WO2017066907A1 - 一种构建高可利用数据率的Hi-C文库的方法 - Google Patents

一种构建高可利用数据率的Hi-C文库的方法 Download PDF

Info

Publication number
WO2017066907A1
WO2017066907A1 PCT/CN2015/092180 CN2015092180W WO2017066907A1 WO 2017066907 A1 WO2017066907 A1 WO 2017066907A1 CN 2015092180 W CN2015092180 W CN 2015092180W WO 2017066907 A1 WO2017066907 A1 WO 2017066907A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatin
immobilized
dna fragment
dna
library
Prior art date
Application number
PCT/CN2015/092180
Other languages
English (en)
French (fr)
Inventor
张介中
李珊珊
赵红梅
苑赞
玄兆伶
李大为
梁峻彬
陈重建
Original Assignee
安诺优达基因科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安诺优达基因科技(北京)有限公司 filed Critical 安诺优达基因科技(北京)有限公司
Priority to PCT/CN2015/092180 priority Critical patent/WO2017066907A1/zh
Publication of WO2017066907A1 publication Critical patent/WO2017066907A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the invention relates to a library construction method capable of capturing chromatin three-dimensional conformation in a genome-wide range, and belongs to the technical field of gene sequencing.
  • DNA is the carrier of cellular genetic information, which exists in the body in the form of chromatin in each cell and controls the progress of life activities.
  • most of the research on DNA information is carried out by studying the sequence of bases in DNA molecules (one-dimensional information of DNA), and analyzing the law of life activities by analyzing the base arrangement information.
  • the nucleus in the real state is a narrow three-dimensional space.
  • the DNA of the linear molecular structure is located in the nucleus in a complex crimping manner.
  • the original one-dimensional DNA sequence is assigned a three-dimensional conformation and leads to a large number of complex gene regulation modes. .
  • simple one-dimensional DNA sequence information cannot provide information related to the spatial distribution of real DNA, and therefore cannot explain a series of gene regulation phenomena caused by spatial conformation.
  • Hi-C technology is a technique that combines high-throughput sequencing methods to detect chromatin information throughout the nucleus.
  • Hi-C technology is a derivative technology of Chromosome conformation capture (3C), which refers to the capture of chromosome conformation based on high-throughput, which can capture the space between different gene loci in the whole genome. Interacting to study DNA elements that regulate genes in three dimensions.
  • Patent Document 1 and Non-Patent Document 1 report a Hi-C method which immobilizes a chromatin structure by formaldehyde, then interrupts the original genome sequence by restriction endonuclease, and performs biotin labeling, and then re- The ligation forms a new DNA molecule with structural information.
  • This process if two DNA fragments of different genomic locations are joined to form a hybrid molecule, this will be considered as evidence that the two DNA molecules are spatially adjacent to each other.
  • the DNA is then purified and disrupted, and then the labeled biotin molecules are harvested and enriched to obtain the desired spatially interacting DNA hybrid molecules.
  • the method mainly comprises the following steps: 1) firstly performing formaldehyde cross-linking immobilization on the sample cells, and the DNA having a relatively close internal space is cross-linked by the protein and collecting the cells; 2) using the lysis system and performing the grinding with the cells.
  • the Hi-C article inventory constructed by the method reported in this document has a problem that the available data rate is low.
  • Patent Document 1
  • the present inventors have made intensive studies to solve the above technical problems, and have made ingenious improvements on the basis of the conventional method of constructing a Hi-C library, which significantly improves the available data rate of the constructed Hi-C library, thereby completing The invention has been made.
  • the present invention includes:
  • a method of constructing a Hi-C library comprising the steps of:
  • Step A treating the cells with more than 1% by weight of a formaldehyde solution to obtain cells in which chromatin is immobilized;
  • Step B cleavage of the chromatin-immobilized cells obtained in the step A to obtain immobilized chromatin;
  • Step C digesting the immobilized chromatin obtained in the step B to obtain an immobilized chromatin fragment
  • Step C1 performing biotin labeling on the end of the immobilized chromatin fragment obtained in the step C, and blunt-extending to obtain a blunt-ended immobilized chromatin fragment;
  • Step D re-ligating the blunt-ended immobilized chromatin fragments obtained in the step C1 to obtain a re-ligated immobilized chromatin fragment;
  • Step E de-immobilizing the religated immobilized chromatin fragment obtained in the step D, and recovering the DNA fragment;
  • Step F removing the unligated end biotin label in the DNA fragment recovered in the step E to obtain a purified DNA fragment;
  • Step G disrupting the purified DNA fragment obtained in the step F to obtain a smaller DNA fragment
  • Step H1 end-repairing the smaller DNA fragment and adding A to the 3' end; then,
  • Step H2 using a streptavidin solid carrier to capture a DNA fragment containing a biotin label
  • Step H3 ligating the biotin-labeled DNA fragment on the solid support
  • Step H4 washing the solid carrier one or more times with a 0.01 to 1 M NaOH solution
  • Step H5 PCR amplification was carried out using a DNA fragment remaining on the solid support as a template to construct a Hi-C library.
  • a method of determining a chromatin region that may interact spatially comprising:
  • the Hi-C library was sequenced and the obtained information was aligned with chromatin DNA primary sequence information.
  • the available data rate of the constructed Hi-C library can be significantly improved by merely making ingenious improvements based on the conventional method of constructing the Hi-C library.
  • the "available data rate” means that after sequencing alignment, both ends of the sequencing library can be aligned at both ends, and the two ends are aligned to different positions on the genome.
  • “different positions on the genome” means: different fragments obtained by digestion in the following step C, for example, different fragments which are produced after digestion.
  • the invention provides a method of constructing a Hi-C library (method of the invention), the method comprising the steps of:
  • Step A treating the cells with more than 1% by weight of a formaldehyde solution to obtain cells in which chromatin is immobilized;
  • Step B cleavage of the chromatin-immobilized cells obtained in the step A to obtain immobilized chromatin;
  • Step C digesting the immobilized chromatin obtained in the step B to obtain an immobilized chromatin fragment
  • Step C1 performing biotin labeling on the end of the immobilized chromatin fragment obtained in the step C, and blunt-extending to obtain a blunt-ended immobilized chromatin fragment;
  • Step D re-ligating the blunt-ended immobilized chromatin fragments obtained in the step C1 to obtain a re-ligated immobilized chromatin fragment;
  • Step E de-immobilizing the religated immobilized chromatin fragment obtained in the step D, and recovering the DNA fragment;
  • Step F removing the unligated end biotin label in the DNA fragment recovered in the step E to obtain a purified DNA fragment;
  • Step G disrupting the purified DNA fragment obtained in the step F to obtain a smaller DNA fragment
  • Step H1 end-repairing the smaller DNA fragment and adding A to the 3' end; then,
  • Step H2 using a streptavidin solid carrier to capture a DNA fragment containing a biotin label
  • Step H3 ligating the biotin-labeled DNA fragment on the solid support
  • Step H4 washing the solid carrier one or more times with a 0.01 to 1 M NaOH solution
  • Step H5 PCR amplification was carried out using a DNA fragment remaining on the solid support as a template to construct a Hi-C library.
  • Hi-C refers to the three-dimensional interaction group of chromatin, which is a kind of chromatin spatial conformation capture in the whole genome, and studies the three-dimensional structure of chromatin and the spatial relationship of different DNA regions.
  • Hi-C library refers to: High-throughput sequencing in Hi-C method to obtain possible chromatin interaction information, and the DNA library used for such high-throughput sequencing is Hi-C library.
  • immobilized means that in a cell, a portion of the chromatin which is close to each other in three dimensions is fixed in a state close to the natural conformation.
  • chromatin also includes those of chromosome morphology.
  • the immobilization can be carried out by treating the cells with a formaldehyde solution and crosslinking the proteins on the chromatin.
  • a formaldehyde solution for example, 1 to 10,000,000 ⁇ L
  • the cells may be placed in an appropriate amount (for example, 1 to 10,000,000 ⁇ L) of water, TE buffer, physiological saline, PBS or cell culture medium to prepare a cell suspension.
  • the droplets are further added with an appropriate amount (for example, 1-10000000 ⁇ L) of a formaldehyde solution (final concentration is more than 1% by weight, for example, 1.5 to 37% by weight, and further, for example, 1.5 to 20% by weight, for example, 2 to 10% by weight), room temperature Allow to stand for a certain period of time (for example, 1-100 min) for crosslinking. Then, a certain amount of an amino acid (a mixture of one amino acid or a plurality of amino acids) or a protein (for example, BSA or the like) is added to the above reaction droplets to terminate the crosslinking reaction.
  • an appropriate amount for example, 1-10000000 ⁇ L
  • a formaldehyde solution final concentration is more than 1% by weight, for example, 1.5 to 37% by weight, and further, for example, 1.5 to 20% by weight, for example, 2 to 10% by weight
  • treatment of cells with a high final concentration of formaldehyde solution can significantly increase the amount of available data of the constructed Hi-C library.
  • the number of cells treated in the step A is not particularly limited, and may be, for example, 10 6 to 10 9 cells from the viewpoint of facilitating subsequent operations.
  • the cells obtained in the step A are lysed to obtain immobilized chromatin.
  • Cell lysis can usually be carried out by placing the cells in an appropriate cell lysate.
  • the formulation and amount of the cell lysate can be suitably determined by those skilled in the art according to the type and amount of the cells.
  • the immobilized chromatin obtained in the step B is digested to obtain an immobilized chromatin fragment.
  • the digestion can be carried out using deoxyribonuclease.
  • a type I restriction endonuclease, a type II restriction endonuclease or a type III restriction endonuclease is preferred, and a type II restriction endonuclease (for example, HindIII, Mbo I, etc.) is more preferred.
  • the immobilized chromatin fragment obtained in step C may have a sticky end.
  • the end of the immobilized chromatin fragment obtained in the step C is biotinylated and blunt-ended to obtain a blunt-ended immobilized chromatin fragment.
  • the method of biotin labeling and terminalization is known to those skilled in the art and can be carried out, for example, by using biotin-14-dNTP and Klenow enzyme as appropriate.
  • the blunt-ended immobilized chromatin fragments obtained in the step C1 are religated to obtain a religated immobilized chromatin fragment. Further, since the blunt-ended immobilized chromatin fragments obtained in the step C1 have blunt ends, the chromatin fragments are rejoined by blunt-end ligation.
  • the blunt-end ligation can be carried out, for example, by using a DNA ligase having blunt-end ligation activity such as T4 DNA ligase, T3 DNA ligase or the like.
  • the amount of the enzyme and the substrate used in the ligation reaction, and the reaction conditions can be appropriately selected by those skilled in the art as needed. For example, it can be usually carried out at 0 to 80 ° C (preferably 10 to 30 ° C) in 0.1 to 10 ⁇ ligase buffer for about 1 minute to 200 hours (preferably 1 to 30 hours).
  • the religated immobilized chromatin fragment obtained in the step D is deactivated, and the DNA fragment is recovered.
  • de-immobilization means that the fixed state of the portion adjacent to each other in three-dimensional space among the immobilized chromatin fragments is released.
  • the immobilization is achieved by crosslinking a protein on chromatin
  • the "un-immobilization” means that the protein is decrosslinked.
  • protein dissociation can be carried out by placing the system after the above-mentioned ligation reaction at 50 to 100 (preferably 60 to 800) for 1 minute to 200 hours (preferably 1 to 30 hours).
  • Union. As a method for biologically and chemically treating decrosslinking, endopeptide, serine protease, thiol protease, metalloproteinase, aspartic protease, pepsin, trypsin, cathepsin, papain, It is carried out with subtilisin, proteinase K, DTT, NaCl, KCl or a combination thereof.
  • the unligated end biotin label in the DNA fragment recovered in the step E is removed to obtain a purified DNA fragment.
  • removing biotin labeling means removing the biotin label at the end of the DNA fragment that has not been ligated during the previous reaction. This can reduce the false positives that result from the end result.
  • removal of biotin labeling is removed using nuclease 3'-5' cleavage.
  • the removal of biotin labeling can be achieved by using T4 DNA polymerase 3'-5' exonuclease activity, forcing T4 DNA polymerase or other 3'-5' exonuclease by lacking all four or some dNTP reaction materials.
  • the active enzyme cleaves the nucleotide molecules at the free 3' end one by one to achieve the effect of excising the unligated end biotin label.
  • the purified DNA fragment obtained in the step F is disrupted to obtain a smaller DNA fragment.
  • "smaller DNA fragment” refers to a DNA library, such as an Illumina DNA sequencing library, that is sized to construct a sequencing (eg, second generation sequencing, third generation sequencing, or fourth generation sequencing).
  • the specific size of the "smaller DNA fragment” may be, for example, 10 to 50000 bp, 10 to 1000 bp, preferably 50 to 1000 bp, and more preferably 100 to 800 bp.
  • the purified DNA fragment may be disrupted by ultrasonic disruption, transposase, hydraulic shear, restriction endonuclease digestion, etc., preferably by ultrasonic disruption.
  • the technique of disrupting the DNA fragment by the above method is known to those skilled in the art, and can be carried out by selecting appropriate conditions as needed.
  • a DNA fragment for sequencing was constructed using the smaller DNA fragment obtained in the step G as the DNA fragment to be sequenced.
  • the smaller DNA fragment is first end-repaired and the 3' end is added with A; then, the biotin-labeled DNA fragment is captured by a streptavidin-based solid vector; The biotin-labeled DNA fragment on the solid support is ligated; then, the solid support is washed once or twice with 0.01-1 M (preferably 0.05-0.5 M, more preferably 0.1-0.3 M) NaOH solution; Then, PCR amplification was carried out using the DNA fragment remaining on the solid support as a template to construct a Hi-C library.
  • the solid carrier is not particularly limited, and those generally used by those skilled in the art can be used.
  • magnetic beads are preferred.
  • the method of the present invention it can be operated by referring to, for example, the standard Illumina DNA small fragment construction procedure recommended by Illumina.
  • the method of the present invention significantly increases the amount of available data for the Hi-C library by providing a step of washing the solid support with a concentration of NaOH solution.
  • sequencing the DNA library for sequencing constructed by the method of the present invention By sequencing the DNA library for sequencing constructed by the method of the present invention and then comparing with the primary sequence information of the chromatin DNA, information of chromatin regions that may interact spatially can be obtained.
  • the sequencing is preferably double-ended sequencing, but in the case where one sequencing can test the DNA fragment to be sequenced, it can also be single-ended sequencing.
  • the cell type is human leukocytes, and the number of cells is 5 ⁇ 10 6 cells.
  • the cultured cell supernatant was discarded, and 22.5 mL of fresh serum-free medium was added per vial;
  • connection reaction system (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (0.05 * (1 + (
  • step 4.4 Repeat step 4.4 once and finally dissolve the DNA in 50 ⁇ L of sterile water;
  • Hi-C DNA sample 5 ⁇ g 10mg/mL BSA 0.5 ⁇ L 10 ⁇ NE Buffer 2 5 ⁇ L 2.5mM dATP 0.5 ⁇ L 2.5mM dGTP 0.5 ⁇ L 3,000 U/mL T4 DNA polymerase (enzymatics) 5 ⁇ L water Up to 50 ⁇ L
  • the DNA was interrupted to a size of 100-800 bp using an ultrasonic interrupter.
  • the sample was placed at 37 ° C for 30 min to add A to the 3' end of the sample, and then the enzyme was inactivated by a bath at 65 ° C for 20 min;
  • Non-Patent Document 1 differs from the method of Non-Patent Document 1 in that the final concentration of 2% formaldehyde is used for 10 minutes in step 1.2, and the solid carrier is washed twice using 0.2 M NaOH in steps 9.11 to 9.13.
  • Non-Patent Document 1 The method described in Non-Patent Document 1 is repeated.
  • Table 1 can use the data rate calculation results
  • any technical feature or combination of technical features described in the specification as a component of a certain technical solution may also be applied to the embodiments that can be implemented without obscuring the gist of the present invention.
  • Other technical solutions; and, while being able to implement and not clearly deviating from the gist of the present invention, the technical features described as the constituent parts of the different technical solutions may be combined in any manner to constitute other technical solutions.
  • the present invention also encompasses the technical solutions obtained by the combination in the above case, and these technical solutions are equivalent to those described in the present specification.

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种构建Hi-C文库的方法,其中采用大于1%的甲醛溶液处理细胞,使染色质固定化,以及在DNA纯化步骤中采用氢氧化钠溶液对固定载体进行清洗,从而提高文库的可利用数据率。

Description

一种构建高可利用数据率的Hi-C文库的方法 技术领域
本发明涉及一种可在全基因组范围内对染色质三维构象进行捕获的文库构建方法,属于基因测序技术领域。
背景技术
DNA是细胞遗传信息的载体,在生物体内以染色质的形式存在于每个细胞中,并控制着整个生命活动的进程。目前绝大多数对于DNA信息的研究是以研究DNA分子内碱基的序列(DNA的一维信息)来进行,通过分析碱基排列信息来探究生命活动的规律。
真实状态中的细胞核是一个狭小的三维立体空间,直链分子结构的DNA会以复杂的卷曲方式位于细胞核内,原一维DNA序列被赋予三维空间构象,并导致了大量复杂的基因调控作用方式。对此,简单的一维DNA序列信息由于不能提供真实DNA空间分布相关的信息,因此也无法解释由于空间构象导致的一系列基因调控现象。
为解决这一问题,目前已有一系列的检测方法。如3c(染色体结构捕获)方法及衍生的4c、5c方法。这些方法均以测序为基本检测手段,利用细胞核内蛋白形成DNA结构固定因子,之后通过对DNA的片段重联等构建带有空间结构信息的DNA序列,最后使用测序技术来检测染色质DNA信息,并计算其在空间中分布和相互作用。尽管此类方法在一定程度上能够提供部分染色质相互作用信息。但由于其方法与技术限制,这一类的方法仅能检测定点或部分的DNA相互作用位点,无法探究全细胞核水平上的立体互作信息。因此不可避免地大量信息将会遗漏。在对于未知相互作用信息的发现上,这一点尤为重要。
近年来随着高通量测序技术的出现,大规模基因组信息的获得变得更加容易。Hi-C技术便是结合高通量测序的方法,对整个细胞核内染色质的信息进行检测的技术。Hi-C技术是染色体构象捕获(Chromosome conformation capture,简称为3C)的一种衍生技术,是指基于高通量进行染色体构象的捕获,它能够在全基因组范围内捕捉不同基因座位之间的空间交互,研究三维空间中调控基因的DNA元件。
例如,专利文献1和非专利文献1报道了一种Hi-C方法,该方法利用甲醛固定染色质结构,然后通过限制性内切酶打断原基因组序列,并进行生物素标记后,再重新连接形成带有结构信息的新DNA分子。在这一过程中,如果两个不同基因组位置的DNA分子片段连接形成一个杂合分子,这将被认为是这两个DNA分子在空间上相互临近的证据。然后对DNA进行纯化并打碎,再针对标记的生物素分子进行钓取,富集获得所需的空间上相互作用的DNA杂合分子。最后构建高通量测序的文库及双端测序检测,获得全 染色质在空间上的相互作用信息。该方法主要包括下述步骤:1)首先对样本细胞进行甲醛交联固定,使其内部空间距离较近的DNA通过蛋白交联在一起,并收集细胞;2)使用裂解体系并配合研磨进行细胞裂解,获得分离的细胞核;3)使用限制型内切酶(如EcoR I)对交联后细胞的染色质进行酶切;4)对酶切末端进行标记生物素,并形成平末端;5)使用DNA连接酶对平末端进行连接,处于同一个交联分子上的DNA片段间将有较大的概率连接形成新的分子;6)高温(65℃)处理逆转交联,释放双链DNA分子;7)去除未连接的末端生物素标记;8)对DNA进行片段化,并进行生物素特异性调取,富集杂合分子连接为点区域;以及9)构建Illumina测序文库,进行双端测序,获得数据。
但是,采用该文献报道的方法构建的Hi-C文库存在可利用数据率偏低的问题。
专利文献1
国际公开号WO2010036323A1
非专利文献1
Lieberman-Aiden E et al.Comprehensive mapping of long-range interactions reveals folding principles of the human genome.Science 326,289-293(2009)
发明内容
鉴于上述现有技术中存在的不足,本发明的目的在于:提供一种能够构建高可利用数据率的Hi-C文库的方法。
本发明人为解决上述技术问题进行了深入研究,在传统的构建Hi-C文库的方法的基础上进行了巧妙的改进,显著地提高了所构建的Hi-C文库的可利用数据率,从而完成了本发明。
即,本发明包括:
1.一种构建Hi-C文库的方法,该方法包括下述步骤:
步骤A:用大于1重量%的甲醛溶液处理细胞,得到染色质被固定化的细胞;
步骤B:裂解所述步骤A中得到的染色质被固定化的细胞,获得被固定化的染色质;
步骤C:对所述步骤B中获得的被固定化的染色质进行消化,得到被固定化的染色质片段;
步骤C1:对步骤C中得到的被固定化的染色质片段的末端进行生物素标记,并平末端化,得到平末端化的被固定化的染色质片段;
步骤D:将所述步骤C1中得到的平末端化的被固定化的染色质片段进行重新连接,得到重新连接的被固定化的染色质片段;
步骤E:使所述步骤D中得到的重新连接的被固定化的染色质片段解除固定化,并回收DNA片段;
步骤F:去除所述步骤E中回收的DNA片段中的未连接的末端生物素标记得到纯化的DNA片段;
步骤G:将所述步骤F中得到的纯化的DNA片段打断,得到更小的DNA片段;以及
步骤H1:将所述更小的DNA片段进行末端修复及3’端加A;然后,
步骤H2:利用链霉亲和素化固体载体钓取含有生物素标记的DNA片段;
步骤H3:将所述固体载体上的生物素标记的DNA片段进行接头连接;然后
步骤H4:用0.01~1M NaOH溶液清洗所述固体载体一次或两次以上;然后
步骤H5:以留在所述固体载体上的DNA片段作为模板进行PCR扩增,从而构建Hi-C文库。
2.根据项1所述的方法,其中,所述步骤C中使用限制性内切酶对所述被固定化的染色质进行消化。
3.根据项1所述的方法,其中,所述步骤G中采用超声打断法。
4.根据项1所述的方法,其中,所述步骤G中得到的更小的DNA片段的大小为100~800bp。
5.根据项1所述的方法,其中,所述固体载体为磁珠。
6.一种测定可能在空间上相互作用的染色质区域的方法,该方法包括:
采用项1~5中任一项所述的方法构建Hi-C文库;以及
对所述Hi-C文库进行测序,并将所获得信息与染色质DNA一级序列信息进行比对。
发明效果
根据本发明,仅通过在传统的构建Hi-C文库的方法的基础上进行巧妙的改进,即可显著提高所构建的Hi-C文库的可利用数据率。
发明的具体实施方式
本说明书中提及的科技术语具有与本领域技术人员通常理解的含义相同的含义,如有冲突以本说明书中的定义为准。
需要说明的是,在本说明书中,“可利用数据率”是指:测序比对后,在两端均可比对回基因组上的测序文库中,其两端比对到基因组上不同位置的被测序文库所占的比例。这里,“基因组上不同位置”是指:下述步骤C中消化得到的不同片段,例如酶切后产生的不同酶切片段。
在一个方面中,本发明提供一种构建Hi-C文库的方法(本发明的方法),该方法包括下述步骤:
步骤A:用大于1重量%的甲醛溶液处理细胞,得到染色质被固定化的细胞;
步骤B:裂解所述步骤A中得到的染色质被固定化的细胞,获得被固定化的染色质;
步骤C:对所述步骤B中获得的被固定化的染色质进行消化,得到被固定化的染色质片段;
步骤C1:对步骤C中得到的被固定化的染色质片段的末端进行生物素标记,并平末端化,得到平末端化的被固定化的染色质片段;
步骤D:将所述步骤C1中得到的平末端化的被固定化的染色质片段进行重新连接,得到重新连接的被固定化的染色质片段;
步骤E:使所述步骤D中得到的重新连接的被固定化的染色质片段解除固定化,并回收DNA片段;
步骤F:去除所述步骤E中回收的DNA片段中的未连接的末端生物素标记得到纯化的DNA片段;
步骤G:将所述步骤F中得到的纯化的DNA片段打断,得到更小的DNA片段;以及
步骤H1:将所述更小的DNA片段进行末端修复及3’端加A;然后,
步骤H2:利用链霉亲和素化固体载体钓取含有生物素标记的DNA片段;
步骤H3:将所述固体载体上的生物素标记的DNA片段进行接头连接;然后
步骤H4:用0.01~1M NaOH溶液清洗所述固体载体一次或两次以上;然后
步骤H5:以留在所述固体载体上的DNA片段作为模板进行PCR扩增,从而构建Hi-C文库。
在本说明书中,Hi-C是指染色质三维空间互作组,它是一种可以在全基因组范围内进行染色质空间构象捕获,研究染色质的三维结构和不同DNA区域在空间上相互关系的方法。Hi-C文库是指:Hi-C方法中通过高通量测序来获取可能的染色质相互作用信息,用于这种高通量测序的DNA文库即为Hi-C文库。
在本说明书中,“固定化”是指:细胞中,染色质的在三维空间上相互接近的部分被以接近天然构象的状态被固定。在本说明书中,染色质也包括染色体形态的那些。
所述固定化可以通过使用甲醛溶液处理细胞,将染色质上的蛋白质交联来进行。例如,在通过甲醛交联来进行所述固定化的情况下,可以将细胞置于适当量(例如1~10000000μL)的水、TE缓冲液、生理盐水、PBS或细胞培养基中制成细胞悬浮液滴,再加入适当量(例如1-10000000μL)的甲醛溶液(终浓度为大于1重量%,例如1.5~37重量%,再例如1.5~20重量%,再例如2~10重量%),室温静置一定时间(例如1-100min),进行交联。然后,向上述反应液滴中加入一定量的氨基酸(一种氨基酸或多种氨基酸的混合物)或蛋白质(例如BSA等)来终止交联反应。需要说明的是,在本发明的方法中,使用高终浓度的甲醛溶液处理细胞,能够显著地提高所构建的Hi-C文库的可利用数据量。对于所述步骤A处理的细胞的数量没有特殊限制,从便于后续操作的角度来看,可以是例如106~109个细胞。
在所述步骤B中,对所述步骤A中获取的细胞进行裂解,从而得到被固定化的染色质。细胞裂解通常可以通过将所述细胞置于适当的细胞裂解液中来进行。所述细胞裂解液的配方及用量可由本领域技术人员根据所述细胞的种类及量适宜确定。
在所述步骤C中,对所述步骤B中获得的被固定化的染色质进行消化,得到被固定化的染色质片段。所述消化可以使用脱氧核糖核酸酶来进行。作为所述脱氧核糖核酸酶优选I型限制性内切酶、II型限制性内切酶或III型限制性内切酶,更优选II型限制性内切酶(例如HindIII、Mbo I等)。步骤C中得到的被固定化的染色质片段可以具有粘性末端。
在所述步骤C1中,对所述步骤C中得到的被固定化的染色质片段的末端进行生物素标记,并平末端化,得到平末端化的被固定化的染色质片段。所述生物素标记和平末端化的方法是本领域技术人员已知的,例如可以通过视情况使用生物素-14-dNTP和Klenow酶来进行。
在所述步骤D中,将所述步骤C1中得到的平末端化的被固定化的染色质片段进行重新连接,得到重新连接的被固定化的染色质片段。此外,因步骤C1中得到的平末端化的被固定化的染色质片段具有平末端,因而采用平末端连接方式将这些染色质片段重新连接起来。平末端连接可以例如通过使用具有平末端连接活性的DNA连接酶来进行,所述具有平末端连接活性的DNA连接酶例如T4 DNA连接酶、T3 DNA连接酶等。连接反应中使用的酶和底物的量、以及反应条件可由本领域技术人员视需要适宜选择。例如,通常可以在0.1~10×连接酶缓冲液中于0~80℃(优选10~30℃)进行约1分钟~200小时(优选1~30小时)。
在所述步骤E中,使所述步骤D中得到的重新连接的被固定化的染色质片段解除固定化,并回收DNA片段。在本说明书中,“解除固定化”是指:解除所述被固定化的染色质片段中、在三维空间上相互接近的部分的被固定状态。例如,在所述固定化是通过将染色质上的蛋白质交联而实现的情况下,所述“解除固定化”是指蛋白质去交联。蛋白质去交联的方法是本领域技术人员已知的,通常可以采用生物、化学处理进行解交联的方法和/或高温处理解交联的方法,从而释放DNA片段。例如,作为高温处理解交联的方法,可以通过将上述连接反应后的体系置于50~100作(优选60~800)、1分钟~200小时(优选1~30小时)来进行蛋白质解交联。作为生物、化学处理解交联的方法,可以通过向所述体系中加入内肽酶、丝氨酸蛋白酶、巯基蛋白酶、金属蛋白酶、天冬氨酸蛋白酶、胃蛋白酶、胰蛋白酶、组织蛋白酶、木瓜蛋白酶、枯草杆菌蛋白酶、蛋白酶K、DTT、NaCl、KCl或它们的组合来进行。当然,也可以通过组合使用生物、化学处理解交联的方法和高温处理解交联的方法来进行蛋白质解交联。回收DNA片段的方法是本领域技术人员已知的,例如可以采用乙醇或异丙醇沉淀的方法来进行。
在所述步骤F中,去除所述步骤E中回收的DNA片段中的未连接的末端生物素标记,得到纯化的DNA片段。
在本说明书中,“去除生物素标记”是指:去除在上步反应过程中未完成连接的DNA片段末端的生物素标记。这可以降低其对于最终结果带来的假阳性。在本说明书中,去除生物素标记使用核酸酶3’-5’切割作用去除。
所述去除生物素标记可以通过使用T4DNA聚合酶3’-5’外切酶活性实现,通过缺少全部4种或某种dNTP反应原料,迫使T4DNA聚合酶或其他具有3’-5’外切酶活性的酶将游离3’末端的核苷酸分子逐一切割,达到切除未连接的末端生物素标记的效果。
在所述步骤G中,将所述步骤F中得到的纯化的DNA片段打断,得到更小的DNA片段。在本说明书中,“更小的DNA片段”是指其大小适于构建测序(例如二代测序、三代测序或四代测序)用DNA文库,例如Illumina DNA测序文库。“更小的DNA片段”的具体大小可以是例如10~50000bp、10~1000bp、优选50~1000bp、更优选100~800bp。在本发明的方法中,可以采用超声打断法、转座酶法、液压剪切法、限制性内切酶酶切等方法将所述纯化的DNA片段打断,优选采用超声打断法。采用上述方法将DNA片段打断的技术是本领域技术人员已知的,可视需要选择适宜条件来进行。
接下来,以所述步骤G中得到的更小的DNA片段作为待测序DNA片段,构建测序用DNA文库。在本发明的方法中,首先将所述更小的DNA片段进行末端修复及3’端加A;然后,利用链霉亲和素化固体载体钓取含有生物素标记的DNA片段;然后,将所述固体载体上的生物素标记的DNA片段进行接头连接;然后,用0.01-1M(优选0.05-0.5M,更优选0.1-0.3M)的NaOH溶液清洗所述固体载体一次或两次以上;然后,以留在所述固体载体上的DNA片段作为模板进行PCR扩增,从而构建Hi-C文库。其中,对于所述固体载体没有特殊限制,可以使用本领域技术人员通常使用的那些。作为所述固体载体,优选磁珠。本发明的方法中,可以参考例如Illumina公司推荐的标准Illumina DNA小片段建库流程来进行操作。本发明的方法通过设置用一定浓度的NaOH溶液清洗所述固体载体的步骤,显著地提高了Hi-C文库的可利用数据量。
需要说明的是,在上述各步骤中均可以视需要取一部分产物进行下一步骤。
通过采用本发明的方法构建的测序用DNA文库进行测序,再与染色质DNA一级序列信息进行比对,即可获得可能在空间上相互作用的染色质区域的信息。所述测序优选是双端测序,但在一次测序可以将待测序DNA片段测通的情况下,也可以是单端测序。
实施例
以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例是用于解释本发明,并非对本发明的限定。
实施例1
人白细胞Hi-c文库构建
一、甲醛交联
1.甲醛交联
1.1)细胞种类为人类白细胞,细胞数量5×106个细胞。将培养细胞上清液吸弃,并且每瓶加入22.5mL的新鲜无血清培养液;
1.2)加入1.25mL 37%甲醛使终浓度为2重量%,加入甲醛后迅速摇匀;
1.3)室温精确孵育10min,每2min轻柔摇匀培养品;
1.4)加入2.5mL的2.5M甘氨酸,终止交联,混匀;
1.5)室温孵育10min,然后置于冰上15min以彻底终止反应;
1.6)收集细胞转入管中;
1.7)800×g 10min离心收集交联的细胞;
1.8)去除上清液;
1.9)制备完成的细胞直接用于下步反应或置于-80℃储存。
二、Hi-c化处理
2.细胞裂解与染色体消化
2.1)向细胞中加入1mL冰镇裂解液,置于冰上15min,裂解液配方如下:
1×裂解缓冲液:
10mM Tris-HCl pH7.4
30mM NaCl
0.2%NP-40
10%protease inhibitor cocktail(sigma公司)
2.2)在冰上用研磨棒上下缓慢的研磨细胞30次,然后继续置于冰上1min让细胞冷却,之后重复进行3组研磨,共4组;
2.3)将裂解液转入新的1.7mL管中;
2.4)室温2,000×g离心5min;
2.5)吸去上清,使用500μL预冷的1×NEBuffer2(使用10×NEBffuer2,NEB公司,加无菌水稀释10倍)清洗样品两次并2000g离心5min收集;
2.6)最后使用1×NEBuffer 2重悬细胞核,保证最后溶液为50μl;
2.7)向管中加入312μL 1×NEBuffer 2,之后加入38μL 2%SDS,轻柔的上下颠倒混匀,防止产生水泡;
2.8)于恒温振荡混匀仪中37℃震荡孵育60min,然后立即置于冰上;
2.9)向管中加入44μL20%TritonX-100来中和SDS,于恒温振荡混匀仪中37度震荡混匀60min;
2.10)向每管中加入400U HindIII酶(NEB公司),轻柔混匀;
2.11)置于混匀器上37℃消化过夜。
3.DNA末端生物素标记及平末端连接
3.1)将样品在2,500×g短暂离心后置于冰上.;
3.2)按下表配置生物素标记反应Mix:
Figure PCTCN2015092180-appb-000001
3.3)向上步反应液中加入60μL生物素标记反应Mix,上下颠倒混匀后,置于37℃温浴75min,每10-15min颠倒混匀,反应完成后立即将样品置于冰上;
3.4)向反应液中加入96μL 10%SDS并小心的轻柔混匀,之后将样品置于37℃孵育60min,每10-15min颠倒混匀,反应后立刻置于冰上;
3.5)37℃孵育样品的过程中,准备配置连接反应体系:
Figure PCTCN2015092180-appb-000002
3.6)准备冰上预冷的15mL管,将7.58mL上述连接反应液与3.4步中消化完成的染色体转移至15mL管中混匀,然后加入50UT4DNA连接酶,颠倒数次混匀,于16℃孵育16h。
4.去交联及DNA提取
4.1)向每管中加入50μL 10mg/mL的蛋白酶K(天根生物科技有限公司),并于65℃中孵育约4h以去除交联;
4.2)再次加入50μL蛋白酶K并继续于65℃过夜;
4.3)冷却反应液至室温,将样品转移至50mL锥形管;
4.4)向上一步反应液中加入2倍体积的水饱和酚-氯仿(aturated phenol pH8.0;chloroform(1:1))抽提DNA,涡旋混匀30秒然后3,000×g离心10min,抽提两次,并使用等体积的异丙醇沉淀纯化上清中的DNA;
4.5)重复步骤4.4一次,最终DNA溶解于50μL无菌水中;
4.6)向提取所得DNA中加入2μL RNase A(1mg/mL),37℃温浴30min,去除残余的RNA。
5.去除未连接末端的生物素标记
5.1)按下面体系进行数个反应:
Hi-C DNA样本 5μg
10mg/mL BSA 0.5μL
10×NE Buffer 2 5μL
2.5mM dATP 0.5μL
2.5mM dGTP 0.5μL
3,000U/mL T4 DNA聚合酶(enzymatics公司) 5μL
至50μL
5.2)20℃孵育4小时;
5.3)向每个管中加入2μL 0.5M EDTA,pH8.0,终止酶反应;
5.4)将反应液混合于一个新的1.7mL离心管中。使用水饱和酚-氯仿法单次抽提纯化DNA,并异丙醇沉淀回收DNA,并使用50μL水重悬颗粒。
6.DNA超声打断
使用超声打断仪将DNA打断至100~800bp大小片段。
三、标准文库构建
7.末端修复与加A
7.1)根据所得DNA量,按照每个反应2-4μg的体系进行分装,并将每反应DNA补足至75μL;
7.2)按照下列顺序向样本中加入反应体系:
Figure PCTCN2015092180-appb-000003
20℃温浴30min;
7.3)反应结束后使用Ampure磁珠回收纯化反应体系中的DNA,溶于32μL的EB中;
7.4)根据下表向上步产物中加入加A反应体系:
Figure PCTCN2015092180-appb-000004
37℃温浴30min使样品3’端加A,然后65℃温浴20min酶失活;
7.5)反应完成后立即将样品置于冰上冷却;
7.6)将相同的样品混合在一起并用TE补足至400μL;
8.生物素钓取
8.1)使用混匀的链霉亲和素磁珠,并根据4μL磁珠每1μg Hi-C DNA的比例取出相应量的磁珠置于1.7mL低吸附管中;
8.2)使用400μL清洗液清洗磁珠,上下颠倒混匀后室温震荡孵育3min。清洗液配方:
5mM Tris-HCl pH8.0
0.5mM EDTA
1M NaCl
0.05%Tween
8.3)将磁珠置于磁力架上吸附1min,吸去上清;
8.4)加入400μL清洗液重悬磁珠并转入一个新管中;
8.5)再次置于磁力架上吸附1min,吸去上清;
8.6)使用400μL 2×结合缓冲液重悬磁珠,加入400μL 9.6获得得的Hi-C DNA。2x结合缓冲液配方:
10mM Tris-HCl pH8.0
1mM EDTA
2M NaCl
8.7)室温震荡孵育15min;
8.8)将样品置于磁力架上吸附1min,弃上清;
8.9)使用400μL 1×结合缓冲液(2×结合缓冲液加无菌水稀释2倍)使用重悬磁珠,并转入一个新管中;
8.10)将样品置于磁力架上吸附1min,弃上清;
8.11)使用100μL 1×结合缓冲液(2×结合缓冲液,enzymatics公司,加无菌水稀释2倍)重悬磁珠,并转入一个新管中;
8.12)再次将样品置于磁力架上吸附1min,弃上清;
8.13)最后,使用18μL无菌水重悬磁珠;
9.接头连接与文库扩增
9.1)按照下表配制接头连接反映体系:
Figure PCTCN2015092180-appb-000005
9.2)20℃温浴2h;
9.3)将样品置于磁力架上吸附1min,弃上清;
9.4)加入400μL清洗液,轻柔吹打混匀磁珠,室温震荡孵育5min;
9.5)将样品置于磁力架上吸附1min,弃上清;
9.6)使用200μL 1×结合缓冲液重悬磁珠,并转入一个新管中;
9.7)将样品置于磁力架上吸附1min,弃上清;
9.8)室温震荡孵育15min;
9.9)使用200μL 1×NEBuffer 2重悬磁珠,并转入一个新管中;
9.10)再次将样品置于磁力架上吸附1min,弃上清;
9.11)使用200μL 0.2M NaOH重悬磁珠,然后将样品置于磁力架上吸附1min,弃上清;
9.12)重复使用0.2M NaOH清洗磁珠一次;
9.13)使用200μL 1×NEBuffer 2再次清洗两次磁珠;
9.14)最后一次清洗之后,使用20μL of 1×NEBuffer 2重悬磁珠,并将其转入一个新管中;
9.15)使用10μL连接产物磁珠作为模板,扩增循环数为12个循环;
9.16)使用琼脂糖凝胶电泳及凝胶回收试剂盒回收片段大小为400bp-600bp的DNA文库;
9.17)使用安捷伦2100生物分析仪对文库片段大小及质量进行检测,确定文库质量合格,至此Hi-c文库制备完成。
四、高通量双端测序
10.文库定量及测序
10.1)使用qPCR方法检测文库摩尔浓度,安排上机测序;
10.2)使用Illumina测序平台进行测序,测序方案为PE50,测序量1G raw data。获得双端测序结果。
需要说明的是,上述方法与非专利文献1的方法的区别在于:步骤1.2中使用终浓度2%甲醛处理10min,步骤9.11-9.13中使用0.2M NaOH清洗固体载体2次。
对比例1:
重复了非专利文献1所述的方法。
对比例2:
像实施例1那样进行,不同的是:不进行步骤9.11-9.13。
对比例3:
像实施例1那样进行,不同的是:步骤1.2中使用终浓度1重量%的甲醛处理10min。
上述实施例1、对比例1~3中的可利用数据率计算结果如表1所示。
表1可利用数据率计算结果
实施例1 91.85%
对比例1 69.00%
对比例2 75.12%
对比例3 78.52%
采用非专利文献1的方法获得的最终可比对的数据中,经过滤分析,具有“双端来源于不同片段”这一特征的可利用数据所占比例仅为60-70%(对比例1),通过增加交联步骤中所使用的甲醛的浓度、或者使用一定浓度的氢氧化钠溶液对磁珠进行清洗,可利用数据率也均是略有提高(对比例2~3)。与此相对,在增加交联步骤中所使用的甲醛的浓度、且使用一定浓度的氢氧化钠溶液对磁珠进行清洗的情况下,可利用数据率得到了显著提高,相比于非专利文献1的方法提高了30%以上。
还需要说明的是,在可实施且不明显违背本发明的主旨的前提下,在本说明书中作为某一技术方案的构成部分所描述的任一技术特征或技术特征的组合同样也可以适用于其它技术方案;并且,在可实施且不明显违背本发明的主旨的前提下,作为不同技术方案的构成部分所描述的技术特征之间也可以以任意方式进行组合,来构成其它技术方案。本发明也包含在上述情况下通过组合而得到的技术方案,并且这些技术方案相当于记载在本说明书中。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域技术人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
工业实用性
根据本发明,能够提供一种能够构建高可利用数据率的Hi-C文库的方法。

Claims (6)

  1. 一种构建Hi-C文库的方法,该方法包括下述步骤:
    步骤A:用大于1重量%的甲醛溶液处理细胞,得到染色质被固定化的细胞;
    步骤B:裂解所述步骤A中得到的染色质被固定化的细胞,获得被固定化的染色质;
    步骤C:对所述步骤B中获得的被固定化的染色质进行消化,得到被固定化的染色质片段;
    步骤C1:对步骤C中得到的被固定化的染色质片段的末端进行生物素标记,并平末端化,得到平末端化的被固定化的染色质片段;
    步骤D:将所述步骤C1中得到的平末端化的被固定化的染色质片段进行重新连接,得到重新连接的被固定化的染色质片段;
    步骤E:使所述步骤D中得到的重新连接的被固定化的染色质片段解除固定化,并回收DNA片段;
    步骤F:去除所述步骤E中回收的DNA片段中的未连接的末端生物素标记,得到纯化的DNA片段;
    步骤G:将所述步骤F中得到的纯化的DNA片段打断,得到更小的DNA片段;以及
    步骤H1:将所述更小的DNA片段进行末端修复及3’端加A;然后,
    步骤H2:利用链霉亲和素化固体载体钓取含有生物素标记的DNA片段;
    步骤H3:将所述固体载体上的生物素标记的DNA片段进行接头连接;然后
    步骤H4:用0.01~1M NaOH溶液清洗所述固体载体一次或两次以上;然后
    步骤H5:以留在所述固体载体上的DNA片段作为模板进行PCR扩增,从而构建Hi-C文库。
  2. 根据权利要求1所述的方法,其中,所述步骤C中使用限制性内切酶对所述被固定化的染色质进行消化。
  3. 根据权利要求1所述的方法,其中,所述步骤G中采用超声打断法。
  4. 根据权利要求1所述的方法,其中,所述步骤G中得到的更小的DNA片段的大小为100~800bp。
  5. 根据权利要求1所述的方法,其中,所述固体载体为磁珠。
  6. 一种测定可能在空间上相互作用的染色质区域的方法,该方法包括:
    采用权利要求1~5中任一项所述的方法构建Hi-C文库;以及
    对所述Hi-C文库进行测序,并将所获得信息与染色质DNA一级序列信息进行比对。
PCT/CN2015/092180 2015-10-19 2015-10-19 一种构建高可利用数据率的Hi-C文库的方法 WO2017066907A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092180 WO2017066907A1 (zh) 2015-10-19 2015-10-19 一种构建高可利用数据率的Hi-C文库的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092180 WO2017066907A1 (zh) 2015-10-19 2015-10-19 一种构建高可利用数据率的Hi-C文库的方法

Publications (1)

Publication Number Publication Date
WO2017066907A1 true WO2017066907A1 (zh) 2017-04-27

Family

ID=58556650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092180 WO2017066907A1 (zh) 2015-10-19 2015-10-19 一种构建高可利用数据率的Hi-C文库的方法

Country Status (1)

Country Link
WO (1) WO2017066907A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735900A (zh) * 2019-03-20 2019-05-10 嘉兴菲沙基因信息有限公司 一种适用于Hi-C的小片段DNA文库构建方法
CN111440844A (zh) * 2020-04-09 2020-07-24 嘉兴菲沙基因信息有限公司 一种适用于海洋藻类的Hi-C高通量测序建库方法
CN111445948A (zh) * 2020-03-27 2020-07-24 武汉古奥基因科技有限公司 一种利用Hi-C进行多倍体鱼类的染色体构建方法
CN111808927A (zh) * 2020-08-14 2020-10-23 天津诺禾致源生物信息科技有限公司 冰冻植物组织Hi-C建库的方法
CN111909983A (zh) * 2020-08-25 2020-11-10 武汉菲沙基因信息有限公司 一种适用于微生物宏基因组学Hi-C高通量测序建库方法及应用
CN112522251A (zh) * 2020-12-29 2021-03-19 上海派森诺生物科技股份有限公司 一种用于Hi-C的动物组织提取方法
CN113215141A (zh) * 2021-02-23 2021-08-06 华南农业大学 细菌hi-c基因组及质粒构象捕获方法
CN114891858A (zh) * 2022-07-13 2022-08-12 广州国家实验室 染色质三维构象捕获方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004057A2 (en) * 2005-07-04 2007-01-11 Erasmus University Medical Center Chromosome conformation capture-on-chip (4c) assay
WO2007057785A2 (en) * 2005-05-24 2007-05-24 Rolf Ohisson Methods for analyzing interactions between at least two nucleic acid sequences
WO2010036323A1 (en) * 2008-09-25 2010-04-01 University Of Massachusetts Medical School Method of identifing interactions between genomic loci
WO2015033134A1 (en) * 2013-09-05 2015-03-12 Babraham Institute Chromosome conformation capture method including selection and enrichment steps
CN104561362A (zh) * 2015-02-03 2015-04-29 北京诺禾致源生物信息科技有限公司 高通量测序文库及其构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057785A2 (en) * 2005-05-24 2007-05-24 Rolf Ohisson Methods for analyzing interactions between at least two nucleic acid sequences
WO2007004057A2 (en) * 2005-07-04 2007-01-11 Erasmus University Medical Center Chromosome conformation capture-on-chip (4c) assay
WO2010036323A1 (en) * 2008-09-25 2010-04-01 University Of Massachusetts Medical School Method of identifing interactions between genomic loci
WO2015033134A1 (en) * 2013-09-05 2015-03-12 Babraham Institute Chromosome conformation capture method including selection and enrichment steps
CN104561362A (zh) * 2015-02-03 2015-04-29 北京诺禾致源生物信息科技有限公司 高通量测序文库及其构建方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COPE, N.F. ET AL., CHROMOSOME CONFORMATION CAPTURE., vol. 4, no. 2, 28 February 2009 (2009-02-28), COLD SPRING HARBOR LABORATORY PRESS, pages 1 - 7 *
EREZ, L.A. ET AL.: "Comprehensive Mapping of Long Range Interactions Reveals Folding Principles of the Human Genome.", SCIENCE, vol. 326, no. 5950, 9 October 2009 (2009-10-09), pages 289 - 293, XP002591649 *
JIN, FULAI ET AL.: "A High-Resolution Map of Three-Dimensional Chromatin Interactome in Human Cells.", NATURE, vol. 503, no. 7475, 14 November 2013 (2013-11-14), pages 290 - 294, XP055376488 *
MIFSUD, B. ET AL.: "Mapping Long-Range Promoter Contacts in Human Cells with High Resolution Capture Hi-C.", NATURE GENETICS, vol. 47, no. 6, 4 May 2015 (2015-05-04), pages 598 - 606, XP055376485 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735900A (zh) * 2019-03-20 2019-05-10 嘉兴菲沙基因信息有限公司 一种适用于Hi-C的小片段DNA文库构建方法
CN111445948A (zh) * 2020-03-27 2020-07-24 武汉古奥基因科技有限公司 一种利用Hi-C进行多倍体鱼类的染色体构建方法
CN111445948B (zh) * 2020-03-27 2023-09-29 武汉古奥基因科技有限公司 一种利用Hi-C进行多倍体鱼类的染色体构建方法
CN111440844A (zh) * 2020-04-09 2020-07-24 嘉兴菲沙基因信息有限公司 一种适用于海洋藻类的Hi-C高通量测序建库方法
CN111808927A (zh) * 2020-08-14 2020-10-23 天津诺禾致源生物信息科技有限公司 冰冻植物组织Hi-C建库的方法
CN111909983A (zh) * 2020-08-25 2020-11-10 武汉菲沙基因信息有限公司 一种适用于微生物宏基因组学Hi-C高通量测序建库方法及应用
CN112522251A (zh) * 2020-12-29 2021-03-19 上海派森诺生物科技股份有限公司 一种用于Hi-C的动物组织提取方法
CN113215141A (zh) * 2021-02-23 2021-08-06 华南农业大学 细菌hi-c基因组及质粒构象捕获方法
CN114891858A (zh) * 2022-07-13 2022-08-12 广州国家实验室 染色质三维构象捕获方法及其应用
WO2024012418A1 (zh) * 2022-07-13 2024-01-18 广州国家实验室 染色质三维构象捕获方法及其应用

Similar Documents

Publication Publication Date Title
WO2017066907A1 (zh) 一种构建高可利用数据率的Hi-C文库的方法
EP3366818B1 (en) Method for constructing high-resolution single cell hi-c library with a lot of information
Yu et al. [1] Affinity maturation of phage-displayed peptide ligands
US10023906B2 (en) Method for constructing nucleic acid single-stranded cyclic library and reagents thereof
EP3495498B1 (en) Gene expression analysis in single cells
WO2018149091A1 (zh) 一种环状rna高通量测序文库的构建方法及其试剂盒
WO2013064066A1 (zh) 全基因组甲基化高通量测序文库的构建方法及其应用
JP2018501776A (ja) 連続性を維持した転位
WO2017193833A1 (zh) 一种富集4000人类致病靶基因的方法及试剂盒
JP2015528305A (ja) 標的rna枯渇化組成物を調製するための方法およびキット
TW201321518A (zh) 微量核酸樣本的庫製備方法及其應用
CN106591285B (zh) 一种构建高可利用数据率的Hi-C文库的方法
WO2019006975A1 (zh) 极小量细胞原位全基因组染色质构象捕获方法
US10900974B2 (en) Methods for identifying macromolecule interactions
CN111778563A (zh) 细胞Hi-C测序文库的构建方法
CN113466444A (zh) 一种染色质构象捕获方法
CN111909983A (zh) 一种适用于微生物宏基因组学Hi-C高通量测序建库方法及应用
CN113528612B (zh) 用于检测染色质开放位点间染色质相互作用的NicE-C技术
CN108330181A (zh) 一种适用于少细胞的染色质免疫共沉淀测序方法及其试剂盒和应用
TW201321520A (zh) 用於病毒檢測的方法和系統
CN113166809B (zh) 一种dna甲基化检测的方法、试剂盒、装置和应用
Yin et al. Improved HTGTS for CRISPR/Cas9 off-target detection
CN108265049B (zh) 全基因组互作文库及其构建方法
CN113957125B (zh) 适用于重亚硫酸盐测序的Cot DNA、其制备方法及其应用
CN109097443B (zh) 一种用于高通量测序的捕获基因组靶序列的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906426

Country of ref document: EP

Kind code of ref document: A1