS。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,该复用发送设备与该原发接入点属于同一个基本服务集BSS,该空间复用链路用于该BSS内的站点与站点D2D传输。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:该复用发送设备在该D2D传输的数据帧中携带D2D传输指示信息,该D2D传输指示信息用于禁止该BSS中除该复用发送设备之外的D2D站点使用此次D2D传输机会。
结合第三方面及其上述实现方式,在第三方面的第九种实现方式中,该第一判定参数为该原发接入点接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
结合第三方面及其上述实现方式,在第三方面的第十种实现方式中,该复用发送设备根据该第一判定参数,确定在使用原发链路的全部或部分频域资源传输数据时能够使用的最大发射功率,包括:根据公式
Figure PCTCN2016084310-appb-000008
确定该第一最大发射功率,其中,
Figure PCTCN2016084310-appb-000009
表示该最大发射功率,
Figure PCTCN2016084310-appb-000010
表示该最大干扰功率,LSR表示该复用发送设备到该原发接入点之间的传输损耗。
结合第三方面及其上述实现方式,在第三方面的第十一种实现方式中,该通信系统还包括第三方设备,该方法还包括:该复用发送设备生成第四空间复用传输信令,该第四空间复用传输信令用于禁止该第三方设备使用此次复用传输机会;该复用发送设备在数据传输的数据帧中携带该第四空间复用传输信令,以便于该第三方设备在接收到该第四空间复用传输信令时,放弃使用此次复用传输机会传输数据。
第四方面,提供了一种传输数据的装置,该装置应用于包括原发链路和空间复用链路传输数据的通信系统,该原发链路设置在该装置与原发站点之间,该装置包括:判定模块,用于根据判定参数,进行判定处理,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据;生成模块,用于根据该判定模块进行判定处理得到的判定结果,生成空间复用传输信令;发送模块,用于发送该生成模块生成的空间复用传输信令,以便于复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第四方面,在第四方面的第一种实现方式中,该生成模块还用于生成用于指示禁止该复用发送设备使用该原发链路全部或部分时频资源传输数据的第一空间复用传输信令,或生成用于指示允许该复用发送设备使用该原发链路全部或部分时频资源传输数据的第二空间复用传输信令。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,该判定模块还用于根据N个判定参数,进行判定处理,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;以及该生成模块还用于根据该判定处理的判定结果,生成N个空间复用传输信令,该N个空间复用传输信令与该N个子传输带宽一一对应。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,该发送模块还用于将该空间复用传输信令发送给该原发站点,以便于该原发站点在发送上行数据帧时携带该空间复用传输信令,以使得该复用发送设备从该上行数据帧中获取该空间复用传输信令。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,该生成模块还用于当该判定处理的结果为允许该复用发送设备使用该原发链路全部或部分时频资源传输数据时,生成包括功率指示信息的空间复用传输信令,该功率指示信息用于复用发送设备确定在使用该原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
结合第四方面及其上述实现方式,在第四方面的第五种实现方式中,该装置还包括:确定模块,该确定模块用于在该判定模块进行判定处理之前,根据该原发站点使用的传输参数,确定该判定参数,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
结合第四方面及其上述实现方式,在第四方面的第六种实现方式中,该判定参数为该装置接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
结合第四方面及其上述实现方式,在第四方面的第七种实现方式中,该通信系统包括至少两个原发站点,该确定模块还用于:确定该装置接收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;确定该最大干扰功率密度中的最小值;根据该最小值确定该最大干扰功率。
结合第四方面及其上述实现方式,在第四方面的第八种实现方式中,该确定模块还用于根据公式
Figure PCTCN2016084310-appb-000011
确定接收该至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,其中,isdSTAk表示该装置接收该站点k发送上行数据帧时所允许的最大干扰功率密度,
Figure PCTCN2016084310-appb-000012
表示该站点k发送上行数据帧时的发送功率,
Figure PCTCN2016084310-appb-000013
表示该装置接收该站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示该站点k发送上行数据帧时使用的传输带宽。
结合第四方面及其上述实现方式,在第四方面的第九种实现方式中,该确定模块还用于根据公式
Figure PCTCN2016084310-appb-000014
确定该原发链路的传输带宽上的最大干扰功率;或
根据公式
Figure PCTCN2016084310-appb-000015
确定N个子传输带宽中第m个子带宽上的最大干扰功率,其中,Imax_level表示最大干扰功率,
Figure PCTCN2016084310-appb-000016
表示该装置确定该最大干扰功率密度中的最小值,BWtotal表示该原发链路的传输带宽,Redundancy表示系统预留的冗余量,
Figure PCTCN2016084310-appb-000017
表示该第m个子带宽上的最大干扰功率,BWm表示该N个子传输带宽中的第m个子带宽,N≥2,1≤m≤N,m和N都为正整数。
结合第四方面及其上述实现方式,在第四方面的第十种实现方式中,该发送模块还用于向该原发站点发送触发帧,该触发帧的信令A字段或负载信息中携带该空间复用传输信令。
第五方面,提供了一种传输数据的装置,其特征在于,该装置应用于包括原发链路和空间复用链路传输数据的通信系统,该原发链路设置在该装置与原发接入点之间,该装置包括:接收模块,用于接收原发接入点发送的空间复用传输信令,该空间复用传输信令用于该空间复用链路的复用发送设备确定是否使用该原发链路的全部或部分时频资源,进行基于该空间复用链路的数据传输处理;发送模块,用于向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令。
结合第五方面,在第五方面的第一种实现方式中,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第一空间复用传输信令,或该空间复用传输信令包括用于指示允 许该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第二空间复用传输信令。
结合第五方面及其上述实现方式,在第五方面的第二种实现方式中,当该空间复用传输信令有N个时,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;以及在该N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带该N个空间复用传输信令,N≥2;或在该N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与该第m个子传输带宽对应的第m个空间复用传输信令,m≥1。
结合第五方面及其上述实现方式,在第五方面的第三种实现方式中,该空间复用传输信令包括功率指示信息,该功率指示信息用于复用发送设备确定在使用该原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
结合第五方面及其上述实现方式,在第五方面的第四种实现方式中,该空间复用传输信令是该原发接入点根据判定参数确定的,该判定参数为该原发接入点接收该原发站点发送的上行数据帧时允许的最大干扰功率。
第六方面,提供了一种传输数据的装置,其特征在于,该装置应用于包括原发链路和空间复用链路传输数据的通信系统,该原发链路设置在原发接入点与原发站点之间,该装置包括:接收模块,用于接收第一空间复用传输信令,该第一空间复用传输信令用于该空间复用链路的复用发送设备确定是否使用该原发链路的全部或部分时频资源,进行基于该空间复用链路的数据传输处理;处理模块,用于根据该接收模块接收的空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第六方面,在第六方面的第一种实现方式中,当该空间复用传输信令包括用于禁止该装置使用该原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令时,该处理模块还用于根据该第二空间复用传输信令,放弃使用该原发链路的全部或部分时频资源传输数据。
结合第六方面及其上述实现方式,在第六方面的第二种实现方式中,当该空间复用传输信令包括用于允许该装置使用该原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令时,该处理模块还用于根据该第 三空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第六方面及其上述实现方式,在第六方面的第三种实现方式中,该空间复用传输信令有N个,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许该装置使用,N≥2;以及该处理模块还用于根据该N个空间复用传输信令,进行基于该空间复用链路的数据传输处理。
结合第六方面及其上述实现方式,在第六方面的第四种实现方式中,该装置还包括:确定模块,用于当该空间复用传输信令包括功率指示信息时,根据该功率指示信息,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率;以及该传输模块还用于以不高于该最大发射功率的发射功率传输数据。
结合第六方面及其上述实现方式,在第六方面的第五种实现方式中,该空间复用传输信令是该原发接入点根据第一判定参数确定的,该第一判定参数是该原发接入点根据该原发站点使用的传输参数确定的,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
结合第六方面及其上述实现方式,在第六方面的第六种实现方式中,该装置与该原发接入点属于不同的基本服务集BSS。
结合第六方面及其上述实现方式,在第六方面的第七种实现方式中,该装置与该原发接入点属于同一个基本服务集BSS,该空间复用链路用于该BSS内的站点与站点D2D传输。
结合第六方面及其上述实现方式,在第六方面的第八种实现方式中,该处理模块还用于在D2D传输的数据帧中携带D2D传输指示信息,该D2D传输指示信息用于禁止该BSS中除该装置之外的D2D站点使用此次D2D传输机会。
结合第六方面及其上述实现方式,在第六方面的第九种实现方式中,该第一判定参数为该装置接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
结合第六方面及其上述实现方式,在第六方面的第十种实现方式中,该确定模块还用于根据公式
Figure PCTCN2016084310-appb-000018
确定该最大发射功率,
其中,
Figure PCTCN2016084310-appb-000019
表示该最大发射功率,
Figure PCTCN2016084310-appb-000020
表示该最大干扰功率,LSR表示该装置到该原发接入点之间的传输损耗。
结合第六方面及其上述实现方式,在第六方面的第十一种实现方式中,该通信系统还包括第三方设备,以及该装置还包括生成模块,该生成模块用于生成第四空间复用传输信令,该第四空间复用传输信令用于禁止该第三方设备使用此次复用传输机会;该处理模块还用于在数据传输的数据帧中携带该第四空间复用传输信令,以便于该第三方设备在接收到该第四空间复用传输信令时,放弃使用此次复用传输机会。
基于以上技术方案,本发明实施例的传输数据的方法和装置,原发接入点通过判定参数,判定是否允许空间复用链路的复用发送设备使用原发链路的全部或部分时频资源传输数据,并生成与该判定处理的判定结果相对应的空间复用传输信令,使得该复用发送设备获取到该空间复用传输信令之后,基于该空间复用链路进行数据传输处理,从而能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用根据本发明实施例的传输数据的方法通信系统的示意图。
图2是根据本发明一实施例的传输数据的方法的示意性流程图。
图3是根据本发明一实施例的带宽分配的示意图。
图4是根据本发明另一实施例的带宽分配的示意图。
图5是根据本发明另一实施例的传输数据的方法的示意性流程图。
图6是根据本发明一实施例的空间复用传输信令的格式的示意图。
图7是根据本发明再一实施例的传输数据的方法的示意性流程图。
图8是根据本发明一实施例的传输数据的装置的示意性框图。
图9是根据本发明另一实施例的传输数据的装置的示意性框图。
图10是根据本发明再一实施例的传输数据的装置的示意性框图。
图11是根据本发明一实施例的传输数据的设备的示意性结构图。
图12是根据本发明另一实施例的传输数据的设备的示意性结构图。
图13是根据本发明再一实施例的传输数据的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案,可以应用于各种包括原发链路和空间复用链路传输数据的通信系统,例如,无线局域网(英文:Wireless Local Area Network,简称:WLAN)系统,以802.11a,802.11b,802.11g,802.11n,802.11ac为代表的无线保真(英文:Wireless Fidelity,简称:Wi-Fi)系统等,也可以应用于下一代Wi-Fi系统和下一代无线局域网系统等。
相对应的,复用发送设备可以是WLAN中用户站点(英文:Station,简称:STA),该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(英文:User Equipment,简称:UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(英文:Session Initiation Protocol,简称:SIP)电话、无线本地环路(英文:Wireless Local Loop,简称:WLL)站、个人数字处理(英文:Personal Digital Assistant,简称:PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,复用发送设备也可以是WLAN中AP,AP可用于与UE通过无线局域网进行通信,并将UE的数据传输至网络侧,或将来自网络侧的数据传输至UE。
以下,为了便于理解和说明,作为示例而非限定,以将本发明的传输数据的方法和装置在WLAN系统中的执行过程和动作进行说明。
图1示出了本发明实施例的应用场景的示意图。如图1所示,STA1和STA2向接入点AP1发送上行数据(以下,将AP1与STA1、STA2之间的链路统称为原发链路)的同时,STA5使用原发链路的全部或部分时频资源与接入点AP2进行数据传输(以下,将AP2与STA5之间的链路称为空间复用链路)。由于11ax标准中引入了正交频分多址接入(英文:Orthogonal Frequency Division Multiple Access,简称:OFDMA),因此当原发链路为下 行链路时,接收站点可能是原发链路所在基本服务集(英文:Basic Service Set,简称:BSS)中的多个站点,由于该多个站点的位置对于空间复用链路的站点来说是未知的,如果存在某些站点与空间复用链路的站点距离较近,就会增大链路之间的相互干扰,要想不影响原发链路的传输质量,空间复用链路对原发链路的接收站点的干扰不能超过原发链路所能承受的最大干扰。
应理解,当原发链路为上行链路时,无论AP1本次调度了多少站点,所述接收站点只能是AP1,此时空间复用链路仅可能对AP1造成干扰,因此这种场景更适合于进行空间复用传输。但是,对于原发链路为下行链路的场景,根据本发明实施例的传输数据的方法,也是适用的。
应理解,本发明实施例仅以图1中的应用场景为例进行说明,但本发明实施例并不限于此,例如,AP2所在的基本服务集BSS2中可以包括更多的站点,BSS1中也可以只有一个站点。又例如,该通信系统的原发链路除了BSS1之外,还可以包括更多BSS。再例如,空间复用链路不限于上行传输,也可以是下行传输。
还应理解,在现有技术中,两个通信节点之间的通道称为一条链路,在本发明实施例中,将正在进行上行传输的链路统称为原发链路,因此,原发链路可以是一条,也可以是多条;与此相对,将与原发链路进行空间复用传输的链路统称为空间复用链路,因此,空间复用链路可以是一条,也可以是多条。
还应理解,在本发明实施例中,为了便于描述,将原发链路的接入点和站点分别称作原发接入点和原发站点。
此外,在本发明实施例中,空间复用链路可以是上行链路,也可以是下行链路,也就是说,使用该空间复用链路传输数据的既可以是该空间复用链路的接入点,也可以是站点。因此,在本发明实施例中,将空间复用链路的接入点与站点统称为复用发送设备。
下文结合图2至图7,以原发链路为上行链路的情况作为示例而非限定,对根据本发明实施例的传输数据的方法进行详细描述。
图2示出了从原发接入点角度描述的本发明实施例的传输数据的方法100的示意性流程图。如图2所示,该方法100包括:
S110,该原发接入点根据判定参数,进行判定处理,该判定处理用于判 定是否允许该空间复用链路的复用发送设备使用该原发链路的部分或全部时频资源传输数据;
S120,该原发接入点根据该判定处理的判定结果,生成空间复用传输信令;
S130,该原发接入点发送该空间复用传输信令,以便于该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
在本发明实施例中,原发接入点首先根据判定参数进行判定处理,以判定是否可以允许该空间复用链路的复用发送设备,使用原发链路的全部或部分时频资源传输数据,且对原发接入点接收上行数据造成的干扰在允许的范围之内。然后,该原发接入点根据该判定处理的判定结果,生成与判定结果对应的空间复用传输信令。最后,原发接入点发送该空间复用传输信令,以便于复用发送设备获取到该空间复用传输信令之后,进行基于该空间复用链路的数据传输处理,以避免对原发链路的数据传输造成干扰。
具体而言,在S110,原发接入点根据判定参数进行判定处理,可以是原发接入点根据历史信息直接进行判定(即,方式1),也可以是原发接入点根据原发链路的相关信息确定判定参数,再根据确定的判定参数进行判定处理(即,方式2)。
方式1
原发接入点统计一段时间内(如当前时间前T秒)侦听到的周围BSS的传输对自身的干扰功率,然后根据统计得到的干扰功率的最大值(或平均值,或小于一定概率的干扰功率值等),和某个阈值(或范围)比较,如果大于阈值或者在范围外,则本次不允许复用传输,否则允许。
为了便于理解,作为示例而非限定,以原发链路的传输带宽为20MHz为例,进行说明。例如,原发接入点可以统计一段时间内(如当前时间前T秒),在该20MHz传输带宽上侦听到的周围BSS的传输对自身的干扰功率,然后根据统计得到的干扰功率的最大值(或平均值,或小于一定概率的干扰功率值等)和某个阈值(或范围)比较,如果大于阈值或者在范围外,则本次数据传输不允许复用传输,否则允许。
方式2
原发接入点根据本次上行传输的原发站点在发送上行数据帧时使用的传输参数确定判定参数,再根据该判定参数做判定处理。
在方式2中,由于原发站点受原发接入点调度,因此,原发接入点可以获得原发站点在发送上行数据帧时使用的相关参数,例如,原发站点的发送功率、发送上行数据帧时使用的传输带宽以及调制编码方案(英文:Modulation and Coding Scheme,简称:MCS)等信息,原发接入点根据这些传输参数可以计算出接收原发站点发送的上行数据帧时所允许的最大干扰功率,并将该最大干扰功率作为判定参数做判定处理,确定是否可以允许复用发送设备的复用传输。例如,当最大干扰功率大于某个预设阈值时,允许复用传输,当该最大干扰功率小于该预设阈值时,就禁止复用传输。
例如,原发接入点可以根据被调度在该20MHz传输带宽上发送上行数据帧的原发站点使用的传输参数,确定在该20MHz带宽上,接收原发站点发送上行数据帧时允许的最大干扰功率。如图3所示,在原发链路,原发接入点AP1调度原发站点STA1,STA6,STA7和STA8进行上行传输,站点STA1使用的传输带宽为BWSTAk1,站点STA7使用的传输带宽为BWSTAk7,站点STA6和站点STA8使用相同的传输带宽BWSTAk6/BWSTAk8,此时,原发接入点AP1可以根据原发站点STA1,STA6,STA7和STA8使用的传输参数,以该20MHz为基础计算最大干扰功率。
另外,原发接入点还可以根据原发站点使用的MCS直接做判定处理。
例如,如果原发站点使用的MCS的索引大于等于5时,就允许复用发送设备的复用传输,如果原发站点使用的MCS的索引小于5,就禁止复用发送设备的复用传输。
应理解,上述MCS的索引仅以5为例进行说明,本发明实施例并不仅限于此。例如,也可以是MCS的索引大于等于3时,就允许复用传输,小于3时就禁止复用传输。另外,该MCS的索引还可以是与预先设定的某个阈值作比较。
可选地,该原发接入点根据该判定参数,进行判定处理,包括:
该原发接入点根据N个判定参数,进行判定处理,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许复用发送设备使用,N≥2。
与此相对应,此时,原发接入点会生成N个空间复用传输信令,具体过程在下文S120中详细描述。
具体地说,原发接入点做判定处理时,可以根据原发链路的整个传输带 宽为基础做判定处理,也可以将整个传输带宽划分为多个子传输带宽,分别做判定处理。在每一个子传输带宽上,又可以将该子传输带宽划分成更小的子带宽做判定处理。为了便于理解,以原发链路的传输带宽为40MHz为例,进行说明。
例如,原发接入点可以将该40MHz划分为两个20MHz的子带宽,然后,原发接入点可以分别统计一段时间内(如当前时间前T秒),在这两个20MHz子带宽上侦听到周围BSS的传输对自身的干扰功率,然后分别根据在每一个20MHz子带宽上统计得到的干扰功率的最大值(或平均值,或小于一定概率的干扰功率值等)和某个阈值(或范围)比较,就分别确定了在这两个20MHz子带宽上,是否允许复用发送设备的复用传输。
与此相对应,复用发送设备接收到两个空间复用传输信令,例如,其中第一个空间复用传输信令指示在第一个20MHz子带宽上禁止复用传输,第二个空间复用传输信令指示在第二个20MHz子带宽上允许复用传输,如果所述复用发送设备复用传输时使用的带宽为第一个20MHz子带宽,此时,该复用发送设备就不能使用此次复用传输的机会。但是,如果该复用发送设备复用传输时使用的带宽为第二个20MHz子带宽或其中的一部分,此时,该复用发送设备就可以使用此次复用传输的机会了。
又例如,原发接入点首先确定N个判定参数,再根据该N个判定参数做判定处理。例如,如图4所示,原发接入点首先将该40MHz传输带宽划分为两个20MHz的子带宽,然后,原发接入点分别计算这两个20MHz的子带宽上的判定参数。原发接入点在计算第一个20MHz带宽上的判定参数时,根据在该第一个20MHz带宽上发送上行数据的原发站点1、站点2和站点3的上行传输参数,以该第一个20MHz的子带宽为基础确定该第一个20MHz上的判定参数;在计算第二个20MHz带宽上判定参数时,根据在该第二个20MHz带宽上发送上行数据的原发站点4、站点5、站点6、站点7和站点8使用的传输参数,并以该第二个20MHz的子带宽为基础确定该第二个20MHz上的判定参数。然后,原发接入点分别根据在第一个20MHz和第二个20MHz上面计算得到的判定参数,分别做判定处理。
再例如,原发接入点可以将该40MHz划分为两个20MHz的子带宽,然后,在第一个20MHz子带宽上面根据历史信息做判定处理,确定该第一个20MHz子带宽上是否允许复用发送设备的复用传输;而在第二个20MHz 子带宽上,原发接入点先根据在该第二个20MHz子带宽上发送上行数据的原发站点的传输参数,确定该第二个20MHz子带宽上的判定参数,再根据该判定参数做判定处理,确定是否允许该第二个20MHz子带宽上的复用传输
此外,原发接入点还可以根据分配给原发站点的实际占用带宽,分别计算判定参数。
例如,在第一个20MHz子带宽上,分配给站点1的传输带宽是7MHz,分配给站点2的传输带宽是5MHz,分配给站点3的传输带宽是7.5MHz。此时,原发接入点也可以分别根据该7MHz、5MHz和7.5MHz来确定在相应带宽上的判定参数。
应理解,上述根据本发明的实施例中,原发链路的传输带宽仅以40MHz为例进行说明,本发明并不仅限于此,原发链路的传输带宽还可以更大,例如,80MHz、160MHz,确定判定参数的方法类似,为了简洁,在此不再赘述。
同样地,上述根据本发明的实施例中,原发链路的子带宽也仅以20MHz为例进行说明,本发明并不仅限于此。例如,当原发链路的传输带宽20MHz时,原发链路的子带宽也可以是10MHz,又例如,当原发链路的传输带宽80MHz时,原发链路的子带宽还可以是40MHz。
与此相对应,复用发送设备就会收到多个空间复用传输信令,此时,该复用发送设备则应根据和自身传输带宽对应的空间复用传输信令,进行数据传输的处理。例如,原发链路的第一个20MHz子带宽上允许复用传输,第二个20MHz子带宽禁止复用传输,而复用发送设备使用的传输带宽对应的20MHz为原发链路的第二个20MHz子带宽,那么,该复用发送设备就不能使用该第二个20MHz子带宽传输数据;如果该复用发送设备使用的传输带宽对应的20MHz为原发链路的第一个20MHz子带宽,那么,该复用发送设备就可以复用传输。再例如,如果该复用发送设备使用的传输带宽对应原发链路的第二个20MHz子带宽,而接收到的该第二个20MHz子带宽对应的空间复用传输信令不仅指示了允许复用发送设备的复用传输,而且指示了原发链路所能允许的最大干扰功率,这种情况下,如果该复用发送设备要复用传输,就应根据该最大干扰功率计算复用传输时,自身能够使用的最大发射功率,进而,在传输数据时,使用的发射功率不应超过该最大发射功率,以降 低对原发链路可能造成的干扰。
因此,本发明实施例的传输数据的方法,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
可选地,该判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时允许的最大干扰功率。
也就是说,原发接入点在做判定处理时,也可以将原发站点发送上行数据帧时所能允许的最大干扰功率作为判定参数。
可选地,当该通信系统包括至少两个原发站点时,该原发接入点根据该原发站点使用的传输参数,确定判定参数,包括:
该原发接入点根据该至少两个原发站点中每一个站点使用的上行传输参数,确定接收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;
该原发接入点确定该最大干扰功率密度中的最小值;
该原发接入点根据该最小值确定该最大干扰功率。
具体地说,当通信系统中的原发站点是多个时,原发接入点可以根据每一个站点的上行传输参数计算出接收该站点发送的上行数据帧时允许的最大干扰功率密度,这样最大干扰功率密度就会有多个,为了使得原发接入点能够有效接收该多个原发站点发送的上行数据帧,就应该满足接收每一个原发站点发送的上行数据帧时,该空间复用链路造成的干扰都不应超过该原发接入点所能承受的干扰极限。因此,该原发接入点应该从这多个最大干扰密度中选出最小值,根据这个最小值确定该最大干扰功率。
可选地,该原发接入点根据该至少两个原发站点中每一个站点使用的传输参数,确定接收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度,包括:
该原发接入点根据公式
Figure PCTCN2016084310-appb-000021
确定接收该至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,
其中,isdSTAk表示该原发接入点接收该站点k发送上行数据帧时所允许的最大干扰功率密度,
Figure PCTCN2016084310-appb-000022
表示该站点k发送上行数据帧时的发送功率,
Figure PCTCN2016084310-appb-000023
表示该原发接入点接收该站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示该站点k发送上行数据帧时使用的传输带宽。
需要说明的是,在本发明实施例中,原发站点指的是受原发接入点调度发送上行数据帧的站点。例如,在图3中,站点k可以是站点1、站点6、站点7和站点8,在图4中,第一个20MHz子带宽的站点k可以是站点1、站点2、站点3和站点6,第二个20MHz子带宽的站点k可以是站点4、站点5、站点7和站点8。
原发站点发送功率除以原发站点和AP间的传输损耗,可以得到AP1处的接收功率,再除以所需的最小SINR可以得到AP1接收该原发站点所允许的最大干扰功率,随后除以该原发站点使用的传输带宽即可得到AP接收该原发站点发送的数据帧时允许的最大干扰功率密度。
应理解,由于上述原发站点受AP1调度,因此AP1知道所述原发站点的发送功率,分配的传输带宽,MCS等信息。通过分配的MCS可以得到接收该数据帧所需的最小SINR。同时AP1可以根据历史信息,来获取所述原发站点到AP1的传输损耗,例如,原发站点利用随机接入发送上行请求时一般会以标准规定的最大发送功率来发送,这样AP1就可以根据接收该上行请求帧的接受功率和所述规定的最大发射功率来计算传输损耗。
可选地,该原发接入点根据该最小值确定该最大干扰功率,包括:
根据公式
Figure PCTCN2016084310-appb-000024
确定该原发链路的传输带宽上的最大干扰功率;或
根据公式
Figure PCTCN2016084310-appb-000025
确定N个子传输带宽中第m个子带宽上的最大干扰功率,
其中,Imax_level即为原发接入点AP1接收上述至少一个上行站点发送的上行数据帧时允许的最大干扰功率,
Figure PCTCN2016084310-appb-000026
表示该原发接入点确定该最大干扰功率密度中的最小值,BWtotal表示该原发链路的传输带宽,Redundancy表示系统预留的冗余量,
Figure PCTCN2016084310-appb-000027
表示该第m个子带宽上的最大干扰功率,BWm表示该N个子传输带宽中的第m个子带宽。
需要说明的是,上述最大干扰功率也可以是其符合逻辑的其它变形,例如,
Figure PCTCN2016084310-appb-000028
其中,
Figure PCTCN2016084310-appb-000029
表示原发接入点AP1的发送功率。
也就是说,原发接入点在确定最大干扰功率时,可以根据原发链路的总传输带宽计算,也可以以小于总传输带宽的子带宽为基础计算。
例如,原发链路的总传输带宽为40MHz,分别在两个20MHz子带宽上计算空间复用传输参数,当传输带宽更大时,可以依据此方法进行类推。从 属于第一个20MHz子带宽的至少一个最大干扰功率密度中选出最小值,再乘以第一个子带宽的带宽值(即20MHz),然后,减去系统冗余系数就可以得到AP1在第1个基础子带宽上的至少一个上行站点发送的上行数据帧时允许的最大干扰功率。例如,在图4中,当m=1时,站点k可以是站点1、站点6、站点7和站点8,当m=2时,站点k可以是站点4、站点5、站点7和站点8。
需要说明的是,系统的冗余量Redundancy,也可以称作系统的冗余系数。该余量可以是预先约定的固定值,可以是按照预先约定的某种方法计算得到的值,该余量还可以为0。
从计算得到的最大干扰功率密度值中选出最小值,再乘以总的传输带宽,例如,原发链路的总传输带宽为20MHz时,BWtotal=20MHz。又例如,原发链路的总传输带宽为40MHz时,则BWtotal=40MHz。然后,除以系统预留的冗余量后即可得到接收所述至少一个上行站点发送的上行数据帧时允许的最大干扰功率。
需要说明的是,在根据上述公式计算最大干扰功率时,如果以分贝为单位进行计算,上述公式也可以表示为
Figure PCTCN2016084310-appb-000030
即用最小干扰功率密度值乘以原发链路的总传输带宽之后,减去系统预留的冗余量后即可得到接收所述至少一个上行站点发送的上行数据帧时允许的最大干扰功率。因此,仅是由于计算时采用的单位不同而使得计算公式的逻辑变形发生变化,应当认为仍属于本发明实施例的保护范围。
在S120,该原发接入点根据判定处理的判定结果,生成空间复用传输信令。
可选地,在本发明实施例中,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路全部或部分时频资源的第一空间复用传输信令,或该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路全部或部分时频资源的第二空间复用传输信令。
具体地说,原发接入点经过判定处理,生成与判定结果相对应的空间复用传输信令。例如,原发接入点可以使用空间复用传输信令的1比特来指示允许或禁止复用发送设备的复用传输。再或者,原发接入点也可以使用4比特指示判定参数,例如,根据预设规则,使用“0000”表示允许的最大干扰功率为-80dBm,“0001”表示允许的最大干扰功率为-75dBm,“1111”表示 允许的最大干扰功率为-5dBm等。再或者,原发接入点还可以在空间复用传输信令中,使用1比特指示是否允许发送端设备复用传输的同时,再使用4比特指示判定参数。又或者,原发接入点使用4比特中的全“0”组合指示禁止复用发送设备的复用传输,其余比特指示判定参数;或使用4比特中的全“1”组合来指示允许复用发送设备的复用传输,其余比特指示判定参数;或使用4比特中的全“1”组合来指示无任何条件的允许,或全“0”组合来指示无条件的禁止。
需要说明的是,上述的无条件允许或禁止是指原发接入点对复用发送设备的发射功率不作要求。
可选地,原发接入点根据判定处理的判定结果,生成空间复用传输信令,包括:
原发接入点根据N个判定参数,进行判定处理,并生成N个空间复用传输信令。
例如,如图4所示,原发接入点首先将该40MHz传输带宽划分为两个20MHz的子带宽,然后,原发接入点分别计算第一个20MHz子带宽上的判定参数和第二个20MHz子带宽上的判定参数。然后,原发接入点根据在第一个20MHz和第二个20MHz上面计算得到的判定参数,分别做判定处理,也就是在每一个20MHz子带宽上就会生成一个空间复用传输信令。
又例如,原发接入点也可以在第一个20MHz子带宽上根据历史信息做判定处理,生成第一个20MHz子带宽上的空间复用传输信令,然后,原发接入点在第二个20MHz子带宽上根据原发站点使用的传输参数先确定判定参数,再根据确定的该判定参数,生成该第二个20MHz子带宽上的空间复用传输信令。
这样,就会生成2个空间复用传输信令,因此,可以使用8比特来指示该空间复用传输信令。例如,用b0~b3用于指示第一个子带宽上的空间复用传输信令,用b4~b7用于指示第二个子带宽上的空间复用传输信令。
再例如,原发接入点也可以在第一个20MHz子带宽和第二个20MHz子带宽上均根据历史信息做判定处理,这样,在每一个20MHz子带宽上生成一个空间复用传输信令。这样,原发接入点就可以使用2比特来指示,在这两个20MHz子带宽上,分别是否允许复用发送设备的复用传输。
因此,根据本发明实施例的传输数据的方法,原发接入点可以以原发链 路的传输带宽生成空间复用传输信令,也可以以小于原发链路传输带宽的子带宽为基础生成空间复用传输信令,进而,复用发送设备可以根据接收到的空间复用传输信令,结合自身复用传输时使用的传输带宽与原发链路传输带宽的对应关系,对于是否使用原发链路的全部或部分时频资源传输数据进行处理,进而可以降低复用传输时对原发链路的干扰,提高传输质量。
可选地,当判定处理的判定结果为允许该复用发送设备使用原发链路全部或部分时频资源传输数据时,该空间复用传输信令包括功率指示信息,其中,该功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
应理解,功率指示信息可以是原发接入点接收原发站点发送的上行数据帧时允许的最大干扰功率,也可以是其它参数,例如,可以是该最大干扰功率的符合逻辑的其它变形形式。
具体地说,原发接入点经过判定处理,生成空间复用传输信令,该空间复用传输信令不仅可以指示复用发送设备是否可以使用原发链路的全部或部分时频资源传输数据,并且,可以在该空间复用传输信令中携带功率指示信息,以使得复用发送设备在接收到该空间复用传输信令之后,不仅获知可以进行复用传输,并且知道能够使用的最大发射功率是多大,这样,才不致于对原发链路的数据传输造成干扰。例如,原发接入点可以使用1比特指示允许该复用发送设备的复用传输,同时,再使用4比特指示该最大干扰功率;或者原发接入点可以使用4比特中的一组特殊值指示允许或禁止复用传输,使用其余值指示该最大干扰功率。
与此相对应地,复用发送设备接收到该功率指示信息后,就可以确定复用传输时能够使用的最大发射功率,并以不高于该最大发射功率的功率传输数据,以降低原发链路和空间复用链路之间的干扰。
因此,本发明实施例的传输数据的方法,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
在S130,原发接入点发送该空间复用传输信令,以便于复用发送设备根据该空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
可选地,该原发接入点将该空间复用传输信令发送给该原发站点,以便于该原发站点在发送上行数据帧时携带该空间复用传输信令,以使得该复用发送设备从所述上行数据帧中获取所述空间复用传输信令。
具体而言,原发接入点给原发站点发送触发帧,调度原发站点发送上行数据,在触发帧的信令A字段或负载信息中携带该空间复用传输信令。
与此相对应,原发站点接收到原发接入点发送的空间复用传输信令,并在随后发送的上行数据帧中携带该空间复用传输信令,以便于该空间复用链路的复用发送设备从该上行数据帧中获取该空间复用传输信令,并根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
也就是说,复用发送设备接收该空间复用传输参数,可以从原发接入点发送给原发站点的触发帧中获取,也可以从原发站点发送给原发接入点的上行数据帧中获取。然后,复用发送设备就可以根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
例如,复用发送设备接收到用于禁止使用原发链路的全部或部分时频域资源传输数据的空间复用传输信令A(即第一空间复用传输信令的一例),此时,该复用发送设备根据该空间复用传输信令,不能使用该原发链路的全部或部分时频资源传输数据。又例如,复用发送设备接收到用于允许该复用发送设备使用该原发链路的全部或部分时频域资源传输数据的空间复用传输信令B(即第二空间复用传输信令的一例),此时,该复用发送设备可以根据该空间复用传输信令B传输数据。显然,复用发送设备即使接收到允许复用传输的空间复用传输信令,也可以结合链路的其它信息,选择放弃此次复用传输的机会等。
应理解,如果原发接入点发送的空间复用传输信令是多个,与此相对应地,原发站点接收到的空间复用传输信令也是多个,相应地,原发站点在上行数据帧中携带该空间复用传输信令时,也应该携带该多个空间复用传输信令,具体的携带方式如图6中的6A和6B所示。例如,如图6A所示,该原发链路的基础带宽为20MHz,在每个20MHz带宽上的SIGA字段携带各自对应的空间复用传输信令,也就是说,各个20MHz带宽上的SIGA字段承载的空间复用传输信令可能是不同的。再例如,如图6B所示,该原发链路的基础子带宽为20MHz,每个20MHz带宽上的SIGA字段都携带全部的空间复用传输信令,也就是说,各个20MHz带宽上的SIGA字段承载的空间复用传输信令可以是相同的。
应理解,如果复用发送设备接收到N个空间复用传输信令,复用发送设备则应根据该N个空间复用传输信令,进行基于该空间复用链路的数据传输 处理。
具体地说,复用发送设备从上述N个空间复用传输信令中,选择和自身传输带宽对应的空间复用传输参数进行数据传输处理。
例如,进行空间复用传输时的使用的传输带宽对应的20MHz为原发链路的第二个20MHz子传输带宽,则选取b4~b7比特对应的空间复用传输参数来获取相应允许的最大干扰功率。又例如,复用发送设备接收到两个个空间复用传输信令,其中,第一个20MHz子传输带宽上禁止复用传输,第二个20MHz子传输带宽上允许复用传输,如果复用发送设备使用的传输带宽对应原发链路的第二个20MHz子带宽,那么该复用发送设备就可以使用该第二个20MHz子带宽传输数据;如果,复用发送设备使用的传输带宽对应原发链路的第一个20MHz子传输带宽,此时,该复用发送设备只能放弃此次复用传输机会。
复用发送设备在确定复用传输能够使用的最大发射功率时,可以根据公式
Figure PCTCN2016084310-appb-000031
确定该最大发射功率,其中,
Figure PCTCN2016084310-appb-000032
表示该最大发射功率,
Figure PCTCN2016084310-appb-000033
表示该最大干扰功率,LSR表示该复用发送设备到原发接入点之间的传输损耗。
需要说明的是,如果复用发送设备使用的传输带宽不是20MHz带宽,而是占据的20MHz带宽中的某个子信道,例如,复用发送设备是受AP2调度的上行站点,且AP2分配给该复用发送设备的传输带宽为BWSR,小于20MHz,一种更严格的计算最大发射功率的方式为:
Figure PCTCN2016084310-appb-000034
其中,BWSR为该发送端使用的带宽,BWtotal为发送端使用带宽所在的原发链路的总传输带宽或者某个子带宽的带宽值。
相应地,如果复用发送设备复用传输使用的带宽大于原发链路的子带宽,那么,该复用发送设备应该从自身使用的传输带宽所包含的原发链路的子带宽集合所对应的最大干扰功率中,选择最小值来确定自身复用传输能够使用的最大发射功率。
例如,复用发送设备使用的传输带宽是40MHz,原发链路的子带宽分别是20MHz、10MHz和10MHz,那么复用发送设备应该从该20MHz、10MHz和10MHz构成的基础子带宽集合对应的最大干扰功率中,选取最小值来计 算复用传输时能够使用的最大发射功率。
应理解,在本发明实施例中,复用发送设备如果使用原发链路的全部或部分时频资源传输数据,复用发送设备可以生成空间复用传输信令C(即第四空间复用传输信令的一例),该空间复用传输信令C用于禁止通信系统系统中的第三方设备在接收到该空间复用传输信令C时,放弃使用此次复用传输的机会。具体地说,复用发送设备在数据传输的过程中,不希望有第三方设备也使用此次复用传输机会,因此,复用发送设备在复用传输时,发送的数据帧中携带第四空间复用传输信令,这样,如果该通信系统中存在第三方设备,该第三方设备距离原发接入点和SR站点距离都比较近,那么第三方设备就有可能既听到了原发接入点的空间复用传输信令,又听到了SR站点发送的第四空间复用传输信令。在这种情况下,对于第三方设备而言,即使听到了原发链路允许复用传输的信令,由于该第四空间复用传输信令禁止第三方设备与复用发送设备的同时复用传输,因此,第三方设备就不能使用此次复用传输机会。
需要说明的是,上述实施例中,由于复用发送设备不希望有第三方设备与自己同时复用传输,因此,可以直接生成第四空间复用传输信令,而不做任何判定处理。
另外,复用发送设备也可以根据第二判定参数做判定处理,之后,再根据判定处理的判定结果生成该第四空间复用传输信令。
应理解,第二判定参数是空间复用链路的相关参数,复用发送设备根据该第二判定参数可以对空间复用链路是否允许第三方设备进行复用传输做判定处理,相对应地,生成该空间复用链路的空间复用传输信令(或者说,第四空间复用传输信令)。
还应理解,复用发送设备根据第二判定参数做判定处理的过程,以及根据判定结果生成第四空间复用传输信令的过程,与原发接入点做判定处理,并生成空间复用传输信令的方法类似,为了简洁,此处不再赘述。
也就是说,在本发明实施中,第四空间复用传输信令用于禁止第三方设备的复用传输,但是,显然,该第四空间复用传输信令也可以指示允许该第三方设备的复用传输,还可以在指示允许复用传输的同时,指示该第二判定参数或该第三方设备能够使用的最大发射功率,也就是说,该复用发送设备生成空间复用链路的空间复用传输信令(即第四空间复用传输信令的一例) 的作用,与上述原发接入点生成原发链路的空间复用传输信令的作用类似,生成的过程和方法也类似,为了简洁,此处不再赘述。
应理解,本发明实施例中的复用发送设备与原发接入点可以属于不同的BSS,也可以属于相同的BSS。上述根据本发明实施例的传输数据的方法,都是以复用发送设备与原发接入点属于不同的BSS的情况进行说明的,下面对发送端设备与原发接入点属于相同的BSS的情况进行描述。
当原发接入点和复用发送设备属于相同的BSS时,原发链路就相当于本BSS中的上行多用户UL MU传输,空间复用链路就相当于同一个BSS内D2D传输,此时,复用发送设备也可以称作D2D发送站点,SR传输为D2D传输。
具体地说,D2D发送站点接收到触发帧或上行数据帧,判断是否是本BSS的传输帧。如果是,则根据所述触发帧或上行数据帧中携带的空间复用传输信令来计算进行D2D传输允许的最大发射功率;如果不是,则可以按照现有标准流程执行,也可以按照前述实施例的流程执行,本发明不做限定。
此外,D2D发送站点可以在传输帧的前导码中的SIGA字段中,使用1比特指示信息来指示本次传输是否为D2D传输。例如“1”表示为D2D数据帧,“0”表示为普通数据帧。当本BSS中有其它D2D发送站点在接收到了本BSS的触发帧后,按照前述流程计算D2D传输允许的最大发射功率,随后进行CCA检测。如果CCA检测通过,在进行随机退避的过程中又接收到了本BSS的数据帧时,如果判断所述数据帧中的1比特指示信息是“1”,则放弃本次复用传输机会,直到该D2D数据帧传输结束;如果判断所述1比特指示信息是“0”,则继续所述复用流程。
因此,本发明实施例的传输数据的方法,原发接入点根据该判定参数判定是否允许空间复用链路的复用发送设备使用原发链路的全部或部分时频资源传输数据,并生成与该判定处理的判定结果相对应的空间复用传输信令,使得该复用发送设备获取到该空间复用传输信令之后,基于该空间复用链路进行数据传输处理,从而,能够降低原发链路和空间复用链路之间的干扰,提高传输质量。
上文结合图2至图4,从原发接入点的角度描述了本发明实施例的传输数据的方法,下面结合图5和图6,从原发站点的角度详细描述根据本发明实施例的传输数据的方法。
图5示出了从原发站点角度描述的本发明实施例的传输数据的方法200的示意性流程图。如图2所示,该方法200包括:
S210,该原发站点接收该原发接入点发送的空间复用传输信令,该空间复用传输信令用于空间复用链路的复用发送设备确定是否使用所述原发链路的全部或部分时频资源,进行基于所述空间复用链路的数据传输处理;
S220,该原发站点向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令。
具体地说,原发站点接收到原发接入点发送的空间复用传输信令,并在随后发送的上行数据帧中携带该空间复用传输信令,该空间复用传输信令与判定结果相对应,该判定结果是该原发接入点根据判定参数进行判定处理得到的,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据。
可选地,该空间复用传输信令可以位于上行数据帧的前导码中的信令A字段中。
可选地,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路的全部或部分时频资源的第一空间复用传输信令,或该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路的全部或部分时频资源的第二空间复用传输信令。
可选地,该空间复用传输信令有N个,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;
该原发站点向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令,包括:
该原发站点在该N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带该N个空间复用传输信令,N≥2;或
在该N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与该第m个子传输带宽对应的第m个空间复用传输信令,m≥1。
具体而言,由于原发站点接收到的空间复用传输信令有多个,原发站点在发送的上行数据帧的前导码的信令A字段携带该多个空间复用传输信令,具体的携带方式如图6中的6A和6B所示。例如,如图6A所示,该原发链路的基础带宽为20MHz,在每个20MHz带宽上的SIGA字段携带各自对应的 空间复用传输信令,也就是说,各个20MHz带宽上的SIGA字段承载的空间复用传输信令可能是不同的。再例如,如图6B所示,该原发链路的基础子带宽为20MHz,每个20MHz带宽上的SIGA字段都携带全部的空间复用传输信令,也就是说,各个20MHz带宽上的SIGA字段承载的空间复用传输信令可以是相同的。
与此相对应,复用发送设备接收到多个空间复用传输信令时,使用与自身传输带宽对应的空间复用传输信令,进行数据传输的处理。例如,如图6所示,复用发送设备复用传输时使用的20MHz对应原发链路的第二个子20MHz带宽,则选b4~b7比特对应的空间复用传输信令获取相应允许的最大干扰功率,然后进一步计算复用传输时能够使用的最大发射功率。
应理解,如果,复用发送设备使用的传输带宽大于原发链路的子带宽,则复用发送设备应选择从包括自身使用的传输带宽的子带宽集合所对应的多个空间复用传输参数中,选择最小值来计算复用传输时能够使用的最大发射功率。例如,如图6所示,复用发送设备使用的传输带宽是40MHz,大于20MHz的子带宽,复用发送设备就应选择b0~b7比特对应的空间复用传输参数中的最小值来计算自身能够使用的最大发射功率。
可选地,该空间复用传输信令包括功率指示信息,该功率指示信息用于指示复用发送设备在使用该原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
可选地,该空间复用传输信令是原发接入点根据判定参数确定的,该判定参数为原发接入点接收原发站点发送的上行数据帧时所允许的最大干扰功率。
原发站点根据原发接入点的调度,发送上行数据帧,并在发送的上行数据帧中携带该空间复用传输信令,以便于空间复用链路的复用发送设备获取到该上行数据帧中的空间复用传输信令以后,根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,以降低对原发链路造成的干扰。
因此,本发明实施例的传输数据的方法,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
图7示出了从复用发送设备角度描述的根据本发明实施例的传输数据的方法的示意性流程图300,如图7所示,该方法300包括:
S310,复用发送设备接收第一空间复用传输信令,该第一空间复用传输 信令用于该空间复用链路的复用发送设备确定是否使用该原发链路的全部或部分时频资源传输数据;
S320,该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
应理解,该第一空间复用传输信令与该原发接入点根据第一判定参数进行判定处理得到的判定结果相对应,判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据。
具体地说,复用发送设备接收该第一空间复用传输参数,例如,可以从原发接入点发送给原发站点的触发帧中获取,也可以从原发站点发送给原发接入点的上行数据帧中获取。然后,复用发送设备就可以根据该第一空间复用传输信令,进行基于该空间复用链路的数据传输处理。例如,复用发送设备从该第一空间复用传输信令中可以获知在原发链路数据传输的同时,禁止空间复用链路上的复用传输,或者,复用发送设备从空间复用传输信令中获知原发接入点允许该复用发送设备使用原发链路的全部或部分时频资源传输数据等。
因此,本发明实施例的传输数据的方法,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
可选地,该第一空间复用传输信令包括用于禁止该复用发送设备使用该原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令,以及
该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:
该复用发送设备根据该第二空间复用传输信令,放弃使用该原发链路的全部或部分时频资源传输数据。
可选地,该第一空间复用传输信令包括用于允许该复用发送设备使用该原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令,以及
该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:
该复用发送设备根据该第三空间复用传输信令,进行基于该空间复用链路的数据传输处理。
例如,复用发送设备从空间复用传输信令中获知可以使用原发链路的全部或部分时频资源并发传输时,复用发送设备可以根据该空间复用传输信令 中指示的空间复用传输参数传输数据,也可以结合链路的其它信息,选择放弃此次并发传输的机会。
可选地,该空间复用传输信令有N个,该N个空间复用传输信令与原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;
复用发送设备根据该第一空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:
复用发送设备根据该N个第一空间复用传输信令,进行基于该空间复用链路的数据传输处理。
复用发送设备接收到携带空间复用传输信令的触发帧或上行数据帧,判断是否是本BSS的传输帧。如果不是,则根据触发帧或上行数据帧中携带的空间复用传输信令作相应的数据处理。例如,复用发送设备接收到携带空间复用传输参数的信令,则可以根据空间复用传输参数来计算进行空间复用传输允许的最大发射功率,
Figure PCTCN2016084310-appb-000035
式中,
Figure PCTCN2016084310-appb-000036
是根据和自身传输带宽对应的空间复用传输参数确定的允许的最大干扰功率。例如,进行空间复用传输时的使用的传输带宽对应的20MHz为原发链路的第二个20MHz子传输带宽,则选取b4~b7比特对应的空间复用传输参数来获取相应允许的最大干扰功率。
复用发送设备在发送数据之前,进行空闲信道评估(英文:Clear Channel Assessment,简称:CCA),如果CCA检测通过,则在随机退避结束后可以使用不超过
Figure PCTCN2016084310-appb-000037
的发射功率发送数据包。上述CCA检测的方法可以是现有标准,例如:11n,11ac中的CCA检测方法,也可以是其它新的检测方法,本发明不做限定。例如复用发送设备可以根据接收到原发链路信号的RSSI(Received Signal Strength Indication接收信号强度指示)值来设置CCA阈值。可选的,复用发送设备将接收到的原发链路上行数据帧中SIGA字段结束时刻或者结束时刻前S秒对应的RSSI值设置为CCA检测阈值。
又例如,复用发送设备接收到两个个空间复用传输信令,其中,第一个20MHz子传输带宽上禁止并发传输,第2个20MHz子传输带宽上允许并发传输,那么复用发送设备就可以在原发链路的第2个20MHz子传输带宽上进行复用传输。
再例如,复用发送设备进行复用传输的带宽是40MHz,原发链路的传 输带宽被划分为20MHz、10MHz和10MHz的子带宽,那么复用发送设备应该从该20MHz、10MHz和10MHz构成的基础子带宽集合对应的最大干扰功率中,选取最小值来计算并发传输时能够使用的最大发射功率。
可选地,该空间复用传输信令是原发接入点根据第一判定参数确定的,该第一判定参数是原发接入点根据该原发站点使用的上行传输参数确定的,上行传输参数包括发送功率、调制与编码策略MCS和传输带宽。
应理解,此处的第一判定参数也可以认为是原发接入点做判定处理时依据的相关参数,例如,可以是原发站点的发送功率、调制与编码策略MCS和传输带宽,也可以是MCS和原发接入点的接收功率。
可选地,当该判定处理的结果为允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据时,该空间复用传输信令包括功率指示信息,以及
该复用发送设备根据该第一空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:
该复用发送设备根据该功率指示信息,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,并以不高于该最大发射功率的发射功率传输数据。
具体而言,复用发送设备接收到的第一空间复用传输信令是允许空间复用链路的复用传输时,该第一空间复用传输信令可以携带功率指示信息,这里,功率指示信息可以是原发接入点接收上行数据帧时允许的最大干扰功率。复用发送设备根据该最大干扰功率可以确定出复用传输时能够使用的最大发射功率,以避免原发链路和空间复用链路传输数据时的相互干扰。
可选地,复用发送设备与原发接入点属于不同的基本服务集BSS。
应理解,在本发明实施例中,复用发送设备与原发接入点可以属于不同的BSS,也可以属于相同的BSS,但是,在该实施例中,上述描述均是以复用发送设备与原发接入点属于不同的BSS的情况为出发点所做的说明。下面,将对复用发送设备与原发接入点属于相同的BSS的情况,进行详细描述。
可选地,复用发送设备与原发接入点属于同一个基本服务集BSS,空间复用链路用于本BSS内的站点与站点D2D传输。
也就是说,当原发接入点和复用发送设备属于相同的BSS时,原发链路就相当于本BSS中的上行多用户UL MU传输,空间复用链路就相当于同一 个BSS内的站点与站点(英文:Direct STA-to-STA,简称:D2D)传输,此时,复用发送设备也可以称作D2D发送站点,SR传输为D2D传输。
可选地,该复用发送设备根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理,包括:
该复用发送设备在该D2D传输的数据帧中携带D2D传输指示信息,该D2D传输指示信息用于禁止该BSS中除该复用发送设备之外的D2D站点使用此次D2D传输机会。
具体而言,D2D发送站点接收到携带空间复用传输信令的触发帧或上行数据帧,判断是否是本BSS的传输帧。如果是,则根据所述触发帧或上行数据帧中携带的空间复用传输信令来计算进行D2D传输允许的最大发射功率;如果不是,则可以按照现有标准流程执行,也可以按照前述实施例的流程执行,本发明不做限定。此外,D2D发送站点可以在传输帧的前导码中的信令A字段中,使用1比特指示信息来指示本次传输是否为D2D传输。例如“1”表示为D2D数据帧,“0”表示为普通数据帧。当本BSS中有其它D2D发送站点在接收到了本BSS的触发帧后,按照前述流程计算D2D传输允许的最大发射功率,随后进行CCA检测。如果CCA检测通过,在进行随机退避的过程中又接收到了本BSS的数据帧时,如果判断所述数据帧中的1比特指示信息是“1”,则放弃本次复用传输机会,直到该D2D数据帧传输结束;如果判断所述1比特指示信息是“0”,则继续所述复用流程。
可选地,该复用发送设备根据该第一判定参数,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,包括:
根据公式
Figure PCTCN2016084310-appb-000038
确定该最大发射功率,其中,
Figure PCTCN2016084310-appb-000039
表示该最大发射功率,
Figure PCTCN2016084310-appb-000040
表示该最大干扰功率,LSR表示该复用发送设备到该原发接入点之间的传输损耗。
例如,复用发送设备根据接收到的来自AP1的信标帧的接收功率来计算
Figure PCTCN2016084310-appb-000041
是AP1发送信标帧的发送功率;
Figure PCTCN2016084310-appb-000042
是根据空间复用传输信令确定的允许的最大干扰功率,例如,根据预设规则,空间复用传输参数信令为“0010”,则相应允许的最大干扰功率
Figure PCTCN2016084310-appb-000043
假设根据历史信息获得的传输损耗为LSR=77dB,则进行复用传输允许的最大发射功率
Figure PCTCN2016084310-appb-000044
可选地,该通信系统还包括第三方设备,该方法还包括:
该复用发送设备生成第四空间复用传输信令;
该复用发送设备在数据传输的数据帧中携带该第四空间复用传输信令,以便于该第三方设备在接收到该第四空间复用传输信令时,放弃使用此次复用传输的机会。
具体地说,复用发送设备在数据传输的过程中,不希望有第三方设备使用此次复用传输机会,因此,复用发送设备在发送的数据帧中携带第四空间复用传输信令,这样,如果该通信系统中存在第三方设备,该第三方设备距离原发接入点和复用发送设备距离都比较近,那么第三方设备就有可能既听到了原发接入点的空间复用传输信令,又听到了复用发送设备发送的第四空间复用传输信令。在这种情况下,对于第三方设备而言,即使听到了原发链路允许复用传输的信令,由于该第四空间复用传输信令禁止第三方设备与复用发送设备的同时复用传输,因此,第三方设备就不能使用此次复用传输机会。
因此,根据本发明实施例的传输数据的方法,可以降低原发链路和空间复用链路之间的相互干扰,提高传输质量。
上述根据本发明实施例的传输数据的方法,是以原发链路为上行链路时进行的说明,在原发链路为下行链路的情况下,根据本发明实施例的传输数据的方法,与原发链路为上行链路时的方法类似,为了简洁,下文作简单地描述。
首先,原发接入点根据原发链路的历史信息或发送下行帧时原发接入点使用的传输参数做判定处理,确定是否允许复用发送设备的复用传输。
例如,原发接入点根据发送下行数据帧时使用的MCS做判定处理,如果MCS大于等于5,就允许复用发送设备的复用传输,如果MCS小于5,就禁止复用发送设备的复用传输。
应理解,与原发链路为上行链路时类似,上述MCS的索引仅以5为例进行说明,本发明实施例并不仅限于此。例如,也可以是MCS的索引大于等于3时,就允许复用传输,小于3时就禁止复用传输。另外,该MCS的索引还可以是与预先设定的某个阈值作比较。
然后,原发接入点根据判定处理的判定结果生成空间复用传输信令,并将该空间复用传输信令携带在下行帧中发送,以便于该复用发送设备从该下 行帧中获取到该空间复用传输信令,并根据该空间复用传输信令进行基于该空间复用链路的数据传输处理。
应理解,生成该空间复用传输信令的过程,与原发链路为上行链路时类似,因此,该空间复用传输信令可以是一个,也可以是多个。
与此相对应地,对于空间复用链路的复用发送设备而言,在原发链路为下行链路时,该复用发送设备也可以从原发接入点发送给原发站点的下行帧中获取到该空间复用传输信令。
结合原发链路为上行链路时根据本发明实施例的传输数据的方法,也就是说,对于空间复用链路的复用发送设备而言,获取空间复用传输信令至少包括以下三种方式,即从原发接入点发送给原发站点的触发帧中获取,或者从原发站点发送给原发接入点的上行数据帧中获取,再或者,从原发接入点发送给原发站点的下行数据帧中获取。
相类似地,在原发链路为下行链路时,复用发送设备从原发接入点发送的下行帧中获取到空间复用传输参数之后,根据该空间复用传输参数,复用发送设备如果使用原发链路的全部或部分时频资源传输数据,复用发送设备也可以生成空间复用链路的空间复用传输信令(或者说第四空间复用传输信令),该空间复用传输信令用于禁止通信系统中的第三方设备在接收到该空间复用传输信令时,放弃使用此次复用传输的机会。
需要说明的是,如果复用发送设备不希望有第三方设备与自己同时复用传输,就可以直接生成该第四空间复用传输信令,而不做任何判定处理。另外,复用发送设备也可以通过判定处理的判定结果生成该第四空间复用传输信令。其中,判定处理的方法和生成该第四空间复用传输信令的过程,与原发链路为上行链路时类似,此处不再赘述。
相类似地,在原发链路为下行链路时,可选的,复用发送设备将接收到的原发链路下行帧中SIGA字段结束时刻或者结束时刻前S秒对应的RSSI值设置为CCA检测阈值。
因此,根据本发明实施例的传输数据的方法,复用发送设备通过获取原发链路的空间复用传输信令,进行基于空间复用链路的数据传输处理,以使得空间复用链路不对原发链路的数据传输造成干扰,或者造成的干扰在原发链路允许范围之内的情况下传输数据。因而,可以降低原发链路与空间复用链路之间的干扰,提高传输质量。
以上,结合图1至图7详细说明了根据本发明实施例的传输数据的方法,下面,结合图8至图10说明根据本发明实施例的传输数据的装置。
图8示出了根据本发明实施例的传输数据的装置400的示意性框图。如图8所示,该装置400包括:
判定模块410,用于根据判定参数,进行判定处理,所述判定处理用于判定是否允许所述空间复用链路的复用发送设备使用所述原发链路的全部或部分时频资源传输数据;
生成模块420,用于根据所述判定模块进行判定处理得到的判定结果,生成空间复用传输信令;
发送模块430,用于发送所述生成模块生成的空间复用传输信令,以便于复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
可选地,所述生成模块还用于生成用于指示禁止所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第一空间复用传输信令,或
生成用于指示允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第二空间复用传输信令。
可选地,所述判定模块还用于根据N个判定参数,进行判定处理,所述N个判定参数与所述原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;以及
所述生成模块具体还用于根据所述判定处理的判定结果,生成N个空间复用传输信令,所述N个空间复用传输信令与所述N个子传输带宽一一对应。
可选地,所述发送模块还用于将所述空间复用传输信令发送给所述原发站点,以便于所述原发站点在发送上行数据帧时携带所述空间复用传输信令,以使得所述复用发送设备从所述上行数据帧中获取所述空间复用传输信令。
可选地,所述生成模块还用于当所述判定处理的结果为允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据时,生成包括功率指示信息的空间复用传输信令,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
可选地,该确定模块用于在该判定模块进行判定处理之前,根据原发站点使用的传输参数,确定判定参数,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
可选地,该确定模块还用于确定该装置接收原发站点发送的上行数据帧时所允许的最大干扰功率。
可选地,该通信系统包括至少两个原发站点,该确定模块还用于:
确定该装置接收至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;
确定该最大干扰功率密度中的最小值;
根据该最小值确定该最大干扰功率。
可选地,该确定模块还用于根据公式
Figure PCTCN2016084310-appb-000045
确定接收该至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,
其中,isdSTAk表示该该装置接收该站点k发送上行数据帧时所允许的最大干扰功率密度,
Figure PCTCN2016084310-appb-000046
表示该站点k发送上行数据帧时的发送功率,
Figure PCTCN2016084310-appb-000047
表示该装置接收该站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示该站点k发送上行数据帧时使用的传输带宽。
可选地,该确定模块还用于
根据公式
Figure PCTCN2016084310-appb-000048
确定该原发链路的传输带宽上的最大干扰功率;或
根据公式
Figure PCTCN2016084310-appb-000049
确定N个子传输带宽中第m个子带宽上的最大干扰功率,
其中,Imax_level表示最大干扰功率,
Figure PCTCN2016084310-appb-000050
表示该该装置确定该最大干扰功率密度中的最小值,BWtotal表示该原发链路的传输带宽,Redundancy表示系统预留的冗余量,
Figure PCTCN2016084310-appb-000051
表示该第m个子带宽上的最大干扰功率,BWm表示该N个子传输带宽中的第m个子带宽,N≥2,1≤m≤N。
可选地,该发送模块还用于向该原发站点发送触发帧,该触发帧的信令A字段或负载信息中携带该空间复用传输信令。
根据本发明实施例的传输数据的装置400,可对应本发明实施例的传输 数据的方法中的原发接入点,并且,该装置400中的各个模块的上述操作和/或功能分别为了实现图2中方法的相应流程,为了简洁,在此不再赘述。
本发明实施例的传输数据的装置,通过根据判定参数进行判定处理,以确定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据,并生成与判定结果对应的空间复用传输信令。最后,该装置发送该空间复用传输信令,以便于该复用发送设备获取到该空间复用传输信令之后,进行基于该空间复用链路的数据传输处理。因此,本发明实施例的传输数据的方法和装置,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
图9示出了根据本发明实施例的传输数据的装置500的示意性框图,如图9所示,该装置500包括:
接收模块510,用于接收原发接入点发送的空间复用传输信令,该空间复用传输信令与该原发接入点根据判定参数进行判定处理得到的判定结果相对应,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据;
发送模块520,用于向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令,以便于该空间复用链路的复用发送设备从该上行数据帧中获取该空间复用传输信令,并根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第一空间复用传输信令,或
该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第二空间复用传输信令。
可选地,当该空间复用传输信令有N个时,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;以及该发送模块还用于
在该N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带该N个空间复用传输信令,N≥2;或
在该N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与该第m个子传输带宽对应的第m个空间复用传输信令,m≥1。
可选地,该空间复用传输信令包括功率指示信息,该功率指示信息用于指示述复用发送设备在使用该原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
可选地,该空间复用传输信令是原发接入点根据判定参数确定的,该判定参数为该原发接入点接收该装置发送的上行数据帧时允许的最大干扰功率。
根据本发明实施例的传输数据的装置500,可对应本发明实施例的传输数据的方法中的原发站点,并且,该装置500中的各个模块的上述操作和/或功能分别为了实现图5中各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例的传输数据的装置500,通过在向原发接入点发送的上行数据帧中携带空间复用传输信令,从而能够使得复用发送设备从该上行数据帧中获取该空间复用传输信令,进行基于空间复用链路的数据传输处理。因此,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
图10示出了根据本发明实施例的传输数据的装置600的示意性框图,如图10所示,该装置600包括:
接收模块610,用于接收第一空间复用传输信令,该第一空间复用传输信令与原发接入点根据第一判定参数进行判定处理得到的判定结果相对应,判定处理用于判定是否允许空间复用链路的该装置使用该原发链路的全部或部分时频资源传输数据;
处理模块620,用于根据该第一空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,当该空间复用传输信令包括用于禁止该装置使用该原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令时,该处理模块还用于根据该第二空间复用传输信令,放弃使用该原发链路的全部或部分时频资源传输数据。
可选地,当该空间复用传输信令包括用于允许该装置使用该原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令时,该处理模块还用于根据该第三空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该第一空间复用传输信令有N个,该N个第一空间复用传输 信令与该原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许该装置使用,N≥2;以及
该处理模块还用于根据该N个空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该空间复用传输信令是原发接入点根据第一判定参数确定的,第一判定参数是该原发接入点根据该原发站点使用的传输参数确定的,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
可选地,该装置600还包括:
确定模块,用于当该空间复用传输信令包括该第一判定参数时,根据该第一判定参数,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率;以及
该装置还包括传输模块,该传输模块还用于以不高于该最大发射功率的发射功率传输数据。
可选地,该装置与该原发接入点属于不同的基本服务集BSS。
可选地,该装置与该原发接入点属于同一个基本服务集BSS,该空间复用链路用于该BSS内的站点与站点D2D传输。
可选地,该处理模块还用于在D2D传输的数据帧中携带D2D传输指示信息,该D2D传输指示信息用于禁止该BSS中除该装置之外的D2D站点使用此次D2D传输机会。
可选地,该第一判定参数为该原发接入点接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
可选地,该确定模块还用于根据公式
Figure PCTCN2016084310-appb-000052
确定该最大发射功率,
其中,
Figure PCTCN2016084310-appb-000053
表示该第一最大发射功率,
Figure PCTCN2016084310-appb-000054
表示该最大干扰功率,LSR表示该装置到该原发接入点之间的传输损耗。
可选地,该通信系统还包括第三方设备,该装置600还包括生成模块,该生成模块用于生成第四空间复用传输信令;
该处理模块还用于在数据传输的数据帧中携带该第四空间复用传输信令,以便于该第三方设备在接收到该第四空间复用传输信令时,放弃使用此次复用传输机会。
根据本发明实施例的传输数据的装置600,可对应本发明实施例中的传 输数据的方法中的复用发送设备,并且,该装置600中的各个模块的上述操作和/或功能分别为了实现图7中方法的相应流程,为了简洁,在此不再赘述。
本发明实施例的传输数据的装置600,通过接收原发接入点或原发站点发送的空间复用传输信令,从而能够根据该空间复用传输信令,进行基于空间复用链路的数据传输处理。因此,能够降低原发链路和空间复用链路传输数据时的相互干扰,提高传输质量。
图11示出了本发明实施例的传输数据的设备700,如图11所示,该设备700包括:
总线710;
与所述总线710相连的处理器720;
与所述总线710相连的存储器730;
与所述总线710相连的收发器740;
其中,该处理器720通过所述总线710,调用所述存储器730中存储的程序,根据判定参数进行是否允许空间复用链路的复用发送设备使用原发链路的全部或部分时频资源传输数据的判定处理,并根据判定处理的结果生成空间复用传输信令,并通过收发器740发送该空间复用传输信令。
可选地,该空间复用传输信令包括用于指示禁止该复用发送设备使用原发链路全部或部分时频资源传输数据的第一空间复用传输信令,或
所述空间复用传输信令包括用于指示允许该复用发送设备使用原发链路全部或部分时频资源传输数据的第二空间复用传输信令。
可选地,该处理器720具体用于根据N个判定参数,进行判定处理,该N个判定参数与该原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;以及该处理器720根据该判定处理的判定结果,生成N个空间复用传输信令,该N个空间复用传输信令与该N个子传输带宽一一对应。
可选地,该收发器740具体用于将该空间复用传输信令发送给该原发站点,以便于该原发站点在发送上行数据帧时携带该空间复用传输信令,以使得该复用发送设备从该上行数据帧中获取该空间复用传输信令。
可选地,当该判定处理的判定结果为允许该复用发送设备使用该原发链路全部或部分时频资源传输数据时,该空间复用传输信令包括功率指示信息,其中,该功率指示信息用于指示该复用发送设备在使用该原发链路的全 部或部分时频资源传输数据时,能够使用的最大发射功率。
可选地,该处理器720具体用于根据判定参数进行判定处理之前,根据原发站点使用的传输参数,确定判定参数,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
可选地,该判定参数为该设备700接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
可选地,该通信系统包括至少两个原发站点时,该处理器720具体用于:
根据该至少两个原发站点中每一个站点使用的传输参数,确定接收该至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;
确定该最大干扰功率密度中的最小值;
根据该最小值确定该最大干扰功率。
可选地,该处理器720具体用于根据公式
Figure PCTCN2016084310-appb-000055
确定接收该至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,其中,isdSTAk表示该设备接收该站点k发送上行数据帧时所允许的最大干扰功率密度,
Figure PCTCN2016084310-appb-000056
表示该站点k发送上行数据帧时的发送功率,
Figure PCTCN2016084310-appb-000057
表示该设备接收该站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示该站点k发送上行数据帧时使用的传输带宽。
可选地,处理器720具体用于根据
Figure PCTCN2016084310-appb-000058
确定该原发链路的传输带宽上的最大干扰功率;或
根据
Figure PCTCN2016084310-appb-000059
确定N个子传输带宽中第m个子带宽上的最大干扰功率,
其中,Imax_level表示最大干扰功率,
Figure PCTCN2016084310-appb-000060
表示该设备确定该最大干扰功率密度中的最小值,BWtotal表示该原发链路的传输带宽,Redundancy表示系统预留的冗余量,
Figure PCTCN2016084310-appb-000061
表示该第m个子带宽上的最大干扰功率,BWm表示该N个子传输带宽中的第m个子带宽,N为大于等于2的正整数,m为大于等于1且小于N的正整数。
可选地,该收发器740具体用于向该原发站点发送触发帧,该触发帧的信令A字段或负载信息中携带该空间复用传输信令。
根据本发明实施例的传输数据的设备700,可对应于本发明实施例的传输数据的方法中的原发接入点,并且,该传输数据的设备700中的各模块和上述其他操作和/或功能分别为了实现图2中的方法100的相应流程,为了简洁,在此不再赘述。
图12示出了本发明实施例的传输数据的设备800,如图12所示,该设备800包括:
总线810;
与所述总线810相连的处理器820;
与所述总线810相连的存储器830;
与所述总线810相连的收发器840;
其中,该处理器820通过所述总线810,调用所述存储器830中存储的程序,通过收发器840接收该原发接入点发送的空间复用传输信令,该空间复用传输信令与该原发接入点根据判定参数进行判定处理得到的判定结果相对应,该判定处理用于判定是否允许该空间复用链路的复用发送设备使用该原发链路的全部或部分时频资源传输数据,并通过该收发器840向该原发接入点发送上行数据帧,该上行数据帧携带该空间复用传输信令,以便于该空间复用链路的复用发送设备从该上行数据帧中获取该空间复用传输信令,并根据该空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该空间复用传输信令包括用于指示禁止该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第一空间复用传输信令,或
该空间复用传输信令包括用于指示允许该复用发送设备使用该原发链路的全部或部分时频资源传输数据的第二空间复用传输信令。
可选地,当该空间复用传输信令有N个时,该N个空间复用传输信令与该原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被允许该复用发送设备使用,N≥2;该收发器840具体用于:
在该N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带该N个空间复用传输信令,N≥2;或
在该N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与该第m个子传输带宽对应的第m个空间复用传输信令,m≥1。
可选地,该空间复用传输信令包括功率指示信息,该功率指示信息用于 指示复用发送设备在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
可选地,该空间复用传输信令是原发接入点根据判定参数确定的,该判定参数为该原发接入点接收该设备800发送的上行数据帧时所允许的最大干扰功率。
根据本发明实施例的传输数据的设备800,可对应于本发明实施例的传输数据的方法中的原发站点,并且,该传输数据的设备800中的各模块和上述其他操作和/或功能分别为了实现图5中的方法200的相应流程,为了简洁,在此不再赘述。
图13示出了本发明实施例的传输数据的设备900,如图13所示,该设备900包括:
总线910;
与所述总线910相连的处理器920;
与所述总线910相连的存储器930;
与所述总线910相连的收发器940;
其中,该处理器920通过所述总线910,调用所述存储器930中存储的程序,通过收发器940接收第一空间复用传输信令,该空间复用传输信令与该原发接入点根据第一判定参数进行判定处理得到的判定结果相对应,判定处理用于判定是否允许该空间复用链路的设备900使用该原发链路的全部或部分时频资源传输数据;
处理器920通过所述总线910,调用所述存储器930中存储的程序,根据该第一空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该空间复用传输信令包括用于禁止该设备900使用该原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令,以及该处理器920具体用于该第二空间复用传输信令,放弃使用该原发链路的全部或部分时频资源传输数据。
可选地,可选地,该空间复用传输信令包括用于允许该设备900使用该原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令,以及该处理器920具体用于该第三空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,该空间复用传输信令有N个,该N个空间复用传输信令与该 原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许该设备900使用,N≥2;以及该处理器920具体用于根据该N个第一空间复用传输信令,进行基于该空间复用链路的数据传输处理。
可选地,当该判定处理的结果为允许该空间复用链路的设备900使用该原发链路的全部或部分时频资源传输数据时,该空间复用传输信令包括功率指示信息,以及
该处理器920具体用于根据该功率指示信息,确定在使用该原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,以及该收发器940以不高于该最大发射功率的发射功率传输数据。
可选地,该空间复用传输信令是原发接入点根据第一判定参数确定的,该第一判定参数是该原发接入点根据该原发站点使用的传输参数确定的,该传输参数包括发送功率、调制与编码策略MCS和传输带宽。
可选地,该设备900与该原发接入点属于不同的基本服务集BSS。
可选地,该设备900与该原发接入点属于同一个基本服务集BSS,该空间复用链路用于该BSS内的站点与站点D2D传输。
可选地,该收发器940具体用于在该D2D传输的数据帧中携带D2D传输指示信息,该D2D传输指示信息用于禁止该BSS中除该设备900之外的D2D站点使用此次D2D传输机会。
可选地,该第一判定参数为该原发接入点接收该原发站点发送的上行数据帧时所允许的最大干扰功率。
可选地,该处理器920具体用于根据公式
Figure PCTCN2016084310-appb-000062
确定该最大发射功率,其中,
Figure PCTCN2016084310-appb-000063
表示该最大发射功率,
Figure PCTCN2016084310-appb-000064
表示该最大干扰功率,LSR表示该设备到该原发接入点之间的传输损耗。
可选地,该通信系统还包括第三方设备时,该处理器920具体用于生成第四空间复用传输信令;以及
收发器940具体用于在数据传输的数据帧中携带该第四空间复用传输信令,以便于该第三方设备在接收到该第四空间复用传输信令时,放弃使用此次复用传输机会。
在本发明实施例中,处理单器还可以称为CPU。存储器可以包括只读存 储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,传输数据的设备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传输数据的设备的各个模块通过总线系统耦合在一起,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,解码单元或者处理单元读取存储器中的信息,结合其硬件完成上述方法的步骤。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输数据的设备900,可对应于本发明实施例的传输数据的方法中的复用发送设备,并且,该传输数据的设备900中的各模块和上述其他操作和/或功能分别为了实现图7中的方法300的相应流程,为了简洁,在此不再赘述。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以该权利要求的保护范围为准。

Claims (56)

  1. 一种传输数据的方法,其特征在于,所述方法应用于包括原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在原发接入点和原发站点之间,所述方法包括:
    所述原发接入点根据判定参数,进行判定处理,所述判定处理用于判定是否允许所述空间复用链路的复用发送设备使用所述原发链路的全部或部分时频资源传输数据;
    所述原发接入点根据所述判定处理的判定结果,生成空间复用传输信令;
    所述原发接入点发送所述空间复用传输信令,以便于所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  2. 根据权利要求1所述的方法,其特征在于,所述空间复用传输信令包括用于指示禁止所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第一空间复用传输信令,或
    所述空间复用传输信令包括用于指示允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第二空间复用传输信令。
  3. 根据权利要求1或2所述的方法,其特征在于,所述原发接入点根据所述判定参数,进行判定处理,包括:
    所述原发接入点根据N个判定参数,进行判定处理,所述N个判定参数与所述原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;
    所述原发接入点根据所述判定处理的判定结果,生成空间复用传输信令,包括:
    所述原发接入点根据所述判定处理的判定结果,生成N个空间复用传输信令,所述N个空间复用传输信令与所述N个子传输带宽一一对应。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述原发接入点发送所述空间复用传输信令,包括:
    所述原发接入点将所述空间复用传输信令发送给所述原发站点,以便于所述原发站点在发送上行数据帧时携带所述空间复用传输信令,以使得所述复用发送设备从所述上行数据帧中获取所述空间复用传输信令。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述判 定处理的判定结果为允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据时,所述空间复用传输信令包括功率指示信息,其中,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述原发接入点根据判定参数,进行判定处理之前,所述方法还包括:
    所述原发接入点根据所述原发站点使用的传输参数,确定判定参数,所述传输参数包括发送功率、调制与编码策略MCS和传输带宽。
  7. 根据权利要求6所述的方法,其特征在于,所述判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时允许的最大干扰功率。
  8. 根据权利要求7所述的方法,其特征在于,所述通信系统包括至少两个原发站点,所述原发接入点根据所述原发站点使用的传输参数,确定所述最大干扰功率,包括:
    所述原发接入点根据所述至少两个原发站点中每一个站点使用的传输参数,确定接收所述至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;
    所述原发接入点确定所述最大干扰功率密度中的最小值;
    所述原发接入点根据所述最小值确定所述最大干扰功率。
  9. 根据权利要求8所述的方法,其特征在于,所述原发接入点根据所述至少两个原发站点中每一个站点使用的传输参数,确定接收所述至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度,包括:
    所述原发接入点根据公式
    Figure PCTCN2016084310-appb-100001
    确定接收所述至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,
    其中,isdSTAk表示所述原发接入点接收所述站点k发送上行数据帧时所允许的最大干扰功率密度,
    Figure PCTCN2016084310-appb-100002
    表示所述站点k发送上行数据帧时的发送功率,
    Figure PCTCN2016084310-appb-100003
    表示所述原发接入点接收所述站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示所述站点k发送上行数据帧时使用的传输带宽。
  10. 根据权利要求9所述的方法,其特征在于,所述原发接入点根据所 述最小值确定所述最大干扰功率,包括:
    根据公式
    Figure PCTCN2016084310-appb-100004
    确定所述原发链路的传输带宽上的最大干扰功率;或
    根据公式
    Figure PCTCN2016084310-appb-100005
    确定N个子传输带宽中第m个子带宽上的最大干扰功率,
    其中,Imax_level表示最大干扰功率,
    Figure PCTCN2016084310-appb-100006
    表示所述原发接入点确定所述最大干扰功率密度中的最小值,BWtotal表示所述原发链路的传输带宽,Redundancy表示系统预留的冗余量,
    Figure PCTCN2016084310-appb-100007
    表示所述第m个子带宽上的最大干扰功率,BWm表示所述N个子传输带宽中的第m个子带宽,N≥2,1≤m≤N,m和N都为正整数。
  11. 根据权利要求4至10中任一项所述的方法,其特征在于,所述原发接入点将所述空间复用传输信令发送给所述原发站点,包括:
    所述原发接入点向所述原发站点发送触发帧,所述触发帧的信令A字段或负载信息中携带所述空间复用传输信令。
  12. 一种传输数据的方法,其特征在于,所述方法应用于使原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在原发接入点和原发站点之间,所述方法包括:
    所述原发站点接收所述原发接入点发送的空间复用传输信令,所述空间复用传输信令用于所述空间复用链路的复用发送设备确定是否使用所述原发链路的全部或部分时频资源,进行基于所述空间复用链路的数据传输处理;
    所述原发站点向所述原发接入点发送上行数据帧,所述上行数据帧携带所述空间复用传输信令。
  13. 根据权利要求12所述的方法,其特征在于,所述空间复用传输信令包括用于指示禁止所述复用发送设备使用所述原发链路的全部或部分时频资源传输数据的第一空间复用传输信令,或
    所述空间复用传输信令包括用于指示允许所述复用发送设备使用所述原发链路的全部或部分时频资源传输数据的第二空间复用传输信令。
  14. 根据权利要求12或13所述的方法,其特征在于,所述空间复用传输信令有N个,所述N个空间复用传输信令与所述原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被 允许所述复用发送设备使用,N≥2;
    所述原发站点向所述原发接入点发送上行数据帧,所述上行数据帧携带所述空间复用传输信令,包括:
    所述原发站点在所述N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带所述N个空间复用传输信令,N≥2;或
    所述原发站点在所述N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与所述第m个子传输带宽对应的第m个空间复用传输信令,1≤m≤N,m和N都为正整数。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述空间复用传输信令包括功率指示信息,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述空间复用传输信令是所述原发接入点根据判定参数确定的,所述判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时所允许的最大干扰功率。
  17. 一种传输数据的方法,其特征在于,所述方法应用于使原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在原发接入点和原发站点之间,所述方法包括:
    复用发送设备接收第一空间复用传输信令,所述第一空间复用传输信令用于所述空间复用链路的复用发送设备确定是否使用所述原发链路的全部或部分时频资源,进行基于所述空间复用链路的数据传输处理;
    所述复用发送设备根据所述第一空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  18. 根据权利要求17所述的方法,其特征在于,所述空间复用传输信令包括用于禁止所述复用发送设备使用所述原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令,以及
    所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理,包括:
    所述复用发送设备根据所述第二空间复用传输信令,放弃使用所述原发链路的全部或部分时频资源传输数据。
  19. 根据权利要求17所述的方法,所述空间复用传输信令包括用于允许所述复用发送设备使用所述原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令,以及
    所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理,包括:
    所述复用发送设备根据所述第三空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述空间复用传输信令有N个,所述N个空间复用传输信令与所述原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;
    所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理,包括:
    所述复用发送设备根据所述N个空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  21. 根据权利要求19或20所述的方法,其特征在于,当所述判定处理的结果为允许所述空间复用链路的复用发送设备使用所述原发链路的全部或部分时频资源传输数据时,所述空间复用传输信令包括功率指示信息,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率,以及
    所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理,包括:
    所述复用发送设备根据所述功率指示信息,确定在使用所述原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,并以不高于所述最大发射功率的发射功率传输数据。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述第一空间复用传输信令是所述原发接入点根据第一判定参数确定的,所述第一判定参数是所述原发接入点根据所述原发站点使用的传输参数确定的,所述传输参数包括发送功率、调制与编码策略MCS和传输带宽。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述复用发送设备与所述原发接入点属于不同的基本服务集BSS。
  24. 根据权利要求17至22中任一项所述的方法,其特征在于,所述复用发送设备与所述原发接入点属于同一个基本服务集BSS,所述空间复用链路用于所述BSS内的站点与站点D2D传输。
  25. 根据权利要求24所述的方法,其特征在于,所述复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理,包括:
    所述复用发送设备在所述D2D传输的数据帧中携带D2D传输指示信息,所述D2D传输指示信息用于禁止所述BSS中除所述复用发送设备之外的D2D站点使用此次D2D传输机会。
  26. 根据权利要求22至25中任一项所述的方法,其特征在于,所述第一判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时所允许的最大干扰功率。
  27. 根据权利要求26所述的方法,其特征在于,所述复用发送设备根据所述最大干扰功率,确定在使用所述原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率,包括:
    根据公式
    Figure PCTCN2016084310-appb-100008
    确定所述最大发射功率,
    其中,
    Figure PCTCN2016084310-appb-100009
    表示所述最大发射功率,
    Figure PCTCN2016084310-appb-100010
    表示所述最大干扰功率,LSR表示所述复用发送设备到所述原发接入点之间的传输损耗。
  28. 根据权利要求17至27中任一项所述的方法,其特征在于,所述通信系统还包括第三方设备,所述方法还包括:
    所述复用发送设备生成第四空间复用传输信令,所述第四空间复用传输信令用于禁止所述第三方设备使用此次复用传输机会传输数据;
    所述复用发送设备在数据传输的数据帧中携带所述第四空间复用传输信令,以便于所述第三方设备在接收到所述第四空间复用传输信令时,放弃使用此次复用传输机会。
  29. 一种传输数据的装置,其特征在于,所述装置应用于包括原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在所述装置与原发站点之间,所述装置包括:
    判定模块,用于根据判定参数,进行判定处理,所述判定处理用于判定是否允许所述空间复用链路的复用发送设备使用所述原发链路的全部或部分时频资源传输数据;
    生成模块,用于根据所述判定模块进行判定处理得到的判定结果,生成空间复用传输信令;
    发送模块,用于发送所述生成模块生成的空间复用传输信令,以便于复用发送设备根据所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  30. 根据权利要求29所述的装置,其特征在于,所述生成模块还用于生成用于指示禁止所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第一空间复用传输信令,或
    生成用于指示允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据的第二空间复用传输信令。
  31. 根据权利要求29或30所述的装置,其特征在于,所述判定模块还用于根据N个判定参数,进行判定处理,所述N个判定参数与所述原发链路的N个子传输带宽一一对应,每个判定参数用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;以及
    所述生成模块还用于根据所述判定处理的判定结果,生成N个空间复用传输信令,所述N个空间复用传输信令与所述N个子传输带宽一一对应。
  32. 根据权利要求29至31中任一项所述的装置,其特征在于,所述发送模块还用于将所述空间复用传输信令发送给所述原发站点,以便于所述原发站点在发送上行数据帧时携带所述空间复用传输信令,以使得所述复用发送设备从所述上行数据帧中获取所述空间复用传输信令。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述生成模块还用于当所述判定处理的结果为允许所述复用发送设备使用所述原发链路全部或部分时频资源传输数据时,生成包括功率指示信息的空间复用传输信令,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
  34. 根据权利要求29至33中任一项所述的装置,其特征在于,所述装置还包括:
    确定模块,所述确定模块用于在所述判定模块进行判定处理之前,根据所述原发站点使用的传输参数,确定判定参数,所述传输参数包括发送功率、调制与编码策略MCS和传输带宽。
  35. 根据权利要求34所述的装置,其特征在于,所述判定参数为接收 所述原发站点发送的上行数据帧时所允许的最大干扰功率。
  36. 根据权利要求35所述的装置,其特征在于,所述通信系统包括至少两个原发站点,所述确定模块还用于:
    确定接收所述至少两个原发站点中每一个站点发送的上行数据帧时允许的最大干扰功率密度;
    确定所述最大干扰功率密度中的最小值;
    根据所述最小值确定所述最大干扰功率。
  37. 根据权利要求36所述的装置,其特征在于,所述确定模块还用于根据公式
    Figure PCTCN2016084310-appb-100011
    确定接收所述至少两个原发站点中的站点k发送的上行数据帧时允许的最大干扰功率密度,
    其中,isdSTAk表示所述原发接入点接收所述站点k发送上行数据帧时所允许的最大干扰功率密度,
    Figure PCTCN2016084310-appb-100012
    表示所述站点k发送上行数据帧时的发送功率,
    Figure PCTCN2016084310-appb-100013
    表示所述装置接收所述站点k发送的上行数据帧时的最小信号与干扰加噪声比,BWSTAk表示所述站点k发送上行数据帧时使用的传输带宽。
  38. 根据权利要求37所述的装置,其特征在于,所述确定模块还用于根据公式
    Figure PCTCN2016084310-appb-100014
    确定所述原发链路的传输带宽上的最大干扰功率;或
    根据公式
    Figure PCTCN2016084310-appb-100015
    确定N个子传输带宽中第m个子带宽上的最大干扰功率,
    其中,Imax_level表示最大干扰功率,
    Figure PCTCN2016084310-appb-100016
    表示所述原发接入点确定所述最大干扰功率密度中的最小值,BWtotal表示所述原发链路的传输带宽,Redundancy表示系统预留的冗余量,
    Figure PCTCN2016084310-appb-100017
    表示所述第m个子带宽上的最大干扰功率,BWm表示所述N个子传输带宽中的第m个子带宽,N≥2,1≤m≤N,m和N都为正整数。
  39. 根据权利要求33至38所述的装置,所述发送模块还用于向所述原发站点发送触发帧,所述触发帧的信令A字段或负载信息中携带所述空间复用传输信令。
  40. 一种传输数据的装置,其特征在于,其特征在于,所述装置应用于 包括原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在所述装置与原发接入点之间,所述装置包括:
    接收模块,用于接收原发接入点发送的空间复用传输信令,所述空间复用传输信令用于所述空间复用链路的复用发送设备确定是否使用所述原发链路的全部或部分时频资源,进行基于所述空间复用链路的数据传输处理;
    发送模块,用于向所述原发接入点发送上行数据帧,所述上行数据帧携带所述空间复用传输信令。
  41. 根据权利要求40所述的装置,其特征在于,所述空间复用传输信令包括用于指示禁止所述复用发送设备使用所述原发链路的全部或部分时频资源传输数据的第一空间复用传输信令,或
    所述空间复用传输信令包括用于指示允许所述复用发送设备使用所述原发链路的全部或部分时频资源传输数据的第二空间复用传输信令。
  42. 根据权利要求40或41所述的装置,其特征在于,当所述空间复用传输信令有N个时,所述N个空间复用传输信令与所述原发链路的N个子传输带宽一一对应,每个空间复用传输信令用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;以及
    在所述N个子传输带宽中的每一个子传输带宽的上行数据帧的信令A字段携带所述N个空间复用传输信令,N≥2;或
    在所述N个子传输带宽中的第m个子传输带宽的上行数据帧的信令A字段携带与所述第m个子传输带宽对应的第m个空间复用传输信令,m≥1。
  43. 根据权利要求40至42中任一项所述的装置,其特征在于,所述空间复用传输信令包括功率指示信息,所述功率指示信息用于所述复用发送设备确定在使用所述原发链路的全部或部分时频资源传输数据时,能够使用的最大发射功率。
  44. 根据权利要求40至43中任一项所述的装置,其特征在于,所述空间复用传输信令是所述原发接入点根据判定参数确定的,所述判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时允许的最大干扰功率。
  45. 一种传输数据的装置,其特征在于,所述装置应用于包括原发链路和空间复用链路传输数据的通信系统,所述原发链路设置在原发接入点与原发站点之间,所述装置包括:
    接收模块,用于接收第一空间复用传输信令,所述第一空间复用传输信 令用于所述空间复用链路的复用发送设备确定是否使用所述原发链路的全部或部分时频资源,进行基于所述空间复用链路的数据传输处理;
    处理模块,用于根据所述接收模块接收到的所述空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  46. 根据权利要求45所述的装置,其特征在于,当所述空间复用传输信令包括用于禁止所述复用发送设备使用所述原发链路的全部或部分时频域资源传输数据的第二空间复用传输信令时,所述处理模块还用于根据所述第二空间复用传输信令,放弃使用所述原发链路的全部或部分时频资源传输数据。
  47. 根据权利要求45所述的装置,其特征在于,当所述空间复用传输信令包括用于允许所述复用发送设备使用所述原发链路的全部或部分时频域资源传输数据的第三空间复用传输信令时,所述处理模块还用于根据所述第三空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  48. 根据权利要求45至47中任一项所述的装置,其特征在于,所述空间复用传输信令有N个,所述N个空间复用传输信令与所述原发链路的N个子传输带宽一一对应,每一个空间复用传输信令用于判定所对应的子传输带宽是否被允许所述复用发送设备使用,N≥2;以及
    所述处理模块还用于根据所述N个空间复用传输信令,进行基于所述空间复用链路的数据传输处理。
  49. 根据权利要求47或48所述的装置,其特征在于,所述装置还包括:
    确定模块,用于当所述空间复用传输信令包括功率指示信息时,根据所述功率指示信息,确定在使用所述原发链路的全部或部分的时频资源传输数据时能够使用的最大发射功率;以及
    所述装置还包括传输模块,所述传输模块还用于以不高于所述最大发射功率的发射功率传输数据。
  50. 根据权利要求45至49中任一项所述的装置,其特征在于,所述空间复用传输信令是所述原发接入点根据第一判定参数确定的,所述第一判定参数是所述原发接入点根据所述原发站点使用的传输参数确定的,所述传输参数包括发送功率、调制与编码策略MCS和传输带宽。
  51. 根据权利要求45至50中任一项所述的装置,其特征在于,所述装置与所述原发接入点属于不同的基本服务集BSS。
  52. 根据权利要求45至50中任一项所述的装置,其特征在于,所述装置与所述原发接入点属于同一个基本服务集BSS,所述空间复用链路用于所述BSS内的站点与站点D2D传输。
  53. 根据权利要求52所述的装置,其特征在于,所述处理模块还用于在D2D传输的数据帧中携带D2D传输指示信息,所述D2D传输指示信息用于禁止所述BSS中除所述复用发送设备之外的D2D站点使用此次D2D传输机会。
  54. 根据权利要求50至53中任一项所述的装置,所述判定参数为所述原发接入点接收所述原发站点发送的上行数据帧时所允许的最大干扰功率。
  55. 根据权利要求54所述的装置,其特征在于,所述确定模块还用于根据公式
    Figure PCTCN2016084310-appb-100018
    确定所述最大发射功率,
    其中,
    Figure PCTCN2016084310-appb-100019
    表示所述最大发射功率,
    Figure PCTCN2016084310-appb-100020
    表示所述最大干扰功率,LSR表示所述装置到所述原发接入点之间的传输损耗。
  56. 根据权利要求45至55中任一项所述的装置,其特征在于,所述通信系统还包括第三方设备,以及
    所述装置还包括生成模块,所述生成模块用于生成第四空间复用传输信令,所述第四空间复用传输信令用于禁止所述第三方设备使用此次复用传输机会传输数据;
    所述处理模块还用于在数据传输的数据帧中携带所述第四空间复用传输信令,以便于所述第三方设备在接收到所述第四空间复用传输信令时,放弃使用此次复用传输机会。
PCT/CN2016/084310 2015-10-20 2016-06-01 传输数据的方法和装置 WO2017067176A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2018118165A RU2686852C1 (ru) 2015-10-20 2016-06-01 Устройство и способ передачи данных
AU2016343378A AU2016343378B2 (en) 2015-10-20 2016-06-01 Data transmission method and apparatus
BR112018008030-6A BR112018008030A2 (zh) 2015-10-20 2016-06-01 Method and apparatus for transmitting data
MX2018004955A MX2018004955A (es) 2015-10-20 2016-06-01 Método y aparato de transmisión de datos.
KR1020187013701A KR102103308B1 (ko) 2015-10-20 2016-06-01 데이터를 전송하기 위한 방법 및 디바이스
CA3002694A CA3002694C (en) 2015-10-20 2016-06-01 Data transmission method and apparatus
EP22170437.2A EP4096138B1 (en) 2015-10-20 2016-06-01 Data transmission method and apparatus
EP16856617.2A EP3358776B1 (en) 2015-10-20 2016-06-01 Method and device for transmitting data
JP2018520076A JP6559891B2 (ja) 2015-10-20 2016-06-01 データ送信方法及び機器
ES16856617T ES2917323T3 (es) 2015-10-20 2016-06-01 Método y aparato de transmisión de datos
US15/956,952 US11122578B2 (en) 2015-10-20 2018-04-19 Data transmission method and apparatus
ZA2018/02799A ZA201802799B (en) 2015-10-20 2018-04-26 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510680806.4 2015-10-20
CN201510680806.4A CN106603211B (zh) 2015-10-20 2015-10-20 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/956,952 Continuation US11122578B2 (en) 2015-10-20 2018-04-19 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017067176A1 true WO2017067176A1 (zh) 2017-04-27

Family

ID=58554798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084310 WO2017067176A1 (zh) 2015-10-20 2016-06-01 传输数据的方法和装置

Country Status (13)

Country Link
US (1) US11122578B2 (zh)
EP (2) EP3358776B1 (zh)
JP (1) JP6559891B2 (zh)
KR (1) KR102103308B1 (zh)
CN (2) CN106603211B (zh)
AU (1) AU2016343378B2 (zh)
BR (1) BR112018008030A2 (zh)
CA (1) CA3002694C (zh)
ES (1) ES2917323T3 (zh)
MX (1) MX2018004955A (zh)
RU (1) RU2686852C1 (zh)
WO (1) WO2017067176A1 (zh)
ZA (1) ZA201802799B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156173A1 (zh) * 2019-01-30 2020-08-06 华为技术有限公司 空间复用的指示方法及无线通信装置
CN111684833A (zh) * 2018-02-07 2020-09-18 索尼公司 通信装置及通信方法
US11696330B2 (en) 2017-05-31 2023-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods for handling interference
US12003970B2 (en) 2019-01-30 2024-06-04 Huawei Technologies Co., Ltd. Spatial reuse indication method and wireless communications apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3393163B1 (en) * 2016-01-11 2022-08-31 Huawei Technologies Co., Ltd. Wireless communication methods and apparatus
CN109245851B (zh) * 2017-07-11 2022-11-15 中兴通讯股份有限公司 一种无线帧传输的方法与装置
US11683833B2 (en) * 2017-09-28 2023-06-20 Qualcomm Incorporated Spatial listen-before-talk (LBT) with channel variation consideration
CN111543113B (zh) * 2018-04-03 2022-02-11 Oppo广东移动通信有限公司 数据传输的方法和设备
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置
KR102160878B1 (ko) * 2018-12-31 2020-09-29 서울대학교산학협력단 공간 재사용 전송 방법 및 장치
JP7233248B2 (ja) * 2019-02-26 2023-03-06 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
US11678326B2 (en) * 2019-07-12 2023-06-13 Mediatek Singapore Pte. Ltd. Multi-access point uplink collaboration
US11546938B2 (en) 2019-08-09 2023-01-03 Qualcomm Incorporated Physical layer preamble and signaling for wireless communication
CN113676202B (zh) * 2020-04-30 2022-10-18 华为技术有限公司 一种多射频抗干扰方法及相关设备
US11445452B1 (en) * 2020-12-08 2022-09-13 T-Mobile Innovations Llc Systems and methods for limiting device transmit power
TWI748839B (zh) * 2021-01-08 2021-12-01 瑞昱半導體股份有限公司 具有資料重用機制的資料傳輸方法及裝置
US11690024B2 (en) * 2021-01-27 2023-06-27 Qualcomm Incorporated Configuring client device regulation modes for sidelink communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833409A (zh) * 2003-08-07 2006-09-13 皇家飞利浦电子股份有限公司 无线网络系统中的信道协调
US20100099431A1 (en) * 2008-10-22 2010-04-22 Qualcomm Incorporated Method and system for interference management in a spectrum shared by wan and femto cells
CN102892120A (zh) * 2011-07-22 2013-01-23 中兴通讯股份有限公司 降低宏小区终端对微小区上行带外辐射干扰的方法及系统
CN103548393A (zh) * 2011-03-24 2014-01-29 黑莓有限公司 设备授权的无线电资源系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493955B2 (en) * 2007-01-05 2013-07-23 Qualcomm Incorporated Interference mitigation mechanism to enable spatial reuse in UWB networks
RU2454834C2 (ru) * 2007-11-27 2012-06-27 Квэлкомм Инкорпорейтед Управление помехами в системе беспроводной связи с использованием адаптивной подстройки потерь на трассе распространения
KR101023441B1 (ko) * 2009-02-12 2011-03-24 서울대학교산학협력단 공간 재사용을 사용하는 멀티 홉 네트워크을 위한 방법
KR20110007935A (ko) * 2009-07-17 2011-01-25 한국전자통신연구원 공간 재활용 기법을 사용하는 네트워크 및 상기 네트워크의 운용 방법
US8948017B2 (en) * 2010-06-30 2015-02-03 Lg Electronics Inc. Method and apparatus for transmitting management information in wireless local area network system
JP6065005B2 (ja) * 2012-06-05 2017-01-25 ソニー株式会社 通信制御装置、基地局、端末装置及び通信制御方法
US9451604B2 (en) * 2012-08-03 2016-09-20 Intel Corporation Signaling and channel designs for D2D communications
US8982895B2 (en) * 2012-09-21 2015-03-17 Blackberry Limited Inter-device communication in wireless communication systems
CN205268172U (zh) 2013-03-14 2016-06-01 贝克顿·迪金森公司 连续葡萄糖监视体上传感器
US9345046B2 (en) * 2013-03-29 2016-05-17 Intel IP Corporation User equipment and method for distributed channel access for D2D communications
US9160515B2 (en) * 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
US9408230B2 (en) * 2013-05-03 2016-08-02 Qualcomm Incorporated Transmit opportunity (TXOP) based channel reuse
JP6162328B2 (ja) * 2013-05-24 2017-07-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated 送信機会(txop)ベースのチャネル再使用
EP3014795B1 (en) * 2013-06-28 2020-09-16 MediaTek Singapore Pte Ltd. Beamforming enhancements for spatial reuse in wireless networks
CN104284441B (zh) * 2013-07-12 2019-04-19 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
WO2015112780A1 (en) 2014-01-24 2015-07-30 Mediatek Singapore Pte. Ltd. Adaptive cca and tx power level adjustment for dense deployment of wireless networks
US9825729B2 (en) * 2014-06-26 2017-11-21 Intel IP Corporation Spatial reuse of Wi-Fi channels with interference estimation and control
US9794790B2 (en) * 2014-10-29 2017-10-17 Intel IP Corporation Wireless device, method, and computer readable media for spatial reuse for device-to-device links
US20160233940A1 (en) * 2015-02-06 2016-08-11 Po-Kai Huang Wireless device, method, and computer readable media for spatial reuse in a high efficiency wireless local-area network
US10172137B1 (en) * 2015-03-02 2019-01-01 Newracom, Inc. Apparatus and methods for efficient wireless channel usage
US9894653B2 (en) * 2015-04-24 2018-02-13 Intel IP Corporation Apparatus, computer readable medium, and method for multi-user request-to-send and clear-to-send in a high efficiency wireless local-area network
JP6697003B2 (ja) * 2015-04-29 2020-05-20 インターデイジタル パテント ホールディングス インコーポレイテッド Wlanにおけるサブチャネル化送信方式のための方法およびデバイス
US10701730B2 (en) * 2015-06-05 2020-06-30 Lg Electronics Inc. Method for transmitting data in wireless communication system and apparatus therefor
EP3313140B1 (en) * 2015-07-17 2023-11-01 Huawei Technologies Co., Ltd. Method for setting nav in wireless communication system, and related device
WO2017018801A1 (en) 2015-07-29 2017-02-02 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
WO2017026824A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 nav 동작 방법 및 이를 위한 스테이션 장치
US20170064644A1 (en) * 2015-08-24 2017-03-02 Intel IP Corporation [11ax] conditional spatial reuse
US9749967B2 (en) * 2015-09-07 2017-08-29 Mediatek Inc. Spatial reuse parameters for opportunistic adaptive TPC and CCA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833409A (zh) * 2003-08-07 2006-09-13 皇家飞利浦电子股份有限公司 无线网络系统中的信道协调
US20100099431A1 (en) * 2008-10-22 2010-04-22 Qualcomm Incorporated Method and system for interference management in a spectrum shared by wan and femto cells
CN103548393A (zh) * 2011-03-24 2014-01-29 黑莓有限公司 设备授权的无线电资源系统
CN102892120A (zh) * 2011-07-22 2013-01-23 中兴通讯股份有限公司 降低宏小区终端对微小区上行带外辐射干扰的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for Information Technology, Local and Metropolitan Area Networks, Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Phys ical Layer (PHY) Specifications Amendment 4: Protected Management Frames", IEEE COMPUTER SOCIETY, 30 September 2009 (2009-09-30), XP055377521 *
See also references of EP3358776A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696330B2 (en) 2017-05-31 2023-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods for handling interference
CN111684833A (zh) * 2018-02-07 2020-09-18 索尼公司 通信装置及通信方法
US11647455B2 (en) 2018-02-07 2023-05-09 Sony Group Corporation Communication apparatus and communication method for establishing protection areas for downlink communications
WO2020156173A1 (zh) * 2019-01-30 2020-08-06 华为技术有限公司 空间复用的指示方法及无线通信装置
CN111510264A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 空间复用的指示方法及无线通信装置
CN111510264B (zh) * 2019-01-30 2023-09-12 华为技术有限公司 空间复用的指示方法及无线通信装置
US12003970B2 (en) 2019-01-30 2024-06-04 Huawei Technologies Co., Ltd. Spatial reuse indication method and wireless communications apparatus

Also Published As

Publication number Publication date
AU2016343378A1 (en) 2018-05-17
CN112491521B (zh) 2022-08-19
MX2018004955A (es) 2018-09-12
CA3002694A1 (en) 2017-04-27
CN112491521A (zh) 2021-03-12
RU2686852C1 (ru) 2019-05-06
CA3002694C (en) 2023-12-19
EP3358776A4 (en) 2018-10-03
JP2018537886A (ja) 2018-12-20
EP4096138C0 (en) 2024-01-31
KR102103308B1 (ko) 2020-04-22
AU2016343378B2 (en) 2020-02-20
KR20180069871A (ko) 2018-06-25
CN106603211B (zh) 2020-11-27
CN106603211A (zh) 2017-04-26
EP4096138B1 (en) 2024-01-31
ES2917323T3 (es) 2022-07-07
BR112018008030A2 (zh) 2018-10-23
JP6559891B2 (ja) 2019-08-14
ZA201802799B (en) 2021-02-24
US20180242331A1 (en) 2018-08-23
US11122578B2 (en) 2021-09-14
EP3358776A1 (en) 2018-08-08
EP4096138A1 (en) 2022-11-30
EP3358776B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2017067176A1 (zh) 传输数据的方法和装置
TWI745779B (zh) 在非授權頻譜上處理通訊方法及相關通訊裝置
US10743185B2 (en) Data transmission method and apparatus
CN112188633A (zh) 通信方法和设备
WO2020191785A1 (zh) 一种车联网系统中的通信方法及终端设备、网络设备
CN107969170B (zh) 无线通信的方法、装置和系统
CN105474736B (zh) 传输数据的方法及装置
KR102020207B1 (ko) 무선 통신 시스템 및 무선 통신 방법
TWI741018B (zh) 發送或接收通道狀態資訊的方法和裝置
WO2016201693A1 (zh) 数据传输方法和装置
US11800546B2 (en) Method and apparatus for determining number of uplink control information transmission resources, and program
EP4030843A1 (en) Method processing for split resources and processing device
US20240073966A1 (en) Methods and systems for improved resource unit utilization
CN112218380A (zh) 传输harq-ack的方法及设备
CN117014084A (zh) 信道处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018520076

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3002694

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/004955

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008030

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187013701

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016343378

Country of ref document: AU

Date of ref document: 20160601

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018118165

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2016856617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018008030

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180420