WO2017065227A1 - ポータブル表示装置およびその製造方法 - Google Patents

ポータブル表示装置およびその製造方法 Download PDF

Info

Publication number
WO2017065227A1
WO2017065227A1 PCT/JP2016/080409 JP2016080409W WO2017065227A1 WO 2017065227 A1 WO2017065227 A1 WO 2017065227A1 JP 2016080409 W JP2016080409 W JP 2016080409W WO 2017065227 A1 WO2017065227 A1 WO 2017065227A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
portable display
shock absorbing
absorbing portion
weight
Prior art date
Application number
PCT/JP2016/080409
Other languages
English (en)
French (fr)
Inventor
井出 哲也
恵美 山本
千賀明 小暮
柴田 諭
近藤 克己
健司 中西
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017065227A1 publication Critical patent/WO2017065227A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • a liquid crystal display device (LCD: Liquid Crystal Display) is used as a display unit that provides the above services.
  • the LCD is a display device that controls light transmission / blocking (display on / off) by controlling the orientation of liquid crystal molecules.
  • the LCD is generally composed of a very fragile base material such as glass.
  • a user of a portable display device having a size of about 10 inches is uneasy about the strength during use or carrying, and is generally used with a cover. Therefore, the user must hold the weight of the portable display device body plus the cover. Furthermore, many covers are not sufficiently considered for robustness, and a cover with sufficient robustness may be heavier than the portable display device body.
  • Patent Document 1 discloses a portable display device that is lightweight and has excellent durability, which is formed of a seamless casing formed from a single sheet of metal.
  • Patent Document 2 proposes a display board for a portable electronic device having a rubber-like elastic body formed on the outer edge of the back surface of the transparent substrate of the display section.
  • Patent Document 3 proposes a buffer member for preventing housing deformation due to dropping from a corner of the apparatus.
  • Patent Document 4 proposes a case (holding mechanism) for a portable display device in which a foam-type buffer member is provided on the outer peripheral portion to prevent breakage due to deformation of the glass substrate due to pressing pressure.
  • gel materials include thermoplastic gels such as hydrogels, silicone gels, and urethane gels, and those that are currently mainly used as shock absorbers are non-aqueous gels such as silicone gels and urethane gels. .
  • thermoplastic gels such as hydrogels, silicone gels, and urethane gels
  • shock absorbers are non-aqueous gels such as silicone gels and urethane gels.
  • hydrogel has not been put to practical use because it has low mechanical strength and deteriorates due to drying.
  • Non-Patent Document 1 a tough and flexible high-toughness hydrogel material called a double network gel described in Non-Patent Document 1 (hereinafter referred to as DN gel) and a nanocomposite gel described in Non-Patent Document 2 (hereinafter referred to as NC gel) has been developed.
  • DN gel a double network gel described in Non-Patent Document 1
  • NC gel nanocomposite gel described in Non-Patent Document 2
  • the display screen of portable display devices has been increased in size. It is commercially available.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a portable display device that can make the user feel light and improve shock absorption and a method for manufacturing the same.
  • a portable display device that displays electronic data, and includes a display that displays an image and a control circuit that controls image display on the display. And a housing part that forms an outer shell on the back side of the display, and the housing part has an impact absorbing part that absorbs an impact, and has a weight W [kg] and a volume of the entire device.
  • the relationship with V [m 3 ] satisfies the following formula (1).
  • FIG. 1A and FIG. 1B are a volume-weight graph and an enlarged view showing a region that feels heavy and a region that feels light, respectively.
  • a region where the user feels heavy and a region where the user feels light are shown based on the sensory test conducted by the inventors.
  • Each point shown in FIG. 1A is obtained by plotting the volume on the horizontal axis and the weight on the vertical axis for books of each size.
  • the actual weight (mass) and volume of a general book have a substantially linear relationship, and when the volume is taken on the horizontal axis, the inclination is 0.78. This value can also be said to be the average density of books laminated with paper.
  • the slope of the broken reference line in the graph is almost the same as the average density of general books. It has been found that when the device enters the area above this line, it feels heavier than it actually is, and conversely, when it enters the area below this line, it feels lighter than it actually is.
  • This “size-weight illustration” varies in shape depending on the shape, but statistical data with very little variation can be obtained if the shape is the same. From this, the inventors have found that this principle is very useful for designing lightweight portable display devices, and by combining a slight increase in volume, even if the actual weight reduction amount is reduced, the weight felt can be felt. It was found that the same effect can be obtained.
  • the shock absorbing layer is preferably a structure having a gap for weight reduction.
  • the elastic structure provided with voids include uneven bodies, corrugated bodies, tubular bodies, hollow sphere bodies, hollow plate bodies, fiber assemblies, honeycombs, etc., particularly from the viewpoint of preventing heat accumulation in the apparatus. It is desirable to use a fiber assembly or honeycomb provided with continuous voids. Thereby, weight reduction and strength enhancement can be realized simultaneously.
  • honeycomb refers to a three-dimensional structure spread without gaps.
  • an optimal material and structure can be selected based on the Young's modulus, Poisson's ratio, yield stress of the elastic body forming the elastic structure, and the magnitude of the stress applied to the apparatus.
  • the yield stress ⁇ [N / m 2 ] and Young's modulus E [N / m 2 ] of the elastic body forming the elastic structure are expressed by the formula (2), respectively.
  • Maximum acceleration A 1 is the peak acceleration in speed change test at impact test apparatus.
  • symbols used in formula (2) is, A 1: maximum acceleration velocity change test [m / s 2], W : display Weight [kg], S: area stressed [m 2], L: length of one side of the honeycomb cell, t: cell thickness of the honeycomb cell.
  • the elastic body as the shock absorbing material can be made of a material having a low Young's modulus and high toughness, such as gel or elastomer.
  • elastomer materials there are thermosetting elastomers such as natural rubber, and thermoplastic elastomers such as urethane, and as gel materials, thermoplastic gels such as silicone gel and urethane gel, and high toughness hydrogels should be used. Can do.
  • a structure having an isotropic spring function can be used as the shock absorbing layer.
  • a structure having an isotropic spring function there is a fiber assembly. This is a material such as metal or plastic that does not have a large elasticity as a bulk, and has a long fiber shape to provide an elastic function. The fibers may be partially bonded. Since long fibers gather at random, unlike a coiled spring, it has an elastic function in any direction.
  • FIG. 4 is a perspective view showing an impact application direction in an impact test of the portable display device 025.
  • FIG. 5A and FIG. 5B are graphs showing examples of allowable speed change and allowable acceleration conditions and applied waveforms in an impact test based on the damage boundary theory, respectively.
  • the speed change-acceleration graph of FIG. 5A shows DBC.
  • Condition 050 is a speed change test
  • condition 051 is an acceleration test.
  • the time-acceleration graph in FIG. 5B is a waveform of an impact applied in the test.
  • a sine half-wave waveform is used as in this graph.
  • the peak value of each waveform is the maximum acceleration, which is the acceleration condition in the graph of FIG. 5A.
  • the application time is 2 to 3 ms at a maximum acceleration of 1600 to 2000 m / s 2
  • the application time is 10 at a maximum acceleration of 600 to 800 m / s 2.
  • a sine half wave of about 20 ms is used.
  • a shape and material that are in an area where elastic buckling occurs with respect to the maximum stress of the acceleration test and does not cause plastic buckling with respect to the maximum stress of the speed change test are selected. Has been.
  • FIGSecond Embodiment 6A and 6B are a cross-sectional view and a perspective view, respectively, of a casing made of a metal nonwoven fabric 060 and a metal porous plate 061.
  • the casing member is obtained by sandwiching and rolling aluminum metal nonwoven fabric 060 between two porous metal plates 061 called expanded metal.
  • the casing is characterized by light weight (density 1500 kg / m 3 (2/3 density of aluminum)), high thermal conductivity (thermal conductivity 58.2 W / (m ⁇ K)), and air permeability. In the Y direction, the Young's modulus is as high as 10 GPa.
  • a member composed of such a metal nonwoven fabric 060 and a metal perforated plate 061 can be molded and used for the casing of the portable display device 025.
  • this member for the casing By using this member for the casing, the ratio of the casing to the total weight can be reduced from 20% to 12%.
  • casing there exists an effect which discharges the heat
  • FIG. 7A and 7B are cross-sectional views of the metal nonwoven fabric heat-dissipating elastic body 071 before and after compression, respectively.
  • FIG. 7C is a perspective view of the elastic structure 070 having a hexagonal honeycomb structure.
  • FIG. 7D is a cross-sectional view showing a state in which the metal nonwoven fabric heat-dissipating elastic body 071 is inserted into the elastic structure 070 having a hexagonal honeycomb structure.
  • a metal nonwoven fabric heat-dissipating elastic body 071 for example, an aluminum nonwoven fabric
  • a metal nonwoven fabric heat-dissipating elastic body 071 for example, an aluminum nonwoven fabric
  • a hexagonal honeycomb structure having both shock absorption and heat dissipation functions can be obtained by inserting an aluminum nonwoven fabric having columnar protrusions into cells of an elastic structure 070 having a hexagonal honeycomb structure. Can be produced.
  • the thermal conductivity in the plane of the aluminum nonwoven fabric is 10 W / (m ⁇ K)
  • the thermal conductivity in the thickness direction is 1 W / (m ⁇ K)
  • the heat generated in the device is diffused in the plane for efficiency. Can dissipate heat well.
  • the cylindrical projection part also functions as an elastic body, it is possible to prevent the permanent structure from being deformed by following the deformation of the elastic structure at the time of absorbing the shock. Thereby, since the contact state of a housing
  • FIG. 8 is a cross-sectional view schematically showing the formation of a hydrophobic film on the hydrogel surface.
  • 9A to 9D show a hydrogel production method by radical thermal polymerization.
  • the hexagonal honeycomb structure is mainly composed of hydrogel 080, and a hydrophobic film 081 is formed on the surface thereof.
  • the hydrogel 080 can be produced by radical polymerization reaction as shown in FIGS. 9A to 9D.
  • the crosslinking agent a compound having bonds at both ends such as N, N′-methylenebisacrylamide may be used, or a clay mineral that is uniformly dispersed in water, such as smectite, may be used.
  • 9A to 9D show examples of thermal polymerization, photopolymerization with UV light may be used.
  • Hydrophobic film 081 can prevent moisture in hydrogel 080 from evaporating and change in mechanical properties of hydrogel 080 associated therewith. In addition, deformation of the honeycomb structure due to the hydrogel 080 absorbing and swelling water droplets generated on the surface of the hydrogel 080 due to condensation or the like can also be prevented.
  • the hydrophobic film 081 can be produced by applying a urethane resin having a hydrophilic group (ether group) and a hydrophobic group (ester group) emulsified in water to the surface of the hydrogel 080 and drying it. Through such a process, the emulsion particles are fused together to form a urethane resin film.
  • a urethane resin having a hydrophilic group (ether group) and a hydrophobic group (ester group) emulsified in water to the surface of the hydrogel 080 and drying it. Through such a process, the emulsion particles are fused together to form a urethane resin film.
  • hydrogel 080 that causes a temperature phase transition such as isopropylacrylamide gel
  • a hydrophobic film is formed on the surface of the hydrogel, and evaporation of moisture can be further prevented even at high temperatures where the amount of evaporation increases.
  • FIG. 10 is a cross-sectional view of the fiber assembly 100.
  • a fiber assembly 100 having an isotropic spring function can be used for the elastic structure 020 of the portable display device 025. It can be produced by molding a resin having polyester as a main skeleton into a long fiber shape, compressing it in a random shape, and partially bonding the fibers.
  • the elastic modulus E2 of the fiber assembly 100 has the formula representing the elastic modulus of the porous body (4) It can be generally expressed as A desired elastic modulus can be obtained by controlling the thickness and the compression state of the fiber by this formula (4).
  • an impact absorption part can be formed with the fiber assembly 100, and an impact absorption part can be made easily.
  • the shock absorbing portion may be formed with an anisotropic structure.
  • the portable display device 025 can be reduced in weight and increased in strength.
  • the elastic modulus can be reduced and the weight can be reduced.
  • the fiber assembly 100 since the fiber assembly 100 has isotropic elastic characteristics and can absorb impacts from all directions, accuracy such as positioning is not so required even when the fiber assembly 100 is disposed in a housing.
  • other resin materials such as polyethylene may be used, or metal fibers such as a metal nonwoven fabric may be used.
  • metal fibers When metal fibers are used, a heat dissipation function can be provided in addition to the shock absorbing function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)

Abstract

ユーザに軽く感じさせるとともに、衝撃吸収を向上させることができるポータブル表示装置およびその製造方法を提供する。電子データを表示するポータブル表示装置であって、画像を表示するディスプレイと、ディスプレイの画像表示を制御する制御回路を含む基板と、ディスプレイの背面側の外郭を形成する筐体部と、を備え、筐体部は衝撃を吸収する衝撃吸収部を有し、装置全体の重さW[kg]と体積V[m]との関係が、W<780×Vを満たす。

Description

ポータブル表示装置およびその製造方法
 本発明は、電子データを表示するポータブル表示装置およびその製造方法に関する。
 近年、デジタル化技術の進歩に伴い、新聞、雑誌等の文字情報や画像情報を、紙媒体の代わりに電子データとして提供するサービスが広く普及している。このようなサービスにおいて、電子データは、表示装置に表示されることで情報が閲覧される。また、ポータブル表示装置は充電式電池から供給される電源によって動作をする。
 上記のようなサービスを提供する表示部として使用されるのが、液晶表示装置(LCD:Liquid Crystal Display)である。LCDは、液晶分子の配向を制御することにより光の透過/遮断(表示のオン/オフ)を制御する表示装置である。LCDは、一般的にガラス等の非常に割れやすい基材から構成されている。
 ところで、ポータブル表示装置の重量は、使用する人の製品全体の印象を左右する重要な要因の一つであり、近年、ポータブル表示装置は軽量化が進んでいる。例えば、軽量化を実現するために筐体の厚みやLCDを構成するガラスの厚みが薄くされている。
 このような状況において、10インチサイズ程度のポータブル表示装置のユーザは、使用時または持ち運び時の強度に不安を持っており、カバーを付けての使用が一般的になっている。そのため、ユーザは、ポータブル表示装置本体にカバーを加えた重量を保持しなければならない。更に、堅牢性が十分に考慮されていないカバーが多く、十分な堅牢性を持つカバーはポータブル表示装置本体以上の重量になることもある。
 これに伴い、運搬時または使用時において、落下等による外部からの衝撃からLCDの破損を防止する必要があり、これまでに衝撃吸収のための構造が提案されてきた。例えば、特許文献1には、1枚の金属薄板から形成された継目のない筐体で構成された軽量で耐久性に優れたポータブル表示装置が開示されている。
 また、弾性体を用いた衝撃吸収手段として、特許文献2には、表示部の透明基板の裏面の外縁に外側に伸びて形成されたゴム状弾性体を備えた携帯電子機器用表示板が提案されており、特許文献3には、装置の角部(コーナー)からの落下による筐体変形を防ぐための緩衝部材が提案されている。また、特許文献4には、外周部に発泡系の緩衝部材を設け、押し圧によるガラス基板の変形による破損を防ぐポータブル表示装置のケース(保持機構)が提案されている。
 このように、筐体内部へ伝わる衝撃を吸収するためには、弾性体が用いられる。弾性体としては、ゲルやエラストマーのようにヤング率が小さく、高靭性な材料が望ましい。一般的に、ヤング率は、ゲル材料が0.1~10MPa程度であり、エラストマーが2~100MPa程度である。
 ゲル材料としては、ハイドロゲル、シリコーンゲル、ウレタンゲル等の熱可塑性ゲルがあり、現在、衝撃吸収材として主に用いられているものは、シリコーンゲルやウレタンゲルのような非水系のゲルである。ハイドロゲルは、従来、力学的強度が小さく、乾燥により劣化してしまうため、実用化はされていなかった。
 しかし、近年、非特許文献1記載のダブルネットワークゲル(以下、DNゲル)や非特許文献2記載のナノコンポジットゲル(以下、NCゲル)と呼ばれるタフでしなやかな高靭性ハイドロゲル材料が開発され、十分な力学的強度を有するゲル材料が得られている。
特開2012-230678号公報 特開2015-99965号公報 特開2002-209623号公報 特許第3810484号公報
Gong, J. P., Y. Katsuyama, Y. Osada., "Double-network hydrogels with extremely high mechanical", Advanced Materials 2003,15,No.14,July 17 pp1155-1158 Kazutoshi Haraguchi, Toru Takehisa, and Simon Fan, "Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay", Macromolecules 2002,35,10162-10171
 近年は、表示部である液晶パネルのガラスの厚さや、筐体の厚さを薄くするといった軽量化の技術の発展と共に、ポータブル表示装置の表示画面の大型化が進み、20インチサイズのものも市販されている。
 しかし、特許文献1に記載されているように筐体の厚さを薄くするという、従来と同じ構成で軽量化を進める場合、マグネシウム合金やアルミニウム合金以上の高いヤング率と高靭性を兼ね備えた材料が必要になる。
 同様に、ガラスの厚さを薄くするという、従来と同じ構成で軽量化を進める場合、ガラスの厚さを0.3mmから0.1mmに薄くすると、ガラスにかかる応力は、10倍近くになり、特許文献2記載の構成では、限界があり、落下や衝撃に対する強度を得ることができない。また、特許文献3記載の構成では、角部(コーナー)への衝撃にしか対応できない。また、特許文献4記載の構成では、落下や衝撃に対する強度を得るために、外周部の緩衝材の厚さを厚くしなければならない。
 以上のように耐衝撃性を向上させると、現状の20インチサイズの市販のポータブル表示装置は重くなる。したがって、現状では、このような大型のポータブル表示装置は、業務用途等の特殊な用途でしか使われていない。
 本発明は、このような事情に鑑みてなされたものであり、ユーザに軽く感じさせるとともに、衝撃吸収を向上させることができるポータブル表示装置およびその製造方法を提供することを目的とする。
 上記の目的を達成するため、本発明の一態様に係るポータブル表示装置は、電子データを表示するポータブル表示装置であって、画像を表示するディスプレイと、前記ディスプレイの画像表示を制御する制御回路を含む基板と、前記ディスプレイの背面側の外郭を形成する筐体部と、を備え、前記筐体部は、衝撃を吸収する衝撃吸収部を有し、装置全体の重さW[kg]と体積V[m]との関係が、以下の式(1)を満たす。
Figure JPOXMLDOC01-appb-M000005
 本発明の一態様によれば、ユーザに軽く感じさせるとともに、衝撃吸収を向上させることができる。
重く感じる領域と軽く感じる領域とを示した体積-重さのグラフである。 重く感じる領域と軽く感じる領域とを示した体積-重さのグラフの拡大図である。 第1の実施形態のポータブル表示装置の断面図である。 第1の実施形態の六角形ハニカム構造の弾性構造体の斜視図である。 ポータブル表示装置の衝撃試験における衝撃印加方向を示す斜視図である。 損傷境界理論に基づく衝撃試験における許容速度変化および許容加速度の条件を示すグラフである。 損傷境界理論に基づく衝撃試験における許容速度変化および許容加速度の条件の印加波形の例を示すグラフである。 第2の実施形態の金属不織布と金属多孔板から成る筐体の断面図である。 第2の実施形態の金属不織布と金属多孔板から成る筐体の斜視図である。 第3の実施形態の圧縮前の金属不織布放熱弾性体の弾性構造体の断面図である。 第3の実施形態の圧縮後の金属不織布放熱弾性体の弾性構造体の断面図である。 六角形ハニカム構造の弾性構造体の斜視図である。 第3の実施形態の金属不織布放熱弾性体を六角形ハニカム構造の弾性構造体に挿入した状態を示す断面図である。 第4の実施形態のハイドロゲル表面への疎水性皮膜形成を模式的に示す断面図である。 ラジカル熱重合によるハイドロゲル作製方法である。 ラジカル熱重合によるハイドロゲル作製方法である。 ラジカル熱重合によるハイドロゲル作製方法である。 ラジカル熱重合によるハイドロゲル作製方法である。 第5の実施形態の繊維集合体の断面図である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。
 [官能評価]
 ポータブル表示装置の大型化に対し、単純な軽量化は困難であることから、発明者らは、質量を軽くすることだけではなく、人が製品を手にした時に感覚的に感じる重さに着目した。そこで、種々のサイズのスマートフォン、タブレットと呼ばれるポータブル表示装置と、比較対象として、紙の書籍を持った際の重さの感じ方について官能評価を行なった。
 図1Aおよび図1Bは、それぞれ重く感じる領域と軽く感じる領域とを示した体積-重さのグラフおよびその拡大図である。図1Aのグラフでは、発明者らで実施した官能試験を基にユーザが重く感じる領域と軽く感じる領域を示している。図1Aに示す各点は、各サイズの書籍について、その体積を横軸、重さを縦軸にプロットしたものである。一般的な書籍の実際の重さ(質量)と体積はほぼ直線の関係があり、体積を横軸とした場合、その傾きは、0.78になる。この値は、紙を積層した書籍の平均密度とも言える。
 グラフ中の破線の基準直線の傾きは、一般的な書籍の平均密度とほぼ一致する。装置がこの直線の上の領域に入る場合、実際よりも重く感じ、逆にこの直線の下の領域に入る場合には、実際よりも軽く感じることが分かった。
 官能評価の結果をグラフによってまとめると、図1Aに示すように、手にした物の体積と、それを持った際に感じる重さの間には特徴的な関係があることが分かった。つまり、直線(基準直線)の下側にある領域では、実際より軽く感じ、逆に、基準直線の上側の領域では、実際より重く感じる。
 このような実際の重さと感じる重さとのずれは、シャルパンティエ=コゼレフの錯覚と呼ばれるものが知られており、シャルパンティエが1891年に初めて論文で紹介している。物理的な重さの等しい物でも、体積が小さいものの方が、体積が大きいものよりも重く感じられるというものであり、「size-weight illusion」とも呼ばれている。近年、この現象には、視覚だけでなく、ダイナミックタッチ(運動性触感覚)が関与していると考えられている。ダイナミックタッチとは、杖を振ったり、カップを持ち上げたりするときに得られる感覚であり、バーチャルリアリティの分野での仮想認識、ロボティックス分野での認知を基にした力の制御等で研究されている。
 この「size-weight illusion」は、形状によってその度合いが異なるが、同じ形状であれば、非常にばらつきの少ない統計データが得られる。このことから、発明者らは、この原理がポータブル表示装置の軽量化設計に大変有用であり、若干の体積増を組合せることで、実際に質量として軽量化する量を減らしても、感じる重さとして同等の効果が得られることを見出した。
 つまり、ポータブル表示装置の重さW[kg]と体積V[m]との関係が、式(1)を満たすことで、ユーザの感覚上の軽量化を実現することができる。この関係を前提とし、表示画面の存在する面の面積を増やすことでポータブル表示装置の体積を増やすと、表示画面周囲の額縁を増やすことになる。したがって、厚さを厚くすることが体積増の手段として望ましい。
 また、図1Bに示すように、10インチサイズのタブレットと呼ばれるポータブル表示デバイスについて、体積と重さとをグラフ上にプロットすると010の黒丸の位置になる。この位置は、基準直線の上の領域に入り、ユーザは実際よりも重く感じることになる。既にガラスや筐体の薄型化が進んでいるポータブル表示デバイスを従来の軽量化技術のみで基準直線の下の領域に持ってくることは大変困難である。しかし、体積増と軽量化とを組合せて領域011で設計を行なうことで、ユーザの感覚上で同等の軽量化を実現できる。どちらを優先するかは設計時に図1Bの領域011の線上で、適宜選択することができる。
 さらに、装置の厚さを厚くすることで生じる空間に軽量な衝撃吸収層を設けることで、衝撃吸収能力を持たせることができる。衝撃吸収層は、軽量化のため、空隙を設けた構造体が望ましい。空隙を設けた弾性構造体としては、凹凸体、波状体、管状体、中空球状体、中空板状体、繊維集合体、ハニカム等が挙げられ、装置内の熱こもりを防ぐという観点では、特に連続空隙を設けた繊維集合体、ハニカムを用いることが望ましい。これにより、軽量化と高強度化を同時に実現できる。
 特に、最も少量の材料で高い強度を得ることができる構造である六角形のハニカム構造が望ましい。ハニカムとは、立体構造を隙間なく敷き詰めたものを指す。弾性構造体の構造設計については、弾性構造体を形成する弾性体のヤング率、ポアソン比、降伏応力と、装置にかかる応力の大きさより、最適な材料、構造を選択することができる。
 特に、弾性構造体が六角形のハニカム構造の場合、弾性構造体を形成する弾性体の降伏応力σ[N/m]とヤング率E[N/m]が、それぞれ、式(2)、式(3)を満たすことで、最適な材料、構造を選択することができる。最大加速度Aは、装置の衝撃試験での速度変化試験におけるピーク加速度とする。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 なお、式(2)の中で用いた符号は、A:速度変化試験の最大加速度[m/s]、W:表示装置重量[kg]、S:応力を受ける面積[m]、L:ハニカムセルの1辺の長さ、t:ハニカムセルのセル厚、である。
 また、式(3)の中で用いた符号は、A:加速度試験での最大加速度[m/s]、ν:弾性体のポアソン比、W:表示装置重量[kg]、S:応力を受ける面積[m]、L:ハニカムセルの1辺の長さ、t:ハニカムセルのセル厚、である。
 衝撃吸収材としての弾性体は、ゲルやエラストマーのようにヤング率が小さく、高靭性な材料を用いることができる。エラストマー材料としては、天然ゴム等の熱硬化性エラストマー、ウレタン系等の熱可塑性エラストマーがあり、ゲル材料としては、シリコーンゲル、ウレタンゲル等の熱可塑性ゲル、そして、高靭性のハイドロゲルを用いることができる。
 弾性体として、ハイドロゲルを用いる場合は、ダブルネットワークゲルやナノコンポジットゲルのような高靭性ハイドロゲルを用いることが望ましく、更に、表面に疎水性の皮膜を形成した構造とすることが望ましい。これにより、高靭性に加えて、ハイドロゲルに内包される水の蒸発による弾性体としての機能低下を防ぐことができる。
 また、衝撃吸収層として、等方性のバネ機能を有する構造体を用いることができる。等方性のバネ機能を有する構造体としては、繊維集合体がある。これは、金属やプラスチックのようなバルクとして大きな弾性を持たない材料を長繊維状にして、弾性機能を持たせたものである。繊維間は、部分的に接着していてもよい。長繊維がランダムに集まっているため、コイル状のバネと異なり、どの方向に対しても、弾性機能を有している。
 筐体材料としては、軽量化と高強度化の両立を図るために、複合材料や多孔質(空隙の大きい)材料を用いることが望ましい。例えば、空隙率が大きく軽量な金属不織布を金属多孔板で挟み、圧延したような材料を用いることができる。また、多孔質材料は連続空隙で構成されることが好ましい。これにより、独立気泡に比べて筐体内と外部との通気性が確保され、放熱性が向上する。
 さらに、弾性構造体の連続空隙内に、弾性構造体を形成する弾性体の熱伝導率よりも大きな放熱材料を挿入することで、装置内で発生した熱の放熱を容易にする事ができる。放熱材量は、軽量であり、面内の熱伝導率が大きいことが望ましく、例えば、金属不織布を成形したものを用いることができる。これにより、内部の熱を効率的に放熱できる。
 [第1の実施形態]
 (ポータブル表示装置の構成)
 図2は、ポータブル表示装置025の断面図である。ポータブル表示装置025は、弾性構造体020、表示部021、保護ガラス022および筐体部023を備え、外部衝撃等に対する破損防止構造が補完された軽量ポータブル表示装置である。弾性構造体020は、衝撃吸収のために設けられている。表示部021は、画像を表示するディスプレイ(液晶パネル)およびディスプレイの画像表示を制御する制御回路(表示回路)を含む基板を有している。保護ガラス022は、液晶パネルのガラス面の保護のために設けられている。筐体部023は、ディスプレイの背面側の外郭を形成している。筐体部023は、所定条件での応力に対して弾性座屈しても塑性座屈しない材料で形成された衝撃吸収部を有している。
 筐体部023は、衝撃吸収部と、衝撃吸収部以外を構成する筐体本体と、を有し、ディスプレイと筐体本体との間に衝撃吸収部を有することが好ましい。これにより、筐体本体とは別に衝撃吸収部を設計でき、筐体部の設計や組み立てが容易になる。
 弾性構造体としては、六角形ハニカム構造体が最も少量で高い強度を得ることができる。図3は、六角形ハニカム構造体030の斜視図である。図中のtがセル厚、Lがセルの一辺の長さを指す。
 六角形ハニカム構造体030は、圧縮時、降伏応力まではヤング率を比例定数とした線形弾性を示すが、降伏応力を超えると、応力がほぼ一定で歪が大きくなるプラトーという状態に移行し、最後に応力が急増する緻密化という状態に達する。緻密化にまで達すると、弾性体としての機能を失い、いわゆる底突きと同じ状態になり、衝撃吸収能力を失ってしまう。
 また、衝撃を吸収するためには、衝撃により六角形ハニカム構造体030が弾性変形(弾性座屈)する必要がある。式(2)、式(3)を用いて、基準直線より下の領域になる構成のポータブル表示装置について、衝撃試験の条件を基に、必要な力学物性範囲を見積った。
 図4は、ポータブル表示装置025の衝撃試験における衝撃印加方向を示す斜視図である。装置のサイズは、W=475mm、D=334mm、H=18.75mm、重量は2.34kgである。
 衝撃試験については、R.E.Newtonによって考案された損傷境界曲線(DBC)を導入した評価法が主流になっており、例えば、「包装設計のための製品衝撃強さ試験方法(JISZ0119-2002)」等に導入されている。この評価法は、製品の許容速度変化を測定する試験と許容加速度を測定する試験で構成される。
 図5Aおよび図5Bは、それぞれ損傷境界理論に基づく衝撃試験における許容速度変化および許容加速度の条件およびその印加波形の例を示すグラフである。図5Aの速度変化-加速度のグラフが、DBCを示している。条件050が、速度変化試験になり、条件051が、加速度試験になる。
 図5Bの時間-加速度のグラフは、試験において印加される衝撃の波形であり、一般的にはこのグラフのように正弦半波の波形が用いられる。それぞれの波形のピーク値が最大加速度となり、図5Aのグラフでの、加速度条件となる。衝撃試験では、複数の条件があり、ポータブル表示装置の速度変化試験では、最大加速度1600~2000m/sで印加時間2~3ms、加速度試験では、最大加速度600~800m/sで印加時間10~20ms程度の正弦半波が用いられている。
 ポータブル表示装置025のハニカム構造体においては、上記の加速度試験の最大応力に対して弾性座屈を起こし、速度変化試験の最大応力に対して塑性座屈を起こさない領域に入る形状および材料が選定されている。
 物体に加わる力は、物体の質量と加速度とから求まる。そこで、幅W、奥行きD、高さHを有する物体に対して、速度変化試験での最大加速度の値から、底面方向040、短辺側面方向041、角面方向042にかかる最大応力を求めた。六角形ハニカム構造体のパラメータとして、セル厚t=0.5mm、セルの一辺の長さL=5mmとして、材料に必要な力学物性範囲(ヤング率Eと降伏応力σ)を見積った。表1は、見積もられた材料に必要な力学物性範囲の結果を示している。この結果に降伏応力時の歪値を加味することで、最適な弾性体の力学物性値を得ることができる。
Figure JPOXMLDOC01-appb-T000008
 この結果より、弾性体として、例えば、底面にはウレタンゲル、短辺側面、角部にはそれぞれヤング率の異なる熱可塑性ポリエステルエラストマーを用いて六角形ハニカム構造体を形成するのが好ましい。
 なお、上記の例では、同一形状のハニカム構造体を用い、各部位により異なる力学物性の弾性体を用いているが、同一の弾性体を用いて、式(1)、式(2)を満たすように各部位によりハニカム構造体の形状を変えてもよい。これにより、ユーザに軽く感じさせるとともに、衝撃吸収を向上させることができる。また、上記の例では、弾性構造体を筐体内部に配置しているが、全てまたは一部の弾性構造体を筐体外部に配置してもよい。筐体外部に配置することで、落下等による筐体の傷付きを防ぐことができる。
 [第2の実施形態]
 図6Aおよび図6Bは、それぞれ金属不織布060と金属多孔板061からなる筐体の断面図および斜視図である。この筐体の部材は、アルミの金属不織布060をエキスパンドメタルと呼ばれる2枚の金属多孔板061で挟み、圧延加工したものである。筐体は、軽量(密度1500kg/m(アルミの2/3の密度))、高熱伝導(熱伝導率58.2W/(m・K))、通気性という特長があり、更に、図6Bに示すY方向ではヤング率10GPaという高い強度を持っている。
 このような金属不織布060と金属多孔板061からなる部材を成形し、ポータブル表示装置025の筐体に用いることができる。この部材を筐体に用いることで、筐体が全重量に対して占める割合を従来の20%から12%に低減することができる。また、この部材を筐体に用いることで、高い通気性により、筐体内の熱を排出する効果があり、放熱性も高めることができる。更に、この部材の不織布の表面を疎水化処理することで、高い通気性を持ちながら、高い防水性(耐水圧)を両立させることができる。
 [第3の実施形態]
 図7Aおよび図7Bは、それぞれ圧縮前および圧縮後の金属不織布放熱弾性体071の断面図であり、図7Cは、六角形ハニカム構造の弾性構造体070の斜視図である。また、図7Dは、金属不織布放熱弾性体071を六角形ハニカム構造の弾性構造体070に挿入した状態を示す断面図である。
 図7Aおよび図7Bに示すように、まず、金属不織布放熱弾性体071(例えば、アルミ不織布)を圧縮成形し、円柱状突起を形成する。圧縮された部分が高密度になることで、面内の熱伝導率を向上させることができる。図7Dに示すように、円柱状突起を形成したアルミ不織布を六角形ハニカム構造の弾性構造体070のセル内に挿入することで、衝撃吸収と放熱の両方の機能を持つ六角形ハニカム構造体を作製することができる。
 アルミ不織布の面内の熱伝導率は10W/(m・K)、厚さ方向の熱伝導率は1W/(m・K)であり、装置内で発生した熱を面内で拡散し、効率よく放熱できる。また、円柱突起部分が弾性体としても機能するため、衝撃吸収時の弾性構造体の変形に追従して変形し、永久変形を起こすことを防ぐことができる。これにより、筐体と金属不織布との接触状態を維持できるため、厚さ方向への筐体への放熱も安定して行なうことができる。
 [第4の実施形態]
 図8は、ハイドロゲル表面への疎水性皮膜形成を模式的に示す断面図である。図9A~図9Dは、ラジカル熱重合によるハイドロゲル作製方法である。六角形ハニカム構造体は、主にハイドロゲル080で構成されており、表面に疎水性の皮膜081が形成されている。ハイドロゲル080は、図9A~図9Dに示すようなラジカル重合反応により作製できる。架橋剤は、N,N’-メチレンビスアクリルアミドのように両端に結合手を持つ化合物を用いてもよいし、スメクタイトのように水中で均一分散する粘土鉱物を用いてもよい。また、図9A~図9Dでは、熱重合の例を示しているが、UV光による光重合を用いてもよい。
 疎水性の皮膜081により、ハイドロゲル080内の水分の蒸発、それに伴う、ハイドロゲル080の力学特性の変化を防止することができる。また、結露等により、ハイドロゲル080の表面に生じた水滴をハイドロゲル080が吸収し、膨潤することによるハニカム構造体の変形を防ぐこともできる。
 疎水性の皮膜081は、水中に乳化させた親水性基(エーテル基)と疎水性基(エステル基)を持つウレタン樹脂をハイドロゲル080の表面に塗布し、乾燥させることで作製できる。このような工程によりエマルション粒子同士を融着させ、ウレタン樹脂皮膜が形成される。
 また、イソプロピルアクリルアミドゲルのような温度相転移を起こすハイドロゲル080を用いることで、ハイドロゲル表面に疎水性皮膜を形成させ、蒸発量が増える高温時でも更に水分の蒸発を防ぐことができる。
 [第5の実施形態]
 図10は、繊維集合体100の断面図である。ポータブル表示装置025の弾性構造体020の部分には、等方性のバネ機能を有する繊維集合体100を用いることができる。ポリエステルを主骨格とする樹脂を長繊維状に成形したものをランダム状に圧縮し、繊維間を部分的に接着して作製できる。繊維径をa、接着点の平均ピッチをb、繊維に用いた材料の弾性率をEと表したとき、繊維集合体100の弾性率E2は、多孔体の弾性率を表す式(4)で概ね表すことができる。この式(4)で繊維の太さと圧縮状態を制御することで、所望の弾性率を得ることができる。これにより、例えば衝撃吸収部を繊維集合体100で形成することができ、衝撃吸収部を容易に作ることができる。なお、衝撃吸収部は、異方的な構造で形成されていてもよい。これにより、ポータブル表示装置025を軽量化するとともに高強度化することができる。
Figure JPOXMLDOC01-appb-M000009
 さらに、繊維を中空にすることで、弾性率を小さく、且つ、軽量化を行なうこともできる。本実施の形態では、繊維集合体100が等方的な弾性特性を有し、あらゆる方向からの衝撃を吸収することができるため、筐体に配置する場合も位置決め等の精度をそれほど必要としない。繊維集合体100には、ポリエチレン等、他の樹脂材料を用いてもよいし、金属不織布のような金属繊維を用いてもよい。金属繊維を用いた場合は、衝撃吸収機能に加えて放熱機能を持たせることができる。
 なお、本国際出願は、2015年10月14日に出願した日本国特許出願第2015-203261号に基づく優先権を主張するものであり、日本国特許出願第2015-203261号の全内容を本国際出願に援用する。
010 点
011 (軽く感じる)領域
020 弾性構造体
021 表示部
022 保護ガラス
023 筐体部
025 ポータブル表示装置
030 六角形ハニカム構造体
040 底面方向
041 短辺側面方向
042 角面方向
050 条件(速度変化試験)
051 条件(加速度試験)
060 金属不織布
061 金属多孔板
070 弾性構造体
071 金属不織布放熱弾性体
080 ハイドロゲル
081 疎水性の皮膜
100 繊維集合体

Claims (12)

  1.  電子データを表示するポータブル表示装置であって、
     画像を表示するディスプレイと、
     前記ディスプレイの画像表示を制御する制御回路を含む基板と、
     前記ディスプレイの背面側の外郭を形成する筐体部と、を備え、
     前記筐体部は、衝撃を吸収する衝撃吸収部を有し、
     装置全体の重さW[kg]と体積V[m]との関係が、以下の式(1)を満たすポータブル表示装置。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記衝撃吸収部は、所定条件での応力に対して弾性座屈しても塑性座屈しない材料で形成されている請求項1記載のポータブル表示装置。
  3.  前記筐体部は、前記衝撃吸収部以外を構成する筐体本体を更に有し、前記ディスプレイと前記筐体本体との間に前記衝撃吸収部を有する請求項2記載のポータブル表示装置。
  4.  前記衝撃吸収部は、厚さ方向に通じる連続空隙により形成される多孔質の構造体を有する請求項2または請求項3記載のポータブル表示装置。
  5.  前記連続空隙内に、前記衝撃吸収部の構造体自体を形成する材料の熱伝導率よりも大きな熱伝導率の材料が充填されている請求項4記載のポータブル表示装置。
  6.  前記衝撃吸収部は、等方的な構造で形成されている請求項1から請求項5のいずれかに記載のポータブル表示装置。
  7.  前記衝撃吸収部は、異方的な構造で形成されている請求項1から請求項5のいずれかに記載のポータブル表示装置。
  8.  前記衝撃吸収部は、弾性体で形成されたハニカム構造を有する請求項7記載のポータブル表示装置。
  9.  前記ハニカム構造は、装置重量W[kg]、応力を受ける面積S[m]、ハニカムセルの1辺の長さL[m]、ハニカムセルのセル厚t[m]について、
     最大加速度A1[m/s]で速度変化試験をしたとき前記弾性体の降伏応力σ[N/m]が以下の式(2)を満たし、
     最大加速度A[m/s]で加速度試験をしたとき前記弾性体のポアソン比νおよびヤング率E[N/m]が、式(3)を満たす請求項8記載のポータブル表示装置。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  10.  前記衝撃吸収部は、金属不織布または金属多孔板からなる請求項1から請求項9のいずれかに記載のポータブル表示装置。
  11.  前記衝撃吸収部の構造体自体を形成する材料が、ハイドロゲルであり、前記構造体の表面に疎水性の皮膜が形成されている請求項4記載のポータブル表示装置。
  12.  電子データを表示するポータブル表示装置の製造方法であって、
     装置全体の重さW[kg]と体積V[m]との関係が、以下の式(1)を満たすように設計する工程と、
     所定条件での応力に対して弾性変形しても塑性変形しない材料で形成された衝撃吸収部を有する筐体部を準備する工程と、
     画像を表示するディスプレイ、前記ディスプレイの画像表示を制御する制御回路を含む基板、前記筐体部を組み合わせる工程と、を含むポータブル表示装置の製造方法。
    Figure JPOXMLDOC01-appb-M000004
PCT/JP2016/080409 2015-10-14 2016-10-13 ポータブル表示装置およびその製造方法 WO2017065227A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015203261 2015-10-14
JP2015-203261 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065227A1 true WO2017065227A1 (ja) 2017-04-20

Family

ID=58517250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080409 WO2017065227A1 (ja) 2015-10-14 2016-10-13 ポータブル表示装置およびその製造方法

Country Status (1)

Country Link
WO (1) WO2017065227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782801A (zh) * 2019-11-28 2020-02-11 昆山工研院新型平板显示技术中心有限公司 一种显示模组、显示面板
CN111489660A (zh) * 2020-04-26 2020-08-04 京东方科技集团股份有限公司 显示模组

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047604A (ja) * 1998-07-31 2000-02-18 Takara Co Ltd 磁気表示パネルの製造方法
JP2004214097A (ja) * 2003-01-07 2004-07-29 Lg Electronics Inc プラズマディスプレイパネルの音響ノイズ低減方法およびプラズマディスプレイパネルユニット
JP2008241727A (ja) * 2006-10-31 2008-10-09 Hitachi Chem Co Ltd 画像表示用装置の製造方法及び画像表示用装置
JP2010032653A (ja) * 2008-07-25 2010-02-12 Sony Corp 電子機器
JP2012022096A (ja) * 2010-07-13 2012-02-02 Nec Casio Mobile Communications Ltd ディスプレイ補強構造
JP2013156624A (ja) * 2012-01-30 2013-08-15 G & Cs Co Ltd 有機発光表示装置
WO2013183597A1 (ja) * 2012-06-05 2013-12-12 Necカシオモバイルコミュニケーションズ株式会社 電子機器の表示部および当該表示部を有する携帯端末機器
JP2014044304A (ja) * 2012-08-27 2014-03-13 Yamaha Motor Electronics Co Ltd 液晶表示装置
JP2015099965A (ja) * 2013-11-18 2015-05-28 信越ポリマー株式会社 携帯電子機器用表示板及びその製造方法
JP2016110640A (ja) * 2014-11-28 2016-06-20 株式会社半導体エネルギー研究所 電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047604A (ja) * 1998-07-31 2000-02-18 Takara Co Ltd 磁気表示パネルの製造方法
JP2004214097A (ja) * 2003-01-07 2004-07-29 Lg Electronics Inc プラズマディスプレイパネルの音響ノイズ低減方法およびプラズマディスプレイパネルユニット
JP2008241727A (ja) * 2006-10-31 2008-10-09 Hitachi Chem Co Ltd 画像表示用装置の製造方法及び画像表示用装置
JP2010032653A (ja) * 2008-07-25 2010-02-12 Sony Corp 電子機器
JP2012022096A (ja) * 2010-07-13 2012-02-02 Nec Casio Mobile Communications Ltd ディスプレイ補強構造
JP2013156624A (ja) * 2012-01-30 2013-08-15 G & Cs Co Ltd 有機発光表示装置
WO2013183597A1 (ja) * 2012-06-05 2013-12-12 Necカシオモバイルコミュニケーションズ株式会社 電子機器の表示部および当該表示部を有する携帯端末機器
JP2014044304A (ja) * 2012-08-27 2014-03-13 Yamaha Motor Electronics Co Ltd 液晶表示装置
JP2015099965A (ja) * 2013-11-18 2015-05-28 信越ポリマー株式会社 携帯電子機器用表示板及びその製造方法
JP2016110640A (ja) * 2014-11-28 2016-06-20 株式会社半導体エネルギー研究所 電子機器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Omoshiro Game Hensenshi Meisaku kara Kusoge made", SEESAA, 4 February 2010 (2010-02-04), pages 2, XP055375667, Retrieved from the Internet <URL:http://gamers-high.seesaa.net/article/136647933.html> *
YUKI HAYASHI: "Ketai Denwa no Kyukyokukei", IEDENWA 2' O MOBILE DE TSUKAU!, 20 October 2013 (2013-10-20), pages 1, XP055375669, Retrieved from the Internet <URL:http://ascii.jp/elem/000/000/834/834930> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782801A (zh) * 2019-11-28 2020-02-11 昆山工研院新型平板显示技术中心有限公司 一种显示模组、显示面板
CN111489660A (zh) * 2020-04-26 2020-08-04 京东方科技集团股份有限公司 显示模组

Similar Documents

Publication Publication Date Title
JP6677270B2 (ja) 車載表示装置
TWI661344B (zh) 顯示裝置
US6381196B1 (en) Sintered viscoelastic particle vibration damping treatment
Alomarah et al. Dynamic performance of auxetic structures: experiments and simulation
CN108269498B (zh) 粘合膜、使用其的可折叠显示装置及其形成方法
CN109326220A (zh) 盖板及其制造方法、柔性显示模组和电子设备
JP2017048075A (ja) 合わせ板、および合わせ板の製造方法
Yan et al. Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores
CN205443166U (zh) 泡棉胶结构以及手机
WO2017065227A1 (ja) ポータブル表示装置およびその製造方法
Wang et al. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores
TW201628847A (zh) 殼體結構及其製造方法
WO2020202359A1 (ja) フォルダブルディスプレイ
Tang et al. Wave propagation in the polymer-filled star-shaped honeycomb periodic structure
US3923292A (en) Energy absorbing devices
Tan et al. Bioinspired flexible and programmable negative stiffness mechanical metamaterials
US20130300256A1 (en) Piezoelectric vibration module
US20060124388A1 (en) Double wall acoustic panel
Ma et al. Energy dissipation and shock isolation using novel metamaterials
JP6064256B2 (ja) 電子機器および緩衝材
Fanton et al. Variable area, constant force shock absorption motivated by traumatic brain injury prevention
WO2016160495A1 (en) Portable electronic device with cover glass protection
JP4641665B2 (ja) 携帯型情報処理端末
JP5493467B2 (ja) 表示装置及び電子装置
JP2007323403A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP